Sample records for quantitative enzyme linked

  1. QUANTITATIVE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETERMINATION OF POLYCHLORINATED BIPHENYLS IN ENVIRONMENTAL SOIL AND SEDIMENT SAMPLES

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil ar...

  2. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  3. Environmental Technology Verification Report for Abraxis Ecologenia® 17β-Estradiol (E2) Microplate Enzyme-Linked Immunosorbent Assay (ELISA) Test Kits

    EPA Science Inventory

    This verification test was conducted according to procedures specifiedin the Test/QA Planfor Verification of Enzyme-Linked Immunosorbent Assay (ELISA) Test Kis for the Quantitative Determination of Endocrine Disrupting Compounds (EDCs) in Aqueous Phase Samples. Deviations to the...

  4. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  5. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites.

    PubMed

    Sakamoto, Seiichi; Putalun, Waraporn; Vimolmangkang, Sornkanok; Phoolcharoen, Waranyoo; Shoyama, Yukihiro; Tanaka, Hiroyuki; Morimoto, Satoshi

    2018-01-01

    Immunoassays are antibody-based analytical methods for quantitative/qualitative analysis. Since the principle of immunoassays is based on specific antigen-antibody reaction, the assays have been utilized worldwide for diagnosis, pharmacokinetic studies by drug monitoring, and the quality control of commercially available products. Berson and Yalow were the first to develop an immunoassay, known as radioimmunoassay (RIA), for detecting endogenous plasma insulin [1], a development for which Yalow was awarded the Nobel Prize in Physiology or Medicine in 1977. Even today, after half a century, immunoassays are widely utilized with some modifications from the originally proposed system, e.g., radioisotopes have been replaced with enzymes because of safety concerns regarding the use of radioactivity, which is referred to as enzyme immunoassay/enzyme-linked immunosorbent assay (ELISA). In addition, progress has been made in ELISA with the recent advances in recombinant DNA technology, leading to increase in the range of antibodies, probes, and even systems. This review article describes ELISA and its applications for the detection of plant secondary metabolites.

  6. Binding Assays for the Quantitative Detection of P. brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1987-12-01

    editions are obsolete. -I Block 19 continued structure. Preliminary experiments involving conversion of the radio- immunoassay to a urease enzyme linked...the radioimmunoassay to a urease I enzyme linked form have been successful. DTIC GTAB Di tributioul AV~i~b~±~YCoded Avsi abi11i ntY___ tat Special...necessary prior to thin- layer chromatography. A preparative thin- layer chromatography step using silica gel plates (1000 u thickness) utilizes acetone

  7. QUANTITATIVE ELISA OF POLYCHLORINATED BIPHENYLS IN AN OILY SOIL MATRIX USING SUPERCRITICAL FLUID EXTRACTION

    EPA Science Inventory

    Soil samples from the GenCorp Lawrence Brownfields site were analyzed with a commercial semi-quantitative enzyme-linked immunosorbent assay (ELISA) using a methanol shake extraction. Many of the soil samples were extremely oily, with total petroleum hydrocarbon levels up to 240...

  8. Prostate Cancer Progression and Serum SIBLING (Small Integrin Binding N-Linked Glycoprotein)Levels

    DTIC Science & Technology

    2007-10-01

    termed SIBLINGs (for small integrin binding ligand N-linked glycoproteins) whose members include bone sialoprotein (BSP), osteopontin (OPN), dentin...enzyme-linked immunosorbent assays (ELISAs) for quantitatively determining the levels of bone sialoprotein (BSP), osteopontin (OPN), dentin...synthesized as a chimeric protein, composed of three parts: dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP, also

  9. Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers.

    PubMed

    Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James

    2016-03-23

    There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.

  10. Binding Assays for the Quantitative Detection of P. brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1990-05-15

    was also linked to urease and toxin-enzyme conjugates were evaluated. 4. Toxin Enzyme Conjugates. Brevetoxins linked to either Jack Bean urease or...described in materials and methods. For urease conjugates, 1:2, 1:4 and 1:6 molar ratios were investigated. The following protocol yielded the most...fold excess urease in 1 volume equivalent of water, in three equal aliquots. Total volume after addition is 2-fold the volume in step [2], final

  11. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

    PubMed

    Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin

    2014-10-08

    Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.

  12. Quantitative Structure-Activity Relationships for Organophosphate Enzyme Inhibition (Briefing Charts)

    DTIC Science & Technology

    2011-09-22

    OPs) are a group of pesticides that inhibit enzymes such as acetylcholinesterase. Numerous OP structural variants exist and toxicity data can be...and human toxicity studies especially for OPs lacking experimental data. 15. SUBJECT TERMS QSAR Organophosphates...structure and mechanism of toxicity c) Linking QSAR and OP PBPK/PD 2. Methods a) Physiochemical Descriptors b) Regression Techniques 3. Results a

  13. ELEGANT ENVIRONMENTAL IMMUNOASSAYS

    EPA Science Inventory

    Immunochemical methods are based on selective antibodies directed to a particular target analyte. The specific binding between antibody and analyte can be used for detection and quantitation. Methods such as the enzyme-linked immunosorbent assay (ELISA) can provide a sensitiv...

  14. Test/QA Plan for Verification of Microcystin Test Kits

    EPA Science Inventory

    Microcystin test kits are used to quantitatively measure total microcystin in recreational waters. These test kits are based on enzyme-linked immunosorbent assays (ELISA) with antibodies that bind specifically to microcystins or phosphate activity inhibition where the phosphatas...

  15. Multi-Laboratory Validation of Estrone (E1) ELISA Methods

    EPA Science Inventory

    This project is a round-robin evaluation of commercially available Enzyme-Linked Immunosorbent Assay (ELISA) technology to quantitatively or qualitatively measure the hormone estrone (E1) in combined animal feeding operation (CAFO) receiving streams. ELISA is meant to be a simpl...

  16. Quantitation of antibodies to Haemophilus influenzae type b in humans by enzyme-linked immunosorbent assay.

    PubMed Central

    Dahlberg, T

    1981-01-01

    The enzyme-linked immunosorbent assay was adapted to detect serum immunoglobulin G, immunoglobulin M, immunoglobulin A, and secretory immunoglobulin A antibodies to Haemophilus influenzae type b capsular polysaccharide in humans. I studied serum samples from 92 healthy children of various ages, 50 healthy adults, 24 patients with various H. influenzae type b infections, and 16 patients with clinical signs of epiglottis and cellulitis suspected to be caused by H. influenzae type b. The mean antibody titers of the sera from healthy children increased with age and reached adult levels in children more than 6 years old. A significant antibody response to capsular polysaccharide was observed in serum samples from the majority of patients with infections due to H. influenzae type b and in 4 of 16 patients with clinical signs of epiglottis and cellulitis. In addition to the enzyme-linked immunosorbent assay, the antibody responses of patients were tested by a bactericidal assay. When the two methods were compared, there was no evident correlation (r, about 0.22). The enzyme-linked immunosorbent assay was further adapted to test secretory immunoglobulin A antibodies specific to capsular polysaccharide in nasopharynx secretions and in milk samples from lactating women. Antibodies were detected in 12 of 24 secretions and 9 of 11 milk samples. PMID:7019237

  17. Microvolume, kinetic-dependent enzyme-linked immunosorbent assay for amoeba antibodies.

    PubMed Central

    Mathews, H M; Walls, K W; Huong, A Y

    1984-01-01

    We describe a microvolume enzyme-linked immunosorbent assay based on enzyme rate kinetics. Antigens from Entamoeba histolytica were adsorbed in wells of disposable polystyrene strips containing 12 flat-bottom wells. After exposure to the serum of a patient and peroxidase-labeled anti-human immunoglobulin G, the rate of color change in specific substrate was determined by eight sequential readings of individual wells over a 2-min period with a microcomputer-controlled model MR-600 automated plate reader. The changes in absorbance readings were converted to slope values for each well by the microcomputer. Thus, 12 samples were read, and results were printed in ca. 3.5 min. Assay conditions are described and data are presented to show that this assay is quantitative for antibody and antigen concentration with a single-tube (well) dilution. PMID:6321547

  18. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Qian, Wei-jun; Gao, Yuqian

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less

  19. Commercial Milk Enzyme-Linked Immunosorbent Assay (ELISA) Kit Reactivities to Purified Milk Proteins and Milk-Derived Ingredients.

    PubMed

    Ivens, Katherine O; Baumert, Joseph L; Taylor, Steve L

    2016-07-01

    Numerous commercial enzyme-linked immunosorbent assay (ELISA) kits exist to quantitatively detect bovine milk residues in foods. Milk contains many proteins that can serve as ELISA targets including caseins (α-, β-, or κ-casein) and whey proteins (α-lactalbumin or β-lactoglobulin). Nine commercially-available milk ELISA kits were selected to compare the specificity and sensitivity with 5 purified milk proteins and 3 milk-derived ingredients. All of the milk kits were capable of quantifying nonfat dry milk (NFDM), but did not necessarily detect all individual protein fractions. While milk-derived ingredients were detected by the kits, their quantitation may be inaccurate due to the use of different calibrators, reference materials, and antibodies in kit development. The establishment of a standard reference material for the calibration of milk ELISA kits is increasingly important. The appropriate selection and understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk residues and informed risk management decisions. © 2016 Institute of Food Technologists®

  20. Development of a Quantitative Sandwich Enzyme-Linked Immunosorbent Assay for Detecting the MPT64 Antigen of Mycobacterium tuberculosis

    PubMed Central

    Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae

    2014-01-01

    Purpose Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. Materials and Methods The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. Results The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×104 CFU/mL and 2.0×106 CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). Conclusion The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis. PMID:24719143

  1. Quantitative Systems Pharmacology Modeling of Acid Sphingomyelinase Deficiency and the Enzyme Replacement Therapy Olipudase Alfa Is an Innovative Tool for Linking Pathophysiology and Pharmacology.

    PubMed

    Kaddi, Chanchala D; Niesner, Bradley; Baek, Rena; Jasper, Paul; Pappas, John; Tolsma, John; Li, Jing; van Rijn, Zachary; Tao, Mengdi; Ortemann-Renon, Catherine; Easton, Rachael; Tan, Sharon; Puga, Ana Cristina; Schuchman, Edward H; Barrett, Jeffrey S; Azer, Karim

    2018-06-19

    Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations, including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality. Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the non-neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the clinical development of olipudase alfa. The model is multiscale and mechanistic, linking the enzymatic deficiency driving the disease to molecular-level, cellular-level, and organ-level effects. Model development was informed by natural history, and preclinical and clinical studies. By considering patient-specific pharmacokinetic (PK) profiles and indicators of disease severity, the model describes pharmacodynamic (PD) and clinical end points for individual patients. The ASMD QSP model provides a platform for quantitatively assessing systemic pharmacological effects in adult and pediatric patients, and explaining variability within and across these patient populations, thereby supporting the extrapolation of treatment response from adults to pediatrics. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  2. Development of a quantitative sandwich enzyme-linked immunosorbent assay for detecting the MPT64 antigen of Mycobacterium tuberculosis.

    PubMed

    Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae; Jeon, Bo-Young; Yoon, Byoung-Su

    2014-05-01

    Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×10⁴ CFU/mL and 2.0×10⁶ CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis.

  3. DEVELOPMENT OF A QUANTITATIVE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR VITELLOGENIN OF MOSQUITOFISH (GAMBUSIA AFFINIS). (R826130)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. DETERMINATION OF 3,5,6-TRICHLORO-2-PYRIDINOL (TCP) BY ELISA

    EPA Science Inventory

    A sensitive, competitive enzyme-linked immunosorbent assay (ELISA) for 3,5,6-trichloro-2pyridinol (TCP) has been developed to quantitate parts per billion (ppb) amounts of the analyte in urine. TCP is a major metabolite and environmental degradation product of the insecticide c...

  5. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy.

    PubMed

    Keilholz, Ulrich; Weber, Jeffrey; Finke, James H; Gabrilovich, Dmitry I; Kast, W Martin; Disis, Mary L; Kirkwood, John M; Scheibenbogen, Carmen; Schlom, Jeff; Maino, Vernon C; Lyerly, H Kim; Lee, Peter P; Storkus, Walter; Marincola, Franceso; Worobec, Alexandra; Atkins, Michael B

    2002-01-01

    The Society for Biological Therapy held a Workshop last fall devoted to immune monitoring for cancer immunotherapy trials. Participants included members of the academic and pharmaceutical communities as well as the National Cancer Institute and the Food and Drug Administration. Discussion focused on the relative merits and appropriate use of various immune monitoring tools. Six breakout groups dealt with assays of T-cell function, serologic and proliferation assays to assess B cell and T helper cell activity, and enzyme-linked immunospot assay, tetramer, cytokine flow cytometry, and reverse transcription polymerase chain reaction assays of T-cell immunity. General conclusions included: (1) future vaccine studies should be designed to determine whether T-cell dysfunction (tumor-specific and nonspecific) correlated with clinical outcome; (2) tetramer-based assays yield quantitative but not functional data (3) enzyme-linked immunospot assays have the lowest limit of detection (4) cytokine flow cytometry have a higher limit of detection than enzyme-linked immunospot assay, but offer the advantages of speed and the ability to identify subsets of reactive cells; (5) antibody tests are simple and accurate and should be incorporated to a greater extent in monitoring plans; (6) proliferation assays are imprecise and should not be emphasized in future studies; (7) the reverse transcription polymerase chain reaction assay is a promising research approach that is not ready for widespread application; and (8)there is a critical need to validate these assays as surrogates for vaccine potency and clinical effect. Current data and opinion support the use of a functional assay like the enzyme-linked immunospot assay or cytokine flow cytometry in combination with a quantitative assay like tetramers for immune monitoring. At present, assays appear to be most useful as measures of vaccine potency. Careful immune monitoring in association with larger scale clinical trials ultimately may enable the correlation of monitoring results with clinical benefit.

  6. Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation.

    PubMed

    Pahlavan, Autusa; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2016-10-01

    Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis. Published by Elsevier Ltd.

  7. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR MONITORING 2,4 DICHLOROPHENOXYACETIC ACID (2,4-D) EXPOSURES

    EPA Science Inventory

    Abstract describes a streamlined ELISA method developed to quantitatively measure 2,4-D in human urine samples. Method development steps and comparison with gas chromatography/mass spectrometry are presented. Results indicated that the ELISA method could be used as a high throu...

  8. The Effect of Different Methods of Fermentation on the Detection of Milk Protein Residues in Retail Cheese by Enzyme-Linked Immunosorbent Assay (ELISA).

    PubMed

    Ivens, Katherine O; Baumert, Joseph L; Hutkins, Robert L; Taylor, Steve L

    2017-11-01

    Milk and milk products are among the most important allergenic food ingredients, both in the United States and throughout the world; cheeses are among the most important of these milk products. Milk contains several major antigenic proteins, each with differing susceptibilities to proteolytic enzymes. The extent of proteolysis in cheese varies as a result of conditions during manufacture and ripening. Proteolysis has the potential to degrade antigenic and allergenic epitopes that are important for residue detection and elicitation of allergic reactions. Commercial enzyme-linked immunosorbent assays (ELISAs) are not currently validated for use in detecting residues in hydrolyzed or fermented food products. Eighteen retail cheeses produced using 5 different styles of fermentation were investigated for detectable milk protein residues with 4 commercial ELISA kits. Mozzarella, Swiss, Blue, Limburger, and Brie cheeses were assessed. The Neogen Veratox® Casein and Neogen Veratox® Total Milk kits were capable of detecting milk residues in most cheeses evaluated, including blue-veined cheeses that exhibit extensive proteolysis. The other 2 ELISA kits evaluated, r-Biopharm® Fast Casein and ELISA Systems™ Casein, can detect milk residues in cheeses other than blue-veined varieties. ELISA results cannot be quantitatively compared among kits. The quantitative reliability of ELISA results in detection of cheese residues is questionable, but some methods are sufficiently robust to use as a semi-quantitative indication of proper allergen control for the validation of cleaning programs in industry settings. Many commercially available enzyme-linked immunosorbent assays (ELISAs) are not validated for detection of allergenic residues in fermented or hydrolyzed products. This research seeks to determine if commercial milk ELISAs can detect milk residues in varieties of cheese that have undergone different styles of fermentation and different degrees of proteolysis. Only certain milk ELISA kits are capable of detecting residues in all varieties of cheese. However, commercial milk ELISA kits are capable of semiquantitative detection of cheese residues in foods, or in industry settings for the validation of allergen cleaning programs. © 2017 Institute of Food Technologists®.

  9. Development of an enzyme-linked immunosorbent assay for the detection of dicamba.

    PubMed

    Clegg, B S; Stephenson, G R; Hall, J C

    2001-05-01

    A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.

  10. COMPARATIVE ESTROGENICITY OF ESTRADIOL, ETHYNYL ESTRADIOL AND DIETHYLSTILBESTROL IN AN IN VIVO, MALE SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS), VITELLOGENIN BIOASSAY

    EPA Science Inventory

    An in vivo bioassay for vitellogenin (VTG) synthesis was developed to screen individual chemicals or mixtures of chemicals for potentially estrogenic effects in a marine teleost model. An enzyme-linked immunosorbent assay (ELISA) was used to quantitate VTG synthesis in male sheep...

  11. Monoclonal antibody passive hemagglutination and capture enzyme-linked immunosorbent assays for direct detection and quantitation of F41 and K99 fimbrial antigens in enterotoxigenic Escherichia coli.

    PubMed Central

    Raybould, T J; Crouch, C F; Acres, S D

    1987-01-01

    Production of diarrhea in neonatal calves by enterotoxigenic Escherichia coli depends on its ability to attach to the epithelial cells of the intestine via surface adhesins called pili or fimbriae and to secrete enterotoxins. The most important of these fimbriae are designated K99 and F41. We produced and characterized a murine monoclonal antibody specific to F41. This monoclonal antibody and a K99-specific monoclonal antibody were used to develop sensitive and specific passive hemagglutination and capture enzyme-linked immunosorbent assays (ELISAs) for detection and quantitation of F41 and K99 antigens in E. coli cultures and culture supernatants. The capture ELISA systems exhibited excellent sensitivity and specificity, whereas the passive hemagglutination systems appeared to be oversensitive. The ability of the capture ELISAs to detect K99 and F41 fimbrial antigens in fecal specimens from calves was evaluated. Fimbrial antigens were detected in six of six specimens from scouring calves but not in four of four specimens from nonscouring calves. PMID:2880866

  12. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response.

    PubMed

    Shah, Ashish K; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel

    2018-01-01

    The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.

  13. Development and evaluation of ELISA and qRT-PCR for identification of Squash vein yellowing virus in cucurbits

    USDA-ARS?s Scientific Manuscript database

    Enzyme linked-immunosorbent assay (ELISA) and quantitative reverse transcription-PCR (qRT-PCR) assays were developed for identification of Squash vein yellowing virus (SqVYV), the cause of viral watermelon vine decline. Both assays were capable of detecting SqVYV in a wide range of cucurbit hosts. ...

  14. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    PubMed

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  15. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  16. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.

    ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.

  18. Smartphone instrument for portable enzyme-linked immunosorbent assays

    PubMed Central

    Long, Kenneth D.; Yu, Hojeong; Cunningham, Brian T.

    2014-01-01

    We demonstrate the utilization of a smartphone camera as a spectrometer that is capable of measuring Enzyme Linked Immunosorbent Assays (ELISA) at biologically-relevant concentrations with the aid of a custom cradle that aligns a diffraction grating and a collimating lens between a light source and the imaging sensor. Two example biomarkers are assayed using conventional ELISA protocols: IL-6, a protein used diagnostically for several types of cancer, and Ara h 1, one of the principle peanut allergens. In addition to the demonstration of limits of detection at medically-relevant concentrations, a screening of various cookies was completed to measure levels of peanut cross-contamination in local bakeries. The results demonstrate the utility of the instrument for quantitatively performing broad classes of homogeneous colorimetric assays, in which the endpoint readout is the color change of a liquid sample. PMID:25426311

  19. An enzyme-linked immunosorbent assay for the quantification of serum platelet-bindable IgG.

    PubMed

    Howe, S E; Lynch, D M; Lynch, J M

    1984-01-01

    An enzyme-linked immunosorbent assay (ELISA) using F(ab')2 peroxidase-labeled antihuman immunoglobulin and o-phenylenediamine dihydrochloride (OPD) as a substrate was developed to measure serum platelet bindable IgG (S-PBIgG). The assay was made quantitative by standardizing the number of normal "target" platelets bound to microtiter plate wells, and by incorporating quantitated IgG standards with each microtiter plate tested to prepare a standard calibration curve. By this method, S-PBIgG for normal individuals was 3.4 +/- 1.6 fg per platelet (mean +/- 1 SD; n = 40). Increased S-PBIgG levels were detected in 36 of 40 patients with clinical autoimmune thrombocytopenia (ATP), ranging from 7.0 to 85 fg per platelet. Normal S-PBIgG levels were found in 34 of 40 patients with nonimmune thrombocytopenia. This method showed a sensitivity of 90 percent, specificity of 85 percent, and in the sample population studied, a positive predictive value of 0.86 and a negative predictive value of 0.90. This assay is highly reproducible (coefficient of variation was 6.8%) and appears useful in the evaluation of patients with suspected immune-mediated thrombocytopenia.

  20. Disentangling DNA molecules

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  1. Detection of anti-Yta antibodies using a sensitive and specific enzyme-linked immunosorbent assay.

    PubMed

    Geen, J; Hullin, D A; Hogg, S I

    1999-01-01

    A specific, sensitive and semi-quantitative enzyme-linked immunosorbent assay (ELISA) is described to detect anti-Yta antibodies in human serum. Recombinant acetylcholinesterase (AChE E.C.3.1.1.7) was employed as the coating antigen in the microtitre plate and horseradish peroxidase (HRP)-conjugated specific antibody (IgG) was used as the secondary antibody. The method developed showed excellent sensitivity, detecting a titre > 1 in 600,000 (3.5 ng/mL mouse IgG protein) for mouse monoclonal (mMAb) anti-AChE antibody. No cross-reaction was seen with other common blood group antibodies, confirming the specificity of the method. The recombinant antigen's AChE phenotype was confirmed as Yta, as no reaction was detected with anti-Ytb-positive sera. The ELISA method correlated closely with the established serological grading system used routinely in blood transfusion laboratories.

  2. An enzyme-linked immunosorbent assay for monoester-type aconitic alkaloids and its application in the pharmacokinetic study of benzoylhypaconine in rats.

    PubMed

    Liu, Can-Can; Xu, Yun-Hui; Yuan, Shuai; Xu, Yu; Hua, Mo-Li

    2018-04-01

    A new enzyme-linked immunosorbent assay (ELISA) method for quantitative determination of monoester-type aconitic alkaloids was developed. The antibodies derived from the immunogen of benzoylmesaconine (BM) could be electively affined to benzoylaconitine-type alkaloids with an ester bond (14-benzoyl-), especially to benzoylhypaconine (BH, 140.02% of cross-reactivity). The effective working range of BH was 1 ng/ml to 5 μg/ml; the lower limit of detection and the quantification were 0.35 and 0.97 ng/ml, respectively. The values of CV for intra-day and inter-day assays and recovery ratios were in acceptable ranges. The results of stability experiments were also satisfactory. This validated method was employed for pharmacokinetic study of BH in rats and the bioavailability orally administered was estimated to be 16.3%.

  3. Development of a Multi-Point Quantitation Method to Simultaneously Measure Enzymatic and Structural Components of the Clostridium thermocellum Cellulosome Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, Andrew B; St. Brice, Lois; Rodriguez, Jr., Miguel

    2014-01-01

    Clostridium thermocellum has emerged as a leading bioenergy-relevant microbe due to its ability to solubilize cellulose into carbohydrates, mediated by multi-component membrane-attached complexes termed cellulosomes. To probe microbial cellulose utilization rates, it is desirable to be able to measure the concentrations of saccharolytic enzymes and estimate the total amount of cellulosome present on a mass basis. Current cellulase determination methodologies involve labor-intensive purification procedures and only allow for indirect determination of abundance. We have developed a method using multiple reaction monitoring (MRM-MS) to simultaneously quantitate both enzymatic and structural components of the cellulosome protein complex in samples ranging in complexitymore » from purified cellulosomes to whole cell lysates, as an alternative to a previously-developed enzyme-linked immunosorbent assay (ELISA) method of cellulosome quantitation. The precision of the cellulosome mass concentration in technical replicates is better than 5% relative standard deviation for all samples, indicating high precision for determination of the mass concentration of cellulosome components.« less

  4. Sensitivity and specificity enhanced enzyme-linked immunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigen combinations for the detection of melamine in milk, milk powder and feed samples.

    PubMed

    Cao, Biyun; Yang, Hong; Song, Juan; Chang, Huafang; Li, Shuqun; Deng, Anping

    2013-11-15

    The adulteration of food products with melamine has led to an urgent requirement for sensitive, specific, rapid and reliable quantitative/screening methods. To enhance the sensitivity and specificity of the enzyme-linked immunosorbent assay (ELISA) for the detection of melamine in milk, milk powder and feed samples, rational hapten modification and heterogeneous antibody/coating antigen combinations were adopted. Three melamine derivatives with different length of carboxylic spacer at the end were synthesized and linked to carrier proteins for the production of immunogens and coating antigens. Monoclonal antibody against melamine was produced by hybridoma technology. Under optimal experimental conditions, the standard curves of the ELISAs for melamine were constructed in range of 0.1-100 ng mL(-1). The sensitivity was 10-300 times enhanced compared to those in the published literatures. The cross-reactivity values of the ELISAs also demonstrated the assays exhibited high specificity. Five samples were spiked with melamine at different concentrations and detected by the ELISA. The recovery rates of 72.8-123.0% and intra-assay coefficients of variation of 0.8-18.9% (n=3) were obtained. The ELISA for milk sample was confirmed by high-performance liquid chromatography with a high correlation coefficient of 0.9902 (n=6). The proposed ELISA was proven to be a feasible quantitative/screening method for melamine analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Highly sensitive reversed-phase high-performance liquid chromatography assay for the detection of Tamm-Horsfall protein in human urine.

    PubMed

    Akimoto, Masaru; Hokazono, Eisaku; Ota, Eri; Tateishi, Takiko; Kayamori, Yuzo

    2016-01-01

    Tamm-Horsfall protein (also known as uromodulin) is the most abundant urinary protein in healthy individuals. Since initially characterized by Tamm and Horsfall, the amount of urinary excretion and structural mutations of Tamm-Horsfall protein is associated with kidney diseases. However, currently available assays for Tamm-Horsfall protein, which are mainly enzyme-linked immunosorbent assay-based, suffer from poor reproducibility and might give false negative results. We developed a novel, quantitative assay for Tamm-Horsfall protein using reversed-phase high-performance liquid chromatography. A precipitation pretreatment avoided urine matrix interference and excessive sample dilution. High-performance liquid chromatography optimization based on polarity allowed excellent separation of Tamm-Horsfall protein from other major urine components. Our method exhibited high precision (based on the relative standard deviations of intraday [≤2.77%] and interday [≤5.35%] repetitions). The Tamm-Horsfall protein recovery rate was 100.0-104.2%. The mean Tamm-Horsfall protein concentration in 25 healthy individuals was 31.6 ± 18.8 mg/g creatinine. There was a strong correlation between data obtained by high-performance liquid chromatography and enzyme-linked immunosorbent assay (r = 0.906), but enzyme-linked immunosorbent assay values tended to be lower than high-performance liquid chromatography values at low Tamm-Horsfall protein concentrations. The high sensitivity and reproducibility of our Tamm-Horsfall protein assay will reduce the number of false negative results of the sample compared with enzyme-linked immunosorbent assay. Moreover, our method is superior to other high-performance liquid chromatography methods, and a simple protocol will facilitate further research on the physiological role of Tamm-Horsfall protein. © The Author(s) 2015.

  6. Quantitative measurement of human thyroglobulin-specific antibodies by use of a sensitive enzyme-linked immunoassay.

    PubMed

    Kuppers, R C; Outschoorn, I M; Hamilton, R G; Burek, C L; Rose, N R

    1993-04-01

    A quantitative enzyme-linked immunoassay that measures in absolute terms the subclass concentration of human thyroglobulin (huTg)-specific IgG autoantibody was developed. Unique to this study was the use of an affinity-purified anti-huTg standard with a known concentration of the four IgG subclasses. The sensitivity of the ELISA assay was 1-5 ng/ml depending on the IgG subclass being measured. We examined 22 sera of patients with autoimmune thyroid disease. The total huTg-specific antibody concentrations in serum ranged from 0 to nearly 3000 micrograms/ml of IgG. The IgG subclass distribution in individuals with low huTg-specific IgG (< 10 micrograms/ml) was primarily IgG1 and IgG3 Ab. Patients with intermediate levels of huTg IgG (10-600 micrograms/ml) expressed all four subclasses; however, no particular subclass was dominant. Individuals with > 1000 micrograms/ml also showed huTg-Ab in all four subclasses, however, IgG1 and IgG2 were dominant. All four IgG subclasses were used in the response to huTg, although the pattern of usage varied between individuals. There was no dominant subclass usage seen in this patient population.

  7. Detection of flunixin in greyhound urine by a kinetic enzyme-linked immunosorbent assay.

    PubMed

    Brady, T C; Yang, T J; Hyde, W G; Kind, A J; Hill, D W

    1997-01-01

    A two-step kinetic enzyme-linked immunosorbent assay was developed to detect the presence of flunixin in the urine of greyhound dogs. The assay system was developed using polyclonal antiflunixin antisera, a rabbit albumin-flunixin conjugate adsorbed onto polystyrene microtiter strips, and flunixin reference standards for calibration. The assay parameters were optimized and the performance characteristics were determined. The quantitative intra- and inter-run precisions (%CV) of the analysis of replicate (n = 10) flunixin-spiked urine samples were 9.9-12.5% and 10.2-13.6%, respectively. The linear dynamic range was 1-100 ng/mL, and the quantitative accuracy, as determined by calculation of percent error of measured flunixin in flunixin-spiked drug-free greyhound urine, was -16% to +14% over this range. The I50 of the ELISA was 17.3 ng/mL. The limit of detection was 25 ng/mL in greyhound urine. The reactivity in the assay system relative to flunixin (100%) was 147% for flunixin glucuronide, 25% for clonixin, and 5% for niflumic acid. The ELISA was capable of detecting total flunixin for up to 72 h in dogs administered flunixin at 0.55 mg/kg orally and up to 96 h in a dog that was administered flunixin at 1.0 mg/kg orally.

  8. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Diagnosis of feline leukaemia virus infection by semi-quantitative real-time polymerase chain reaction.

    PubMed

    Pinches, Mark D G; Helps, Christopher R; Gruffydd-Jones, Tim J; Egan, Kathy; Jarrett, Oswald; Tasker, Séverine

    2007-02-01

    In this paper the design and use of a semi-quantitative real-time polymerase chain reaction assay (RT-PCR) for feline leukaemia virus (FeLV) provirus is described. Its performance is evaluated against established methods of FeLV diagnosis, including virus isolation and enzyme-linked immunoassay (ELISA) in a population of naturally infected cats. The RT-PCR assay is found to have both a high sensitivity (0.92) and specificity (0.99) when examined by expectation maximisation methods and is also able to detect a large number of cats with low FeLV proviral loads that were negative by other conventional test methods.

  10. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model.

    PubMed

    Dong, Sa; Zhang, Xiao; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Zhong, Jianfeng; Xu, Chongxin; Liu, Xianjin

    2017-03-01

    Cry1Ab toxin is commonly expressed in genetically modified crops in order to control chewing pests. At present, the detection method with enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibody cannot specifically detect Cry1Ab toxin for Cry1Ab's amino acid sequence and spatial structure are highly similar to Cry1Ac toxin. In this study, based on molecular design, a novel hapten polypeptide was synthesized and conjugated to keyhole limpet hemocyanin (KLH). Then, through animal immunization with this antigen, a monoclonal antibody named 2C12, showing high affinity to Cry1Ab and having no cross reaction with Cry1Ac, was produced. The equilibrium dissociation constant (K D ) value of Cry1Ab toxin with MAb 2C12 was 1.947 × 10 -8  M. Based on this specific monoclonal antibody, a sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for the specific determination of Cry1Ab toxin and the LOD and LOQ values were determined as 0.47 ± 0.11 and 2.43 ± 0.19 ng mL -1 , respectively. The average recoveries of Cry1Ab from spiked rice leaf and rice flour samples ranged from 75 to 115%, with coefficient of variation (CV) less than 8.6% within the quantitation range (2.5-100 ng mL -1 ), showing good accuracy for the quantitative detection of Cry1Ab toxin in agricultural samples. In conclusion, this study provides a new approach for the production of high specific antibody and the newly developed DAS-ELISA is a useful method for Cry1Ab monitoring in agriculture products. Graphical Abstract Establishment of a DAS-ELISA for the specific detecting of Bacillus thuringiensis (Bt) Cry1Ab toxin.

  11. MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa.

    PubMed

    Calenda, Giulia; Villegas, Guillermo; Barnable, Patrick; Litterst, Claudia; Levendosky, Keith; Gettie, Agegnehu; Cooney, Michael L; Blanchard, James; Fernández-Romero, José A; Zydowsky, Thomas M; Teleshova, Natalia

    2017-03-01

    The Population Council's microbicide gel MZC (also known as PC-1005) containing MIV-150 and zinc acetate dihydrate (ZA) in carrageenan (CG) has shown promise as a broad-spectrum microbicide against HIV, herpes simplex virus (HSV), and human papillomavirus. Previous data show antiviral activity against these viruses in cell-based assays, prevention of vaginal and rectal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection, and reduction of vaginal HSV shedding in rhesus macaques and also excellent antiviral activity against HSV and human papillomavirus in murine models. Recently, we demonstrated that MZC is safe and effective against SHIV-RT in macaque vaginal explants. Here we established models of ex vivo SHIV-RT/HSV-2 coinfection of vaginal mucosa and SHIV-RT infection of rectal mucosa in macaques (challenge of rectal mucosa with HSV-2 did not result in reproducible tissue infection), evaluated antiviral activity of MZC, and compared quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay readouts for monitoring SHIV-RT infection. MZC (at nontoxic dilutions) significantly inhibited SHIV-RT in vaginal and rectal mucosas and HSV-2 in vaginal mucosa when present during viral challenge. Analysis of SHIV-RT infection and MZC activity by 1-step simian immunodeficiency virus gag quantitative RT-PCR and p27 enzyme-linked immunosorbent assay demonstrated similar virus growth dynamics and MZC activity by both methods and higher sensitivity of quantitative RT-PCR. Our data provide more evidence that MZC is a promising dual compartment multipurpose prevention technology candidate.

  12. Exploring in vitro neurobiological effects and high-pressure liquid chromatography-assisted quantitation of chlorogenic acid in 18 Turkish coffee brands.

    PubMed

    Erdem, Sinem Aslan; Senol, F Sezer; Budakoglu, Esin; Orhan, Ilkay Erdogan; Sener, Bilge

    2016-01-01

    The hydroalcoholic extracts of the Turkish traditional coffee samples from 18 commercial brands were tested for their neurobiological effects through enzyme inhibition based on enzyme-linked immunosorbance microtiter assays against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, linked to Alzheimer's and Parkinson's diseases. The extracts were also subjected to several antioxidant test systems to define their antiradical, metal-chelation capacity, and reducing power. Total phenol and flavonoid contents in the extracts were delineated by spectrophotometric methods, while chlorogenic acid in the coffee samples was quantified by high-pressure liquid chromatography. The extracts displayed low to moderate inhibition (from 2.13 ± 0.01% to 36.12 ± 1.07% at 200 μg/mL) against the tested enzymes, whereas they had notable 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity up to 56.15 ± 2.03% at 200 μg/mL. The extracts exerted a remarkable ferric-reducing antioxidant power values, while chlorogenic acid was found to range between 0.288 ± 0.005% and 2.335 ± 0.010%. Copyright © 2015. Published by Elsevier B.V.

  13. Dual-color plasmonic enzyme-linked immunosorbent assay based on enzyme-mediated etching of Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Longhua; Xu, Shaohua; Ma, Xiaoming; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2016-09-01

    Colorimetric enzyme-linked immunosorbent assay utilizing 3‧-3-5‧-5-tetramethylbenzidine(TMB) as the chromogenic substrate has been widely used in the hospital for the detection of all kinds of disease biomarkers. Herein, we demonstrate a strategy to change this single-color display into dual-color responses to improve the accuracy of visual inspection. Our investigation firstly reveals that oxidation state of 3‧-3-5‧-5-tetramethylbenzidine (TMB2+) can quantitatively etch gold nanoparticles. Therefore, the incorporation of gold nanoparticles into a commercial TMB-based ELISA kit could generate dual-color responses: the solution color varied gradually from wine red (absorption peak located at ~530 nm) to colorless, and then from colorless to yellow (absorption peak located at ~450 nm) with the increase amount of targets. These dual-color responses effectively improved the sensitivity as well as the accuracy of visual inspection. For example, the proposed dual-color plasmonic ELISA is demonstrated for the detection of prostate-specific antigen (PSA) in human serum with a visual limit of detection (LOD) as low as 0.0093 ng/mL.

  14. METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters.

    PubMed

    Geffers, Lars; Tetzlaff, Benjamin; Cui, Xiao; Yan, Jun; Eichele, Gregor

    2013-01-01

    METscout (http://metscout.mpg.de) brings together metabolism and gene expression landscapes. It is a MySQL relational database linking biochemical pathway information with 3D patterns of gene expression determined by robotic in situ hybridization in the E14.5 mouse embryo. The sites of expression of ∼1500 metabolic enzymes and of ∼350 solute carriers (SLCs) were included and are accessible as single cell resolution images and in the form of semi-quantitative image abstractions. METscout provides several graphical web-interfaces allowing navigation through complex anatomical and metabolic information. Specifically, the database shows where in the organism each of the many metabolic reactions take place and where SLCs transport metabolites. To link enzymatic reactions and transport, the KEGG metabolic reaction network was extended to include metabolite transport. This network in conjunction with spatial expression pattern of the network genes allows for a tracing of metabolic reactions and transport processes across the entire body of the embryo.

  15. A First Application of Enzyme-Linked Immunosorbent Assay for Screening Cyclodiene Insecticides in Ground Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Thurman, E.M.; Mohrman, G.B.

    1996-01-01

    A commercially available enzyme-linked immunosorbent assay (ELISA) plate kit for screening of cyclodiene insecticides (aldrin, chlordane, dieldrin, endosulfan, endrin, and heptachlor) was evaluated for sensitivity, cross reactivity, and overall performance using groundwater samples from a contaminated site. Ground-water contaminants included several pesticide compounds and their manufacturing byproducts, as well as many other organic and inorganic compounds. Cross-reactivity studies were carried out for the cyclodiene compounds, and results were compared to those listed by the manufacturer. Data obtained were used to evaluate the sensitivity of the ELISA kit to the cyclodiene compounds in ground water samples with a contaminated matrix. The method quantitation limit for the ELISA kit was 15 ??g/L (as chlordane). Of the 56 ground-water samples analyzed using the ELISA plate kits, more than 85% showed cyclodiene insecticide contamination. The ELISA kit showed excellent potential as a screening tool for sites with suspected groundwater contamination by insecticides.

  16. Development of an indirect enzyme linked immunoassay for abscisic acid. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, G.S.; Elder, P.A.; McWha, J.A.

    1987-09-01

    AN INDIRECT METHOD OF ENZYME-LINKED-IMMUNOSORBENT-ASSAY (ELISA) IS REPORTED FOR ABSCISIC ACID (ABA), UTILIZING A THYROGLOBULIN-ABA CONJUGATE FOR COATING WELLS. THE ASSAY CAN USE COMMERCIALLY AVAILABLE MONOCLONAL ANTIBODIES, IS SENSITIVE TO AS LITTLE AS 20 PICOGRAMS ABA PER WELL, AND IS MUCH MORE CONSERVATIVE OF ANTIBODY THAN DIRECT METHODS. THE MOST DILUTE ABA STANDARDS DID NOT RETAIN THEIR ANTIGENICITY DURING STORAGE, SO ABA STANDARD SETS WERE DILUTED IMMEDIATELY PRIOR TO USE. THE INDIRECT ELISA WAS USED SUCCESSFULLY TO ESTIMATE ABA CONCENTRATIONS IN DEVELOPING COTYLEDONS OF PISUM SATIVUM L., AFTER ONLY LITTLE PRELIMINARY PURIFICATION. IT WAS VALIDATED FOR THIS TISSUE THROUGH THEmore » USE OF GAS CHROMATOGRAPHY-ELECTRON CAPTURE DETECTION (GC-EC), AND CAPILLARY GC-SELECTED ION MONITORING (GC-MS-SIM) USING LABELLED ABA AS AN INTERNAL STANDARD. FULL SPECTRUM GC-MASS SPECTROMETRY WAS ALSO USED TO VERIFY THAT ABA WAS PRESENT IN A SAMPLE ASSAYED QUANTITATIVELY BY BOTH ELISA AND GC-MS-SIM.« less

  17. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  18. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  19. [Development of sample pretreatment techniques-rapid detection coupling methods for food security analysis].

    PubMed

    Huang, Yichun; Ding, Weiwei; Zhang, Zhuomin; Li, Gongke

    2013-07-01

    This paper summarizes the recent developments of the rapid detection methods for food security, such as sensors, optical techniques, portable spectral analysis, enzyme-linked immunosorbent assay, portable gas chromatograph, etc. Additionally, the applications of these rapid detection methods coupled with sample pretreatment techniques in real food security analysis are reviewed. The coupling technique has the potential to provide references to establish the selective, precise and quantitative rapid detection methods in food security analysis.

  20. Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay.

    PubMed

    Amano, Satoshi; Ogura, Yuki; Akutsu, Nobuko; Nishiyama, Toshio

    2007-02-01

    Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.

  1. Improved quantification of a commercial enzyme-linked immunosorbent assay kit for measuring anti-MDA5 antibody.

    PubMed

    Gono, Takahisa; Okazaki, Yuka; Murakami, Akihiro; Kuwana, Masataka

    2018-04-09

    To compare the quantitative performance for measuring anti-MDA5 antibody titer of two enzyme-linked immunosorbent assay (ELISA) systems: an in-house ELISA and the commercial MESACUP TM anti-MDA5 test. Anti-MDA5 antibody titer was measured in sera from 70 patients with dermatomyositis using an in-house ELISA and the MESACUP TM anti-MDA5 test side-by-side. For the commercial ELISA kit, serum samples diluted 1:101 were used according to the manufacturer's protocol, but serial dilutions of sera were also examined to identify the optimal serum dilution for quantification. The anti-MDA5 antibody titers measured by the in-house and commercial ELISAs were positively correlated with each other (r = 0.53, p = .0001), but the antibody titer measured by the commercial ELISA was less sensitive to change after medical treatment, and 37 (80%) of 46 anti-MDA5-positive sera had antibody titer exceeding the quantification range specified by the manufacturer (≥150 index). Experiments using diluted serum samples revealed that diluting the sera 1:5050 improved the quantitative performance of the MESACUP TM anti-MDA5 test, including a better correlation with the in-house ELISA results and an increased sensitivity to change. We improved the ability of the commercial ELISA kit to quantify anti-MDA5 antibody titer by altering its protocol.

  2. Quantitation of Specific Barley, Rye, and Oat Marker Peptides by Targeted Liquid Chromatography-Mass Spectrometry To Determine Gluten Concentrations.

    PubMed

    Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne

    2018-04-04

    Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.

  3. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  4. Residual transglutaminase in collagen - effects, detection, quantification, and removal.

    PubMed

    Schloegl, W; Klein, A; Fürst, R; Leicht, U; Volkmer, E; Schieker, M; Jus, S; Guebitz, G M; Stachel, I; Meyer, M; Wiggenhorn, M; Friess, W

    2012-02-01

    In the present study, we developed an enzyme-linked immunosorbent assay (ELISA) for microbial transglutaminase (mTG) from Streptomyces mobaraensis to overcome the lack of a quantification method for mTG. We further performed a detailed follow-on-analysis of insoluble porcine collagen type I enzymatically modified with mTG primarily focusing on residuals of mTG. Repeated washing (4 ×) reduced mTG-levels in the washing fluids but did not quantitatively remove mTG from the material (p < 0.000001). Substantial amounts of up to 40% of the enzyme utilized in the crosslinking mixture remained associated with the modified collagen. Binding was non-covalent as could be demonstrated by Western blot analysis. Acidic and alkaline dialysis of mTG treated collagen material enabled complete removal the enzyme. Treatment with guanidinium chloride, urea, or sodium chloride was less effective in reducing the mTG content. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.

    PubMed

    Hamlet, Stephen M

    2010-01-01

    The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.

  6. Antibodies against toluene diisocyanate protein conjugates. Three methods of measurement.

    PubMed

    Patterson, R; Harris, K E; Zeiss, C R

    1983-12-01

    With the use of canine antisera against toluene diisocyanate (TDI)-dog serum albumin (DSA), techniques for measuring antibody against TDI-DSA were evaluated. The use of an ammonium sulfate precipitation assay showed suggestive evidence of antibody binding but high levels of TDI-DSA precipitation in the absence of antibody limit any usefulness of this technique. Double-antibody co-precipitation techniques will measure total antibody or Ig class antibody against 125I-TDI-DSA. These techniques are quantitative. The polystyrene tube radioimmunoassay is a highly sensitive method of detecting and quantitatively estimating IgG antibody. The enzyme linked immunosorbent assay is a rapidly adaptable method for the quantitative estimation of IgG, IgA, and IgM against TDI-homologous proteins. All these techniques were compared and results are demonstrated by using the same serum sample for analysis.

  7. Dynamic regulation of hepatic lipid droplet properties by diet.

    PubMed

    Crunk, Amanda E; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; Maclean, Paul S; Ladinsky, Mark; Bales, Elise S; Cain, Shannon; Orlicky, David J; McManaman, James L

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.

  8. Dynamic Regulation of Hepatic Lipid Droplet Properties by Diet

    PubMed Central

    Crunk, Amanda E.; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; MacLean, Paul S.; Ladinsky, Mark; Bales, Elise S.; Cain, Shannon; Orlicky, David J.; McManaman, James L.

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands. PMID:23874434

  9. Muscle enzyme release does not predict muscle function impairment after triathlon.

    PubMed

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p < 0.0001). MVC of the knee extensor and flexor muscles decreased over time (p < 0.05). There is disparity in the time point at which peak values where reached for DOMS, MVC and enzyme leakage. There is no correlation between serum enzyme leakage, DOMS and MVC impairment which occur after triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  10. Quantitative enzyme-linked immunosorbent assay for determination of polychlorinated biphenyls in environmental soil and sediment samples.

    PubMed

    Johnson, J C; Van Emon, J M

    1996-01-01

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil are 10.5 and 9 ng/g, respectively. The assay linear dynamic range is 50-1333 ng/g. Cross-reactivity of the assay with 37 structurally related potential cocontaminants in environmental soil samples was examined; none of the chlorinated anisoles, benzenes, or phenols exhibited >3% cross-reactivity, with <0.1% cross-reactivity being the norm. Soil spike recoveries of 107% and 104% were obtained for Aroclors 1242 and 1248, respectively, for a spike level of 5 mg/kg, with corresponding relative standard deviations of 14% and 17%. One hundred forty-eight environmental soil, sediment, and paper pulp samples, obtained from two EPA listed Superfund sites, were analyzed by ELISA and standard GC methods. Samples were extracted for ELISA analysis by shaking with methanol. Additional extractions of the same samples were performed either with supercritical carbon dioxide or by Soxhlet extraction with methanol. ELISA results for both the supercritical fluid and the Soxhlet extracts were in close agreement with the GC results, while the ELISA results for the methanol shake extracts were not. The data for the environmental samples demonstrated the capability of the ELISA to provide accurate results and reinforced the dependence of any detection method, including ELISA, on appropriate extraction procedures.

  11. A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium.

    PubMed

    Li, Ye; Cassone, Vincent M

    2015-09-01

    A simple, specific, high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin was developed for directly measuring melatonin in cell culture medium with 10% FBS. This assay adopts a commercial monoclonal melatonin antibody and melatonin-HRP conjugate, so it can be applied in multiple labs rapidly with low cost compared with commercial RIA and ELISA kits. In addition, the procedure is much simpler with only four steps: 1) sample/conjugate incubation, 2) plate washing, 3) TMB color reaction and 4) reading of results. The standards of the assay cover a wide working range from 100 pg/mL to 10 ng/mL. The sensitivity was 68 pg/mL in cell culture medium with 10% FBS and 26 pg/mL in PBS with as little as 25 μL sample volume. The recovery of melatonin from cell culture medium was 101.0%. The principal cross-reacting compound was 5-methoxytryptophol (0.1%). The variation coefficients of the assay, within and between runs, ranged between 6.68% and 15.76% in cell culture medium. The mean linearity of a series diluted cell culture medium sample was 105% (CV=5%), ranging between 98% and 111%, y=5.5263x+0.0646, R(2)=0.99. The assay enables small research and teaching labs to reliably measure this important neurohormone. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.

    PubMed

    Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.

  13. Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses.

    PubMed

    Kooijman, Lotte J; Mapes, Samantha M; Pusterla, Nicola

    2016-07-01

    Equine coronavirus (EqCoV) infection has been documented in most reports through quantitative qPCR analysis of feces and viral genome sequencing. Although qPCR is used to detect antigen during the acute disease phase, there is no equine-specific antibody test available to study EqCoV seroprevalence in various horse populations. We developed an enzyme-linked immunosorbent assay (ELISA) targeting antibodies to the spike (S) protein of EqCoV and validated its use, using acute and convalescent sera from 83 adult horses involved in 6 outbreaks. The EqCoV S protein-based ELISA was able to reliably detect antibodies to EqCoV in naturally infected horses. The greatest seroconversion rate was observed in horses with clinical signs compatible with EqCoV infection and EqCoV qPCR detection in feces. The EqCoV S protein-based ELISA could be used effectively for seroepidemiologic studies in order to better characterize the overall infection rate of EqCoV in various horse populations. © 2016 The Author(s).

  14. Competitive enzyme-linked immunoassay for sialoglycoprotein of edible bird's nest in food and cosmetics.

    PubMed

    Zhang, Shiwei; Lai, Xintian; Liu, Xiaoqing; Li, Yun; Li, Bifang; Huang, Xiuli; Zhang, Qinlei; Chen, Wei; Lin, Lin; Yang, Guowu

    2012-04-11

    The proliferation of fake and inferior edible bird's nest (EBN) products has recently become an increasingly serious concern. To identify and classify EBN products, a competitive enzyme-linked immunoassay (ELISA) was developed to quantitate sialoglycoprotein in EBN used in food and cosmetic applications. The characteristic sialoglycoprotein in EBN was found, extracted, purified, and analyzed. Sialoglycoprotein, considered the main carrier of sialic acid in EBN, consisted of 106 and 128 kDa proteins. A monoclonal antibody that could recognize both proteins was prepared. The heat-treated process did not change the affinity of sialoglycoprotein with the antibody. An optimized ELISA method was established with a cross-reactivity of less than 0.1% and an IC(50) of 3.3 μg/mL. On the basis of different food and cosmetic samples, the limits of detection (LOD) were 10-18 μg/g. Recoveries of fortified samples at levels of 20 and 80 μg/g ranged from 81.5 to 96.5%, respectively. The coefficients of variation were less than 8.0%.

  15. Use of enzyme-linked immunosorbent assay to screen for aflatoxins, ochratoxin A, and deoxynivalenol in dry pet foods.

    PubMed

    Okuma, Tara A; Huynh, Thu P; Hellberg, Rosalee S

    2018-03-01

    The objective of this study was to perform a market survey on dry pet foods using enzyme-linked immunosorbent assay (ELISA) to detect total aflatoxins (AFs), ochratoxin A (OTA), and deoxynivalenol (DON). Pet food products (n = 58) marketed for dogs, cats, birds, and rabbits were tested in duplicate with ELISA, and results above the limit of quantitation were confirmed using liquid chromatography tandem mass spectrometry (LC-MS/MS). OTA was detected in one product (rabbit food) and AFs were detected in two products (one dog treat and one bird treat). In contrast, DON was detected in the majority (74%) of products tested. Bird and rabbit products were the most affected by DON, with levels above 0.5 μg/g in 50 and 80% of samples, respectively. One rabbit sample tested positive for both OTA and DON. Overall, the findings of this study revealed a low incidence of AFs and OTA in commercial pet food. Although DON was detected in numerous products, the levels were well below those associated with acute toxic effects.

  16. Probe colorimeter for quantitating enzyme-linked immunosorbent assays and other colorimetric assays performed with microplates.

    PubMed Central

    Ackerman, S B; Kelley, E A

    1983-01-01

    The performance of a fiberoptic probe colorimeter (model PC800; Brinkmann Instruments, Inc., Westbury, N.Y.) for quantitating enzymatic or colorimetric assays in 96-well microtiter plates was compared with the performances of a spectrophotometer (model 240; Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a commercially available enzyme immunoassay reader (model MR590; Dynatech Laboratories, Inc., Alexandria, Va.). Alkaline phosphatase-p-nitrophenyl phosphate in 3 M NaOH was used as the chromophore source. Six types of plates were evaluated for use with the probe colorimeter; they generated reproducibility values (100% coefficient of variation) ranging from 91 to 98% when one individual made 24 independent measurements on the same dilution of chromophore on each plate. Eleven individuals each performed 24 measurements with the colorimeter on either a visually light (absorbance of 0.10 at 420 nm) or a dark (absorbance of 0.80 at 420 nm) dilution of chromophore; reproducibilities averaged 87% for the light dilution and 97% for the dark dilution. When one individual measured the same chromophore sample at least 20 times in the colorimeter, in the spectrophotometer or in the enzyme immunoassay reader, reproducibility for each instrument was greater than 99%. Measurements of a dilution series of chromophore in a fixed volume indicated that the optical responses of each instrument were linear in a range of 0.05 to 1.10 absorbance units. Images PMID:6341399

  17. Probe colorimeter for quantitating enzyme-linked immunosorbent assays and other colorimetric assays performed with microplates.

    PubMed

    Ackerman, S B; Kelley, E A

    1983-03-01

    The performance of a fiberoptic probe colorimeter (model PC800; Brinkmann Instruments, Inc., Westbury, N.Y.) for quantitating enzymatic or colorimetric assays in 96-well microtiter plates was compared with the performances of a spectrophotometer (model 240; Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a commercially available enzyme immunoassay reader (model MR590; Dynatech Laboratories, Inc., Alexandria, Va.). Alkaline phosphatase-p-nitrophenyl phosphate in 3 M NaOH was used as the chromophore source. Six types of plates were evaluated for use with the probe colorimeter; they generated reproducibility values (100% coefficient of variation) ranging from 91 to 98% when one individual made 24 independent measurements on the same dilution of chromophore on each plate. Eleven individuals each performed 24 measurements with the colorimeter on either a visually light (absorbance of 0.10 at 420 nm) or a dark (absorbance of 0.80 at 420 nm) dilution of chromophore; reproducibilities averaged 87% for the light dilution and 97% for the dark dilution. When one individual measured the same chromophore sample at least 20 times in the colorimeter, in the spectrophotometer or in the enzyme immunoassay reader, reproducibility for each instrument was greater than 99%. Measurements of a dilution series of chromophore in a fixed volume indicated that the optical responses of each instrument were linear in a range of 0.05 to 1.10 absorbance units.

  18. Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model

    PubMed Central

    Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon

    2012-01-01

    Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146

  19. CD86 expression as a surrogate cellular biomarker for pharmacological inhibition of the histone demethylase lysine-specific demethylase 1.

    PubMed

    Lynch, James T; Cockerill, Mark J; Hitchin, James R; Wiseman, Daniel H; Somervaille, Tim C P

    2013-11-01

    There is a lack of rapid cell-based assays that read out enzymatic inhibition of the histone demethylase LSD1 (lysine-specific demethylase 1). Through transcriptome analysis of human acute myeloid leukemia THP1 cells treated with a tranylcypromine-derivative inhibitor of LSD1 active in the low nanomolar range, we identified the cell surface marker CD86 as a sensitive surrogate biomarker of LSD1 inhibition. Within 24h of enzyme inhibition, there was substantial and dose-dependent up-regulation of CD86 expression, as detected by quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Thus, the use of CD86 expression may facilitate screening of compounds with putative LSD1 inhibitory activities in cellular assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Dual-radiolabeled nanoparticle probes for depth-independent in vivo imaging of enzyme activation

    NASA Astrophysics Data System (ADS)

    Black, Kvar C. L.; Zhou, Mingzhou; Sarder, Pinaki; Kuchuk, Maryna; Al-Yasiri, Amal Y.; Gunsten, Sean P.; Liang, Kexian; Hennkens, Heather M.; Akers, Walter J.; Laforest, Richard; Brody, Steven L.; Cutler, Cathy S.; Achilefu, Samuel

    2018-02-01

    Quantitative and noninvasive measurement of protease activities has remained an imaging challenge in deep tissues such as the lungs. Here, we designed a dual-radiolabeled probe for reporting the activities of proteases such as matrix metalloproteinases (MMPs) with multispectral single photon emission computed tomography (SPECT) imaging. A gold nanoparticle (NP) was radiolabeled with 125I and 111In and functionalized with an MMP9-cleavable peptide to form a multispectral SPECT imaging contrast agent. In another design, incorporation of 199Au radionuclide into the metal crystal structure of gold NPs provided a superior and stable reference signal in lungs, and 111In was linked to the NP surface via a protease-cleavable substrate, which can serve as an enzyme activity reporter. This work reveals strategies to correlate protease activities with diverse pathologies in a tissue-depth independent manner.

  1. "Inject-mix-react-separate-and-quantitate" (IMReSQ) method for screening enzyme inhibitors.

    PubMed

    Wong, Edmund; Okhonin, Victor; Berezovski, Maxim V; Nozaki, Tomoyoshi; Waldmann, Herbert; Alexandrov, Kirill; Krylov, Sergey N

    2008-09-10

    Many regulatory enzymes are considered attractive therapeutic targets, and their inhibitors are potential drug candidates. Screening combinatorial libraries for enzyme inhibitors is pivotal to identifying hit compounds for the development of drugs targeting regulatory enzymes. Here, we introduce the first inhibitor screening method that consumes only nanoliters of the reactant solutions and is applicable to regulatory enzymes. The method is termed inject-mix-react-separate-and-quantitate (IMReSQ) and includes five steps. First, nanoliter volumes of substrate, candidate inhibitor, and enzyme solutions are injected by pressure into a capillary as separate plugs. Second, the plugs are mixed inside this capillary microreactor by transverse diffusion of laminar flow profiles. Third, the reaction mixture is incubated to form the enzymatic product. Fourth, the product is separated from the substrate inside the capillary by electrophoresis. Fifth, the amounts of the product and substrate are quantitated. In this proof-of-principle work, we applied IMReSQ to study inhibition of recently cloned protein farnesyltransferase from parasite Entamoeba histolytica. This enzyme is a potential therapeutic target for antiparasitic drugs. We identified three previously unknown inhibitors of this enzyme and proved that IMReSQ could be used for quantitatively ranking the potencies of inhibitors.

  2. Comparison of enzyme-linked immunosorbent assay and rapid chemiluminescent analyser in the detection of myeloperoxidase and proteinase 3 autoantibodies.

    PubMed

    Pucar, Phillippa A; Hawkins, Carolyn A; Randall, Katrina L; Li, Candice; McNaughton, Euan; Cook, Matthew C

    2017-06-01

    Antibodies to myeloperoxidase (MPO) and proteinase 3 (PR3) are vital in the diagnosis and management of ANCA-associated vasculitis. A chemiluminescent immunoassay (CLIA; Quanta Flash) provides MPO and PR3 antibody results in 30 minutes, which is much faster than enzyme-linked immunosorbent assay (ELISA). We compared the performance of ELISA (Orgentec) and CLIA (Quanta Flash) for MPO and PR3 antibody quantitation on 303 samples, comprising 196 consecutive samples received in a single diagnostic laboratory over a 3 month period, and 107 samples collected from 42 known vasculitis patients over a 40 month period. We observed a correlation between both methods using spearman correlation coefficients (MPO, r s  = 0.63, p < 0.01; PR3, r s  = 0.69, p < 0.01). There was agreement between both methods in determining a positive or negative result. In the vasculitis cohort, CLIA performed well at clinically important stages of disease; diagnosis (eight samples all positive by both assays) and disease relapse (correlation for both MPO and PR3 antibody quantitation r s  = 0.84, p = 0.03 and r s  = 0.78, p < 0.01, respectively). Three samples were discordant at clinical relapse, testing positive by CLIA, including one high positive associated with relapse requiring a change in treatment. In summary, CLIA appears to be at least as accurate as ELISA for measurement of MPO and PR3 antibodies. Copyright © 2017. Published by Elsevier B.V.

  3. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody.

    PubMed

    Milnerowicz, Halina; Bizoń, Anna

    2010-01-01

    Metallothionein (MT) is a low molecular weight cysteine-rich protein with a number of roles in the pro/antioxidant balance and homeostasis of essential metals, such as zinc and copper, and in the detoxification of heavy metals, such as cadmium and mercury. Until now, detection of metallothionein in biological fluids remained difficult because of a lack of a broadly reactive commercial test. Meaningful comparison of the values of metallothionein concentrations reported by different authors using their specific isolation procedures and different conditions of enzyme-linked immunoassay is difficult due to the absence of a reference material for metallothionein. Therefore in the present study, we describe a quantitative assay for metallothionein in biological fluids such as plasma and urine performed by a direct enzyme-linked immunoassay using a commercially available monoclonal mouse anti-metallothionein clone E9 antibody and commercial standards of metallothionein from rabbit liver and a custom preparation of metallothionein from human liver. The sensitivity of the assay for the standard containing two isoforms MT-I and MT-II from human liver was 140 pg/well. The reactivity of the commercial standards and standards containing two isoforms MT-I and MT-II isolated from human liver in our laboratory with a commercial monoclonal mouse anti-metallothionein clone E9 antibody were similar. This suggests that the described ELISA test can be useful for determination of metallothionein concentration in biological fluids. The concentrations of metallothionein in human plasma, erythrocyte lysate and in urine of smoking and non-smoking healthy volunteers are reported. Tobacco smoking increases the extracellular metallothionein concentration (plasma and urine) but does not affect the intracellular concentration (erythrocyte lysate).

  4. Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.

    PubMed

    Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung

    2017-07-06

    Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.

  5. Qualitative and quantitative analysis of branches in dextran using high-performance anion exchange chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-12-04

    Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thermometric enzyme linked immunosorbent assay: TELISA.

    PubMed

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  7. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis.

    PubMed

    Gong, Weili; Zhang, Huaiqiang; Tian, Li; Liu, Shijia; Wu, Xiuyun; Li, Fuli; Wang, Lushan

    2016-07-01

    The structure of xylan, which has a 1,4-linked β-xylose backbone with various substituents, is much more heterogeneous and complex than that of cellulose. Because of this, complete degradation of xylan needs a large number of enzymes that includes GH10, GH11, and GH3 family xylanases together with auxiliary enzymes. Fluorescence-assisted carbohydrate electrophoresis (FACE) is able to accurately differentiate unsubstituted and substituted xylooligosaccharides (XOS) in the heterogeneous products generated by different xylanases and allows changes in concentrations of specific XOS to be analyzed quantitatively. Based on a quantitative analysis of XOS profiles over time using FACE, we have demonstrated that GH10 and GH11 family xylanases immediately degrade xylan into sizeable XOS, which are converted into smaller XOS in a much lower speed. The shortest substituted XOS produced by hydrolysis of the substituted xylan backbone by GH10 and GH11 family xylanases were MeGlcA(2) Xyl3 and MeGlcA(2) Xyl4 , respectively. The unsubstituted xylan backbone was degraded into xylose, xylobiose, and xylotriose by both GH10 and GH11 family xylanases; the product profiles are not family-specific but, instead, depend on different subsite binding affinities in the active sites of individual enzymes. Synergystic action between xylanases and β-xylosidase degraded MeGlcA(2) Xyl4 into xylose and MeGlcA(2) Xyl3 but further degradation of MeGlcA(2) Xyl3 required additional enzymes. Synergy between xylanases and β-xylosidase was also found to significantly accelerate the conversion of XOS into xylose. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes.

    PubMed

    Chen, Wei-Ping; Wu, Li-Dong

    2014-01-01

    We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS and COX-2 in chondrocytes. Our data suggest that CGA possess potential value in the treatment of OA.

  9. Human cyclophilin has a significantly higher affinity for HIV-1 recombinant p55 than p24.

    PubMed

    Bristow, R; Byrne, J; Squirell, J; Trencher, H; Carter, T; Rodgers, B; Saman, E; Duncan, J

    1999-04-01

    The ability of cyclophilin to bind a panel of recombinant HIV-gag proteins was assessed using sensitive, quantitative, sandwich enzyme-linked immunosorbant assays (ELISAs). Significantly higher binding to cyclophilin was observed when recombinants contained at least 12 carboxy-terminal amino acids of p17 in addition to p24 sequences. These results indicate that the carboxy-terminus of p17 is important for optimal binding of cyclophilin to p24 and support the theory that cyclophilin acts on the uncleaved HIV-1 gag (p17-p24) precursor.

  10. Prevalence of glucose-6-phosphate dehydrogenase deficiency in neonates in Egypt.

    PubMed

    Elella, Soheir Abo; Tawfik, Mahaa; Barseem, Naglaa; Moustafa, Wafaa

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder which causes neonatal jaundice in most cases, and under certain conditions, can cause a spectrum of hemolytic manifestations. To determine the local prevalence of G6PD deficiency in newborns. Cross-sectional. University hospital. Infants born during 2015 were prospectively screened for G6PD deficiency. Dried blood spot samples on filter paper were collected in collaboration with the central laboratories of the Ministry of Health. Quantitative measurement of G6PD enzyme activity was measured from the blood samples using fluorometric analysis. A value.

  11. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  12. Long-Term Regulation of the Local Renin-Angiotensin System in the Myocardium of Spontaneously Hypertensive Rats by Feeding Bioactive Peptides Derived from Spirulina platensis.

    PubMed

    Pan, Huanglei; She, Xingxing; Wu, Hongli; Ma, Jun; Ren, Difeng; Lu, Jun

    2015-09-09

    This study investigated the long-term (8 weeks) anti-hypertensive effects of 10 mg/kg tripeptides isolated from Spirulina platensis, Ile-Gln-Pro (IQP) and Val-Glu-Pro (VEP), and S. platensis hydrolysates (SH) on spontaneously hypertensive rats. The treatment period was 6 weeks, and observation continued for another 2 weeks. After treatment, weighted systolic blood pressure, weighted diastolic blood pressure, left ventricular mass index, and right ventricular mass index of groups treated with IQP, VEP, and SH were significantly lower than those of the group treated with distilled water, even when the treatments had been withdrawn for 2 weeks. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting showed the mRNA expression levels and protein/peptide concentrations of the main components of the renin angiotensin system in myocardium were significantly affected by treatment: angiotensin converting enzyme, angiotensin II, and angiotensin type 1 receptor were down-regulated, whereas angiotensin type 2 receptor, angiotensin converting enzyme 2, angiotensin-(1-7), and Mas receptor were up-regulated.

  13. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations.

    PubMed

    Wang, Dongmao; Mohammad, Mardhiah; Wang, Yanyan; Tan, Rachel; Murray, Lydia S; Ricardo, Sharon; Dagher, Hayat; van Agtmael, Tom; Savige, Judy

    2017-07-01

    X-linked Alport syndrome (OMIM 301050) is caused by COL4A5 missense variants in 40% of families. This study examined the effects of chemical chaperone treatment (sodium 4-phenylbutyrate) on fibroblast cell lines derived from men with missense mutations. Dermal fibroblast cultures were established from 2 affected men and 3 normals. Proliferation rates were examined, the collagen IV α5 chain localized with immunostaining, and levels of the intra- and extracellular chains quantitated with an in-house enzyme-linked immunosorbent assay. COL4A5 mRNA was measured using quantitative reverse transcriptase polymerase chain reaction. Endoplasmic reticulum (ER) size was measured on electron micrographs and after HSP47 immunostaining. Markers of ER stress (ATF6, HSPA5, DDIT3), autophagy (ATG5, BECN1, ATG7), and apoptosis (CASP3, BAD, BCL 2 ) were also quantitated by quantitative reverse transcriptase polymerase chain reaction. Measurements were repeated after 48 hours of incubation with 10 mM sodium 4-phenylbutyrate acid. Both COL4A5 missense variants were associated with reduced proliferation rates on day 6 ( P  = 0.01 and P  = 0.03), ER enlargement, and increased mRNA for ER stress and autophagy (all P values < 0.05) when compared with normal. Sodium 4-phenylbutyrate treatment increased COL4A5 transcript levels ( P  < 0.01), and reduced ER size ( P  < 0.01 by EM and P  < 0.001 by immunostaining), ER stress (p HSPA5 and DDIT3, all P values < 0.01) and autophagy (ATG7, P  < 0.01). Extracellular collagen IV α5 chain was increased in the M1 line only ( P  = 0.06). Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  14. Microbial Community Structure and Activity Linked to Contrasting Biogeochemical Gradients in Bog and Fen Environments of the Glacial Lake Agassiz Peatland

    PubMed Central

    Lin, X.; Green, S.; Tfaily, M. M.; Prakash, O.; Konstantinidis, K. T.; Corbett, J. E.; Chanton, J. P.; Cooper, W. T.

    2012-01-01

    The abundances, compositions, and activities of microbial communities were investigated at bog and fen sites in the Glacial Lake Agassiz Peatland of northwestern Minnesota. These sites contrast in the reactivity of dissolved organic matter (DOM) and the presence or absence of groundwater inputs. Microbial community composition was characterized using pyrosequencing and clone library construction of phylogenetic marker genes. Microbial distribution patterns were linked to pH, concentrations of dissolved organic carbon and nitrogen, C/N ratios, optical properties of DOM, and activities of laccase and peroxidase enzymes. Both bacterial and archaeal richness and rRNA gene abundance were >2 times higher on average in the fen than in the bog, in agreement with a higher pH, labile DOM content, and enhanced enzyme activities in the fen. Fungi were equivalent to an average of 1.4% of total prokaryotes in gene abundance assayed by quantitative PCR. Results revealed statistically distinct spatial patterns between bacterial and fungal communities. Fungal distribution did not covary with pH and DOM optical properties and was vertically stratified, with a prevalence of Ascomycota and Basidiomycota near the surface and much higher representation of Zygomycota in the subsurface. In contrast, bacterial community composition largely varied between environments, with the bog dominated by Acidobacteria (61% of total sequences), while the Firmicutes (52%) dominated in the fen. Acetoclastic Methanosarcinales showed a much higher relative abundance in the bog, in contrast to the dominance of diverse hydrogenotrophic methanogens in the fen. This is the first quantitative and compositional analysis of three microbial domains in peatlands and demonstrates that the microbial abundance, diversity, and activity parallel with the pronounced differences in environmental variables between bog and fen sites. PMID:22843538

  15. Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts

    PubMed Central

    Dohi, Teruyuki; Aoki, Masayo; Ogawa, Rei; Akaishi, Satoshi; Shimada, Takashi; Okada, Takashi; Hyakusoku, Hiko

    2015-01-01

    Background: Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. Methods: The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). Results: TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. Conclusion: These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids. PMID:26495233

  16. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... microagglutination test, the enzyme-linked immunosorbent assay test (ELISA), or the rapid serum test for all poultry... react on rapid serum test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that... inhibition (HI) test, the microhemagglutination inhibition test, the enzyme-linked immunosorbent assay (ELISA...

  17. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development.

    PubMed

    Desnoues, Elsa; Baldazzi, Valentina; Génard, Michel; Mauroux, Jehan-Baptiste; Lambert, Patrick; Confolent, Carole; Quilot-Turion, Bénédicte

    2016-05-01

    Knowledge of the genetic control of sugar metabolism is essential to enhance fruit quality and promote fruit consumption. The sugar content and composition of fruits varies with species, cultivar and stage of development, and is controlled by multiple enzymes. A QTL (quantitative trait locus) study was performed on peach fruit [Prunus persica (L.) Batsch], the model species for Prunus Progeny derived from an interspecific cross between P. persica cultivars and P. davidiana was used. Dynamic QTLs for fresh weight, sugars, acids, and enzyme activities related to sugar metabolism were detected at different stages during fruit development. Changing effects of alleles during fruit growth were observed, including inversions close to maturity. This QTL analysis was supplemented by the identification of genes annotated on the peach genome as enzymes linked to sugar metabolism or sugar transporters. Several cases of co-locations between annotated genes, QTLs for enzyme activities and QTLs controlling metabolite concentrations were observed and discussed. These co-locations raise hypotheses regarding the functional regulation of sugar metabolism and pave the way for further analyses to enable the identification of the underlying genes. In conclusion, we identified the potential impact on fruit breeding of the modification of QTL effect close to maturity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.

    PubMed Central

    Ohmura, M; Hara, A; Nakagawa, M; Sawada, H

    1990-01-01

    NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205

  19. The kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats: calibration to the indirect immunofluorescence assay and computerized standardization of results through normalization to control values.

    PubMed Central

    Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W

    1987-01-01

    The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results. PMID:3032390

  20. The kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats: calibration to the indirect immunofluorescence assay and computerized standardization of results through normalization to control values.

    PubMed

    Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F W

    1987-01-01

    The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("expected") titer in daily runs. When used with such sera and with computer assistance, the kinetics-based enzyme-linked immunosorbent assay minimized both within-run and between-run variability while allowing also for efficient data reduction and statistical analysis and reporting of results.

  1. Is the kinetoplast DNA a percolating network of linked rings at its critical point?

    NASA Astrophysics Data System (ADS)

    Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo

    2015-05-01

    In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.

  2. Carrier free immobilization and characterization of trypsin.

    PubMed

    Menfaatli, Esra; Zihnioglu, Figen

    2015-04-01

    Pancreatic trypsin was immobilized by cross-linked enzyme aggregates (CLEA) which is a carrier free immobilization method. Ammonium sulfate was chosen for enzyme precipitation which was followed by cross linking of formed aggregates via glutaraldehyde. Concentrations of precipitant and cross linker were respectively optimized as 60% ammonium sulfate and 1% glutaraldehyde. Optimum pH and temperature for CLEA was increased compared to free enzyme. Furthermore, pH, thermal and storage stability were improved. Presence of additives had no effects on enzyme activity. Prepared cross-linked trypsin aggregates are convenient for in situ protein fragmentation and can be used for protein identification.

  3. Ultastructural analysis on acetylcholinesterase localization in the cerebellar cortex of teleosts.

    PubMed

    Contestabile, A; Villani, L; Ciani, F

    1977-12-28

    The histochemical localization of acetylcholinesterase (AChE) was studied by electron microscopy in the cerebellar cortex of the goldfish and the catfish. The patterns of enzyme distribution show noticeable differences in the two teleost species at the level of the corresponding cerebellar structures. Among the most distinctive features is the prevailing intracellular localization of enzyme activity in the goldfish and the prevailing extracellular localization in the catfish in the molecular layer and, to a lesser extent, the granular layer. Only quantitative differences in the ability to synthesize AChE can be recorded among the different cerebellar neurons in the two species, since all these neurons exhibit different amounts of enzyme activity linked to their cytoplasmic structures. Comparing the results obtained with those of previous histochemical, experimental and developmental researches, the hypothesis seems well founded that the embryonic pool of cerebellar neurons is made up of AChE-synthesizing nruroblasts which, during development, loss or maintain to a different the mechanisms for AChE synthesis. In addition the light and electron microscope histochemistry reveals at different levels of resolution that the final pattern of AChE distribution in the cerebellar cortex is the sum of different degress of AChE synthesis by cerebellar neurons and different degrees of enzyme release in extracellular spaces.

  4. A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application.

    PubMed

    Chen, Zhongqin; Wang, Yanwei; Liu, Wei; Wang, Jingya; Chen, Haixia

    2017-02-01

    The neutrase (EC 3.4.24.4) and papain (EC 3.4.22.2) were together immobilized ascross-linked enzyme aggregates (N-P-CLEAs) and their properties were characterized. The influence of the precipitant, cross-linking ratio of glutaraldehyde and cross-linking time were investigated. Ethanol was selected as the more efficient precipitant compared with ammonium sulfate. The proper cross-linking ratio of enzyme and glutaraldehyde was 1:5 (v/v) and the optimized cross-linking time was 4h. N-P-CLEAs showed obvious improvement in thermal stability and pH stability than the free enzyme (P<0.05) and could hold relatively high activity retention in nonpolar and hydrophilic solvents and without activity loss at 4°C for more than six months. The cross-linking reaction had been appeared in N-P-CLEAs and more orderly microscopic surface morphology of N-P-CLEAs was observed. The molecular weight and thermal denaturation temperature of N-P-CLEAs were increased while the isoelectric point was decreased compared with those of the free enzymes. Application of N-P-CLEAs in bean proteins and zein showed a higher degree of hydrolysis, such as the hydrolysis degree of mung bean protein hydrolyzed by N-P-CLEAs was 12%, increased by approximately 4.5% compared to that of free enzyme. The results demonstrated that the N-P-CLEAs was suitable for application in food protein hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  6. Comparative study of indirect immunofluorescence, enzyme-linked immunosorbent assay, and the Tzanck smear test for the diagnosis of pemphigus.

    PubMed

    Zhou, Tingting; Fang, Siyue; Li, Chunlei; Hua, Hong

    2016-11-01

    Pemphigus is one of the potentially fatal autoimmune blistering diseases. An early and accurate diagnosis is important for prognosis and therapy. It may be difficult to diagnosis based on clinical grounds alone. Direct and indirect immunofluorescence, enzyme-linked immunosorbent assay, the Tzanck smear test, or histopathology are all available for the diagnosis of pemphigus. However, there are no generally accepted diagnostic criteria for the diagnosis of this condition at present. To evaluate the diagnostic value of indirect immunofluorescence, enzyme-linked immunosorbent assay, and the Tzanck smear test for the diagnosis of pemphigus in dental clinics. A single-center retrospective study was conducted, and the clinical data of 33 patients with pemphigus and 61 controls were collected and analyzed from the Department of Oral Medicine, Peking University School of Stomatology, during 2010-2014. The sensitivities and specificities of indirect immunofluorescence, enzyme-linked immunosorbent assay, and the Tzanck smear test were calculated and compared in two groups. Sensitivities for the Tzanck smear test, indirect immunofluorescence, and enzyme-linked immunosorbent assay were 96.7%, 84.8%, and 84.8%, respectively, whereas the specificities of these tests were 60%, 91.8%, and 96.7%, respectively. The serial tests for the Tzanck smear test and enzyme-linked immunosorbent assay showed 82% sensitivity and 98.7% specificity. The serial test for the Tzanck smear test and enzyme-linked immunosorbent assay may represent a simple, rapid, and reliable way to definitive diagnosis of pemphigus. It is recommended as a common test for the diagnosis of pemphigus in dental clinics. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine.

    PubMed

    Cui, Jian-Dong; Zhang, Si; Sun, Li-Mei

    2012-06-01

    Cross-linked enzyme aggregates of phenylalanine ammonia lyase (PAL-CLEAs) from Rhodotorula glutinis were prepared. The effects of the type of aggregating agent, its concentration, and that of cross-linking agent were studied. PAL-CLEAs production was most effective using ammonium sulfate (40 % saturation), followed by cross-linking for 1 h with 0.2 % (v/v) glutaraldehyde. Moreover, the storage and operational stability of the resulting PAL-CLEAs were also investigated. Compared to the free enzyme, the PAL-CLEAs exhibited the expected increased stability of the enzyme against various deactivating conditions such as pH, temperature, denaturants, and organic solvents and showed higher storage stability than its soluble counterpart. Additionally, the reusability of PAL-CLEAs with respect to the biotransformation of L-phenylalanine was evaluated. PAL-CLEAs could be recycled at least for 12 consecutive batch reactions without dramatic activity loss, which should dramatically increase the commercial potential of PAL for synthesis of L: -phenylalanine. To the best of our knowledge, this is the first report of immobilization of PAL as cross-linked enzyme aggregates.

  8. Cross-reactivity of antibodies with phenolic compounds in pistachios during quantification of ochratoxin A by commercial enzyme-linked immunosorbent assay kits.

    PubMed

    Lee, Hyun Jung; Meldrum, Alexander D; Rivera, Nicholas; Ryu, Dojin

    2014-10-01

    Ochratoxin A (OTA), a nephrotoxic mycotoxin, naturally occurs in wide range of agricultural commodities. Typical screening of OTA involves various enzyme-linked immunosorbent assay (ELISA) methods. Pistachio (Pistacia vera L.) is a rich source of phenolic compounds that may result in a false positive due to structural similarities to OTA. The present study investigated the cross-reactivity profiles of phenolic compounds using two commercial ELISA test kits. High-performance liquid chromatography was used to confirm the concentration of OTA in the pistachio samples and compared with the results obtained from ELISA. When the degree of interaction and 50 % inhibitory concentration of phenolic compounds were determined, the cross-reactivity showed a pattern similar to that observed with the commercial ELSIA kits, although quantitatively different. In addition, the degree of interaction increased with the increasing concentration of phenolic compounds. The ELISA value had stronger correlations with the content of total phenolic compound, gallic acid, and catechin (R(2) = 0.757, 0.732, and 0.729, respectively) compared with epicatechin (R(2) = 0.590). These results suggest that phenolic compounds in pistachio skins may cross-react with the OTA antibody and lead to a false positive or to an overestimation of OTA concentration in ELISA-based tests.

  9. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes

    PubMed Central

    Chen, Wei-Ping; Wu, Li-Dong

    2014-01-01

    We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS and COX-2 in chondrocytes. Our data suggest that CGA possess potential value in the treatment of OA. PMID:25674248

  10. Analysis of High-Throughput ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  11. Development and evaluation of an enzyme-linked immunosorbent assay (ELISA) method for the measurement of 2,4-dichlorophenoxyacetic acid in human urine.

    PubMed

    Chuang, Jane C; Emon, Jeanette M Van; Durnford, Joyce; Thomas, Kent

    2005-09-15

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoxyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline containing 0.05% Tween and 0.02% sodium azide, with analysis by a 96-microwell plate immunoassay format. No clean up was required as dilution step minimized sample interferences. Fifty urine samples were received without identifiers from a subset of pesticide applicators and their spouses in an EPA pesticide exposure study (PES) and analyzed by the ELISA method and a conventional gas chromatography/mass spectrometry (GC/MS) procedure. For the GC/MS analysis, urine samples were extracted with acidic dichloromethane (DCM); methylated by diazomethane and fractionated by a Florisil solid phase extraction (SPE) column prior to GC/MS detection. The percent relative standard deviation (%R.S.D.) of the 96-microwell plate triplicate assays ranged from 1.2 to 22% for the urine samples. Day-to-day variation of the assay results was within +/-20%. Quantitative recoveries (>70%) of 2,4-D were obtained for the spiked urine samples by the ELISA method. Quantitative recoveries (>80%) of 2,4-D were also obtained for these samples by the GC/MS procedure. The overall method precision of these samples was within +/-20% for both the ELISA and GC/MS methods. The estimated quantification limit for 2,4-D in urine was 30ng/mL by ELISA and 0.2ng/mL by GC/MS. A higher quantification limit for the ELISA method is partly due to the requirement of a 1:5 dilution to remove the urine sample matrix effect. The GC/MS method can accommodate a 10:1 concentration factor (10mL of urine converted into 1mL organic solvent for analysis) but requires extraction, methylation and clean up on a solid phase column. The immunoassay and GC/MS data were highly correlated, with a correlation coefficient of 0.94 and a slope of 1.00. Favorable results between the two methods were achieved despite the vast differences in sample preparation. Results indicated that the ELISA method could be used as a high throughput, quantitative monitoring tool for human urine samples to identify individuals with exposure to 2,4-D above the typical background levels.

  12. Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Parker, Christine H; Khuda, Sefat E; Pereira, Marion; Ross, Mark M; Fu, Tong-Jen; Fan, Xuebin; Wu, Yan; Williams, Kristina M; DeVries, Jonathan; Pulvermacher, Brian; Bedford, Binaifer; Zhang, Xi; Jackson, Lauren S

    2015-12-16

    Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products.

  13. Validation of quantitative and qualitative methods for detecting allergenic ingredients in processed foods in Japan.

    PubMed

    Sakai, Shinobu; Adachi, Reiko; Akiyama, Hiroshi; Teshima, Reiko

    2013-06-19

    A labeling system for food allergenic ingredients was established in Japan in April 2002. To monitor the labeling, the Japanese government announced official methods for detecting allergens in processed foods in November 2002. The official methods consist of quantitative screening tests using enzyme-linked immunosorbent assays (ELISAs) and qualitative confirmation tests using Western blotting or polymerase chain reactions (PCR). In addition, the Japanese government designated 10 μg protein/g food (the corresponding allergenic ingredient soluble protein weight/food weight), determined by ELISA, as the labeling threshold. To standardize the official methods, the criteria for the validation protocol were described in the official guidelines. This paper, which was presented at the Advances in Food Allergen Detection Symposium, ACS National Meeting and Expo, San Diego, CA, Spring 2012, describes the validation protocol outlined in the official Japanese guidelines, the results of interlaboratory studies for the quantitative detection method (ELISA for crustacean proteins) and the qualitative detection method (PCR for shrimp and crab DNAs), and the reliability of the detection methods.

  14. Quantitative analysis of species specificity of two anti-parvalbumin antibodies for detecting southern hemisphere fish species demonstrating strong phylogenetic association.

    PubMed

    Liang, Ji; Tan, Chui Choo; Taylor, Steve L; Baumert, Joseph L; Lopata, Andreas L; Lee, N Alice

    2017-12-15

    This study aimed to develop a novel approach to determine the correlation between the parvalbumin (PAV) contents and their corresponding immunoreactivity (detectability) in southern hemisphere fish species. The immuno-detected PAV contents of the test fish species were estimated by a quantitative SDS-PAGE. A quantitative Enzyme-Linked ImmunoSorbent Assay (ELISA) was formatted to assess relative immunoreactivity of PAV. Sixteen species (forty-three percent) displayed a positive correlation with the anti-cod PAV polyclonal antibody, but no correlation with the anti-carp PAV monoclonal antibody. There was a strong phylogenetic association of the PAV immunoreactivity. Species from the order of Perciformes showed strong binding with both antibodies; whereas species from Salmoniformes, Ophidiiformes, Scombriformes, Scorpaeniformes, and Tetraodontiformes showed weak or no binding. This approach showed for the first time a statistical correlation between the PAV content and the immunoreactivity and allowed to rank the relative species/order specificity of the two antibodies for the southern hemisphere fish PAV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    PubMed

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  16. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    PubMed

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  17. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.

  18. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  19. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  20. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.

    PubMed

    Hammel, K E; Mozuch, M D; Jensen, K A; Kersten, P J

    1994-11-15

    Oxidative C alpha-C beta cleavage of the arylglycerol beta-aryl ether lignin model 1-(3,4-dimethoxy-phenyl)-2-phenoxypropane-1,3-diol (I) by Phanerochaete chrysosporium lignin peroxidase in the presence of limiting H2O2 was enhanced 4-5-fold by glyoxal oxidase from the same fungus. Further investigation showed that each C alpha-C beta cleavage reaction released 0.8-0.9 equiv of glycolaldehyde, a glyoxal oxidase substrate. The identification of glycolaldehyde was based on 13C NMR spectrometry of reaction product obtained from beta-, gamma-, and beta,gamma-13C-substituted I, and quantitation was based on an enzymatic NADH-linked assay. The oxidation of glycolaldehyde by glyoxal oxidase yielded 0.9 oxalate and 2.8 H2O2 per reaction, as shown by quantitation of oxalate as 2,3-dihydroxyquinoxaline after derivatization with 1,2-diaminobenzene and by quantitation of H2O2 in coupled spectrophotometric assays with veratryl alcohol and lignin peroxidase. These results suggest that the C alpha-C beta cleavage of I by lignin peroxidase in the presence of glyoxal oxidase should regenerate as many as 3 H2O2. Calculations based on the observed enhancement of LiP-catalyzed C alpha-C beta cleavage by glyoxal oxidase showed that approximately 2 H2O2 were actually regenerated per cleavage of I when both enzymes were present. The cleavage of arylglycerol beta-aryl ether structures by ligninolytic enzymes thus recycles H2O2 to support subsequent cleavage reactions.

  1. Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes*

    PubMed Central

    Schaefer, Jonathan B.; Morgan, David O.

    2011-01-01

    The attachment of lysine 48 (Lys48)-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys48-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys48-linked chains. This resistance is lost if the structure of Lys48-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys63. In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys48-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation. PMID:22072716

  2. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    PubMed

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  3. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  4. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  5. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  6. A novel analytical method for d-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail.

    PubMed

    Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka; Tolani, Harish A; Anděra, Ladislav; Arntzen, Magnus Ø; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Agger, Jane W

    2016-10-04

    Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of d-glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β-glucosaminidase, Tk-Glm, from the archaeon Thermococcus kodakarensis KOD1. Moreover, we developed a fast, reliable quantitative method for analysis of GlcN using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The sensitivity of this method is high and less than 50 pmol was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Silibinin down-regulates expression of secreted phospholipase A2 enzymes in cancer cells.

    PubMed

    Hagelgans, Albert; Nacke, Brit; Zamaraeva, Maria; Siegert, Gabriele; Menschikowski, Mario

    2014-04-01

    Silibinin, a naturally-occurring flavonoid produced by milk thistle, possesses antioxidant, anti-inflammatory and cancer-preventive activities. In the current study, we examined the effects of silibinin on the expression of secreted phospholipase A2 (sPLA2) enzymes, especially those of group IIA (hGIIA), which play a crucial role in inflammation and carcinogenesis. The effects of silibinin on sPLA2 expressions in human HepG2 hepatoma and PC-3 prostate cancer cells were analyzed using quantitative reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay technique. Silibinin inhibited the expression of hGIIA in unstimulated and cytokine-primed HepG2 and PC-3 cells. The mRNA levels of sPLA2 of groups IB, III and V were also significantly decreased by silibinin. Analyses of transcription factor activation suggest that nuclear factor-κB, but not specificity protein 1 (SP1) is implicated in the silibinin-mediated down-regulation of hGIIA. Silibinin exhibits inhibitory effects on basal and cytokine-induced expression of sPLA2s in cancer cells and therefore, may have the potential to protect against up-regulation of hGIIA and other sPLA2 isoforms during inflammation and cancer.

  8. Mining for Microbial Gems: Integrating Proteomics in the Postgenomic Natural Product Discovery Pipeline.

    PubMed

    Du, Chao; van Wezel, Gilles P

    2018-04-30

    Natural products (NPs) are a major source of compounds for medical, agricultural, and biotechnological industries. Many of these compounds are of microbial origin, and, in particular, from Actinobacteria or filamentous fungi. To successfully identify novel compounds that correlate to a bioactivity of interest, or discover new enzymes with desired functions, systematic multiomics approaches have been developed over the years. Bioinformatics tools harness the rapidly expanding wealth of genome sequence information, revealing previously unsuspected biosynthetic diversity. Varying growth conditions or application of elicitors are applied to activate cryptic biosynthetic gene clusters, and metabolomics provide detailed insights into the NPs they specify. Combining these technologies with proteomics-based approaches to profile the biosynthetic enzymes provides scientists with insights into the full biosynthetic potential of microorganisms. The proteomics approaches include enrichment strategies such as employing activity-based probes designed by chemical biology, as well as unbiased (quantitative) proteomics methods. In this review, the opportunities and challenges in microbial NP research are discussed, and, in particular, the application of proteomics to link biosynthetic enzymes to the molecules they produce, and vice versa. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A New Highly Selective and Specific Anti-puerarin polyclonal Antibody for Determination of Puerarin Using a Mannich Reaction Hapten Conjugate

    PubMed Central

    Udomsin, Orapin; Krittanai, Supaluk; Kitisripanya, Tharita; Tanaka, Hiroyuki; Putalun, Waraporn

    2017-01-01

    Background: Puerarin (PUE) is a phytoestrogen found in Pueraria candollei and Pueraria lobata. These plants are substantial for traditional medicine in various Asian countries. PUE is a key marker that can be found only in the Pueraria species. Objective: To establish the method for determination of PUE content which is required for quality control of pharmaceutical products. Materials and Methods: PUE-cationized bovine serum albumin conjugate was created via Mannich reaction. After the rabbit immunization, the obtain anti-PUE polyclonal antibody (PAb) was used to develop an enzyme-linked immunosorbent assay (ELISA). Results: An anti-PUE PAb possess a great sensitivity and specificity. The cross-reactivity analysis shows no cross-reaction of an established antibody against other substances. In addition, we successfully developed an indirect competitive ELISA (icELISA) for the quantitative analysis of PUE. The result of method validation conforms to acceptance criteria and correlates with high-performance liquid chromatography, the reference method. The icELISA was applied to determine PUE content in Pueraria spp. plant samples and its derived pharmaceutical products. Conclusion: This highly specific immunogen was created from the Mannich reaction. An icELISA can also be applied to other research propose in the further studies. SUMMARY The new immunogen conjugated (puerarin-cBSA) via Mannich reaction was successfully in rising of antibody against puerarin (PUE)The obtained anti-PUE polyclonal antibody (PAb) was high sensitivity and specificity to PUEAn indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed and validated using anti-PUE PAbThe established icELISA was applied to determine PUE content in various tuberous root of Pueraria sppMoreover, icELISA method can be applicable in Pueraria spp. derived products. Abbreviations used: PUE: Puerarin; PAb: Polyclonal antibody; ELISA: Enzyme-linked immunosorbent assay; icELISA: Indirect competitive ELISA; cBSA: Cationized bovine serum albumin. PMID:29491643

  10. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    PubMed

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. One-step production of immobilized alpha-amylase in recombinant Escherichia coli.

    PubMed

    Rasiah, Indira A; Rehm, Bernd H A

    2009-04-01

    Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable alpha-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting alpha-amylase activity. The alpha-amylase beads were assessed with respect to alpha-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized alpha-amylase showed Michaelis-Menten enzyme kinetics exerting a V(max) of about 506 mU/mg of bead protein with a K(m) of about 5 microM, consistent with that of free alpha-amylase. The stability of the enzyme at 85 degrees C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized alpha-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli.

  12. One-Step Production of Immobilized α-Amylase in Recombinant Escherichia coli▿ †

    PubMed Central

    Rasiah, Indira A.; Rehm, Bernd H. A.

    2009-01-01

    Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable α-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting α-amylase activity. The α-amylase beads were assessed with respect to α-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized α-amylase showed Michaelis-Menten enzyme kinetics exerting a Vmax of about 506 mU/mg of bead protein with a Km of about 5 μM, consistent with that of free α-amylase. The stability of the enzyme at 85°C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized α-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli. PMID:19201981

  13. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  14. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  15. Techniques for quantitative LC-MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture.

    PubMed

    Fung, Eliza N; Bryan, Peter; Kozhich, Alexander

    2016-04-01

    LC-MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC-MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC-MS/MS analysis. One area of tremendous potential for immunocapture-LC-MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.

  16. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    PubMed

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-07

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  17. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    PubMed

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  18. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adney, W. S.; Jeoh, T.; Beckham, G. T.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonlymore » used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that 'tuning' enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.« less

  19. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins.

    PubMed

    Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne

    2018-01-01

    Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods.

  20. Renilla luciferase-based quantitation of Potato virus A infection initiated with Agrobacterium infiltration of N. benthamiana leaves.

    PubMed

    Eskelin, K; Suntio, T; Hyvärinen, S; Hafren, A; Mäkinen, K

    2010-03-01

    A quantitation method based on the sensitive detection of Renilla luciferase (Rluc) activity was developed and optimized for Potato virus A (PVA; genus Potyviridae) gene expression. This system is based on infections initiated by Agrobacterium infiltration and subsequent detection of the translation of PVA::Rluc RNA, which is enhanced by viral replication, first within the cells infected initially and later by translation and replication within new cells after spread of the virus. Firefly luciferase (Fluc) was used as an internal control to normalize the Rluc activity. An approximately 10-fold difference in the Rluc/Fluc activity ratio between a movement-deficient and a replication-deficient mutant was observed starting from 48h post Agrobacterium infiltration (h.p.i.). The Rluc activity derived from wild type (wt) PVA increased significantly between 48 and 72h.p.i. and the Rluc/Fluc activity deviated clearly from that of the mutant viruses. Quantitation of the Rluc and Fluc mRNAs by semi-quantitative RT-PCR indicated that increases and decreases in the Renillareniformis luciferase (rluc) mRNA levels coincided with changes in Rluc activity. However, a subtle increase in the mRNA level led to pronounced changes in Rluc activity. PVA CP accumulation was quantitated by enzyme-linked immunosorbent assay. The increase in Rluc activity correlated closely with virus accumulation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Validation of the LacTek test applied to spiked extracts of tissue samples: determination of performance characteristics.

    PubMed

    Mitchell, J M; Yee, A J; McNab, W B; Griffiths, M W; McEwen, S A

    1999-01-01

    LacTek tests are competitive enzyme-linked immunosorbent assays intended for rapid detection of antimicrobial residues in bovine milk. In this study, the LacTek test protocol was modified for use with extracts of bovine tissue to detect beta-lactam, tetracycline, and sulfamethazine residues. Test performance characteristics--precision, accuracy, ruggedness, practicability, and analytical specificity and sensitivity--were investigated. Results suggest that LacTek tests can be easily adapted to detect antimicrobial residues in extracts of lean ground beef. However, positive samples may not contain residues at violative concentrations (i.e., Canadian maximum residue limits), and therefore, additional analysis would be required for final confirmation and quantitation (e.g., chromatography).

  2. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics.

    PubMed

    Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Braga, Camila P; Adamec, Jiri

    2016-07-01

    Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    PubMed

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. DNA Knots: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  5. Waning of vaccine-induced immunity to measles in kidney transplanted children.

    PubMed

    Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo

    2016-09-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.

  6. Quantitatively and Kinetically Identifying Binding Motifs of Amelogenin Proteins to Mineral Crystals Through Biochemical and Spectroscopic Assays

    PubMed Central

    Zhu, Li; Hwang, Peter; Witkowska, H. Ewa; Liu, Haichuan; Li, Wu

    2014-01-01

    Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin–crystal interactions and amelogenin–proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter. PMID:24188774

  7. Quantitative assessment of anthrax vaccine immunogenicity using the dried blood spot matrix.

    PubMed

    Schiffer, Jarad M; Maniatis, Panagiotis; Garza, Ilana; Steward-Clark, Evelene; Korman, Lawrence T; Pittman, Phillip R; Mei, Joanne V; Quinn, Conrad P

    2013-03-01

    The collection, processing and transportation to a testing laboratory of large numbers of clinical samples during an emergency response situation present significant cost and logistical issues. Blood and serum are common clinical samples for diagnosis of disease. Serum preparation requires significant on-site equipment and facilities for immediate processing and cold storage, and significant costs for cold-chain transport to testing facilities. The dried blood spot (DBS) matrix offers an alternative to serum for rapid and efficient sample collection with fewer on-site equipment requirements and considerably lower storage and transport costs. We have developed and validated assay methods for using DBS in the quantitative anti-protective antigen IgG enzyme-linked immunosorbent assay (ELISA), one of the primary assays for assessing immunogenicity of anthrax vaccine and for confirmatory diagnosis of Bacillus anthracis infection in humans. We have also developed and validated high-throughput data analysis software to facilitate data handling for large clinical trials and emergency response. Published by Elsevier Ltd.

  8. Identification of Salmonella Typhimurium deubiquitinase SseL substrates by immunoaffinity enrichment and quantitative proteomic analysis

    DOE PAGES

    Nakayasu, Ernesto S.; Sydor, Michael A.; Brown, Roslyn N.; ...

    2015-07-06

    Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification and global quantitative proteomic analysis. As model system to identify substrates, we used a virulence-related deubiquitinase secreted by Salmonella enterica serovar Typhimurium into the host cells, SseL. By using this approach two SseL substrates were identified in RAW 264.7 murine macrophage-like cell line, S100A6 and het-erogeneous nuclear ribonuclear protein K, inmore » addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. Finally, this method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.« less

  9. Identification of Salmonella Typhimurium deubiquitinase SseL substrates by immunoaffinity enrichment and quantitative proteomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Sydor, Michael A.; Brown, Roslyn N.

    Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification and global quantitative proteomic analysis. As model system to identify substrates, we used a virulence-related deubiquitinase secreted by Salmonella enterica serovar Typhimurium into the host cells, SseL. By using this approach two SseL substrates were identified in RAW 264.7 murine macrophage-like cell line, S100A6 and het-erogeneous nuclear ribonuclear protein K, inmore » addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. Finally, this method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.« less

  10. Quantitative analysis of fungicide azoxystrobin in agricultural samples with rapid, simple and reliable monoclonal immunoassay.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2013-01-15

    This work presents analytical performance of a kit-based direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for azoxystrobin detection in agricultural products. The dc-ELISA was sufficiently sensitive for analysis of residue levels close to the maximum residue limits. The dc-ELISA did not show cross-reactivity to other strobilurin analogues. Absorbance decreased with the increase of methanol concentration in sample solution from 2% to 40%, while the standard curve became most linear when the sample solution contained 10% methanol. Agricultural samples were extracted with methanol, and the extracts were diluted with water to 10% methanol adequate. No significant matrix interference was observed. Satisfying recovery was found for all of spiked samples and the results were well agreed with the analysis with liquid chromatography. These results clearly indicate that the kit-based dc-ELISA is suitable for the rapid, simple, quantitative and reliable determination of the fungicide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.

    PubMed

    Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2011-07-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis1

    PubMed Central

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-01-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K+ and Na+ transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. PMID:26471895

  13. Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication

    NASA Astrophysics Data System (ADS)

    Büks, Frederick; Kaupenjohann, Martin

    2016-10-01

    The stability of soil aggregates against shearing and compressive forces as well as water-caused dispersion is an integral marker of soil quality. High stability results in less compaction and erosion and has been linked to enhanced water retention, dynamic water transport and aeration regimes, increased rooting depth, and protection of soil organic matter (SOM) against microbial degradation. In turn, particulate organic matter is supposed to support soil aggregate stabilization. For decades the importance of biofilm extracellular polymeric substances (EPSs) regarding particulate organic matter (POM) occlusion and aggregate stability has been canonical because of its distribution, geometric structure and ability to link primary particles. However, experimental proof is still missing. This lack is mainly due to methodological reasons. Thus, the objective of this work is to develop a method of enzymatic biofilm detachment for studying the effects of EPSs on POM occlusion. The method combines an enzymatic pre-treatment with different activities of α-glucosidase, β-galactosidase, DNAse and lipase with a subsequent sequential ultrasonic treatment for disaggregation and density fractionation of soils. POM releases of treated samples were compared to an enzyme-free control. To test the efficacy of biofilm detachment the ratio of bacterial DNA from suspended cells and the remaining biofilm after enzymatic treatment were measured by quantitative real-time PCR. Although the enzyme treatment was not sufficient for total biofilm removal, our results indicate that EPSs may attach POM within soil aggregates. The tendency to additional POM release with increased application of enzymes was attributed to a slight loss in aggregate stability. This suggests that an effect of agricultural practices on soil microbial populations could influence POM occlusion/aggregate stability and thereby carbon cycle/soil quality.

  14. The effects of altered N-linked oligosaccharide structures on maturation and targeting of lysosomal enzymes in Dictyostelium discoideum.

    PubMed

    Freeze, H H; Koza-Taylor, P; Saunders, A; Cardelli, J A

    1989-11-15

    We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.

  15. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins.

    PubMed

    Li, Xiaochun; Yang, Fan; Wong, Jessica X H; Yu, Hua-Zhong

    2017-09-05

    We demonstrate herein an integrated, smartphone-app-chip (SPAC) system for on-site quantitation of food toxins, as demonstrated with aflatoxin B1 (AFB1), at parts-per-billion (ppb) level in food products. The detection is based on an indirect competitive immunoassay fabricated on a transparent plastic chip with the assistance of a microfluidic channel plate. A 3D-printed optical accessory attached to a smartphone is adapted to align the assay chip and to provide uniform illumination for imaging, with which high-quality images of the assay chip are captured by the smartphone camera and directly processed using a custom-developed Android app. The performance of this smartphone-based detection system was tested using both spiked and moldy corn samples; consistent results with conventional enzyme-linked immunosorbent assay (ELISA) kits were obtained. The achieved detection limit (3 ± 1 ppb, equivalent to μg/kg) and dynamic response range (0.5-250 ppb) meet the requested testing standards set by authorities in China and North America. We envision that the integrated SPAC system promises to be a simple and accurate method of food toxin quantitation, bringing much benefit for rapid on-site screening.

  16. A monoclonal antibody based elisa for quantitation of human leukaemia inhibitory factor.

    PubMed

    Taupin, J L; Gualde, N; Moreau, J F

    1997-02-01

    The authors report on the development of a new sandwich enzyme-linked immunoabsorbent assay (ELISA) for the quantitation of the human cytokine leukaemia inhibitory factor/human interleukin for DA cells (LIF/HILDA) with high accuracy and sensitivity (23 pg/ml), in less than 5 h and in various biological fluids. The antibodies used in this assay were raised against recombinant glycosylated LIF expressed in vivo following inoculation of recombinant vaccinia viruses, and screened with the biologically active cytokine in a flow cytometry assay using cells expressing a membrane-bound form of LIF. Furthermore, this home-made assay was compared with two commercially available ELISA kits. The results led to the conclusion that these three assays are far from being equivalent between each other, in terms of sensitivity towards non-glycosylated vs glycosylated LIF. Two major parameters must be incriminated: the glycosylation status of the LIF molecule used as the calibrator, and the binding characteristics of the monoclonal antibodies used to set up these assays toward LIF derived from Escherichia coli or from eukaryotic cells. This points out the importance of these parameters for the design of ELISAs meant for the quantitation of glycosylated cytokines in biological fluids.

  17. A new rapid test for fecal calprotectin predicts endoscopic remission and postoperative recurrence in Crohn's disease.

    PubMed

    Lobatón, Triana; López-García, Alicia; Rodríguez-Moranta, Francisco; Ruiz, Alexandra; Rodríguez, Lorena; Guardiola, Jordi

    2013-12-01

    Fecal calprotectin (FC), as determined by the enzyme-linked immunoassay (ELISA) test, has been proposed as a promising biomarker of endoscopic activity in Crohn's disease (CD). However data on its accuracy in predicting endoscopic remission according to location and postoperative recurrence (POR) is scarce. Our objective was to evaluate the ability of FC determined by a new quantitative point-of-care test (FC-QPOCT) to predict endoscopic remission and POR in CD patients. FC was determined simultaneously by an enzyme-linked immunoassay test (FC-ELISA) and a FC-QPOCT in CD patients undergoing colonoscopy. Clinical disease activity was assessed according to the Crohn's Disease Activity Index (CDAI). Endoscopic results were assessed according to the Crohn's Disease Endoscopic Activity Index of Severity (CDEIS) and postoperative recurrence according to the Rutgeerts' score. A total of 115 ileocolonoscopies were performed (29 on patients with ileocolonic resection). FC levels correlated more closely with the CDEIS than leucocytes, platelets or CRP. The prediction of "endoscopic remission" (CDEIS<3), using FC-QPOCT (cut-off 272 μg/g) and FC-ELISA (cut-off 274 μg/g) presented an AUC of 0.933 and 0.935 respectively. FC-QPOCT results correlated better with endoscopic activity in the ileocolonic location (Pearson's correlation, r=0.879; P<0.001), than the colonic (r=0.725; P<0.001) or the ileal location (r=0.437; P=0.016). Median FC-QPOCT levels discriminated Rutgeerts' score i0-i1 from i2-i4 (98 (range 30-306) μg/g vs. 234.5 (range 100-612) μg/g respectively, P=0.012). FC determined by rapid quantitative test predicts "endoscopic remission" and endoscopic postoperative recurrence in CD patients. Copyright © 2013 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  18. Quantitative relationship between anticapsular antibody measured by enzyme-linked immunosorbent assay or radioimmunoassay and protection of mice against challenge with Streptococcus pneumoniae serotype 4.

    PubMed Central

    Musher, D M; Johnson, B; Watson, D A

    1990-01-01

    We have recently shown that a substantial proportion of antibody to pneumococcal polysaccharide as measured by enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay is removed by adsorption with pneumococcal cell wall polysaccharide (CWPS). The present study was undertaken to validate the hypothesis that only serotype-specific antibody that remains after adsorption with CWPS provides protection against pneumococcal infection. Serum samples were obtained from human subjects before and after they had been vaccinated with pneumococcal polysaccharide vaccine. Antibody to Streptococcus pneumoniae serotype 4 was measured by ELISA without adsorption or after adsorption of serum with CWPS. Groups of mice were injected with graded doses of serum and then challenged intraperitoneally with 10, 100, or 1,000 50% lethal doses (LD50) of S. pneumoniae serotype 4. Without adsorption, prevaccination sera from five healthy adults appeared to contain up to 33 micrograms of antibody to S. pneumoniae serotype 4 antigen per ml; adsorption with CWPS removed all detectable antibody, and pretreating mice with up to 0.1 ml of these sera (less than or equal to 3.3 micrograms of antibody) failed to protect them against challenge with 100 LD50. In contrast, postvaccination sera contained 2.9 to 30 micrograms of antibody per ml that was not removed by adsorption. Diluting sera to administer desired amounts of serotype-specific immunoglobulin G showed a significant relationship between protection and antibody remaining after adsorption (P less than 0.05 by linear regression analysis); 150 ng was uniformly protective against 1,000 LD50, and 50 ng was protective against 100 LD50. These studies have, for the first time, quantitated the amount of serotype-specific antibody that protects mice against challenge with S. pneumoniae type 4. In light of these observations, it is necessary to reassess current concepts regarding the presence of antipneumococcal antibody in the unvaccinated population, responses to pneumococcal vaccination, and protective levels of immunoglobulin G. PMID:2254015

  19. Purification and structure of human liver aspartylglucosaminidase.

    PubMed Central

    Rip, J W; Coulter-Mackie, M B; Rupar, C A; Gordon, B A

    1992-01-01

    We have recently diagnosed aspartylglucosaminuria (AGU) in four members of a Canadian family. AGU is a lysosomal storage disease in which asparagine-linked glycopeptides accumulate to particularly high concentrations in liver, spleen and thyroid of affected individuals. A lesser accumulation of these glycopeptides is seen in the kidney and brain, and they are also excreted in the urine. The altered metabolism in AGU results from a deficiency of the enzyme aspartylglucosaminidase (1-aspartamido-beta-N-acetylglucosamine amidohydrolase), which hydrolyses the asparagine to N-acetylglucosamine linkages of glycoproteins and glycopeptides. We have used human liver as a source of material for the purification of aspartylglucosaminidase. The enzyme has been purified to homogeneity by using heat treatment, (NH4)2SO4 fractionation, and chromatography on concanavalin A-Sepharose, DEAE-Sepharose, sulphopropyl-Sephadex, hydroxyapatite, DEAE-cellulose and Sephadex G-100. Enzyme activity was followed by measuring colorimetrically the N-acetylglucosamine released from aspartylglucosamine at 56 degrees C. The purified enzyme protein ran at a 'native' molecular mass of 56 kDa in SDS/12.5%-PAGE gels, and the enzyme activity could be quantitatively recovered at this molecular mass by using gel slices as enzyme source in the assay. After denaturation by boiling in SDS the 56 kDa protein was lost with the corresponding appearance of polypeptides alpha,beta and beta 1, lacking enzyme activity, at 24.6, 18.4 and 17.4 kDa respectively. Treatment of heat-denatured enzyme with N-glycosidase F resulted in the following decreases in molecular mass; 24.6 to 23 kDa and 18.4 and 17.4 to 15.8 kDa. These studies indicate that human liver aspartylglucosaminidase is composed of two non-identical polypeptides, each of which is glycosylated. The N-termini of alpha,beta and beta 1 were directly accessible for sequencing, and the first 21, 26 and 22 amino acids respectively were identified. Images Fig. 4. Fig. 7. Fig. 8. PMID:1281977

  20. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    PubMed

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  1. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. EVALUATION OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY FOR BIOLOGICAL MONITORING OF 3-PHENOXYBENZOIC ACID IN URINE

    EPA Science Inventory

    Abstract describes the development of an enzyme-linked immunosorbent assay (ELISA) method for monitoring 2,4-dichlorophenoxyacetic acid (2,4-D exposures). The ELISA is compared with a gas chromatograhy/mass spectrometry procedure. ELISA method development steps and comparative ...

  3. Alteration of Escherichia coli topoisomerase IV conformation upon enzyme binding to positively supercoiled DNA.

    PubMed

    Crisona, Nancy J; Cozzarelli, Nicholas R

    2006-07-14

    Escherichia coli topoisomerase IV (topo IV) is an essential enzyme that unlinks the daughter chromosomes for proper segregation at cell division. In vitro, topo IV readily distinguishes between the two possible chiralities of crossing segments in a DNA substrate. The enzyme relaxes positive supercoils and left-handed braids 20 times faster, and with greater processivity, than negative supercoils and right-handed braids. Here, we used chemical cross-linking of topo IV to demonstrate that enzyme bound to positively supercoiled DNA is in a different conformation from that bound to other forms of DNA. Using three different reagents, we observed novel cross-linked species of topo IV when positively supercoiled DNA was in the reaction. We show that the ParE subunits are in close enough proximity to be cross-linked only when the enzyme is bound to positively supercoiled DNA. We suggest that the altered conformation reflects efficient binding by topo IV of the two DNA segments that participate in the strand passage reaction.

  4. Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments

    USDA-ARS?s Scientific Manuscript database

    Enzyme-linked immunosorbent assay (ELISA) has emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an over-estimation of the concentration of these proteins in the enviro...

  5. A review of Cry protein detection with enzyme-linked immunosorbent assays

    USDA-ARS?s Scientific Manuscript database

    Several detection methods are available to monitor the fate of Cry proteins in the environment, enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method, due to their cost-effectiveness, ease of use, and rapid results. Validation of ELISAs is necessary to ensure acc...

  6. An enzyme-linked immunosorbent assay for determination of dicyclanil in animal tissue

    USDA-ARS?s Scientific Manuscript database

    Dicyclanil is a pyrimidine-derived insect growth regulator used in veterinary medicine for the prevention of myiasis or fly-strike. It is toxic to animals and humans. In this paper, for the first time, a competitive indirect enzyme-linked immunosorbent assay was developed for the determination of ...

  7. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    USDA-ARS?s Scientific Manuscript database

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  8. 76 FR 15791 - National Poultry Improvement Plan and Auxiliary Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... microhemagglutination inhibition test, the enzyme-linked immunosorbent assay (ELISA) test,\\3\\ a polymerase chain [[Page... samplings and/or culture of reactors. \\3\\ Procedures for the enzyme-linked immunosorbent assay (ELISA) test... Immunosorbent Assay (ELISA),'' Proceedings, 30th Western Poultry Disease Conference, pp. 63-66, March 1981...

  9. ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

    EPA Science Inventory

    An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

  10. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  11. Production of superparamagnetic nanobiocatalysts for green chemistry applications.

    PubMed

    Gasser, Christoph A; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2016-08-01

    Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes.

  12. Mitochondrial antibodies in primary biliary cirrhosis

    PubMed Central

    Berg, P. A.; Roitt, I. M.; Doniach, D.; Cooper, H. M.

    1969-01-01

    The effect on the mitochondrial antigen of different agents known to influence the integrity and structure of membranes has been studied using quantitative complement fixation with autoantibodies from the serum of a patient with primary biliary cirrhosis. The susceptibility to proteolytic enzymes suggests that the antigen is a protein. Activity depends upon an association with phospholipids. Addition of phospholipids prevents loss of antigen during artificial ageing of mitochondria at 37°. Activity is lost after treatment with phospholipases or solvents which extract phospholipids. Antigen is also destroyed by surface active agents which dissociate the link with phospholipid but those which weaken bonds between phospholipids and hydrophobic molecules yield fragments of antigen-containing membrane structures which, nonetheless, still react with the mitochondrial autoantibody. ImagesFIG. 2FIG. 4 PMID:5804537

  13. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata).

    PubMed

    Huang, Mengjun; Fang, Yang; Liu, Yang; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Ma, Xinrong; He, Kaize; Zhao, Hai

    2015-09-15

    Duckweed (Landoltia punctata) has the potential to remediate wastewater and accumulate enormous amounts of starch for bioethanol production. Using systematical screening, we determined that the highest biomass and starch percentage of duckweed was obtained after uniconazole application. Uniconazole contributes to starch accumulation of duckweed, but the molecular mechanism is still unclear. To elucidate the mechanisms of high starch accumulation, in the study, the responses of L. punctata to uniconazole were investigated using a quantitative proteomic approach combined with physiological and biochemical analysis. A total of 3327 proteins were identified. Among these identified proteins, a large number of enzymes involved in endogenous hormone synthetic and starch metabolic pathways were affected. Notably, most of the enzymes involved in abscisic acid (ABA) biosynthesis showed up-regulated expression, which was consistent with the content variation. The increased endogenous ABA may up-regulate expression of ADP-glucose pyrophosphorylase to promote starch biosynthesis. Importantly, the expression levels of several key enzymes in the starch biosynthetic pathway were up-regulated, which supported the enzymatic assay results and may explain why there is increased starch accumulation. These generated data linked uniconazole with changes in expression of enzymes involved in hormone biosynthesis and starch metabolic pathways and elucidated the effect of hormones on starch accumulation. Thus, this study not only provided insights into the molecular mechanisms of uniconazole-induced hormone variation and starch accumulation but also highlighted the potential for duckweed to be feedstock for biofuel as well as for sewage treatment.

  14. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission.

    PubMed

    Caranto, Jonathan D; Vilbert, Avery C; Lancaster, Kyle M

    2016-12-20

    Ammonia oxidizing bacteria (AOB) are major contributors to the emission of nitrous oxide (N 2 O). It has been proposed that N 2 O is produced by reduction of NO. Here, we report that the enzyme cytochrome (cyt) P460 from the AOB Nitrosomonas europaea converts hydroxylamine (NH 2 OH) quantitatively to N 2 O under anaerobic conditions. Previous literature reported that this enzyme oxidizes NH 2 OH to nitrite ([Formula: see text]) under aerobic conditions. Although we observe [Formula: see text] formation under aerobic conditions, its concentration is not stoichiometric with the NH 2 OH concentration. By contrast, under anaerobic conditions, the enzyme uses 4 oxidizing equivalents (eq) to convert 2 eq of NH 2 OH to N 2 O. Enzyme kinetics coupled to UV/visible absorption and electron paramagnetic resonance (EPR) spectroscopies support a mechanism in which an Fe III -NH 2 OH adduct of cyt P460 is oxidized to an {FeNO} 6 unit. This species subsequently undergoes nucleophilic attack by a second equivalent of NH 2 OH, forming the N-N bond of N 2 O during a bimolecular, rate-determining step. We propose that [Formula: see text] results when nitric oxide (NO) dissociates from the {FeNO} 6 intermediate and reacts with dioxygen. Thus, [Formula: see text] is not a direct product of cyt P460 activity. We hypothesize that the cyt P460 oxidation of NH 2 OH contributes to NO and N 2 O emissions from nitrifying microorganisms.

  15. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins

    PubMed Central

    Schalk, Kathrin; Koehler, Peter

    2018-01-01

    Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods. PMID:29425234

  16. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi

    2015-12-01

    Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information.

  17. Detection of human-derived fecal contamination in Puerto Rico using carbamazepine, HF183 Bacteroides, and fecal indicator bacteria.

    PubMed

    Wade, Christina; Otero, Ernesto; Poon-Kwong, Brennan; Rozier, Ralph; Bachoon, Dave

    2015-12-30

    The level of fecal pollution in 17 sites in Puerto Rico was determined by Escherichia coli (E.coli) enumeration using an enzyme substrate medium and Quanti-Tray®/2000. Human fecal pollution was identified using an enzyme-linked immunosorbent assay for the detection of carbamazepine (CBZ) and quantitative polymerase chain reaction (qPCR) detection of the human Bacteroides marker, HF183. Carbamazepine was detected in 16 out of 17 sites, including Condado Lagoon, a popular recreational area. Elevated E.coli levels (>410 CFU 100 mL(-1)) were detected in 13 sites. Average CBZ concentrations ranged from 0.005 μg L(-1) to 0.482 μg L(-1) and 7 sites were positive for HF183. Higher CBZ concentrations were associated with the detection of HF183 (Mann-Whitney test; U=42.0; df=7; 1-tailed P value=0.013). This was the second study to determine surface water concentrations of CBZ in the Caribbean and the first in Puerto Rico. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II.

    PubMed

    Boulon, Séverine; Pradet-Balade, Bérengère; Verheggen, Céline; Molle, Dorothée; Boireau, Stéphanie; Georgieva, Marya; Azzag, Karim; Robert, Marie-Cécile; Ahmad, Yasmeen; Neel, Henry; Lamond, Angus I; Bertrand, Edouard

    2010-09-24

    RNA polymerases are key multisubunit cellular enzymes. Microscopy studies indicated that RNA polymerase I assembles near its promoter. However, the mechanism by which RNA polymerase II is assembled from its 12 subunits remains unclear. We show here that RNA polymerase II subunits Rpb1 and Rpb3 accumulate in the cytoplasm when assembly is prevented and that nuclear import of Rpb1 requires the presence of all subunits. Using MS-based quantitative proteomics, we characterized assembly intermediates. These included a cytoplasmic complex containing subunits Rpb1 and Rpb8 associated with the HSP90 cochaperone hSpagh (RPAP3) and the R2TP/Prefoldin-like complex. Remarkably, HSP90 activity stabilized incompletely assembled Rpb1 in the cytoplasm. Our data indicate that RNA polymerase II is built in the cytoplasm and reveal quality-control mechanisms that link HSP90 to the nuclear import of fully assembled enzymes. hSpagh also bound the free RPA194 subunit of RNA polymerase I, suggesting a general role in assembling RNA polymerases. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. HSP90 and Its R2TP/Prefoldin-like Cochaperone Are Involved in the Cytoplasmic Assembly of RNA Polymerase II

    PubMed Central

    Boireau, Stéphanie; Georgieva, Marya; Azzag, Karim; Robert, Marie-Cécile; Ahmad, Yasmeen; Neel, Henry; Lamond, Angus I.; Bertrand, Edouard

    2015-01-01

    SUMMARY RNA polymerases are key multisubunit cellular enzymes. Microscopy studies indicated that RNA polymerase I assembles near its promoter. However, the mechanism by which RNA polymerase II is assembled from its 12 subunits remains unclear. We show here that RNA polymerase II subunits Rpb1 and Rpb3 accumulate in the cytoplasm when assembly is prevented and that nuclear import of Rpb1 requires the presence of all subunits. Using MS-based quantitative proteomics, we characterized assembly intermediates. These included a cytoplasmic complex containing subunits Rpb1 and Rpb8 associated with the HSP90 cochaperone hSpagh (RPAP3) and the R2TP/Prefoldin-like complex. Remarkably, HSP90 activity stabilized incompletely assembled Rpb1 in the cytoplasm. Our data indicate that RNA polymerase II is built in the cytoplasm and reveal quality-control mechanisms that link HSP90 to the nuclear import of fully assembled enzymes. hSpagh also bound the free RPA194 subunit of RNA polymerase I, suggesting a general role in assembling RNA polymerases. PMID:20864038

  20. A high-performance liquid chromatography-based radiometric assay for acyl-CoA:alcohol transacylase from jojoba.

    PubMed

    Garver, W S; Kemp, J D; Kuehn, G D

    1992-12-01

    Acyl-CoA:alcohol transacylase catalyzes the final step in the biosynthesis of storage liquid wax esters from acyl-CoA fatty acids and fatty alcohols in a limited number of microbes, algae, and Simmondsia chinensis Link (jojoba). An improved and automated method of enzyme assay for this catalyst from cotyledons of jojoba is described. The assay method uses reversed-phase C18 high performance liquid chromatography (HPLC) to separate the labeled C30:1 liquid wax product, [14C]-dodecanyl-octadecenoate, from the unreacted substrate, [14C]octadecenoyl-CoA (oleyl-CoA), and other components produced from enzymes present in the crude homogenate of jojoba cotyledons, including [14C]-octadecenoic acid (oleic acid) and [14C]octadecenol (oleyol). Methods are also described for microscale chemical synthesis in one vessel of 14C-radiolabeled substrates and products for the transacylase. These labeled reagents are required to confirm the HPLC separations of reaction products. The radioactive components are quantitated using an on-line flow-through scintillation detector enabling sensitive and precise analysis of the reaction products.

  1. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products.

    PubMed

    Zvereva, Elena A; Kovalev, Leonid I; Ivanov, Alexei V; Kovaleva, Marina A; Zherdev, Anatoly V; Shishkin, Sergey S; Lisitsyn, Andrey B; Chernukha, Irina M; Dzantiev, Boris B

    2015-07-01

    The skeletal muscle protein troponin I (TnI) has been characterized as a potential thermally stable and species-specific biomarker of mammalian muscle tissues in raw meat and meat products. This study proposed a technique for the quantification of TnI comprising protein extraction and sandwich enzyme-linked immunosorbent assay (ELISA). The technique is characterized by a TnI detection limit of 4.8 ng/ml with quantifiable concentrations ranging from 8.7 to 52 ng/ml. The method was shown to be suitable for detection of TnI in mammalian (beef, pork, lamb, and horse) meat but not in poultry (chicken, turkey, and duck) meat. In particular, the TnI content in beef was 0.40 3 ± 0.058 mg/g of wet tissue. The TnI estimations obtained for the pork and beef samples using ELISA were comparable to the proteomic analysis results. Thus, the quantitative study of TnI can be a convenient way to assess the mammalian muscle tissue content of various meat products. Copyright © 2015. Published by Elsevier Ltd.

  2. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  3. Construction of a Simple, Inexpensive Multiple Enzyme-Linked Immunosorbent Assay Microdilution Plate Washer

    PubMed Central

    Stobbs, L. W.

    1990-01-01

    In this paper, plans are given for the construction of an inexpensive enzyme-linked immunosorbent assay plate washer from readily available materials. The wash unit uses an intermittent wash cycle based on a wash manifold cycling over the microdilution plates for a predetermined time. Laboratory tests showed that the unit provided reliable, rapid washing of plates with tap water, with no detectable contamination between wells. Substrate absorbance values for test samples from machine-washed plates were equal to or greater than absorbance values for corresponding samples from plates washed manually by an accepted protocol, by using either enzyme-linked immunosorbent assay wash buffer or tap water. Images PMID:16348216

  4. Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity.

    PubMed

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Fallon, John K; Barber, Jill; Smith, Philip C; Rostami-Hodjegan, Amin; Goosen, Theunis C

    2017-10-01

    Quantitative characterization of UDP-glucuronosyltransferase (UGT) enzymes is valuable in glucuronidation reaction phenotyping, predicting metabolic clearance and drug-drug interactions using extrapolation exercises based on pharmacokinetic modeling. Different quantitative proteomic workflows have been employed to quantify UGT enzymes in various systems, with reports indicating large variability in expression, which cannot be explained by interindividual variability alone. To evaluate the effect of methodological differences on end-point UGT abundance quantification, eight UGT enzymes were quantified in 24 matched liver microsomal samples by two laboratories using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT) standard, and measurements were assessed against catalytic activity in seven enzymes ( n = 59). There was little agreement between individual abundance levels reported by the two methods; only UGT1A1 showed strong correlation [Spearman rank order correlation (Rs) = 0.73, P < 0.0001; R 2 = 0.30; n = 24]. SIL-based abundance measurements correlated well with enzyme activities, with correlations ranging from moderate for UGTs 1A6, 1A9, and 2B15 (Rs = 0.52-0.59, P < 0.0001; R 2 = 0.34-0.58; n = 59) to strong correlations for UGTs 1A1, 1A3, 1A4, and 2B7 (Rs = 0.79-0.90, P < 0.0001; R 2 = 0.69-0.79). QconCAT-based data revealed generally poor correlation with activity, whereas moderate correlations were shown for UGTs 1A1, 1A3, and 2B7. Spurious abundance-activity correlations were identified in the cases of UGT1A4/2B4 and UGT2B7/2B15, which could be explained by correlations of protein expression between these enzymes. Consistent correlation of UGT abundance with catalytic activity, demonstrated by the SIL-based dataset, suggests that quantitative proteomic data should be validated against catalytic activity whenever possible. In addition, metabolic reaction phenotyping exercises should consider spurious abundance-activity correlations to avoid misleading conclusions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Hemostatic Function of Apheresis Platelets Stored at 4 deg C and 22 deg C

    DTIC Science & Technology

    2014-05-01

    utilized. Thromboxane B2 (TxB2) enzyme immunoassay kits were purchased from Cayman Chemicals (Ann Arbor, MI), and human soluble CD40L (sCD40L) extra...sensitive platinum enzyme linked immunosorbent assay kits were pur chased from eBioscience (Vienna, Austria). CG4+ and CHEM8+ cartridges were purchased from...TruCount tubes (BD Biosciences). Enzyme linked immunosorbent assay Commercially available kits were used to assess sCD40L and TxB2 levels released into

  6. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    PubMed

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by adopting liquid chromatography tandem mass spectrometry. The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulate expression of specific cellulases and hemicellulases, and expression level as a function of substrate. Post translational modifications revealed deamidation of key cellulases including endoglucanases, cellobiohydrolases and glucosidases; and hemicellulases and lignin degrading enzymes. The knowledge on deamidated enzymes along with specific sites of modifications could be crucial information for further functional studies of these enzymes of A. fumigatus. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Epitope-blocking enzyme-linked immunosorbent assay for detection of antibodies to Ross River virus in vertebrate sera.

    PubMed

    Oliveira, Nidia M M; Broom, Annette K; Mackenzie, John S; Smith, David W; Lindsay, Michael D A; Kay, Brian H; Hall, Roy A

    2006-07-01

    We describe the development of an epitope-blocking enzyme-linked immunosorbent assay (ELISA) for the sensitive and rapid detection of antibodies to Ross River virus (RRV) in human sera and known vertebrate host species. This ELISA provides an alternative method for the serodiagnosis of RRV infections.

  8. Highly broad-specific and sensitive enzyme-linked immunosorbent assay for screening sulfonamides: Assay optimization and application to milk samples

    USDA-ARS?s Scientific Manuscript database

    A broad-specific and sensitive immunoassay for the detection of sulfonamides was developed by optimizing the conditions of an enzyme-linked immunosorbent assay (ELISA) in regard to different monoclonal antibodies (MAbs), assay format, immunoreagents, and several physicochemical factors (pH, salt, de...

  9. Biological Monitoring of 3-Phenoxybenzoic Acid in Urine by an Enzyme -Linked Immunosorbent Assay

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6...

  10. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  11. Revealing a Novel Otubain-like Enzyme from Leishmania infantum with Deubiquitinating Activity toward K48-linked Substrate

    NASA Astrophysics Data System (ADS)

    Azevedo, Clênia S.; Guido, Bruna C.; Pereira, Jhonata L.; Nolasco, Diego O.; Corrêa, Rafael; Magalhães, Kelly G.; Motta, Flávia N.; Santana, Jaime M.; Grellier, Philippe; Bastos, Izabela M. D.

    2017-03-01

    Deubiquitinating enzymes (DUBs) play an important role in regulating a variety of eukaryotic processes. In this context, exploring the role of deubiquitination in Leishmania infantum could be a promising alternative to search new therapeutic targets for leishmaniasis. Here we present the first characterization of a DUB from L. infantum, otubain (OtuLi), and its localization within parasite. The recombinant OtuLi (rOtuLi) showed improved activity on lysine 48 (K48)-linked over K63-linked tetra-ubiquitin (Ub) and site-directed mutations on amino acids close to the catalytic site (F82) or involved in Ub interaction (L265 and F182) caused structural changes as shown by molecular dynamics, resulting in a reduction or loss of enzyme activity, respectively. Furthermore, rOtuLi stimulates lipid droplet biogenesis (an inflammatory marker) in peritoneal macrophages and induces IL-6 and TNF-α secretion in peritoneal macrophages, both proinflammatory cytokines. Our findings suggest that OtuLi is a cytoplasmic enzyme with K48-linked substrate specificity that could play a part in proinflammatory response in stimulated murine macrophages.

  12. Immunity to human cytomegalovirus measured and compared by complement fixation, indirect fluorescent-antibody, indirect hemagglutination, and enzyme-linked immunosorbent assays.

    PubMed Central

    Brandt, J A; Kettering, J D; Lewis, J E

    1984-01-01

    The complement fixation test is currently the test employed most frequently to determine the presence of antibody to human cytomegalovirus. Several other techniques have been adapted for this purpose. A comparison of cytomegalovirus antibody titers was made between the complement fixation test, a commercially available enzyme-linked immunosorbent assay, an indirect immunofluorescent technique, and a modified indirect hemagglutination test. Forty-three serum samples were tested for antibodies by each of the above procedures. The enzyme-linked immunosorbent, immunofluorescent, and indirect hemagglutination assays were in close agreement on all samples tested; the titers obtained with these methods were all equal to or greater than the complement fixation titer for 38 of the 41 samples (92.6%). Two samples were anticomplementary in the complement fixation test but gave readable results in the other tests. The complement fixation test was the least sensitive of the procedures examined. The commercial enzyme-linked immunosorbent assay system was the most practical method and offered the highest degree of sensitivity in detecting antibodies to cytomegalovirus. PMID:6321544

  13. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay K. S.; Choi, Seung Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-03-01

    Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00346j

  14. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs).

    PubMed

    Sheldon, Roger A

    2011-11-01

    Cross-linked enzyme aggregates (CLEAs) have many economic and environmental benefits in the context of industrial biocatalysis. They are easily prepared from crude enzyme extracts, and the costs of (often expensive) carriers are circumvented. They generally exhibit improved storage and operational stability towards denaturation by heat, organic solvents, and autoproteolysis and are stable towards leaching in aqueous media. Furthermore, they have high catalyst productivities (kilograms product per kilogram biocatalyst) and are easy to recover and recycle. Yet another advantage derives from the possibility to co-immobilize two or more enzymes to provide CLEAs that are capable of catalyzing multiple biotransformations, independently or in sequence as catalytic cascade processes.

  15. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    PubMed

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  16. A microplate assay for quantitative evaluation of plant cell wall degrading enzymes

    USDA-ARS?s Scientific Manuscript database

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Plant pathogenic fungi are a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass convers...

  17. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor.

    PubMed

    Xiu, G H; Jiang, L; Li, P

    2001-07-05

    A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.

  18. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.

  19. Validation of the World Health Organization Enzyme-Linked Immunosorbent Assay for the Quantitation of Immunoglobulin G Serotype-Specific Anti-Pneumococcal Antibodies in Human Serum

    PubMed Central

    2017-01-01

    The World Health Organization (WHO) enzyme-linked immunosorbent assay (ELISA) guideline is currently accepted as the gold standard for the evaluation of immunoglobulin G (IgG) antibodies specific to pneumococcal capsular polysaccharide. We conducted validation of the WHO ELISA for 7 pneumococcal serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) by evaluating its specificity, precision (reproducibility and intermediate precision), accuracy, spiking recovery test, lower limit of quantification (LLOQ), and stability at the Ewha Center for Vaccine Evaluation and Study, Seoul, Korea. We found that the specificity, reproducibility, and intermediate precision were within acceptance ranges (reproducibility, coefficient of variability [CV] ≤ 15%; intermediate precision, CV ≤ 20%) for all serotypes. Comparisons between the provisional assignments of calibration sera and the results from this laboratory showed a high correlation > 94% for all 7 serotypes, supporting the accuracy of the ELISA. The spiking recovery test also fell within an acceptable range. The quantification limit, calculated using the LLOQ, for each of the serotypes was 0.05–0.093 μg/mL. The freeze-thaw stability and the short-term temperature stability were also within an acceptable range. In conclusion, we showed good performance using the standardized WHO ELISA for the evaluation of serotype-specific anti-pneumococcal IgG antibodies; the WHO ELISA can evaluate the immune response against pneumococcal vaccines with consistency and accuracy. PMID:28875600

  20. Bacterial Expression of a Single-Chain Variable Fragment (scFv) Antibody against Ganoderic Acid A: A Cost-Effective Approach for Quantitative Analysis Using the scFv-Based Enzyme-Linked Immunosorbent Assay.

    PubMed

    Yusakul, Gorawit; Nuntawong, Poomraphie; Sakamoto, Seiichi; Ratnatilaka Na Bhuket, Pahweenvaj; Kohno, Toshitaka; Kikkawa, Nao; Rojsitthisak, Pornchai; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2017-01-01

    Due to the highly specific binding between an antibody and its target, superior analytical performances was obtained by immunoassays for phytochemical analysis over conventional chromatographic techniques. Here, we describe a simple method for producing a functional single-chain variable fragment (scFv) antibody against ganoderic acid A (GAA), a pharmacologically active metabolite from Ganoderma lingzhi. The Escherichia coli BL21(DE3) strain produced a large amount of anti-GAA scFv. However, in vitro refolding steps, which partially recovered the reactivity of the scFv, were required. Interestingly, the functional scFv was expressed as a soluble and active form in the cytoplasm of an engineered E. coli SHuffle ® strain. Purified anti-GAA scFv, which yielded 2.56 mg from 1 L of culture medium, was obtained from simple and inexpensive procedures for expression and purification. The anti-GAA scFv-based indirect competitive enzyme-linked immunosorbent assay (icELISA) exhibited high sensitivity (linearity: 0.078-1.25 µg/mL) with precision (CV: ≤6.20%) and reliability (recovery: 100.1-101.8%) for GAA determination. In summary, the approach described here is an inexpensive, simple, and efficient expression system that extends the application of anti-GAA scFv-based immunoassays. In addition, when in vitro refolding steps can be skipped, the cost and complexity of scFv antibody production can be minimized.

  1. A negative-pressure-driven microfluidic chip for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay.

    PubMed

    Lin, Yen-Heng; Chen, Ying-Ju; Lai, Chao-Sung; Chen, Yi-Ting; Chen, Chien-Lun; Yu, Jau-Song; Chang, Yu-Sun

    2013-01-01

    This paper describes an integrated microfluidic chip that is capable of rapidly and quantitatively measuring the concentration of a bladder cancer biomarker, apolipoprotein A1, in urine samples. All of the microfluidic components, including the fluid transport system, the micro-valve, and the micro-mixer, were driven by negative pressure, which simplifies the use of the chip and facilitates commercialization. Magnetic beads were used as a solid support for the primary antibody, which captured apolipoprotein A1 in patients' urine. Because of the three-dimensional structure of the magnetic beads, the concentration range of the target that could be detected was as high as 2000 ng ml(-1). Because this concentration is 100 times higher than that quantifiable using a 96-well plate with the same enzyme-linked immunosorbent assay (ELISA) kit, the dilution of the patient's urine can be avoided or greatly reduced. The limit of detection was determined to be approximately 10 ng ml(-1), which is lower than the cutoff value for diagnosing bladder cancer (11.16 ng ml(-1)). When the values measured using the microfluidic chip were compared with those measured using conventional ELISA using a 96-well plate for five patients, the deviations were 0.9%, 6.8%, 9.4%, 1.8%, and 5.8%. The entire measurement time is 6-fold faster than that of conventional ELISA. This microfluidic device shows significant potential for point-of-care applications.

  2. Validation of the World Health Organization Enzyme-Linked Immunosorbent Assay for the Quantitation of Immunoglobulin G Serotype-Specific Anti-Pneumococcal Antibodies in Human Serum.

    PubMed

    Lee, Hyunju; Lim, Soo Young; Kim, Kyung Hyo

    2017-10-01

    The World Health Organization (WHO) enzyme-linked immunosorbent assay (ELISA) guideline is currently accepted as the gold standard for the evaluation of immunoglobulin G (IgG) antibodies specific to pneumococcal capsular polysaccharide. We conducted validation of the WHO ELISA for 7 pneumococcal serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) by evaluating its specificity, precision (reproducibility and intermediate precision), accuracy, spiking recovery test, lower limit of quantification (LLOQ), and stability at the Ewha Center for Vaccine Evaluation and Study, Seoul, Korea. We found that the specificity, reproducibility, and intermediate precision were within acceptance ranges (reproducibility, coefficient of variability [CV] ≤ 15%; intermediate precision, CV ≤ 20%) for all serotypes. Comparisons between the provisional assignments of calibration sera and the results from this laboratory showed a high correlation > 94% for all 7 serotypes, supporting the accuracy of the ELISA. The spiking recovery test also fell within an acceptable range. The quantification limit, calculated using the LLOQ, for each of the serotypes was 0.05-0.093 μg/mL. The freeze-thaw stability and the short-term temperature stability were also within an acceptable range. In conclusion, we showed good performance using the standardized WHO ELISA for the evaluation of serotype-specific anti-pneumococcal IgG antibodies; the WHO ELISA can evaluate the immune response against pneumococcal vaccines with consistency and accuracy. © 2017 The Korean Academy of Medical Sciences.

  3. An enzyme-linked immunosorbent assay (ELISA) for quantification of human collectin 11 (CL-11, CL-K1)

    PubMed Central

    Selman, L.; Henriksen, M.L.; Brandt, J.; Palarasah, Y.; Waters, A.; Beales, P.L.; Holmskov, U.; Jørgensen, T.J.D.; Nielsen, C.; Skjodt, K.; Hansen, S.

    2012-01-01

    Collectin 11 (CL-11), also referred to as collectin kidney 1 (CL-K1), is a pattern recognition molecule that belongs to the collectin group of proteins involved in innate immunity. It interacts with glycoconjugates on pathogen surfaces and has been found in complex with mannose-binding lectin-associated serine protease 1 (MASP-1) and/or MASP-3 in circulation. Mutation in the CL-11 gene was recently associated with the developmental syndrome 3MC. In the present study, we established and thoroughly validated a sandwich enzyme-linked immunosorbent assay (ELISA) based on two different monoclonal antibodies. The assay is highly sensitive, specific and shows excellent quantitative characteristics such as reproducibility, dilution linearity and recovery (97.7–104%). The working range is 0.15–34 ng/ml. The CL-11 concentration in two CL-11-deficient individuals affected by the 3MC syndrome was determined to be below 2.1 ng/ml. We measured the mean serum CL-11 concentration to 284 ng/ml in 100 Danish blood donors, with a 95% confidence interval of 269–299 ng/ml. There was no significant difference in the CL-11 concentration measured in matched serum and plasma samples. Storage of samples and repeated freezing and thawing to a certain extent did not influence the ELISA. This ELISA offers a convenient and reliable method for studying CL-11 levels in relation to a variety of human diseases and syndromes. PMID:22301270

  4. Evaluation of immunity to varicella zoster virus with a novel double antigen sandwich enzyme-linked immunosorbent assay.

    PubMed

    Liu, Jian; Chen, Chunye; Zhu, Rui; Ye, Xiangzhong; Jia, Jizong; Yang, Lianwei; Wang, Yongmei; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhu, Hua; Zhao, Qinjian; Zhang, Jun; Cheng, Tong; Xia, Ningshao

    2016-11-01

    Varicella is a highly contagious disease caused by primary infection of Varicella zoster virus (VZV). Varicella can be severe or even lethal in susceptible adults, immunocompromised patients and neonates. Determination of the status of immunity to VZV is recommended for these high-risk populations. Furthermore, measurement of population immunity to VZV can help in developing proper varicella vaccination programmes. VZV glycoprotein E (gE) is an antigen that has been demonstrated to be a highly accurate indicator of VZV-specific immunity. In this study, recombinant gE (rgE) was used to establish a double antigen sandwich enzyme-linked immunosorbent assay (ELISA). The established sandwich ELISA showed high specificity and sensitivity in the detection of human sera, and it could detect VZV-specific antibodies at a concentration of 11.25 m IU/mL with a detection linearity interval of 11.25 to 360 m IU/mL (R 2  = 0.9985). The double gE antigen sandwich ELISA showed a sensitivity of 95.08 % and specificity of 100 % compared to the fluorescent-antibody-to-membrane-antigen (FAMA) test, and it showed a sensitivity of 100 % and a specificity of 94.74 % compared to a commercial neutralizing antibody detection kit. Thus, the established double antigen sandwich ELISA can be used as a sensitive and specific quantitative method to evaluate immunity to VZV.

  5. Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors.

    PubMed

    El-Maiss, Janwa; Cuccarese, Marco; Maerten, Clément; Lupattelli, Paolo; Chiummiento, Lucia; Funicello, Maria; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2018-06-06

    In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC + ); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC + ; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 μA/mM cm 2 ) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.

  6. Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes.

    PubMed

    Adav, Sunil S; Li, An A; Manavalan, Arulmani; Punt, Peter; Sze, Siu Kwan

    2010-08-06

    The natural lifestyle of Aspergillus niger made them more effective secretors of hydrolytic proteins and becomes critical when this species were exploited as hosts for the commercial secretion of heterologous proteins. The protein secretion profile of A. niger and its mutant at different pH was explored using iTRAQ-based quantitative proteomics approach coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study characterized 102 highly confident unique proteins in the secretome with zero false discovery rate based on decoy strategy. The iTRAQ technique identified and relatively quantified many hydrolyzing enzymes such as cellulases, hemicellulases, glycoside hydrolases, proteases, peroxidases, and protein translocating transporter proteins during fermentation. The enzymes have potential application in lignocellulosic biomass hydrolysis for biofuel production, for example, the cellulolytic and hemicellulolytic enzymes glucan 1,4-alpha-glucosidase, alpha-glucosidase C, endoglucanase, alpha l-arabinofuranosidase, beta-mannosidase, glycosyl hydrolase; proteases such as tripeptidyl-peptidase, aspergillopepsin, and other enzymes including cytochrome c oxidase, cytochrome c oxidase, glucose oxidase were highly expressed in A. niger and its mutant secretion. In addition, specific enzyme production can be stimulated by controlling pH of the culture medium. Our results showed comprehensive unique secretory protein profile of A. niger, its regulation at different pH, and the potential application of iTRAQ-based quantitative proteomics for the microbial secretome analysis.

  7. Measuring potential denitrification enzyme activity rates using the membrane inlet mass spectrometer

    EPA Science Inventory

    The denitrification enzyme activity (DEA) assay, provides a quantitative assessment of the multi enzyme, biological process of reactive nitrogen removal via the reduction of N03 to N2. Measured in soil, usually under non limiting carbon and nitrate concentrations, this short ter...

  8. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts.

    PubMed

    Crawford, N A; Droux, M; Kosower, N S; Buchanan, B B

    1989-05-15

    Results obtained with isolated intact chloroplasts maintained aerobically under light and dark conditions confirm earlier findings with reconstituted enzyme assays and indicate that the ferredoxin/thioredoxin system functions as a light-mediated regulatory thiol chain. The results were obtained by application of a newly devised procedure in which a membrane-permeable thiol labeling reagent, monobromobimane (mBBr), reacts with sulfhydryl groups and renders the derivatized protein fluorescent. The mBBr-labeled protein in question is isolated individually from chloroplasts by immunoprecipitation and its thiol redox status is determined quantitatively by combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorescence measurements. The findings indicate that each member of the ferredoxin/thioredoxin system containing a catalytically active thiol group is reduced in isolated intact chloroplasts after a 2-min illumination. The extents of reduction were FTR, 38%; thioredoxin m, 75% (11-kDa form) and 87% (13-kDa form); thioredoxin f, 95%. Reduction of each of these components was negligible both in the dark and when chloroplasts were transferred from light to dark conditions. The target enzyme, NADP-malate dehydrogenase, also underwent net reduction in illuminated intact chloroplasts. Fructose-1,6-bisphosphatase showed increased mBBr labeling under these conditions, but due to interfering gamma globulin proteins it was not possible to determine whether this was a result of net reduction as is known to take place in reconstituted assays. Related experiments demonstrated that mBBr, as well as N-ethylmaleimide, stabilized photoactivated NADP-malate dehydrogenase and fructose-1,6-bisphosphatase so that they remained active in the dark. By contrast, phosphoribulokinase, another thioredoxin-linked enzyme, was immediately deactivated following mBBr addition. These latter results provide new information on the relation between the regulatory and active sites of these enzymes.

  9. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-07

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  10. Comparison of five commercial anti-tetanus toxoid immunoglobulin G enzyme-linked immunosorbent assays.

    PubMed

    Perry, A L; Hayes, A J; Cox, H A; Alcock, F; Parker, A R

    2009-12-01

    Five commercially available enzyme-linked immunosorbent assays for the measurement of anti-tetanus toxoid immunoglobulin G (IgG) antibodies were evaluated for performance. The data suggest that there are manufacturer-dependent differences in sensitivity and accuracy for the determination of tetanus toxoid IgG antibodies that could result in different diagnostic interpretations.

  11. Development of an enzyme-linked immunosorbent assay for determination of the furaltadone etabolite, 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) in animal tissues

    USDA-ARS?s Scientific Manuscript database

    A rapid, sensitive, and specific competitive direct enzyme-linked immunosorbent assay (cdELISA) for determination of protein bound 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) residues is described to monitor the illegal use of furaltadone. Polyclonal and monoclonal antibodies were produced in...

  12. Development of a Multianalyte Enzyme-Linked Immunosorbent Assay for Permethrin and Aroclors and Its Implementation for Analysis of Soil/Sediment and House Dust ExtractsExtracts

    EPA Science Inventory

    Development of a multianalyte enzyme-linked immunosorbent assay (ELISA) for detection of permethrin and aroclors 1248 or 1254, and implementation of the assay for analysis of soil/sediment samples are described. The feasibility of using the multianalyte ELISA to monitor aroclors ...

  13. Immunological Tools: Engaging Students in the Use and Analysis of Flow Cytometry and Enzyme-linked Immunosorbent Assay (ELISA)

    ERIC Educational Resources Information Center

    Ott, Laura E.; Carson, Susan

    2014-01-01

    Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and…

  14. DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody

    DTIC Science & Technology

    2016-03-01

    performance in an enzyme-linked immunosorbent assay ( ELISA ), with little regard for quantification of the full spectrum of variables affecting antibody...Program (ATP) Quality MS2 coat protein (MS2CP) Enzyme-linked immunosorbent assay ( ELISA ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...5 2.7 ELISA ................................................................................................................5

  15. COMPARISON OF BIOASSAY AND ENZYME-LINKED IMMUNOSORBENT ASSAY FOR QUANTIFICATION OF 'SPODOPTERA FRUGIPERDA' NUCLEAR POLYHEDROSIS VIRUS IN SOIL

    EPA Science Inventory

    Standard curves with known amounts of Spodoptera frugiperda nuclear polyhedrosis virus (NPV) in soil were established with a bioassay and with an enzyme-linked immunosorbent assay (ELISA). The bioassay detected as few as 4 x 10 to the 4th power polyhedral inclusion bodies (PIB)/g...

  16. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay

    USDA-ARS?s Scientific Manuscript database

    Enzyme-linked immunosorbent assays (ELISAs) usually focus on the detection of a single analyte or a single group of analytes, e.g., fluoroquinolones or sulfonamides. However, it is often necessary to simultaneously monitor the two classes of antimicrobial residues in different food matrices. In th...

  17. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural smaples

    USDA-ARS?s Scientific Manuscript database

    A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC50 and IC10 of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries recovery rate...

  18. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  19. The Classification and Evolution of Enzyme Function

    PubMed Central

    Martínez Cuesta, Sergio; Rahman, Syed Asad; Furnham, Nicholas; Thornton, Janet M.

    2015-01-01

    Enzymes are the proteins responsible for the catalysis of life. Enzymes sharing a common ancestor as defined by sequence and structure similarity are grouped into families and superfamilies. The molecular function of enzymes is defined as their ability to catalyze biochemical reactions; it is manually classified by the Enzyme Commission and robust approaches to quantitatively compare catalytic reactions are just beginning to appear. Here, we present an overview of studies at the interface of the evolution and function of enzymes. PMID:25986631

  20. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro

    PubMed Central

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633

  1. Mycotoxin analysis: an update.

    PubMed

    Krska, Rudolf; Schubert-Ullrich, Patricia; Molinelli, Alexandra; Sulyok, Michael; MacDonald, Susan; Crews, Colin

    2008-02-01

    Mycotoxin contamination of cereals and related products used for feed can cause intoxication, especially in farm animals. Therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current methods usually include an extraction step, a clean-up step to reduce or eliminate unwanted co-extracted matrix components and a separation step with suitably specific detection ability. Quantitative methods of analysis for most mycotoxins use immunoaffinity clean-up with high-performance liquid chromatography (HPLC) separation in combination with UV and/or fluorescence detection. Screening of samples contaminated with mycotoxins is frequently performed by thin layer chromatography (TLC), which yields qualitative or semi-quantitative results. Nowadays, enzyme-linked immunosorbent assays (ELISA) are often used for rapid screening. A number of promising methods, such as fluorescence polarization immunoassays, dipsticks, and even newer methods such as biosensors and non-invasive techniques based on infrared spectroscopy, have shown great potential for mycotoxin analysis. Currently, there is a strong trend towards the use of multi-mycotoxin methods for the simultaneous analysis of several of the important Fusarium mycotoxins, which is best achieved by LC-MS/MS (liquid chromatography with tandem mass spectrometry). This review focuses on recent developments in the determination of mycotoxins with a special emphasis on LC-MS/MS and emerging rapid methods.

  2. Qualitative and quantitative determination of enterobacterial common antigen (ECA) with monoclonal antibodies: expression of ECA by two Actinobacillus species.

    PubMed Central

    Böttger, E C; Jürs, M; Barrett, T; Wachsmuth, K; Metzger, S; Bitter-Suermann, D

    1987-01-01

    The presence and quantity of the enterobacterial common antigen (ECA) in several species belonging to the family Enterobacteriaceae as well as to other gram-negative families were determined by a solid-phase enzyme-linked immunosorbent assay system and Western blotting by using mouse monoclonal antibodies specific for ECA. Except for Erwinia chrysanthemi, previously known to be an exception, all species known or presumed to belong to Enterobacteriaceae produced ECA (89 of 90 species). Most species not belonging to Enterobacteriaceae did not produce ECA (25 of 28 species), with one already known (Plesiomonas shigelloides) and two hitherto unknown (Actinobacillus equuli and Actinobacillus suis) exceptions. Interestingly, all strains of P. shigelloides produced ECA, regardless of the presence of the Shigella sonnei cross-reacting O antigen. Quantitation of the amount of ECA in members of the family Enterobacteriaceae revealed a remarkable heterogeneity among genera and species as well as within one species. We conclude that the rapid, sensitive, and reliable determination of ECA is a useful aid in taxonomic classification and may help to characterize the relatedness of the family Enterobacteriaceae to other families. However, a quantitative analysis of ECA appears to be without value for these purposes. Images PMID:3818929

  3. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  4. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    USGS Publications Warehouse

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  5. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    PubMed

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. OnpA, an Unusual Flavin-Dependent Monooxygenase Containing a Cytochrome b5 Domain

    PubMed Central

    Xiao, Yi; Liu, Ting-Ting; Dai, Hui; Zhang, Jun-Jie; Liu, Hong; Tang, Huiru; Leak, David J.

    2012-01-01

    ortho-Nitrophenol 2-monooxygenase (EC 1.14.13.31) from Alcaligenes sp. strain NyZ215 catalyzes monooxygenation of ortho-nitrophenol to form catechol via ortho-benzoquinone. Sequence analysis of this onpA-encoded enzyme revealed that it contained a flavin-binding monooxygenase domain and a heme-binding cytochrome b5 domain. OnpA was purified to homogeneity as a His-tagged protein and was considered a monomer, as determined by gel filtration. FAD and heme were identified by high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (HPLC-MS) as cofactors in this enzyme, and quantitative analysis indicated that 1 mol of the purified recombinant OnpA contained 0.66 mol of FAD and 0.20 mol of heme. However, the enzyme activity of OnpA was increased by 60% and 450% after addition of FAD and hemin, respectively, suggesting that the optimal stoichiometry was 1:1:1. In addition, site-directed mutagenesis experiments confirmed that two highly conserved histidines located in the cytochrome b5 domain were associated with binding of the heme, and the cytochrome b5 domain was involved in the OnpA activity. These results indicate that OnpA is an unusual FAD-dependent monooxygenase containing a fused cytochrome b5 domain that is essential for its activity. Therefore, we here demonstrate a link between cytochrome b5 and flavin-dependent monooxygenases. PMID:22267507

  7. The integration of nutrients, cyanobacterial biomass and ...

    EPA Pesticide Factsheets

    This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment - where biomass and toxin removal are achieved. Data is generated by a variety of methods: online instrumentation for chlorophyll, dissolved oxygen, temperature and pH; enzyme linked immune substrate (ELISA) and liquid chromatography/mass spectrometric (LC/MS) methods for toxin analysis; microscopic methods for species identification; quantitative PCR methods for species identification; and bench-scale engineering studies for removal of toxins and biomass through drinking water treatment. This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment. The content will be useful for EPA regional office staff, state primacy personnel, state and local health personnel, drinking water treatment managers and consulting engineers.

  8. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  9. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  10. DEVELOPMENT OF DIOXIN TOXICITY EVALUATION METHOD IN HUMAN MILK BY ENZYME-LINKED IMMUNOSORBENT ASSAY-ASSAY VALIDATION FOR HUMAN MILK. (R825433)

    EPA Science Inventory

    In this study, the development of a toxicity evaluation method for dioxins in human milk by enzyme-linked immunosorbent assay (ELISA) was reported. A total of 17 human milk samples were tested by ELISA and by gas chromatography/mass spectrometry (GC/MS) to assess whether the E...

  11. Effects of Early Altitude Exposure Following Traumatic Injury and Hemorrhagic Shock

    DTIC Science & Technology

    2017-06-27

    chemokines by multiplex enzyme-linked immunosorbent assay ( ELISA ) (Quansys, Logan, UT), including the following: interleukin 1 alpha and beta (IL...Tissue Cytokine Profiles Fourteen cytokines and chemokines were analyzed from serum and intestinal tissues via multiplex ELISA . There were no...2017-3567, 25 Jul 2017. LIST OF ABBREVIATIONS AND ACRONYMS AE aeromedical evacuation BCA bicinchoninic acid ELISA enzyme-linked immunosorbent

  12. Comparison of enzyme-linked immunosorbent assay, surface plasmon resonance and biolayer interferometry for screening of deoxynivalenol in wheat and wheat dust

    USDA-ARS?s Scientific Manuscript database

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techni...

  13. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    PubMed

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Multicenter comparison of levels of antibody to the Neisseria meningitidis group A capsular polysaccharide measured by using an enzyme-linked immunosorbent assay.

    PubMed Central

    Carlone, G M; Frasch, C E; Siber, G R; Quataert, S; Gheesling, L L; Turner, S H; Plikaytis, B D; Helsel, L O; DeWitt, W E; Bibb, W F

    1992-01-01

    There is no standard immunoassay for evaluating immune responses to meningococcal vaccines. We developed an enzyme-linked immunosorbent assay to measure total levels of antibody to Neisseria meningitidis group A capsular polysaccharide. Five laboratories measured the antibody levels in six paired pre- and postvaccination serum samples by using the enzyme-linked immunosorbent assay. Methylated human serum albumin was used to bind native group A polysaccharide to microtiter plate surfaces. The between-laboratory coefficients of variation for pre- and postvaccination sera had ranges of 31 to 91 and 17 to 31, respectively. The mean laboratory coefficients of variation for pre- and postvaccination sera, respectively, were 17 and 11 (Molecular Biology Laboratory, Centers for Disease Control), 12 and 15 (Immunodiagnostic Methods Laboratory, Centers for Disease Control), 22 and 19 (Dana-Farber Cancer Institute), 38 and 38 (Bacterial Polysaccharide Laboratory, U.S. Food and Drug Administration), and 11 and 10 (Praxis Biologics, Inc.). Standardization of this enzyme-linked immunosorbent assay should allow interlaboratory comparison of meningococcal vaccine immunogenicity, thus providing a laboratory-based assessment tool for evaluating meningococcal vaccines. PMID:1734048

  15. Do alterations in follicular fluid proteases contribute to human infertility?

    PubMed

    Cookingham, Lisa Marii; Van Voorhis, Bradley J; Ascoli, Mario

    2015-05-01

    Cathepsin L and ADAMTS-1 are known to play critical roles in follicular rupture, ovulation, and fertility in mice. Similar studies in humans are limited; however, both are known to increase during the periovulatory period. No studies have examined either protease in the follicular fluid of women with unexplained infertility or infertility related to advanced maternal age (AMA). We sought to determine if alterations in cathepsin L and/or ADAMTS-1 existed in these infertile populations. Patients undergoing in vitro fertilization (IVF) for unexplained infertility or AMA-related infertility were prospectively recruited for the study; patients with tubal or male factor infertility were recruited as controls. Follicular fluid was collected to determine gene expression (via quantitative polymerase chain reaction), enzyme concentrations (via enzyme-linked immunosorbent assays), and enzymatic activities (via fluorogenic enzyme cleavage assay or Western blot analysis) of cathepsin L and ADAMTS-1. The analysis included a total of 42 patients (14 per group). We found no statistically significant difference in gene expression, enzyme concentration, or enzymatic activity of cathepsin L or ADAMTS-1 in unexplained infertility or AMA-related infertility as compared to controls. We also found no statistically significant difference in expression or concentration with advancing age. Cathepsin L and ADAMTS-1 are not altered in women with unexplained infertility or AMA-related infertility undergoing IVF, and they do not decline with advancing age. It is possible that differences exist in natural cycles, contributing to infertility; however, our findings do not support a role for protease alterations as a common cause of infertility.

  16. Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everdeen, D.S.; Kiefer, S.; Willard, J.J.

    Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers inmore » the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.« less

  17. The Regulation of a Post-Translational Peptide Acetyltransferase: Strategies for Selectively Modifying the Biological Activity of Neural and Endocrine Peptides

    DTIC Science & Technology

    1988-02-01

    quantitatively miror pathway. Only two of the enzymes which process 8-endorphin have been firmly identified, peptide acetyltransferase and... quantitatively minor. This implied that perhaps peptide acetyltransferase is not a critical determinant of the bioactivity of B-endorphin in brain. If so...provided us with a more difinitive understanding of the role of processing enzyme regulation in the overall biochemical and cellular response of the

  18. Comparison of five techniques for the detection of Renibacterium salmoninarum in adult coho salmon.

    USGS Publications Warehouse

    Pascho, R.J.; Elliott, D.G.; Mallett, R.W.; Mulcahy, D.

    1987-01-01

    Samples of kidney, spleen, coelomic fluid, and blood from 56 sexually mature coho salmon Oncorhynchus kisutch were examined for infection by Renibacterium salmoninarum by five methods. The overall prevalence (all sample types combined) of R. salmoninarum in the fish was 100% by the enzyme-linked immunosorbent assay, 86% by the combined results of the direct fluorescent antibody and the direct filtration-fluorescent antibody techniques, 39% by culture, 11% by counterimmunoelectrophoresis, and 5% by agarose gel immunodiffusion. There was a significant positive correlation (P < 0.001) between the enzyme-linked immunosorbent assay absorbance levels and the counts by fluorescent antibody techniques for kidney, spleen, and coelomic fluid, and significant positive correlations (P < 0.001) in enzyme-linked immunosorbent assay absorbance levels for all four of the sample types.

  19. Chemiluminescence assay for the detection of biological warfare agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langry, K; Horn, J

    A chemiluminescent homogeneous immunoassay and a hand-size multiassay reader are described that could be used for detecting biological materials. The special feature of the assay is that it employs two different antibodies that each bind to a unique epitope on the same antigen. Each group of epitope-specific antibodies has linked to it an enzyme of a proximal-enzyme pair. One enzyme of the pair utilizes a substrate in high concentration to produce a second substrate required by the second enzyme. This new substrate enables the second enzyme to function. The reaction of the second enzyme is configured to produce light. Thismore » chemiluminescence is detected with a charge-coupled device (CCD) camera. The proximal pair enzymes must be in close proximity to one another to allow the second enzyme to react with the product of the first enzyme. This only occurs when the enzyme-linked antibodies are attached to the antigen, whether antigen is a single protein with multiple epitopes or the surface of a cell with a variety of different antigens. As a result of their juxtaposition, the enzymes produce light only in the presence of the biological material. A brief description is given as to how this assay could be utilized in a personal bio-agent detector system.« less

  20. Quantitation of Lipase Activity from a Bee: An Introductory Enzyme Experiment.

    ERIC Educational Resources Information Center

    Farley, Kathleen A.; Jones, Marjorie A.

    1989-01-01

    This four-hour experiment uses a bee as a source of the enzyme which is reacted with a radioactive substrate to determine the specific activity of the enzyme. Uses thin layer chromatography, visible spectrophotometry, and liquid scintillation spectrometry (if not available a Geiger-Muller counter can be substituted). (MVL)

  1. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  2. The Classification and Evolution of Enzyme Function.

    PubMed

    Martínez Cuesta, Sergio; Rahman, Syed Asad; Furnham, Nicholas; Thornton, Janet M

    2015-09-15

    Enzymes are the proteins responsible for the catalysis of life. Enzymes sharing a common ancestor as defined by sequence and structure similarity are grouped into families and superfamilies. The molecular function of enzymes is defined as their ability to catalyze biochemical reactions; it is manually classified by the Enzyme Commission and robust approaches to quantitatively compare catalytic reactions are just beginning to appear. Here, we present an overview of studies at the interface of the evolution and function of enzymes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of a commercial enzyme-linked immunosorbent assay for detection of antibodies against the H5 subtype of Influenza A virus in waterfowl

    USDA-ARS?s Scientific Manuscript database

    Serologic tools for rapid testing of subtype-specific influenza A (IA) virus antibody in wild birds and poultry are limited. In the current study, the ID Screen Influenza H5 Antibody Competition enzyme-linked immunosorbent assay (ELISA) was tested for the detection of antibodies to the H5 subtype o...

  4. Replacement of Antibodies in Pseudo-ELISAs: Molecularly Imprinted Nanoparticles for Vancomycin Detection.

    PubMed

    Canfarotta, Francesco; Smolinska-Kempisty, Katarzyna; Piletsky, Sergey

    2017-01-01

    The enzyme-linked immunosorbent assay (ELISA) is a widely employed analytical test used to quantify a given molecule. It relies on the use of specific antibodies, linked to an enzyme, to target the desired molecule. The reaction between the enzyme and its substrate gives rise to the analytical signal that can be quantified. Thanks to their robustness and low cost, molecularly imprinted polymer nanoparticles (nanoMIPs) are a viable alternative to antibodies. Herein, we describe the synthesis of nanoMIPs imprinted for vancomycin and their subsequent application in an ELISA-like format for direct replacement of antibodies.

  5. A prospective study of a quantitative PCR ELISA assay for the diagnosis of CMV pneumonia in lung and heart-transplant recipients.

    PubMed

    Barber, L; Egan, J J; Lomax, J; Haider, Y; Yonan, N; Woodcock, A A; Turner, A J; Fox, A J

    2000-08-01

    Qualitative polymerase chain reaction (PCR) for the identification of cytomegalovirus (CMV) infection has a low predictive value for the identification of CMV pneumonia. This study prospectively evaluated the application of a quantitative PCR Enzyme-Linked Immuno-Sorbent Assay (ELISA) assay in 9 lung- and 18 heart-transplant recipients who did not receive ganciclovir prophylaxis. DNA was collected from peripheral blood polymorphonuclear leucocytes (PMNL) posttransplantation. Oligonucleotide primers for the glycoprotein B gene (149 bp) were used in a PCR ELISA assay using an internal standard for quantitation. CMV disease was defined as histological evidence of end organ damage. The median level CMV genome equivalents in patients with CMV disease was 2665/2 x 10(5) PMNL (range 1,200 to 61,606) compared to 100 x 10(5) PMNL (range 20 to 855) with infection but no CMV disease (p = 0.036). All patients with CMV disease had genome equivalents levels of >1200/2 x 10(5) PMNL. A cut-off level of 1,200 PMNL had a positive predictive value for CMV disease of 100% and a negative predictive value of 100%. The first detection of levels of CMV genome equivalents above a level of 1200/2 x 10(5) PMNL was at a median of 58 days (range 47 to 147) posttransplant. Quantitative PCR assays for the diagnosis of CMV infection may predict patients at risk of CMV disease and thereby direct preemptive treatment to high-risk patients.

  6. A comparison of sperm agglutination and immobilization assays with a quantitative ELISA for anti-sperm antibody in serum.

    PubMed

    Lynch, D M; Leali, B A; Howe, S E

    1986-08-01

    An enzyme-linked immunosorbent assay (ELISA) that quantitates antisperm antibody in serum was compared with standard sperm agglutination and immobilization assays with the use of sera from 40 normal and 292 subfertile individuals. Quantitation of the assay was accomplished by standardizing assay parameters, including the incorporation of a standard reference curve, the number of whole target sperm, the optimal dilution of serum, the selection of microtiter plate, and the time and temperatures involved in the adsorption and incubation phases. With this method, the level of antisperm antibody binding to target sperm in 40 normal fertile individuals was found to be 2.3 (+/- 1.1 standard deviation [SD]) fg immunoglobulin (Ig)/sperm. An increased mean level of 7.4 +/- 3.7 fg Ig/sperm was determined in 84 infertile patients with positive agglutination and/or immobilization tests. In 208 individuals with negative agglutination and immobilization tests the mean concentration of antisperm antibody was 2.5 +/- 1.3 fg Ig/sperm. Postvasectomy patients assayed by this method had a mean Ig binding value of 7.1 +/- 2.4 fg Ig/sperm. The infertile group with positive agglutination and/or immobilization tests had a significantly higher mean antisperm antibody level than the normal fertile group, according to the Student's t-test for independent samples (P less than 0.001). This indirect serum-based assay reproducibly quantitates antisperm antibody binding to whole target sperm, suggests the normal and abnormal levels of antisperm antibody, and correlates with standard functional assays.

  7. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects.

    PubMed

    Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M

    2003-01-01

    Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.

  8. Methods for transfer a saliva based alcohol content test to a dermal patch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silks, III, Louis A.

    Detection and quantitation of ethanol which is highly sensitive, specific, and efficient has been a commercial target for sometime. Clearly analytical methods are useful such as gas and liquid chromatography, mass spectrometry, and NMR spectroscopy. However, those methods are best used in the laboratory and a less useful for detection and quantitation of ethanol in the field. Enzymes have been employed for the detection and quantitation of EtOH. Enzymes are proteins that perform a particular task in a bio-catalytic way. Most of the chemistry that these enzymes do are frequently exquisitely specific in that only one alcohol reacts and onlymore » one product is produced. One enzyme molecule can catalyze the reaction of numerous substrate molecules which in itself is an amplification of the recognition signal. Alcohol dehydrogenase (ADH) and alcohol oxidase (AO) are two possible enzymatic targets for EtOH sensor development.1 The ADH oxidizes the alcohol using a co-factor nicotinamide adenine dinucleotide. This co-factor needs to be within close proximity of the ADH. AO also oxidizes the ethanol using molecular oxygen giving rise to the production of the aldehyde and hydrogen peroxide.« less

  9. Isolation and characterization of a novel endo-beta-galactofuranosidase from Bacillus sp.

    PubMed

    Ramli, N; Fujinaga, M; Tabuchi, M; Takegawa, K; Iwahara, S

    1995-10-01

    A soil bacterium capable of growing on a polysaccharide-containing beta(1-->6)galactofuranoside residues derived from the acidic polysaccharide of Fusarium sp. as a carbon source has been isolated. From various bacteriological characteristics, the organism was identified as a Bacillus sp. The bacterium produced beta-galactofuranosidase inductively in the culture media. The most effective inducer for the beta-galactofuranosidase production was a polysaccharide containing beta(1-->5) or beta(1-->6)-linked galactofuranoside residues, but gum arabic, gum guar, gum ghati, arabinogalactam, araban, and pectic acid did not induce the enzyme. The enzyme had three different molecular weight forms. The low molecular-weight form was purified by a combination of Toyopearl HW-55 and DEAE-Toyopearl 650S column chromatographies, and preparative polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 67,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 6 and 37 degrees C, and was stable between pH 4 to 8 at 5 degrees C. The action of the enzyme was inhibited by the addition of Cd2+, Co2+, Hg2+, Zn2+, iodoacetic acid, and EDTA. The purified enzyme cleaved beta(1-->5) and beta(1-->6)-linked galactofuranosyl chains. Based upon the mode of liberation of galactofuranosyl residues from pyridylamino-beta(1-->6)-linked galactofuranoside oligomers, the enzyme can be classified as an endo-beta-galactofuranosidase that randomly hydrolyzes the linkage.

  10. Enzyme immobilisation in biocatalysis: why, what and how.

    PubMed

    Sheldon, Roger A; van Pelt, Sander

    2013-08-07

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

  11. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    PubMed

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  12. Charged Propargyl-Linked Antifolates Reveal Mechanisms of Antifolate Resistance and Inhibit Trimethoprim-Resistant MRSA Strains Possessing Clinically Relevant Mutations.

    PubMed

    Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J; G-Dayanandan, Narendran; Keshipeddy, Santosh; Wright, Dennis L; Anderson, Amy C

    2016-07-14

    Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.

  13. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes

    PubMed Central

    Vršanská, Martina; Voběrková, Stanislava; Jiménez Jiménez, Ana María; Strmiska, Vladislav; Adam, Vojtěch

    2017-01-01

    The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised when the experimental conditions were optimized. Based on the optimization steps, saturated ammonium sulphate solution (75 wt.%) was used as the precipitating agent, and different concentrations of glutaraldehyde as a cross-linking agent were investigated. CLEA aggregates formed under the optimal conditions showed higher catalytic efficiency and stabilities (thermal, pH, and storage, against denaturation) as well as high reusability compared to free laccase for both fungal strains. The best concentration of glutaraldehyde seemed to be 50 mM and higher efficiency of cross-linking was observed at a low temperature 4 °C. An insignificant increase in optimum pH for CLEA laccases with respect to free laccases for both fungi was observed. The results show that the optimum temperature for both free laccase and CLEA laccase was 35 °C for T. versicolor and 30 °C for F. fomentarius. The CLEAs retained 80% of their initial activity for Trametes and 74% for Fomes after 70 days of cultivation. Prepared cross-linked enzyme aggregates were also investigated for their decolourisation activity on malachite green, bromothymol blue, and methyl red dyes. Immobilised CLEA laccase from Trametes versicolor showed 95% decolourisation potential and CLEA from Fomes fomentarius demonstrated 90% decolourisation efficiency within 10 h for all dyes used. These results suggest that these CLEAs have promising potential in dye decolourisation. PMID:29295505

  14. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.

    PubMed

    Wu, Fei; Minteer, Shelley

    2015-02-02

    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pas, H.H.; Robillard, G.T.

    1988-07-26

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less

  16. [Effect of soy isoflavone on gene expression of leptin and insulin sensibility in insulin-resistant rats].

    PubMed

    Chen, Shi-wei; Zhang, Li-shi; Zhang, Hong-min; Feng, Xiao-fan; Peng, Xiao-li

    2006-04-18

    To explore the effects of soy isoflavone (SIF) on gene expression of leptin and insulin sensibility in insulin-resistant (IR) rats induced by high-fat, and to reveal the mechanisms of SIF in ameliorating insulin sensibility. IR rats were randomly divided into four groups based on their insulin-resistant indexes (IRI): one model control group and three SIF groups that were gavaged with water solutions with SIF at doses of 0 mg/kg, 50 mg/kg, 150 mg/kg, and 450 mg/kg, respectively. After one month, fasting glucose, fasting insulin, leptin in serum, and leptin mRNA in the perirenal adipocyte were detected by enzymic method, radioimmunoassay, enzyme linked immunosorbent assay, and real time quantitative RT-PCR, respectively. The model control group was used to compare against the other groups: (1) Insulin and IRI were lower in the 150 mg/kg and 450 mg/kg groups; (2) In the 450 mg/kg group, body weight and leptin mRNA expression were lower, serum leptin content was higher. These results indicate that soy isoflavone might decrease body weight of rats and leptin mRNA, increase serum leptin level, and ameliorate leptin and insulin sensitivities.

  17. IL-33 circulating serum levels are increased in patients with non-segmental generalized vitiligo.

    PubMed

    Vaccaro, Mario; Cicero, Francesca; Mannucci, Carmen; Calapai, Gioacchino; Spatari, Giovanna; Barbuzza, Olga; Cannavò, Serafinella P; Gangemi, Sebastiano

    2016-09-01

    IL-33 is a recently identified cytokine, encoded by the IL-33 gene, which is a member of the IL-1 family that drives the production of T-helper-2 (Th-2)-associated cytokines. Serum levels of IL-33 have been reported to be up-regulated in various T-helper (Th)-1/Th-17-mediated diseases, such as psoriasis, rheumatoid arthritis, and inflammatory bowel. To investigate whether cytokine imbalance plays a role in the pathogenesis of vitiligo, we performed a case-control association study by enzyme-linked immunosorbent assay of IL-33 in our patients. IL-33 serum levels were measured by a quantitative enzyme immunoassay technique in patients with non-segmental generalized vitiligo and compared with those of healthy controls. IL-33 serum levels in patients with vitiligo were significantly increased than those in healthy controls. There was a positive correlation of IL-33 serum levels with extension of vitiligo and disease activity. This study suggests a possible systemic role of IL-33 in the pathogenesis of vitiligo. Inhibiting IL-33 activity might be a novel therapeutic strategy in the treatment of autoimmune inflammatory disease, like vitiligo.

  18. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation.

    PubMed

    Renouard, Sullivan; Tribalatc, Marie-Aude; Lamblin, Frederic; Mongelard, Gaëlle; Fliniaux, Ophélie; Corbin, Cyrielle; Marosevic, Djurdjica; Pilard, Serge; Demailly, Hervé; Gutierrez, Laurent; Hano, Christophe; Mesnard, François; Lainé, Eric

    2014-09-15

    RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5' linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways

    PubMed Central

    Sacco, Francesca; Boldt, Karsten; Calderone, Alberto; Panni, Simona; Paoluzi, Serena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2014-01-01

    Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI3K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26, respectively. PMID:24847354

  20. Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay for the detection of a new β-agonist, phenylethanolamine A, in food samples.

    PubMed

    Jiang, Danni; Cao, Biyun; Wang, Meiyu; Yang, Hong; Zhao, Kang; Li, Jianguo; Li, Mingxin; Sun, Lulu; Deng, Anping

    2017-02-01

    All β-agonists are banned as feed additives for growth promotion in animals due to toxic effects on humans after consuming the β-agonist contaminated meats. Phenylethanolamine A (PA) is a newly emerged β-agonist. Thus there is a need to develop highly sensitive and specific analytical methods for the detection of PA in food samples. In this study, the monoclonal antibody (mAb) against PA was produced by hybridoma technology and used for the development of enzyme-linked immunosorbent assay (ELISA). The IC 50 values and limits of detection (LODs) of the ELISA using homogeneous combination of coating antigen/antibody for PA were 0.16 ng mL -1 and 0.011 ng mL -1 , respectively. The cross-reactive (CR) values of the assay with 14 structurally related β-agonists were lower than 0.59%. Swine liver and meat samples were spiked with PA at different content and analysed by ELISA. Acceptable recovery rates of 91.40-105.51% and intra-assay coefficients of variation of 1.56-9.92% (n = 3) were obtained. The ELISA for seven spiked samples was confirmed by LC-MS/MS with a high correlation coefficient of 0.9881. The proposed mAb-based ELISA was highly sensitive and specific for PA and could be used as a quantitative/screening method for PA analysis in food samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. G6PD: The Test

    MedlinePlus

    ... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... or her cells. Confirmation testing will involve a quantitative test, with which the actual amount of enzyme ...

  2. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  3. Development of a monoclonal antibody-based, congener-specific and solvent-tolerable direct enzyme-linked immunosorbgent assay for the detection of 2,2',4,4'-tetrabromodiphenyl ether in environmental samples

    USDA-ARS?s Scientific Manuscript database

    A sensitive direct enzyme-linked immunosorbent assay (ELISA) for the detection of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in environmental samples was developed. A hapten mimicking the whole structure of BDE-47 was synthesized by introducing a butyric acid spacer to 5-hydroxy-BDE-47 and coupled ...

  4. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  5. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides with the intercalators at the junction point.

    PubMed

    Ueno, Y; Mikawa, M; Hoshika, S; Takeba, M; Kitade, Y; Matsuda, A

    2001-01-01

    3'-3'-Linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point were synthesized on a DNA synthesizer using a controlled pore glass (CPG), which has pentaerythritol carrying the intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer. The inhibitory activity of the 3'-3'-linked ODNs against the cleavage of the target DNA by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer and the 3'-3'-linked ODN without the intercalator.

  6. BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. 1. POTENTIOMETRIC ENZYME ELECTRODE. (R823663)

    EPA Science Inventory

    A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
    nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
    modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
    OPH ...

  7. Thermometric enzyme linked immunosorbent assay in continuous flow system: optimization and evaluation using human serum albumin as a model system.

    PubMed

    Borrebaeck, C; Börjeson, J; Mattiasson, B

    1978-06-15

    Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.

  8. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus.

    PubMed

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-05-30

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.

  9. Isoelectric focusing-affinity immunoblot analysis of mouse monoclonal antibodies to the four human IgG subclasses

    NASA Technical Reports Server (NTRS)

    Hamilton, Robert G.; Roebber, Marianne; Rodkey, L. Scott; Reimer, Charles B.

    1987-01-01

    Isoelectric focusing (IEF)/affinity immunoblotting and enzyme-linked immunosorbent assay (ELISA) were used for parallel analysis of murine monoclonal antihuman IgG-subclass antisera (MoAbs). Coomassie Blue-stained protein bands in the pH region 5.5-8.0 were shown to be murine IgG by direct blotting onto nitrocellulose followed by detection with conjugated antimouse IgG. Use of IgG myeloma antigen-coated nitrocellulose in the IEF-affinity immunoblot allowed detection of the charge microheterogeneity of MoAbs. The MoAb group contained one to five major dense bands flanked by up to four minor fainter bands, all with pIs ranging from 6.1 to 7.8. Semiquantitative estimates of binding specificity in the IEF-affinity blot compared well with cross-reactivity data obtained from a quantitative ELISA.

  10. Use of keyword hierarchies to interpret gene expression patterns.

    PubMed

    Masys, D R; Welsh, J B; Lynn Fink, J; Gribskov, M; Klacansky, I; Corbeil, J

    2001-04-01

    High-density microarray technology permits the quantitative and simultaneous monitoring of thousands of genes. The interpretation challenge is to extract relevant information from this large amount of data. A growing variety of statistical analysis approaches are available to identify clusters of genes that share common expression characteristics, but provide no information regarding the biological similarities of genes within clusters. The published literature provides a potential source of information to assist in interpretation of clustering results. We describe a data mining method that uses indexing terms ('keywords') from the published literature linked to specific genes to present a view of the conceptual similarity of genes within a cluster or group of interest. The method takes advantage of the hierarchical nature of Medical Subject Headings used to index citations in the MEDLINE database, and the registry numbers applied to enzymes.

  11. Multidimensional fractionation is a requirement for quantitation of Golgi-resident glycosylation enzymes from cultured human cells.

    PubMed

    Lin, Chi-Hung; Chik, Jenny H L; Packer, Nicolle H; Molloy, Mark P

    2015-02-06

    Glycosylation results from the concerted action of glycosylation enzymes in the secretory pathway. In general, gene expression serves as the primary control mechanism, but post-translational fine-tuning of glycosylation enzyme functions is often necessary for efficient synthesis of specific glycan epitopes. While the field of glycomics has rapidly advanced, there lacks routine proteomic methods to measure expression of specific glycosylation enzymes needed to fill the gap between mRNA expression and the glycomic profile in a "reverse genomics" workflow. Toward developing this workflow we enriched Golgi membranes from two human colon cancer cell lines by sucrose density centrifugation and further mass-based fractionation by SDS-PAGE. We then applied mass spectrometry to demonstrate a doubling in the number of Golgi resident proteins identified, compared to the unenriched, low speed centrifuged supernatant of lysed cells. A total of 35 Golgi-resident glycosylation enzymes, of which 23 were glycosyltransferases, were identified making this the largest protein database so far of Golgi resident glycosylation enzymes experimentally identified in cultured human cells. We developed targeted mass spectrometry assays for specific quantitation of many of these glycosylation enzymes. Our results show that alterations in abundance of glycosylation enzymes at the protein level were generally consistent with the resultant glycomic profiles, but not necessarily with the corresponding glycosyltransferase mRNA expression as exemplified by the case of O-glycan core 1 T synthase.

  12. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    PubMed Central

    Dalal, Sohel; Sharma, Aparna; Gupta, Munishwar Nath

    2007-01-01

    Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Results Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The Vmax/Km values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. Conclusion A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes. PMID:17880745

  13. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities.

    PubMed

    Dalal, Sohel; Sharma, Aparna; Gupta, Munishwar Nath

    2007-06-08

    The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The V(max)/K(m) values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50 degrees C, 60 degrees C and 70 degrees C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.

  14. Medical Surveillance Monthly Report (MSMR). Volume 21, Number 11, November 2014

    DTIC Science & Technology

    2014-11-01

    enzyme -linked immu- nosorbent assay (ELISA) utilizing an outer membrane protein antigen from C. jejuni Penner serotypes 1, 2, and 3.20 Acute and...Human serum antibody response to Campylobacter jejuni infection as measured in an enzyme -linked immunosorbent assay. Infect Immun. 1984;44: 292–298...Georgia: USD, Inc., 1990. 23. Coates D, Hutchinson DN, Bolton FJ. Survival of thermophilic Campylobacters on fi ngertips and their elimination by

  15. Magnetic Affinity Enzyme-Linked Immunoassay for Diagnosis of Schistosomiasis Japonicum in Persons with Low-Intensity Infection

    PubMed Central

    Yu, Qin; Yang, Hai; Feng, Youmei; Zhu, Yanhong; Yang, Xiangliang

    2012-01-01

    Most schistosome-endemic areas in China are characterized by low-intensity infections that are independent of prevalence. To establish an effective diagnostic method, we developed a magnetic affinity enzyme-linked immunoassay based on soluble egg antigens (SEA-MEIA) for diagnosing schistosomiasis in persons with low-intensity infection with Schistosoma japonicum by comparing it with a conventional enzyme-linked immunosorbent assay (ELISA). Our results showed that the SEA-MEIA had a higher sensitivity and greater precision in the diagnosis of low-intensity S. japonicum infections than the ELISA. In addition, when we used Pearson's correlation in associating SEA-MEIA with ELISA, a significant correlation existed between the two assays (r = 0.845, P < 0.001). Our data indicated that SEA-MEIA, with a higher sensitivity and greater ease of performance, would be valuable for diagnosis of schistosomiasis japonicum in persons with low-intensity infections. PMID:22869635

  16. Practical diagnostic testing for human immunodeficiency virus.

    PubMed Central

    Jackson, J B; Balfour, H H

    1988-01-01

    Since the discovery of human immunodeficiency virus (HIV) as the causative agent of acquired immunodeficiency syndrome in 1983, there has been a proliferation of diagnostic tests. These assays can be used to detect the presence of HIV antibody, HIV antigen, HIV ribonucleic and deoxyribonucleic acids, and HIV reverse transcriptase. Enzyme-linked immunosorbent assays, Western blot, radioimmunoprecipitation assays, indirect immunofluorescence assays, reverse transcriptase assays, and several molecular hybridization techniques are currently available. Enzyme-linked immunosorbent, Western blot, and indirect immunofluorescence assays for HIV antibody are very sensitive, specific, and adaptable to most laboratories. An enzyme-linked immunosorbent assay for HIV antigen is also readily adaptable to most laboratories and will be commercially available soon. While the other assays are more tedious, they are valuable confirmatory tests and are suitable for reference laboratories. The biohazards of performing HIV testing can be minimized with proper biosafety measures. Images PMID:3060241

  17. Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose

    NASA Astrophysics Data System (ADS)

    Hamzah, Afan; Gek Ela Kumala, P.; Ramadhani, Dwi; Maziyah, Nurul; Rahmah, Laila Nur; Soeprijanto, Widjaja, Arief

    2017-05-01

    Conversion of cellulose into reducing sugar through enzymatic hydrolysis has advantageous because it produces greater product yield, higher selectivity, require less energy, more moderate operating conditions and environment friendly. However, the nature of the enzyme that is difficult to separate and its expensive price become an obstacle. These obstacles can be overcome by immobilizing the enzyme on chitosan material so that the enzyme can be reused. Chitosan is chosen because it is cheap, inert, hydrophilic, and biocompatible. In this research, we use covalent attachment and combination between covalent attachment and cross-linking method for immobilizing crude enzyme. This research was focusing in study of Effect of temperature and mixing speed on Immobilization Enzyme From Aspergillus Niger on Chitosan For Hydrolyzing both soluble (Carboxymethylcellulose) and insoluble Cellulose (coconut husk). This Research was carried out by three main step. First, coconut husk was pre-treated mechanically and chemically, Second, Crude enzyme from Aspergillus niger strain was immobilized on chitosan in various immobilization condition. At last, the pre-treated coconut husk and Carboxymetylcellulose (CMC) were hydrolyzed by immobilized cellulose on chitosan for reducing sugar production. The result revealed that the most reducing sugar produced by immobilized enzyme on chitosan+GDA with immobilization condition at 30 °C and 125 rpm. Enzyme immobilized on chitosan cross-linked with GDA produced more reducing sugar from preteated coconut husk than enzyme immobilized on chitosan.

  18. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers.

    PubMed

    Sanjay, Sharma T; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-07-26

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  19. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, XiuJun

    2016-01-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings. PMID:27456979

  20. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sanjay, Sharma T.; Dou, Maowei; Sun, Jianjun; Li, Xiujun

    2016-07-01

    Enzyme linked immunosorbent assay (ELISA) is one of the most widely used laboratory disease diagnosis methods. However, performing ELISA in low-resource settings is limited by long incubation time, large volumes of precious reagents, and well-equipped laboratories. Herein, we developed a simple, miniaturized paper/PMMA (poly(methyl methacrylate)) hybrid microfluidic microplate for low-cost, high throughput, and point-of-care (POC) infectious disease diagnosis. The novel use of porous paper in flow-through microwells facilitates rapid antibody/antigen immobilization and efficient washing, avoiding complicated surface modifications. The top reagent delivery channels can simply transfer reagents to multiple microwells thus avoiding repeated manual pipetting and costly robots. Results of colorimetric ELISA can be observed within an hour by the naked eye. Quantitative analysis was achieved by calculating the brightness of images scanned by an office scanner. Immunoglobulin G (IgG) and Hepatitis B surface Antigen (HBsAg) were quantitatively analyzed with good reliability in human serum samples. Without using any specialized equipment, the limits of detection of 1.6 ng/mL for IgG and 1.3 ng/mL for HBsAg were achieved, which were comparable to commercial ELISA kits using specialized equipment. We envisage that this simple POC hybrid microplate can have broad applications in various bioassays, especially in resource-limited settings.

  1. Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum.

    PubMed

    Cardelli, J A; Bush, J M; Ebert, D; Freeze, H H

    1990-05-25

    Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.

  2. Variable Methylation Potential in Preterm Placenta: Implication for Epigenetic Programming of the Offspring.

    PubMed

    Khot, Vinita V; Chavan-Gautam, Preeti; Mehendale, Savita; Joshi, Sadhana R

    2017-06-01

    Children born preterm are reported to be at increased risk of developing noncommunicable diseases in later life. Altered placental DNA methylation patterns are implicated in fetal programming of adult diseases. Our earlier animal studies focus on micronutrients (folic acid, vitamin B 12 ) and long-chain polyunsaturated fatty acids (LCPUFAs) that interact in the 1 carbon cycle, thereby influencing methylation reactions. Our previous studies in women delivering preterm show altered plasma levels of micronutrients and lower plasma LCPUFA levels. We postulate that alterations in the micronutrient metabolism may affect the regulation of enzymes, methionine adenosyltransferase ( MAT2A), and SAH-hydrolase ( AHCY), involved in the production of methyl donor S-adenosylmethionine (SAM), thereby influencing the methylation potential (MP) in the placenta of women delivering preterm. The present study, therefore, examines the mRNA, protein levels of enzymes ( MAT2A and AHCY), SAM, S-adenosylhomocysteine (SAH) levels, and global DNA methylation levels from preterm (n = 73) and term (n = 73) placentae. The enzyme messenger RNA (mRNA) levels were analyzed by real-time quantitative polymerase chain reaction, protein levels by enzyme-linked immunosorbent assay, and SAM-SAH levels by high-performance liquid chromatography. The mRNA levels for MAT2A and AHCY are higher ( P < .05 for both) in the preterm group as compared to the term group. S-Adenosylmethionine and SAH levels were similar in both groups, although SAM:SAH ratio was lower ( P < .05) in the preterm group as compared to the term group. The global DNA methylation levels were higher ( P < .05) in women delivering small for gestation age infants as compared to women delivering appropriate for gestation age infants at term. Our data showing lower MP in the preterm placenta may have implications for the epigenetic programming of the developing fetus.

  3. Quantitative measurement of a candidate serum biomarker peptide derived from α2-HS-glycoprotein, and a preliminary trial of multidimensional peptide analysis in females with pregnancy-induced hypertension.

    PubMed

    Hamamura, Kensuke; Yanagida, Mitsuaki; Ishikawa, Hitoshi; Banzai, Michio; Yoshitake, Hiroshi; Nonaka, Daisuke; Tanaka, Kenji; Sakuraba, Mayumi; Miyakuni, Yasuka; Takamori, Kenji; Nojima, Michio; Yoshida, Koyo; Fujiwara, Hiroshi; Takeda, Satoru; Araki, Yoshihiko

    2018-03-01

    Purpose We previously attempted to develop quantitative enzyme-linked immunosorbent assay (ELISA) systems for the PDA039/044/071 peptides, potential serum disease biomarkers (DBMs) of pregnancy-induced hypertension (PIH), primarily identified by a peptidomic approach (BLOTCHIP®-mass spectrometry (MS)). However, our methodology did not extend to PDA071 (cysteinyl α2-HS-glycoprotein 341-367 ), due to difficulty to produce a specific antibody against the peptide. The aim of the present study was to establish an alternative PDA071 quantitation system using liquid chromatography-multiple reaction monitoring (LC-MRM)/MS, to explore the potential utility of PDA071 as a DBM for PIH. Methods We tested heat/acid denaturation methods in efforts to purify serum PDA071 and developed an LC-MRM/MS method allowing for specific quantitation thereof. We measured serum PDA071 concentrations, and these results were validated including by three-dimensional (3D) plotting against PDA039 (kininogen-1 439-456 )/044 (kininogen-1 438-456 ) concentrations, followed by discriminant analysis. Results PDA071 was successfully extracted from serum using a heat denaturation method. Optimum conditions for quantitation via LC-MRM/MS were developed; the assayed serum PDA071 correlated well with the BLOTCHIP® assay values. Although the PDA071 alone did not significantly differ between patients and controls, 3D plotting of PDA039/044/071 peptide concentrations and construction of a Jackknife classification matrix were satisfactory in terms of PIH diagnostic precision. Conclusions Combination analysis using both PDA071 and PDA039/044 concentrations allowed PIH diagnostic accuracy to be attained, and our method will be valuable in future pathophysiological studies of hypertensive disorders of pregnancy.

  4. Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors.

    PubMed

    Müntze, Gesche Mareike; Baur, Barbara; Schäfer, Wladimir; Sasse, Alexander; Howgate, John; Röth, Kai; Eickhoff, Martin

    2015-02-15

    Penicillinase-modified AlGaN/GaN field-effect transistors (PenFETs) are utilized to systematically investigate the covalently immobilized enzyme penicillinase under different experimental conditions. We demonstrate quantitative evaluation of covalently immobilized penicillinase layers on pH-sensitive field-effect transistors (FETs) using an analytical kinetic PenFET model. This kinetic model is explicitly suited for devices with thin enzyme layers that are not diffusion-limited, as it is the case for the PenFETs discussed here. By means of the kinetic model it was possible to extract the Michaelis constant of covalently immobilized penicillinase as well as relative transport coefficients of the different species associated with the enzymatic reaction which, exempli gratia, give information about the permeability of the enzymatic layer. Based on this analysis we quantify the reproducibility and the stability of the analyzed PenFETs over the course of 33 days as well as the influence of pH and buffer concentration on the properties of the enzymatic layer. Thereby the stability measurements reveal a Michalis constant KM of (67 ± 13)μM while the chronological development of the relative transport coefficients suggests a detachment of physisorbed penicillinase during the first two weeks since production. Our results show that AlGaN/GaN PenFETs prepared by covalent immobilization of a penicillinase enzyme layer present a powerful tool for quantitative analysis of enzyme functionality. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Extraction of erythrocyte enzymes for the preparation of polyhemoglobin-catalase-superoxide dismutase.

    PubMed

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion.

  6. Evaluation of commercial a-amylase enzyme-linked immunosorbent assy (ELISA) test kits for wheat

    USDA-ARS?s Scientific Manuscript database

    a-Amylase enzyme is associated with preharvest sprouting (PHS) and late-maturity a amylase (LMA) in wheat, and reduces wheat and flour quality. Various means have been developed to measure the presence of a-amylase, thereby predicting end-use quality; most are based on enzyme activity. An alternativ...

  7. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes.

    PubMed

    Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan

    2016-10-18

    Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.

  8. Nonlinear Analysis of Experimental Measurements 7.6. Theoretical Chemistry

    DTIC Science & Technology

    2015-01-26

    Jianshu Cao, Robert J. Silbey, Jaeyoung Sung. Quantitative Interpretation of the Randomness in Single Enzyme Turnover Times, Biophysical Journal...Universality of Poisson Indicator and Fano Factor of Transport Event Statistics in Ion Channels and Enzyme Kinetics., J. Phys. B: At. Mol. Opt. Phys...TOTAL: 4 01/26/2015 Received Book 4.00 Jianshu Cao, Jianlan Wu. GENERALIZED MICHAELIS–MENTENEQUATION FOR CONFORMATION- MODULATEDMONOMERIC ENZYMES , New

  9. Dextroamphetamine: a pharmacologic countermeasure for space motion sickness and orthostatic dysfunction

    NASA Technical Reports Server (NTRS)

    Snow, L. Dale

    1996-01-01

    Dextroamphetamine has potential as a pharmacologic agent for the alleviation of two common health effects associated with microgravity. As an adjuvant to Space Motion Sickness (SMS) medication, dextroamphetamine can enhance treatment efficacy by reducing undesirable Central Nervous System (CNS) side effects of SMS medications. Secondly, dextroamphetamine may be useful for the prevention of symptoms of post-mission orthostatic intolerance caused by cardiovascular deconditioning during spaceflight. There is interest in developing an intranasal delivery form of dextroamphetanmine for use as a countermeasure in microgravity conditions. Development of this dosage form will require an analytical detection method with sensitivity in the low ng range (1 to 100 ng/mL). During the 1995 Summer Faculty Fellowship Program, two analytical methods were developed and evaluated for their suitability as quantitative procedures for dextroamphetamine in studies of product stability, bioavailability assessment, and pharmacokinetic evaluation. In developing some of the analytical methods, beta-phenylethylamine, a primary amine structurally similar to dextroamphetamine, was used. The first analytical procedure to be evaluated involved hexane extraction and subsequent fluorescamine labeling of beta-phenylethylamine. The second analytical procedure to be evaluated involved quantitation of dextroamphetamine by an Enzyme-Linked ImmunoSorbent Assay (ELISA).

  10. Detection of Fumonisins in Fresh and Dehydrated Commercial Garlic.

    PubMed

    Tonti, Stefano; Mandrioli, Mara; Nipoti, Paola; Pisi, Annamaria; Toschi, Tullia Gallina; Prodi, Antonio

    2017-08-16

    An epidemic fungal disease caused by Fusarium proliferatum, responsible for fumonisin production (FB1, FB2, and FB3), has been reported in the main garlic-producing countries in recent years. Fumonisins are a group of structurally related toxic metabolites produced by this pathogen. The aim of this work was to establish an enzyme-linked immunosorbent assay (ELISA) procedure, mostly applied to cereals, that is suitable for fumonisin detection in garlic and compare these results to those obtained by high-performance liquid chromatography (HPLC) and screening of fresh and dehydrated garlic for toxicological risk. The results show good correlation between the two analytical methods. In fresh symptomatic garlic, fumonisin levels were higher in the basal plates than those in the portions with necrotic spots. Among the 56 commercially dehydrated garlic samples screened, three were positive by ELISA test and only one was above the limit of quantitation. The same samples analyzed by HPLC showed the presence of FB1 in trace amounts that was below the limit of quantitation; FB2 and FB3 were absent. The results are reassuring, because no substantial contamination by fumonisins was found in commercial garlic.

  11. Understanding Cytokine and Growth Factor Receptor Activation Mechanisms

    PubMed Central

    Atanasova, Mariya; Whitty, Adrian

    2012-01-01

    Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381

  12. The cervical mucus plug inhibits, but does not block, the passage of ascending bacteria from the vagina during pregnancy.

    PubMed

    Hansen, Lea K; Becher, Naja; Bastholm, Sara; Glavind, Julie; Ramsing, Mette; Kim, Chong J; Romero, Roberto; Jensen, Jørgen S; Uldbjerg, Niels

    2014-01-01

    To evaluate the microbial load and the inflammatory response in the distal and proximal parts of the cervical mucus plug. Experimental research. Twenty women with a normal, singleton pregnancy. Vaginal swabs and specimens from the distal and proximal parts of the cervical mucus plug. Immunohistochemistry, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction and histology. The total bacterial load (16S rDNA) was significantly lower in the cervical mucus plug compared with the vagina (p = 0.001). Among women harboring Ureaplasma parvum, the median genome equivalents/g were 1574 (interquartile range 2526) in the proximal part, 657 (interquartile range 1620) in the distal part and 60,240 (interquartile range 96,386) in the vagina. Histological examinations and quantitative polymerase chain reaction revealed considerable amounts of lactobacilli and inflammatory cells in both parts of the cervical mucus plug. The matrix metalloproteinase-8 concentration was decreased in the proximal part of the plug compared with the distal part (p = 0.08). The cervical mucus plug inhibits, but does not block, the passage of Ureaplasma parvum during its ascending route from the vagina through the cervical canal. © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. Enzyme-Linked Antibodies: A Laboratory Introduction to the ELISA Assay

    NASA Astrophysics Data System (ADS)

    Anderson, Gretchen L.; McNellis, Leo A.

    1998-10-01

    A fast and economical laboratory exercise is presented that qualitatively demonstrates the power of enzyme-linked antibodies to detect a specific antigen. Although ELISAs are commonly used in disease diagnosis in clinical settings, this application uses biotin, covalently attached to albumin, to take advantage of readily available reagents and avoids problems associated with potentially pathogenic antigens. The laboratory exercise is suitable for high school or freshman level biochemistry courses, and can be completed within two hours.

  14. A Novel, Rapid Assay for Detection and Differentiation of Serotype-Specific Antibodies to Venezuelan Equine Encephalitis Complex Alphaviruses

    DTIC Science & Technology

    2005-01-01

    Research Center Detachment, Lima, Peru Abstract. An epitope-blocking enzyme-linked immunosorbent assay was developed for the rapid differentiation of...subtype and variety of antibodies to VEEV in equines, humans, or rodent reservoir hosts can be critical for determining the potential of a naturally...of human sera from Mexico and Peru using a blocking enzyme-linked immunosorbent assay and plaque reduction neutralization tests* Serum number Country

  15. Detection of anticentromere antibodies using cloned autoantigen CENP-B.

    PubMed

    Rothfield, N; Whitaker, D; Bordwell, B; Weiner, E; Senecal, J L; Earnshaw, W

    1987-12-01

    A solid-phase enzyme-linked immunosorbent assay has been established using a cloned fusion protein, CtermCENP-B [beta-gal], as antigen. The fusion protein carries the major epitope of CENP-B, the major centromeric autoantigen. The enzyme-linked immunosorbent assay was more sensitive than immunofluorescence techniques in detecting anticentromere antibodies in patients with scleroderma or Raynaud's disease, and was weakly positive in 3% of normal controls and in 3% of 70 patients with other connective tissue diseases.

  16. Development and Application of a Saccharomyces cerevisiae-Expressed Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay for Detection of Antibodies against Infectious Bronchitis Virus

    PubMed Central

    Gibertoni, Aliandra M.; Montassier, Maria de Fátima S.; Sena, Janete A. D.; Givisiez, Patrícia E. N.; Furuyama, Cibele R. A. G.; Montassier, Hélio J.

    2005-01-01

    A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA. PMID:15815038

  17. Comparison of 2 Luminex-based Multiplexed Protein Assays for Quantifying Microglia Activation and Inflammatory Proteins

    DTIC Science & Technology

    2016-04-01

    streptavidin-phycoerythrin (PE) similar to sandwich enzyme-linked immunosorbent assays ( ELISAs ). The 3 fluorescent markers (2 beads plus PE) allow for...within the kit, this worked out to a set of expensive, problematic, and subjective ELISA . The space on the black-96 well plate was split between cell...ARL US Army Research Laboratory BBB blood–brain barrier CSF cerebral spinal fluid DOD US Department of Defense ELISA enzyme-linked immunosorbent

  18. Absorption of p,p'-dichlorodiphenyldichloroethylene and dieldrin in largemouth bass from a 60-D slow-release pellet and detection using a novel enzyme-linked immunosorbent assay method for blood plasma

    USGS Publications Warehouse

    Muller, Jennifer K.; Sepulveda, Maria S.; Borgert, Christopher J.; Gross, Timothy S.

    2005-01-01

    This work describes the uptake of two organochlorine pesticides from slow-release pellets by largemouth bass and the utility of a blood plasma enzyme-linked immunosorbent assay (ELISA) method for exposure verification. We measured blood and tissue levels by gas chromatography/mass spectrometry and by a novel ELISA method, and present a critical comparison of the results.

  19. Conservation of Dynamics Associated with Biological Function in an Enzyme Superfamily.

    PubMed

    Narayanan, Chitra; Bernard, David N; Bafna, Khushboo; Gagné, Donald; Chennubhotla, Chakra S; Doucet, Nicolas; Agarwal, Pratul K

    2018-03-06

    Enzyme superfamily members that share common chemical and/or biological functions also share common features. While the role of structure is well characterized, the link between enzyme function and dynamics is not well understood. We present a systematic characterization of intrinsic dynamics of over 20 members of the pancreatic-type RNase superfamily, which share a common structural fold. This study is motivated by the fact that the range of chemical activity as well as molecular motions of RNase homologs spans over 10 5 folds. Dynamics was characterized using a combination of nuclear magnetic resonance experiments and computer simulations. Phylogenetic clustering led to the grouping of sequences into functionally distinct subfamilies. Detailed characterization of the diverse RNases showed conserved dynamical traits for enzymes within subfamilies. These results suggest that selective pressure for the conservation of dynamical behavior, among other factors, may be linked to the distinct chemical and biological functions in an enzyme superfamily. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification.

    PubMed

    Guan, Weihua; Chen, Liben; Rane, Tushar D; Wang, Tza-Huei

    2015-09-03

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  1. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    PubMed Central

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  2. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex.

    PubMed

    Villa, R F; Gorini, A; Hoyer, S

    2006-11-01

    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  3. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  4. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  5. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment.

    PubMed

    Ba, Sidy; Arsenault, Alexandre; Hassani, Thanina; Jones, J Peter; Cabana, Hubert

    2013-12-01

    Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.

  6. Novel method for quantitative ANA measurement using near-infrared imaging.

    PubMed

    Peterson, Lisa K; Wells, Daniel; Shaw, Laura; Velez, Maria-Gabriela; Harbeck, Ronald; Dragone, Leonard L

    2009-09-30

    Antinuclear antibodies (ANA) have been detected in patients with systemic rheumatic diseases and are used in the screening and/or diagnosis of autoimmunity in patients as well as mouse models of systemic autoimmunity. Indirect immunofluorescence (IIF) on HEp-2 cells is the gold standard for ANA screening. However, its usefulness is limited in diagnosis, prognosis and monitoring of disease activity due to the lack of standardization in performing the technique, subjectivity in interpreting the results and the fact that it is only semi-quantitative. Various immunological techniques have been developed in an attempt to improve upon the method to quantify ANA, including enzyme-linked immunosorbent assays (ELISAs), line immunoassays (LIAs), multiplexed bead immunoassays and IIF on substrates other than HEp-2 cells. Yet IIF on HEp-2 cells remains the most common screening method for ANA. In this study, we describe a simple quantitative method to detect ANA which combines IIF on HEp-2 coated slides with analysis using a near-infrared imaging (NII) system. Using NII to determine ANA titer, 86.5% (32 of 37) of the titers for human patient samples were within 2 dilutions of those determined by IIF, which is the acceptable range for proficiency testing. Combining an initial screening for nuclear staining using microscopy with titration by NII resulted in 97.3% (36 of 37) of the titers detected to be within two dilutions of those determined by IIF. The NII method for quantitative ANA measurements using serum from both patients and mice with autoimmunity provides a fast, relatively simple, objective, sensitive and reproducible assay, which could easily be standardized for comparison between laboratories.

  7. Quantitation of exposure to benzo[a]pyrene with monoclonal antibodies.

    PubMed Central

    Santella, R M; Hsieh, L L; Lin, C D; Viet, S; Weinstein, I B

    1985-01-01

    It is now possible to quantitate carcinogen adducts on DNA by highly sensitive immunoassays. These techniques are particularly useful for screening human populations for exposure to potential environmental carcinogens. We have developed a panel of monoclonal antibodies that react with benzo(a)pyrene (BP) modified DNA to be used in an enzyme linked immunoassay (ELISA) to quantitate adduct levels of both human and animal samples. BALBc/Cr mice were immunized with either DNA modified by 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo(a)pyrene (BPDE-I-DNA) complexed electrostatically to methylated bovine serum albumin or with BPDE-I-modified guanosine conjugated with bovine serum albumin (BPDE-I-G-BSA). Four stable clones were produced from the spleen cells of animals immunized with BPDE-I-DNA and one from BPDE-I-G-BSA immunized animals. All antibodies were shown to be highly specific for BPDE-I-DNA and did not crossreact with nonmodified DNA or with N-2-acetylaminofluorene or 1-aminopyrene modified DNA. The antibodies differed in their sensitivity to BPDE-II-DNA, BPDE-I-poly G, BPDE-I-tetraols and BPDE-I-dG. In general, all the antibodies showed the greatest affinity for their original antigen. Those generated against modified DNA showed highest reactivity against modified DNA while the one antibody generated against the monoadduct showed highest reactivity with the monoadduct. These antibodies are currently being used in a highly sensitive competitive ELISA to quantitate levels of BP-DNA adducts in various animal and human tissue samples. PMID:4085452

  8. Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), A New Post-translational Modification in Mammals.

    PubMed

    Maynard, Jason C; Burlingame, Alma L; Medzihradszky, Katalin F

    2016-11-01

    Intracellular GlcNAcylation of Ser and Thr residues is a well-known and widely investigated post-translational modification. This post-translational modification has been shown to play a significant role in cell signaling and in many regulatory processes within cells. O-GlcNAc transferase is the enzyme responsible for glycosylating cytosolic and nuclear proteins with a single GlcNAc residue on Ser and Thr side-chains. Here we report that the same enzyme may also be responsible for S-GlcNAcylation, i.e. for linking the GlcNAc unit to the peptide by modifying a cysteine side-chain. We also report that O-GlcNAcase, the enzyme responsible for removal of O-GlcNAcylation does not appear to remove the S-linked sugar. Such Cys modifications have been detected and identified in mouse and rat samples. This work has established the occurrence of 14 modification sites assigned to 11 proteins unambiguously. We have also identified S-GlcNAcylation from human Host Cell Factor 1 isolated from HEK-cells. Although these site assignments are primarily based on electron-transfer dissociation mass spectra, we also report that S-linked GlcNAc is more stable under collisional activation than O-linked GlcNAc derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Molecular Typing of Staphylococcus Aureus Isolate Responsible for Staphylococcal Poisoning Incident in Homemade Food.

    PubMed

    Macori, Guerrino; Bellio, Alberto; Bianchi, Daniela Manila; Gallina, Silvia; Adriano, Daniela; Zuccon, Fabio; Chiesa, Francesco; Acutis, Pier Luigi; Casalinuovo, Francesco; Decastelli, Lucia

    2016-04-19

    In October 2012, two persons fell ill with symptoms consistent with staphylococcal food poisoning after eating home-canned tuna fish and tomatoes. Laboratory investigation detected the enterotoxins in the home-canned tuna and molecular analysis of the isolated Staphylococcus aureus confirmed it carried toxin genes. Qualitative enzyme-linked immunosorbent assay and enzime linked fluorescent assay methods and quantitative assay identified the enterotoxins in the food leftovers, specifically staphylococcal enterotoxins type A (SEA) and D (SED), respectively 0.49 and 2.04 ng/g. The laboratory results are discussed considering the relation to the fish in oil, survival and heat resistance of S. aureus , and presumptive microbial contamination due to improper handling during home-canning procedures. This is the first reported cluster of foodborne illnesses due to staphylococcal enterotoxins in tuna in Italy. In this study, we reported cases described and analysed for their spa -type. Showing a high heterogeneity of isolates, spa -type t 13252 is correlated in a node of the minimum spanning tree and it has never been reported as responsible for foodborne outbreak. This case underlines the importance of risk communication and dissemination of home-canning guidelines to reduce the incidence of foodborne outbreaks caused by homemade conserves.

  10. Phase Transitions in the Nucleus: the functional implications of concentration-dependent assembly of a Liquid-like RNA/Protein Body

    NASA Astrophysics Data System (ADS)

    Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford

    2015-03-01

    The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.

  11. Translational value of liquid chromatography coupled with tandem mass spectrometry-based quantitative proteomics for in vitro-in vivo extrapolation of drug metabolism and transport and considerations in selecting appropriate techniques.

    PubMed

    Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill

    2015-01-01

    Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.

  12. OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Yu-Chi; Landry, Marie-Claude; Sanches, Mario

    2012-03-26

    Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibitedmore » E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.« less

  13. Validation of an enzyme-linked immunosorbent assay that detects Histoplasma capsulatum antigenuria in Colombian patients with AIDS for diagnosis and follow-up during therapy.

    PubMed

    Caceres, Diego H; Scheel, Christina M; Tobón, Angela M; Ahlquist Cleveland, Angela; Restrepo, Angela; Brandt, Mary E; Chiller, Tom; Gómez, Beatriz L

    2014-09-01

    We validated an antigen capture enzyme-linked immunosorbent assay (ELISA) in Colombian persons with AIDS and proven histoplasmosis and evaluated the correlation between antigenuria and clinical improvement during follow-up. The sensitivity of the Histoplasma capsulatum ELISA was 86%, and the overall specificity was 94%. The antigen test successfully monitored the response to therapy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Glycoprotein-Based Enzyme-Linked Immunosorbent Assays for Serodiagnosis of Infectious Laryngotracheitis

    PubMed Central

    Kanabagatte Basavarajappa, Mallikarjuna; Song, Haichen; Lamichhane, Chinta

    2015-01-01

    For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector. PMID:25694519

  15. Enzyme-linked immunosorbent assay for Potomac horse fever disease.

    PubMed

    Pretzman, C I; Rikihisa, Y; Ralph, D; Gordon, J C; Bech-Nielsen, S

    1987-01-01

    An enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) and IgM in natural and experimental infections of equids with Ehrlichia risticii was developed. Ehrlichial organisms purified from an infected mouse macrophage cell line were used as the antigen. IgM was separated from serum IgG by the expedient of spun-column chromatography, allowing the use of an indirect ELISA for quantitation of both IgG and IgM in the test sera. Among 16 paired sera from horses exhibiting clinical signs of Potomac horse fever, 8 were positive by the indirect fluorescent-antibody test (IFA), 11 were positive by the IgG ELISA, and 8 were positive by the IgM ELISA. All IFA-positive specimens were positive by the IgG ELISA, which appeared to be more sensitive than the IFA. In all cases, the IgG ELISA alone would have sufficed for diagnosis when acute- and convalescent-phase sera were available. When 26 single acute- or convalescent-phase serum samples were tested, the IFA detected 8, the IgG ELISA detected 10, and the IgM ELISA detected 6 positive serum specimens. The kinetics of IgG and IgM responses as determined by ELISA in two experimentally infected ponies which survived infection and challenges revealed that specific IgM was short-lived, falling to undetectable levels by day 60 postinoculation, whereas specific IgG persisted for more than 1 year. IgM and IgG were detected as early as days 1 and 10, respectively, postinoculation. The results suggest that the ELISA is more sensitive than the IFA and that the IgM ELISA may provide a means for early diagnosis of Potomac horse fever at or before the onset of clinical signs.

  16. Correlation of serum neutrophil gelatinase-associated lipocalin with acute kidney injury in hypertensive disorders of pregnancy

    PubMed Central

    Patel, ML; Sachan, Rekha; Gangwar, Radheyshyam; Sachan, Pushpalata; Natu, SM

    2013-01-01

    Hypertensive disorders of pregnancy (HDP) remain one of the largest single causes of maternal and fetal morbidity and mortality, accounting for 16.1% of maternal deaths in developed countries. The aim of the study was to evaluate acute kidney injury (AKI) in hypertensive disorders of pregnancy and to examine the correlation of serum neutrophil gelatinase-associated lipocalin (NGAL) with acute kidney injury. This prospective case control study was carried out over a period of 1 year. After written, informed consent and ethical clearance, 149 cases of hypertensive disorders of pregnancy were screened, and seven were lost to follow-up. Acute kidney injury was detected in 88 cases and acute renal failure in 30 cases of HDP. Thirty-one healthy pregnant nonhypertensive women were enrolled as controls. Quantitative measurement of serum NGAL levels was done by enzyme linked immunosorbent assay technique using a sandwich enzyme-linked immunosorbent assay kit. As per the Kidney Diseases Improving Global Outcomes International guidelines acute kidney injury network (AKIN), 50 cases (42.37%) of AKI stage I, 38 (32.2%) cases of AKI stage II, and 30 (25.42%) cases of renal failure were detected. Serum NGAL had a positive association with increasing proteinuria. It also had a positive correlation with systolic blood pressure (r∼0.36), diastolic blood pressure (r∼0.37), and serum creatinine (r∼0.4). NGAL was found to be significantly correlated with creatinine in the cases with the value of the correlation coefficient being 0.4. This direct correlation might be a consequence of endothelial dysfunction on which hypertension and proteinuria probably depends. PMID:24124387

  17. Accuracy of a rapid enzyme-linked immunosorbent assay to measure progesterone in mares

    PubMed Central

    Relave, Fabien; Lefebvre, Réjean C.; Beaudoin, Sandra; Price, Christopher

    2007-01-01

    The aim of this study was to validate an enzyme-linked immunosorbent assay (ELISA) for the measurement of progesterone (P4) in mares. Specifically, the objectives were as follows: 1) to determine the specificity and sensitivity of the ELISA test for determination of P4, 2) to measure the potential agreement between the 2 people performing the test, and 3) to evaluate the effect of time on the outcome. Ten mares were sampled on the day before ovulation (D-1), and on days 1 (D1), 3 (D3), and 5 (D5) following ovulation, during the reproductive season. While mares were cycling regularly, estrus was induced by the injection of 5 mg of prostaglandin (PGF2) and monitored starting on the 4th day by daily transrectal palpation and ultrasonography to determine the time of ovulation. Blood was collected and all samples (n = 96) were assayed for P4 by a semiquantitative ELISA, by chemiluminescent immunoassay, and by radioimmunoassay (RIA). Based on the RIA, values of P4 on D-1, D1, D3, and D5 were significantly different (P < 0.0001) with mean and standard deviation(s) of 0.004, s = 0.52; 2.05, s = 2.58; 8.37, s = 4.17; and 12.76, s = 4.00 ng/mL respectively. The sensitivity and specificity of the semiquantitative assay were 94% and 95%, respectively for the lowest values of P4 (< 1.0 ng/mL). The value of kappa was 0.90 between 2 individuals performing the test. In conclusion, these results suggest that the semi-quantitative test may be used reliably and economically to evaluate P4 levels in equine plasma in the clinical situation. PMID:17824324

  18. Identification, characterization, and quantitation of soluble HLA antigens in the circulation and peritoneal dialysate of renal patients.

    PubMed Central

    Gelder, F B; McDonald, J C; Landreneau, M D; McMillan, R M; Aultman, D F

    1991-01-01

    Human lymphocyte antigen (HLA) class I and class II antigens and beta 2 microglobulin (B2M) were identified in peritoneal dialysate (PD) and serum from patients with end-stage renal disease (ESRD) using monoclonal antibodies in an enzyme-linked immunoassay. The HLA class I and class II antigens each exhibited approximate molecular weights of 50,000 to 60,000 daltons by chromatography on Sepharose CL 6B. Class I antigens in serum and PD fluid were associated with B2M. Free B2M (Mr 11,500) also was detected in both sera and PD fluids. Unlike class I antigens, class II antigens were not found to have attached B2M. Class I and class II antigens eluted from 2-diethylaminoethanol ion exchange gradient columns at 0.07 mol/L (molar) phosphate buffer pH 7.2 and migrated with alpha 2-beta 1 mobility in agarose electrophoresis. Class I antigens were purified from ESRD patients' PD fluid by solid-phase immunoaffinity chromatography. Enzyme-linked immunoassay demonstrated that this purified protein was composed of a class I heavy chain and B2M. Class I allospecificity was confirmed by neutralization on known HLA typing antisera in a microcytotoxicity assay. Soluble HLA class I antigen preparations specifically inhibited blast transformation of responder lymphocytes in mixed lymphocyte culture reactions. Inhibition was dose dependent and ranged from 0% to 95%. The presence of soluble HLA antigens in body fluids may play an important part in the immunologic tolerance to self. This study demonstrates a ready source of large quantities of soluble HLA for detailed analysis. Images Fig. 1. PMID:2039290

  19. Serodiagnosis of infectious mononucleosis by using recombinant Epstein-Barr virus antigens and enzyme-linked immunosorbent assay technology.

    PubMed Central

    Gorgievski-Hrisoho, M; Hinderer, W; Nebel-Schickel, H; Horn, J; Vornhagen, R; Sonneborn, H H; Wolf, H; Siegl, G

    1990-01-01

    Four recombinant, diagnostically useful Epstein-Barr virus (EBV) proteins representative of the viral capsid antigen (p150), diffuse early antigen (p54), the major DNA-binding protein (p138), and the EBV nuclear antigen (p72) (W. Hinderer, H. Nebel-Schickel, H.H. Sonneborn, M. Motz, R. Kühbeck, and H. Wolf, J. Exp. Clin. Cancer Res. 7[Suppl.]:132, 1988) were used to set up individual enzyme-linked immunosorbent assays (ELISAs) for the qualitative and quantitative detection of immunoglobulin M (IgM) and IgG antibodies. In direct comparison with results obtained by standard immunofluorescence or immunoperoxidase assays, it was then shown that the recombinant EBV ELISAs provide the means for specific and sensitive serodiagnosis of infectious mononucleosis (IM) caused by EBV. The most useful markers in sera from such patients proved to be IgM antibodies against p54, p138, and p150. Additional positive markers for recent or ongoing IM apparently were IgG antibodies against p54 and p138. In contrast, anti-p72 IgG had a high preference for sera from healthy blood donors and, therefore, can be considered indicative of past exposure to the virus. Altogether, the individual ELISAs proved to be as specific and at least as sensitive for the diagnosis of IM as the currently available standard techniques are. Moreover, our findings suggest that, by combining individual test antigens, a workable ELISA system consisting of three assays (IgM against p54, p138, and p150; IgG against p54 and p138; and IgG against p72) can be established for the standardized rapid diagnosis of acute EBV infections. PMID:2172287

  20. A novel sandwich enzyme-linked immunosorbent assay with covalently bound monoclonal antibody and gold probe for sensitive and rapid detection of bovine β-lactoglobulin.

    PubMed

    He, Shengfa; Li, Xin; Wu, Yong; Wu, Shandong; Wu, Zhihua; Yang, Anshu; Tong, Ping; Yuan, Juanli; Gao, Jinyan; Chen, Hongbing

    2018-06-01

    Bovine milk is a recognized allergenic food source with β-lactoglobulin (BLG) as its major allergen. Reliable detection of BLG epitopes can, therefore, be a useful marker for the presence of milk in processed food products, and for potential allergenicity. At the present, enzyme-linked immunosorbent assays (ELISA) for the detection of BLG are time-consuming and generally not specific to BLG IgE epitopes. In this study, the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-activated anti-BLG IgE epitope monoclonal antibody (mAb 1G9) was covalently bound onto the KOH-treated microtiter plate surface. Using this mAb-bound plate in sandwich combination with biotinylated anti-BLG polyclonal antibody-labeled gold nanoparticles, a linear dynamic range between 31.25 and 64 × 10 3  ng mL -1 with a limit of detection for BLG of 0.49 ng mL -1 was obtained, which is 32 times wider and 16 times more sensitive than conventional sandwich ELISA (sELISA). Total recovery of BLG in spiked food samples was found, without matrix effects. Also in partially hydrolyzed infant formulas, the allergenic BLG residues were detected quantitatively. Compared with conventional and commercial BLG detection sELISAs, our sELISA is reliable, highly BLG epitope-specific, user-friendly, and time-saving and allows accurate detection of potentially allergenic residues in different types of processed foods. This improved sELISA protocol can be easily extended to detect other well-identified and characterized food allergens. Graphical abstract IgE epitope mAb-bound plate in sandwich combination with gold probe for sensitive and rapid detection of bovine β-lactoglobulin and its potentially allergenic residues.

  1. An Enzyme-linked Immunosorbent Assay for Genistein 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside Determination in Derris scandens using a Polyclonal Antibody.

    PubMed

    Jutathis, Kamonthip; Kitisripanya, Tharita; Udomsin, Orain; Inyai, Chadathorn; Sritularak, Boonchoo; Tanaka, Hiroyuki; Putalun, Waraporn

    2016-11-01

    Genistein 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) is a major bioactive compound in Derris scandens. It is responsible for anti-inflammatory activity by inhibition of cyclooxygenase and lipoxygenase. There are many commercial products of D. scandens available in Thailand. To develop an enzyme-linked immunosorbent assay (ELISA) for the quantitative analysis of GTG in plant material and derived products using a polyclonal antibody. An immunogen was synthesised by conjugating GTG with a carrier protein. The polyclonal antibody against GTG (GTG-PAb) was produced in New Zealand white rabbits. The ELISA method was validated for specificity, sensitivity, accuracy, precision and correlation with HPLC. The polyclonal antibody was specific to GTG and genistin within the range of compounds tested. The GTG ELISA was applied in the range 0.04-10.00 μg/mL with a limit of detection of 0.03 μg/mL. The recovery of GTG in spiked Derris scandens extracts ranged from 100.7 to 107.0%, with a coefficient of variation less than 7.0%. The intra- and inter-assay variations were less than 5.0%. The ELISA showed a good correlation with HPLC-UV analysis for GTG determination in samples, with a coefficient of determination (r 2 ) of 0.9880. An ELISA was established for GTG determination in Derris scandens. The GTG-PAb can react with GTG and genistin, but genistin has not been found in the plant. Therefore, the ELISA can be used for high throughput quality control of GTG content in D. scandens and its products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Biogenesis of lysosomal enzymes in the alpha-glucosidase II-deficient modA mutant of Dictyostelium discoideum: retention of alpha-1,3-linked glucose on N-linked oligosaccharides delays intracellular transport but does not alter sorting of alpha-mannosidase or beta-glucosidase.

    PubMed

    Ebert, D L; Bush, J M; Dimond, R L; Cardelli, J A

    1989-09-01

    The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.

  3. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique and adenylating enzymes together using a combination of active site-directed probes for the A domains in NRPSs should accelerate both the functional characterization and manipulation of the A domains in NRPSs.

  4. Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album.

    PubMed

    Jones, Christopher G; Ghisalberti, Emilio L; Plummer, Julie A; Barbour, Elizabeth L

    2006-11-01

    A chemotaxonomic approach was used to investigate biosynthetic relationships between heartwood sesquiterpenes in Indian sandalwood, Santalum album L. Strong, linear relationships exist between four structural classes of sesquiterpenes; alpha- and beta-santalenes and bergamotene; gamma- and beta-curcumene; beta-bisabolene and alpha-bisabolol and four unidentified sesquiterpenes. All samples within the heartwood yielded the same co-occurrence patterns, however wood from young trees tended to be more variable. It is proposed that the biosynthesis of each structural class of sesquiterpene in sandalwood oil is linked through common carbocation intermediates. Lack of co-occurrence between each structural class suggests that four separate cyclase enzymes may be operative. The biosynthesis of sandalwood oil sesquiterpenes is discussed with respect to these co-occurrence patterns. Extractable oil yield was correlated to heartwood content of each wood core and the oil composition did not vary significantly throughout the tree.

  5. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum.

    PubMed

    Chambers, Andrew G; Percy, Andrew J; Simon, Romain; Borchers, Christoph H

    2014-04-01

    Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.

  6. Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9.

    PubMed

    McManus, Francis P; Bourdeau, Véronique; Acevedo, Mariana; Lopes-Paciencia, Stéphane; Mignacca, Lian; Lamoliatte, Frédéric; Rojas Pino, John W; Ferbeyre, Gerardo; Thibault, Pierre

    2018-05-17

    Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9's ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.

  7. Multiplex Hydrolysis Probe Real-Time PCR for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus

    PubMed Central

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-01-01

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV. PMID:24886818

  8. Serodiagnosis of parasitic diseases.

    PubMed Central

    Maddison, S E

    1991-01-01

    In this review on serodiagnosis of parasitic diseases, antibody detection, antigen detection, use of monoclonal antibodies in parasitic serodiagnosis, molecular biological technology, and skin tests are discussed. The focus at the Centers for Disease Control on developing improved antigens, a truly quantitative FAST-enzyme-linked immunosorbent assay, and the very specific immunoblot assays for antibody detection is highlighted. The last two assays are suitable for field studies. Identification of patient response in terms of immunoglobulin class or immunoglobulin G subclass isotypes or both is discussed. Immunoglobulin isotypes may asist in defining the stage of some diseases. In other instances, use of a particular anti-isotype conjugate may increase the specificity of the assay. Monoclonal antibodies have played important roles in antigen purification and identification, in competitive antibody assays with increased sensitivity and specificity, and in assays for antigen detection in serum, body fluids, or excreta. Molecular biological technology has allowed significant advances in the production of defined parasitic serodiagnostic antigens. PMID:1747862

  9. Reduced sympathetic innervation after alteration of target cell neurotransmitter phenotype in transgenic mice.

    PubMed Central

    Cho, S; Son, J H; Park, D H; Aoki, C; Song, X; Smith, G P; Joh, T H

    1996-01-01

    Neurotransmitters play a variety of important roles during nervous system development. In the present study, we hypothesized that neurotransmitter phenotype of both projecting and target cells is an important factor for the final synaptic linkage and its specificity. To test this hypothesis, we used transgenic techniques to convert serotonin/melatonin-producing cells of the pineal gland into cells that also produce dopamine and investigated the innervation of the phenotypically altered target cells. This phenotypic alteration markedly reduced the noradrenergic innervation originating from the superior cervical ganglia. Although the mechanism by which the reduction occurs is presently unknown, quantitative enzyme-linked immunoassay showed the presence of the equivalent amounts of nerve growth factor (NGF) in the control and transgenic pineal glands, suggesting that it occurred in a NGF-independent manner. The results suggest that target neurotransmitter phenotype influences the formation of afferent connections during development. Images Fig. 3 Fig. 4 PMID:8610132

  10. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro☆

    PubMed Central

    Lu, Jiang; Lu, Kehuan; Li, Dongsheng

    2012-01-01

    In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789

  11. Dynamic architecture of the purinosome involved in human de novo purine biosynthesis.

    PubMed

    Kyoung, Minjoung; Russell, Sarah J; Kohnhorst, Casey L; Esemoto, Nopondo N; An, Songon

    2015-01-27

    Enzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells. In this work, human breast carcinoma Hs578T cells have been utilized to demonstrate the preferential utilization of the purinosome under purine-depleted conditions. In addition, we have employed a confocal microscopy-based biophysical technique, fluorescence recovery after photobleaching, to characterize kinetic properties of the purinosome in live Hs578T cells. Quantitative characterization of the diffusion coefficients of all de novo purine biosynthetic enzymes reveals the significant reduction of their mobile kinetics upon purinosome formation, the dynamic partitioning of each enzyme into the purinosome, and the existence of three intermediate species in purinosome assembly under purine starvation. We also demonstrate that the diffusion coefficient of the purine salvage enzyme, hypoxanthine phosphoribosyltransferase 1, is not sensitive to purine starvation, indicating exclusion of the salvage pathway from the purinosome. Furthermore, our biophysical characterization of nonmetabolic enzymes clarifies that purinosomes are spatiotemporally different cellular bodies from stress granules and cytoplasmic protein aggregates in both Hs578T and HeLa cells. Collectively, quantitative analyses of the purinosome in Hs578T cells led us to provide novel insights for the dynamic architecture of the purinosome assembly.

  12. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L.

    PubMed

    Zhu, Shaotong; Canales, Alejandra; Bedair, Mai; Vik, Steven B

    2016-06-01

    Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.

  13. Sensitivity, specificity and comparison of three commercially available immunological tests in the diagnosis of Cryptosporidium species in animals.

    PubMed

    Danišová, Olga; Halánová, Monika; Valenčáková, Alexandra; Luptáková, Lenka

    The study was conducted to compare the specificity of immunological diagnostic methods used for the diagnosis of Cryptosporidium species capable of causing life-threatening infection in both immunosuppressed and immunocompetent patients. For the detection of Cryptosporidium species in 79 animals with diarrhoea, we used three Copro-antigen tests: RIDASCREEN ® Cryptosporidium test, Cryptosporidium 2nd Generation (ELISA) and RIDA ® QUICK Cryptosporidium. For immunoassays we used positive and negative samples detected by means of polymerase chain reaction and validated by sequencing and nested polymerase chain reaction to confirm the presence six different species of Cryptosporidium species. Prevalence of cryptosporidiosis in the entire group determined by enzyme immunoassay, enzyme linked immunosorbent assay, immuno-chromatographic test and polymerase chain reaction was 34.17%, 27.84%, 6.33% and 27.84%, respectively. Sensitivity of animal samples with enzyme immunoassay, enzyme linked immunosorbent assay, and immuno-chromatographic test was 63.6%, 40.9% and 22.7%, resp., when questionable samples were considered positive, whereas specificity of enzyme immunoassay, enzyme linked immunosorbent assay and immuno-chromatographic test was 75.9%, 78.9% and 100%, respectively. Positive predictive values and negative predictive values were different for all the tests. These differences results are controversial and therefore reliability and reproducibility of immunoassays as the only diagnostic method is questionable. The use of various Cryptosporidium species in diagnosis based on immunological testing and different results obtained by individual tests indicate potential differences in Copro-antigens produced by individual Cryptosporidium species. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals.

    PubMed

    Sarker, Suprovath Kumar; Islam, Md Tarikul; Eckhoff, Grace; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A K M; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

  15. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals

    PubMed Central

    Sarker, Suprovath Kumar; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh. PMID:27880809

  16. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    PubMed

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  17. Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.

    PubMed

    Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar

    2014-08-01

    Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.

  18. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. Electronic supplementary information (ESI) available: Additional circular dichroism data and nanoparticle tracking analysis trace. See DOI: 10.1039/c6nr02009g

  19. A QUANTITATIVE MODEL FOR XENOBIOTIC METABOLIZING ENZYME (XME) INDUCTION REGULATED BY THE PREGNANE X RECEPTOR (PXR)

    EPA Science Inventory

    The nuclear receptor, PXR, is an integral part of the regulation of hepatic metabolism. It has been shown to regulate specific CYPs (phase I drug-metabolizing enzymes) as well as certain phase II drug metabolism activities, including UDP-glucuronosyl transferase (UGT), sulfotran...

  20. Radioimmunoassay of a new angiotensin-converting enzyme inhibitor (perindopril) in human plasma and urine: Advantages of coupling anion-exchange column chromatography with radioimmunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, L.; De Veyrac, B.; Delaage, M.

    1990-08-01

    Perindopril (P) is a prodrug whose active metabolite perindoprilat (PT) is an antihypertensive agent which acts by inhibition of angiotensin-converting enzyme (ACE). Anti-PT antiserum was produced in a rabbit immunized against PT that was covalently linked to bovine serum albumin. The radioligand is an iodinated ({sup 125}I) derivative of PT-glycyltyrosinamide. Both the drug (PT) and the prodrug (P) are assayed in the same sample; PT is assayed as is and P is assayed after quantitative alkaline hydrolysis into PT. Certain data obtained from such assays suggest the occurrence in plasma and urine of a third immunoreactive component. A chromatographic fractionationmore » of samples allowed us to isolate a new immunoreactive metabolite which was further identified as a glucuronide of PT (PT-G). Therefore, the whole assay was carried out as follows: biological samples were fractionated by stepwise chromatography on a anion-exchange resin (the first fraction contained P, the second contained PT, and the third contained PT-G); and RIA was performed on fractions 2 and 3 as is, and on fraction 1 after alkaline hydrolysis. Performances and assessments of this method are presented together with an example of a pharmacokinetic profile.« less

  1. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Structural analysis of N-linked oligosaccharides from glycoproteins secreted by Dictyostelium discoideum: identification of mannose 6-sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-05

    The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues. Here the authors report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with (2-/sup 3/H)Man and /sup 35/SO/sub 4/ and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of themore » oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO/sub 4/ was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides.« less

  3. Chemical modification of Saccharomycopsis fibuligera R64 α-amylase to improve its stability against thermal, chelator, and proteolytic inactivation.

    PubMed

    Ismaya, Wangsa Tirta; Hasan, Khomaini; Kardi, Idar; Zainuri, Amalia; Rahmawaty, Rinrin Irma; Permanahadi, Satyawisnu; El Viera, Baiq Vera; Harinanto, Gunawan; Gaffar, Shabarni; Natalia, Dessy; Subroto, Toto; Soemitro, Soetijoso

    2013-05-01

    α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.

  4. Structured decision making as a method for linking quantitative decision support to community fundamental objectives

    EPA Science Inventory

    Decision support intended to improve ecosystem sustainability requires that we link stakeholder priorities directly to quantitative tools and measures of desired outcomes. Actions taken at the community level can have large impacts on production and delivery of ecosystem service...

  5. Dry-Enzyme Test For Gaseous Chemicals

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Karel, Marcus; Klibanov, Alexander

    1990-01-01

    Simple, dry-chemical test detects ethanol in human breath. Method of test also adapted to detection of such toxic chemicals as formaldehyde in airstreams. Used qualitatively to detect chemical compounds above present level; for example, ethanol above legal level for driving. Also used to indicate quantitatively concentrations of compounds. Involves dry enzyme and color indicator. Adapted to detect any gaseous compound transformed by enzymes to produce change evident to human eye or to instrument.

  6. Influence of galactose cataract on erythrocytic and lenticular glutathione metabolism in albino rats.

    PubMed

    Jyothi, M; Sanil, R; Shashidhar, S

    2011-01-01

    Glutathione depletion has been postulated to be the prime reason for galactose cataract. The current research seeks the prospect of targeting erythrocytes to pursue the lens metabolism by studying the glutathione system. To study the activity of the glutathione-linked scavenger enzyme system in the erythrocyte and lens of rats with cataract. Experiments were conducted in 36 male albino rats weighing 80 ± 20 g of 28 days of age. The rats were divided into two major groups, viz. experimental and control. Six rats in each group were sacrificed every 10 days, for 30 days. Cataract was induced in the experimental group by feeding the rats 30% galactose (w/w). The involvement of reduced glutathione (GSH) and the linked enzymes was studied in the erythrocytes and lens of cataractous as well as control rats. Parametric tests like one-way ANOVA and Student's 't' test were used for comparison. Correlation linear plot was used to compare the erythrocyte and lens metabolism. The concentration of GSH and the activity of linked enzymes were found decreased with the progression of cataract, and also in comparison to the control. The same linear fashion was also observed in the erythrocytes. Depletion of GSH was the prime factor for initiating galactose cataract in the rat model. This depletion may in turn result in enzyme inactivation leading to cross-linking of protein and glycation. The correlation analysis specifies that the biochemical mechanism in the erythrocytes and lens is similar in the rat model.

  7. Evaluation of a computer-assisted, kinetics-based enzyme-linked immunosorbent assay for detection of coronavirus antibodies in cats.

    PubMed Central

    Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W

    1983-01-01

    A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses. PMID:6300184

  8. Evaluation of a computer-assisted, kinetics-based enzyme-linked immunosorbent assay for detection of coronavirus antibodies in cats.

    PubMed

    Barlough, J E; Jacobson, R H; Downing, D R; Marcella, K L; Lynch, T J; Scott, F W

    1983-02-01

    A computer-assisted, kinetics-based enzyme-linked immunosorbent assay was adapted for the detection of coronavirus antibodies in feline serum. An alkaline antigen diluent (carbonate-bicarbonate buffer, pH 9.6) used in initial experiments produced diffuse, nonspecific color reactions in both viral and control antigen cuvettes which were correlated, paradoxically, with coronavirus antibody levels in test sera. These interfering reactions were minimized by use of lower-pH antigen diluents such as water and phosphate-buffered saline. Background kinetics-based enzyme-linked immunosorbent assay reactivity directed against a noncoronaviral component of antigen tissue culture fluids could then detected in numerous sera, particularly in samples with lower titers. Much of this reactivity was shown to be associated with bovine gamma globulins in cell culture fluid. It was not serum lot or species specific, since a variety of bovine serum lots as well as individual lots of serum from other mammalian and avian species reacted. Reactivity was markedly reduced when cells for antigen preparation were grown in gamma globulin-free bovine serum. Generation of corrected slope values from the kinetics-based enzyme-linked immunosorbent assay made it possible to correct for residual background reactivity in individual test sera and thus eliminate a potentially major source of false-positive reactions. Collectively, these studies indicated that the control of nonspecific reactivity in feline coronavirus serology is absolutely essential to obtain useful estimates of specific antibody responses.

  9. Production of rare ginsenosides (compound Mc, compound Y and aglycon protopanaxadiol) by β-glucosidase from Dictyoglomus turgidum that hydrolyzes β-linked, but not α-linked, sugars in ginsenosides.

    PubMed

    Lee, Gi-Woong; Kim, Kyoung-Rok; Oh, Deok-Kun

    2012-09-01

    Optimal hydrolytic activity of β-glucosidase from Dictyoglomus turgidum for the ginsenoside Rd was at pH 5.5 and 80 °C, with a half-life of ~11 h. The enzyme hydrolysed β-linked, but not α-linked, sugar moieties of ginsenosides. It produced the rare ginsenosides, aglycon protopanaxadiol (APPD), compounds Y, and Mc, via three unique transformation pathways: Rb(1) → Rd → F(2) → compound K → APPD, Rb(2) → compound Y, and Rc → compound Mc. The enzyme converted 0.5 mM Rb(2) and 0.5 mM Rc to 0.5 mM compound Y and 0.5 mM compound Mc after 3 h, respectively, with molar conversion yields of 100 %.

  10. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing

    PubMed Central

    2014-01-01

    Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. Conclusions The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides. PMID:24593293

  11. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing.

    PubMed

    David, Jean-Philippe; Faucon, Frédéric; Chandor-Proust, Alexia; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Navratil, Vincent; Reynaud, Stéphane

    2014-03-05

    Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides.

  12. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    NASA Astrophysics Data System (ADS)

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi

    2016-05-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang

    Clostridium thermocellum and Thermoanaerobacterium saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains ofC. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains ofC. thermocellumandT. saccharolyticumwere cloned and expressed inEscherichia coli, the enzymesmore » produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains ofT. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain ofC. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced intoC. thermocellumandT. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. This work describes the characterization of the AdhE enzyme from different strains ofC. thermocellumandT. saccharolyticum.C. thermocellumandT. saccharolyticumare thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production byC. thermocellumandT. saccharolyticum.« less

  14. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.

    PubMed

    Wei, Tianxiang; Du, Dan; Zhu, Mei-Jun; Lin, Yuehe; Dai, Zhihui

    2016-03-01

    Protein-inorganic nanoflowers, composed of protein and copper(II) phosphate (Cu3(PO4)2), have recently grabbed people's attention. Because the synthetic method requires no organic solvent and because of the distinct hierarchical nanostructure, protein-inorganic nanoflowers display enhanced catalytic activity and stability and would be a promising tool in biocatalytical processes and biological and biomedical fields. In this work, we first coimmobilized the enzyme, antibody, and Cu3(PO4)2 into a three-in-one hybrid protein-inorganic nanoflower to enable it to possess dual functions: (1) the antibody portion retains the ability to specifically capture the corresponding antigen; (2) the nanoflower has enhanced enzymatic activity and stability to produce an amplified signal. The prepared antibody-enzyme-inorganic nanoflower was first applied in an enzyme-linked immunosorbent assay to serve as a novel enzyme-labeled antibody for Escherichia coli O157:H7 (E. coli O157:H7) determination. The detection limit is 60 CFU L(-1), which is far superior to commercial ELISA systems. The three-in-one antibody (anti-E. coli O157:H7 antibody)-enzyme (horseradish peroxidase)-inorganic (Cu3(PO4)2) nanoflower has some advantages over commercial enzyme-antibody conjugates. First, it is much easier to prepare and does not need any complex covalent modification. Second, it has fairly high capture capability and catalytic activity because it is presented as aggregates of abundant antibodies and enzymes. Third, it has enhanced enzymatic stability compared to the free form of enzyme due to the unique hierarchical nanostructure.

  15. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes.

    PubMed

    Ytterberg, A Jimmy; Peltier, Jean-Benoit; van Wijk, Klaas J

    2006-03-01

    Plastoglobules (PGs) are oval or tubular lipid-rich structures present in all plastid types, but their specific functions are unclear. PGs contain quinones, alpha-tocopherol, and lipids and, in chromoplasts, carotenoids as well. It is not known whether PGs contain any enzymes or regulatory proteins. Here, we determined the proteome of PGs from chloroplasts of stressed and unstressed leaves of Arabidopsis (Arabidopsis thaliana) as well as from pepper (Capsicum annuum) fruit chromoplasts using mass spectrometry. Together, this showed that the proteome of chloroplast PGs consists of seven fibrillins, providing a protein coat and preventing coalescence of the PGs, and an additional 25 proteins likely involved in metabolism of isoprenoid-derived molecules (quinines and tocochromanols), lipids, and carotenoid cleavage. Four unknown ABC1 kinases were identified, possibly involved in regulation of quinone monooxygenases. Most proteins have not been observed earlier but have predicted N-terminal chloroplast transit peptides and lack transmembrane domains, consistent with localization in the PG lipid monolayer particles. Quantitative differences in PG composition in response to high light stress and degreening were determined by differential stable-isotope labeling using formaldehyde. More than 20 proteins were identified in the PG proteome of pepper chromoplasts, including four enzymes of carotenoid biosynthesis and several homologs of proteins observed in the chloroplast PGs. Our data strongly suggest that PGs in chloroplasts form a functional metabolic link between the inner envelope and thylakoid membranes and play a role in breakdown of carotenoids and oxidative stress defense, whereas PGs in chromoplasts are also an active site for carotenoid conversions.

  16. Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes1[W

    PubMed Central

    Ytterberg, A. Jimmy; Peltier, Jean-Benoit; van Wijk, Klaas J.

    2006-01-01

    Plastoglobules (PGs) are oval or tubular lipid-rich structures present in all plastid types, but their specific functions are unclear. PGs contain quinones, α-tocopherol, and lipids and, in chromoplasts, carotenoids as well. It is not known whether PGs contain any enzymes or regulatory proteins. Here, we determined the proteome of PGs from chloroplasts of stressed and unstressed leaves of Arabidopsis (Arabidopsis thaliana) as well as from pepper (Capsicum annuum) fruit chromoplasts using mass spectrometry. Together, this showed that the proteome of chloroplast PGs consists of seven fibrillins, providing a protein coat and preventing coalescence of the PGs, and an additional 25 proteins likely involved in metabolism of isoprenoid-derived molecules (quinines and tocochromanols), lipids, and carotenoid cleavage. Four unknown ABC1 kinases were identified, possibly involved in regulation of quinone monooxygenases. Most proteins have not been observed earlier but have predicted N-terminal chloroplast transit peptides and lack transmembrane domains, consistent with localization in the PG lipid monolayer particles. Quantitative differences in PG composition in response to high light stress and degreening were determined by differential stable-isotope labeling using formaldehyde. More than 20 proteins were identified in the PG proteome of pepper chromoplasts, including four enzymes of carotenoid biosynthesis and several homologs of proteins observed in the chloroplast PGs. Our data strongly suggest that PGs in chloroplasts form a functional metabolic link between the inner envelope and thylakoid membranes and play a role in breakdown of carotenoids and oxidative stress defense, whereas PGs in chromoplasts are also an active site for carotenoid conversions. PMID:16461379

  17. Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides

    PubMed Central

    Kim, Yun-Gon; Lone, Anna Mari; Nolte, Whitney M.; Saghatelian, Alan

    2012-01-01

    Peptide hormones and neuropeptides have important roles in physiology and therefore the regulation of these bioactive peptides is of great interest. In some cases proteolysis controls the concentrations and signaling of bioactive peptides, and the peptidases that mediate this biochemistry have proven to be extremely successful drug targets. Due to the lack of any general method to identify these peptidases, however, the role of proteolysis in the regulation of most neuropeptides and peptide hormones is unknown. This limitation prompted us to develop an advanced peptidomics-based strategy to identify the peptidases responsible for the proteolysis of significant bioactive peptides. The application of this approach to calcitonin gene-related peptide (CGRP), a neuropeptide associated with blood pressure and migraine, revealed the endogenous CGRP cleavage sites. This information was then used to biochemically purify the peptidase capable of proteolysis of CGRP at those cleavage sites, which led to the identification of insulin-degrading enzyme (IDE) as a candidate CGRP-degrading enzyme. CGRP had not been identified as an IDE substrate before and we tested the physiological relevance of this interaction by quantitative measurements of CGRP using IDE null (IDE−/−) mice. In the absence of IDE, full-length CGRP levels are elevated in vivo, confirming IDE as an endogenous CGRP-degrading enzyme. By linking CGRP and IDE, this strategy uncovers a previously unknown pathway for CGRP regulation and characterizes an additional role for IDE. More generally, this work suggests that this may be an effective general strategy for characterizing these pathways and peptidases moving forward. PMID:22586115

  18. A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability.

    PubMed

    Liu, Dan; Li, Xingrui; Zhou, Junkai; Liu, Shibo; Tian, Tian; Song, Yanling; Zhu, Zhi; Zhou, Leiji; Ji, Tianhai; Yang, Chaoyong

    2017-10-15

    Enzyme-linked immunosorbent assay (ELISA) is a popular laboratory technique for detection of disease-specific protein biomarkers with high specificity and sensitivity. However, ELISA requires labor-intensive and time-consuming procedures with skilled operators and spectroscopic instrumentation. Simplification of the procedures and miniaturization of the devices are crucial for ELISA-based point-of-care (POC) testing in resource-limited settings. Here, we present a fully integrated, instrument-free, low-cost and portable POC platform which integrates the process of ELISA and the distance readout into a single microfluidic chip. Based on manipulation using a permanent magnet, the process is initiated by moving magnetic beads with capture antibody through different aqueous phases containing ELISA reagents to form bead/antibody/antigen/antibody sandwich structure, and finally converts the molecular recognition signal into a highly sensitive distance readout for visual quantitative bioanalysis. Without additional equipment and complicated operations, our integrated ELISA-Chip with distance readout allows ultrasensitive quantitation of disease biomarkers within 2h. The ELISA-Chip method also showed high specificity, good precision and great accuracy. Furthermore, the ELISA-Chip system is highly applicable as a sandwich-based platform for the detection of a variety of protein biomarkers. With the advantages of visual analysis, easy operation, high sensitivity, and low cost, the integrated sample-in-answer-out ELISA-Chip with distance readout shows great potential for quantitative POCT in resource-limited settings. Copyright © 2017. Published by Elsevier B.V.

  19. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.

    PubMed Central

    Rutter, G A; Denton, R M

    1988-01-01

    1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system. PMID:3421900

  20. A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks.

    PubMed

    van der Heide, Susan; Garcia Calavia, Paula; Hardwick, Sheila; Hudson, Simon; Wolff, Kim; Russell, David A

    2015-05-01

    A sensitive and versatile competitive enzyme immunoassay (cEIA) has been developed for the quantitative detection of cocaine in complex forensic samples. Polyclonal anti-cocaine antibody was purified from serum and deposited onto microtiter plates. The concentration of the cocaine antibody adsorbed onto the plates, and the dilution of the cocaine-HRP hapten were both studied to achieve an optimised immunoassay. The method was successfully used to quantify cocaine in extracts taken from both paper currency and latent fingermarks. The limit of detection (LOD) of 0.162ngmL(-1) achieved with the assay compares favourably to that of conventional chromatography-mass spectroscopy techniques, with an appropriate sensitivity for the quantification of cocaine at the low concentrations present in some forensic samples. The cEIA was directly compared to LC-MS for the analysis of ten UK banknote samples. The results obtained from both techniques were statistically similar, suggesting that the immunoassay was unaffected by cross-reactivity with potentially interfering compounds. The cEIA was used also for the detection of cocaine in extracts from latent fingermarks. The results obtained were compared to the cocaine concentrations detected in oral fluid sampled from the same individual. Using the cEIA, we have shown, for the first time, that endogeneously excreted cocaine can be detected and quantified from a single latent fingermark. Additionally, it has been shown that the presence of cocaine, at similar concentrations, in more than one latent fingermark from the same individual can be linked with those concentrations found in oral fluid. These results show that detection of drugs in latent fingermarks could directly indicate whether an individual has consumed the drug. The specificity and feasibility of measuring low concentrations of cocaine in complex forensic samples demonstrate the effectiveness and robustness of the assay. The immunoassay presents a simple and cost-effective alternative to the current mass spectrometry based techniques for the quantitation of cocaine at forensically significant concentrations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Computer Aided Enzyme Design and Catalytic Concepts

    PubMed Central

    Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh

    2014-01-01

    Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method. PMID:24814389

  2. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA).

    PubMed

    Kai, Junhai; Puntambekar, Aniruddha; Santiago, Nelson; Lee, Se Hwan; Sehy, David W; Moore, Victor; Han, Jungyoup; Ahn, Chong H

    2012-11-07

    In this work we introduce a novel microfluidic enzyme linked immunoassays (ELISA) microplate as the next generation assay platform for unparalleled assay performances. A combination of microfluidic technology with standard SBS-configured 96-well microplate architecture, in the form of microfluidic microplate technology, allows for the improvement of ELISA workflows, conservation of samples and reagents, improved reaction kinetics, and the ability to improve the sensitivity of the assay by multiple analyte loading. This paper presents the design and characterization of the microfluidic microplate, and its application in ELISA.

  3. Detection of Antibodies to the Biofilm Exopolysaccharide of Histophilus somni following Infection in Cattle by Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Pan, Yu; Fisher, Taylor; Olk, Christina

    2014-01-01

    An enzyme-linked immunosorbent assay (ELISA) was developed to detect bovine antibodies to Histophilus somni exopolysaccharide (EPS), which is created during biofilm formation. When an index value of 0.268 was used, the sensitivity of the assay for infected calves was 90.5% at 3 weeks postinfection, but the number of positive animals increased by week 4. The specificity of the assay for healthy calves was 92.5%. The EPS ELISA may aid in identifying calves with H. somni diseases. PMID:25143338

  4. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins.

    PubMed

    Carmichael, W W; An, J

    1999-01-01

    Cyanotoxins produced by cyanobacteria (blue-green algae) include potent neurotoxins and hepatotoxins. The hepatotoxins include cyclic peptide microcystins and nodularins plus the alkaloid cylindrospermopsins. Among the cyanotoxins the microcystins have proven to be the most widespread, and are most often implicated in animal and human poisonings. This paper presents a practical guide to two widely used methods for detecting and quantifying microcystins and nodularins in environmental samples-the enzyme linked immunosorbant assay (ELISA) and the protein phosphatase inhibition assay (PPIA).

  5. Glycoprotein-based enzyme-linked immunosorbent assays for serodiagnosis of infectious laryngotracheitis.

    PubMed

    Kanabagatte Basavarajappa, Mallikarjuna; Song, Haichen; Lamichhane, Chinta; Samal, Siba K

    2015-05-01

    For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Optimization of sol-gel medium for entrapment of acetylcholinesterase enzyme in biosensor for pesticide detection

    NASA Astrophysics Data System (ADS)

    Wijayanti, S. D.; Rahayu, F. S.; Widyaningsih, T. D.

    2018-03-01

    Pesticides are chemical substances used to kill and control pests or diseases that can damage crops. The use of pesticides should be done precisely because the accumulation of chemicals contained in pesticides can cause various health effects. Therefore, detection of pesticide residues on plants is important to reduce the risk of poisoning due to pesticide residues. Some of the conventional methods that have been done to detect pesticide residues have weaknesses among expensive tools, takes a long time, and are generally performed by trained laboratory technicians. Biosensors are analytical devices that can measure the quantitative or semi-quantitative targets of analyte by utilizing a bioreceptor such as enzyme. Several studies have shown that enzyme-based acetylcholinesterase-based biosensors can be used to detect pesticide residues in vegetable samples. The objective of this research was to get a proper silica based sol-gel formulation with molar ratio of H2O:TEOS and NaOH concentration as immobilization medium of acetylcholinesterase enzyme for biosensor application. Response Surface Methodology (RSM) was used in order to determine the interaction between the parameters studied and resulting responses which were amount and activity of acetylcholinesterase enzyme. Based on the research, the best result for immobilized enzyme activity was shown by molar ratio (H2O: TEOS) 1: 8 and 4 mM NaOH treatment.

  7. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus

    PubMed Central

    Wang, Yupeng; Khan, Iram F.; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M.; Rawlings, David J.

    2014-01-01

    LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825

  8. Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiguang; Wang, Yiran; Minteer, Shelley D.; Percival Zhang, Y.-H.

    Enzymatic fuel cells (EFCs) use a variety of fuels to generate electricity through oxidoreductase enzymes, such as oxidases or dehydrogenases, as catalysts on electrodes. We have developed a novel synthetic enzymatic pathway containing two free enzymes (maltodextrin phosphorylase and phosphoglucomutase) and one immobilized glucose-6-phosphate dehydrogenase that can utilize an oligomeric substrate maltodextrin for producing electrons mediated via a diaphorase and vitamin K 3 electron shuttle system. Three different enzyme immobilization approaches were compared based on electrostatic force entrapment, chemical cross-linking, and cross-linking with the aid of carbon nanotubes. At 10 mM glucose-6-phosphate (G6P) as a substrate concentration, the maximum power density of 0.06 mW cm -2 and retaining 42% of power output after 11 days were obtained through the method of chemical cross-linking with carbon nanotubes, approximately 6-fold and 3.5-fold better than those of the electrostatic force-based method, respectively. When changed to maltodextrin (degree of polymerization = 19) as the substrate, the EFC achieved a maximum power density of 0.085 mW cm -2. With the advantages of stable, low cost, high energy density, non-inhibitor to enzymes, and environmental friendly, maltodextrin is suggested to be an ideal fuel to power enzymatic fuel cells.

  9. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  10. An Optimized Microplate Assay System for Quantitative Evaluation of Plant Cell Wall Degrading Enzyme Activity of Fungal Culture Extracts

    USDA-ARS?s Scientific Manuscript database

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospe...

  11. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  12. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  13. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to usemore » {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.« less

  14. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.

  15. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Alabanza, Anginelle; Gonzalez, Lorelis E.; Wang, Weiwei; Reeves, W. Brian; Hahm, Jong-In

    2016-02-01

    Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules.Determining ultratrace amounts of protein biomarkers in patient samples in a straightforward and quantitative manner is extremely important for early disease diagnosis and treatment. Here, we successfully demonstrate the novel use of zinc oxide nanorods (ZnO NRs) in the ultrasensitive and quantitative detection of two acute kidney injury (AKI)-related protein biomarkers, tumor necrosis factor (TNF)-α and interleukin (IL)-8, directly from patient samples. We first validate the ZnO NRs-based IL-8 results via comparison with those obtained from using a conventional enzyme-linked immunosorbent method in samples from 38 individuals. We further assess the full detection capability of the ZnO NRs-based technique by quantifying TNF-α, whose levels in human urine are often below the detection limits of conventional methods. Using the ZnO NR platforms, we determine the TNF-α concentrations of all 46 patient samples tested, down to the fg per mL level. Subsequently, we screen for TNF-α levels in approximately 50 additional samples collected from different patient groups in order to demonstrate a potential use of the ZnO NRs-based assay in assessing cytokine levels useful for further clinical monitoring. Our research efforts demonstrate that ZnO NRs can be straightforwardly employed in the rapid, ultrasensitive, quantitative, and simultaneous detection of multiple AKI-related biomarkers directly in patient urine samples, providing an unparalleled detection capability beyond those of conventional analysis methods. Additional key advantages of the ZnO NRs-based approach include a fast detection speed, low-volume assay condition, multiplexing ability, and easy automation/integration capability to existing fluorescence instrumentation. Therefore, we anticipate that our ZnO NRs-based detection method will be highly beneficial for overcoming the frequent challenges in early biomarker development and treatment assessment, pertaining to the facile and ultrasensitive quantification of hard-to-trace biomolecules. Electronic supplementary information (ESI) available: Typical SEM images of the ZnO NRs used in the biomarker assays are provided in Fig. S1. See DOI: 10.1039/c5nr08706f

  16. Biotechnology and the Food Industry.

    ERIC Educational Resources Information Center

    Henderson, Jenny; And Others

    1991-01-01

    Traditional and novel uses of enzymes and microbes in the baking, brewing, and dairy industries are described. Cheese, yogurt, baking, brewing, vinegar, soy sauce, single-cell proteins, enzymes, food modification, vanilla, citric acid, monosodium glutamate, xanthan gum, aspartame, and cochineal are discussed. Industrial links with firms involved…

  17. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation.

    PubMed

    Droux, M; Miginiac-Maslow, M; Jacquot, J P; Gadal, P; Crawford, N A; Kosower, N S; Buchanan, B B

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with [14C]iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  18. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn,more » reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.« less

  19. DNA-programmable multiplexing for scalable, renewable redox protein bio-nanoelectronics.

    PubMed

    Withey, Gary D; Kim, Jin Ho; Xu, Jimmy

    2008-11-01

    A universal, site-addressable DNA linking strategy is deployed for the programmable assembly of multifunctional, long-lasting redox protein nanoelectronic devices. This addressable linker, the first incorporated into a redox enzyme-nanoelectronic system, promotes versatility and renewability by allowing the reconfiguration and replacement of enzymes at will. The linker is transferable to all redox proteins due to the simple conjugation chemistry involved. The efficacy of this linking strategy is assessed using two model enzymes, glucose oxidase (GOx) and alcohol dehydrogenase (ADH), self-assembled onto separate nanoelectrode regions comprised of a highly ordered carbon nanotube (CNT) array. The sequence-specificity of DNA hybridization provides the means of encoding spatial address to the self-assembling process that conjugates enzymes tagged with single-stranded DNA (ssDNA) to the tips of designated CNTs functionalized with the complementary strands. In this study, we demonstrate the feasibility of multiplexed, scalable, reconfigurable and renewable transduction of redox protein signals by virtue of DNA addressing.

  20. A meta-analysis of soil exoenzyme responses to simulated climate change

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Espinosa, N. J.; Blankinship, J. C.; Gallery, R. E.

    2017-12-01

    Microorganisms produce extracellular enzymes to decompose plant matter and drive biogeochemical transformations in soils. Climate change factors, such as warming and altered precipitation patterns, can impact enzyme activity through both direct and indirect mechanisms. Although many individual studies have examined how soil exoenzyme activities respond to climate change manipulations, there is disagreement surrounding the direction of these responses. We performed a synthesis of published studies to examine the influence of warming and altered precipitation on microbial exoenzyme activity. We found that warming increased enzyme activity with a more pronounced effect for oxidative relative to hydrolytic enzymes. Reduced precipitation consistently decreased exoenzyme activity. These responses, however, varied by season, biome, and enzyme type. The majority of studies fitting our criteria (e.g., experiments lasting a minimum of one growing season, paired treatments and controls) were located in North America and Europe. Inferences from this analysis therefore exclude many important ecosystems such as hyper-arid, wetlands, and artic systems. Carbon degrading enzyme activities were less sensitive to climate change manipulations when compared to phosphorus and nitrogen degrading enzyme activities. Linking enzyme activity to biogeochemical processes requires concomitant measurements of organic and inorganic carbon pools, mineralogy, nutrients, microbial biomass and community structure, and heterotrophic respiration within individual studies. Furthermore, linking these parameters to climate and environmental factors will require a comprehensive and consistent inclusion of biotic and abiotic variables among researchers and experiments. Globally, soils contain the largest carbon pools. Understanding the impacts of large-scale perturbations on soil enzyme activity will help to constrain predictions on the fate of biogeochemical transformations and improve model projections.

  1. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.

    PubMed

    Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio

    2016-08-01

    The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong

    2012-01-01

    A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.

  3. Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera.

    PubMed

    Wu, Jing; Dong, Mingling; Zhang, Cheng; Wang, Yu; Xie, Mengxia; Chen, Yiping

    2017-06-05

    Magnetic lateral flow strip (MLFS) based on magnetic bead (MB) and smart phone camera has been developed for quantitative detection of cocaine (CC) in urine samples. CC and CC-bovine serum albumin (CC-BSA) could competitively react with MB-antibody (MB-Ab) of CC on the surface of test line of MLFS. The color of MB-Ab conjugate on the test line relates to the concentration of target in the competition immunoassay format, which can be used as a visual signal. Furthermore, the color density of the MB-Ab conjugate can be transferred into digital signal (gray value) by a smart phone, which can be used as a quantitative signal. The linear detection range for CC is 5-500 ng/mL and the relative standard deviations are under 10%. The visual limit of detection was 5 ng/mL and the whole analysis time was within 10 min. The MLFS has been successfully employed for the detection of CC in urine samples without sample pre-treatment and the result is also agreed to that of enzyme-linked immunosorbent assay (ELISA). With the popularization of smart phone cameras, the MLFS has large potential in the detection of drug residues in virtue of its stability, speediness, and low-cost.

  4. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture

    USGS Publications Warehouse

    Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.

    2013-01-01

    No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.

  5. Validation of a quantitative cerebrospinal fluid alpha-synuclein assay in a European-wide interlaboratory study.

    PubMed

    Kruse, Niels; Persson, Staffan; Alcolea, Daniel; Bahl, Justyna M C; Baldeiras, Ines; Capello, Elisabetta; Chiasserini, Davide; Bocchio Chiavetto, Luisella; Emersic, Andreja; Engelborghs, Sebastiaan; Eren, Erden; Fladby, Tormod; Frisoni, Giovanni; García-Ayllón, María-Salud; Genc, Sermin; Gkatzima, Olymbia; Heegaard, Niels H H; Janeiro, André M; Kováčech, Branislav; Kuiperij, H Bea; Leitão, Maria J; Lleó, Alberto; Martins, Madalena; Matos, Mafalda; Mollergard, Hanne M; Nobili, Flavio; Öhrfelt, Annika; Parnetti, Lucilla; de Oliveira, Catarina Resende; Rot, Uros; Sáez-Valero, Javier; Struyfs, Hanne; Tanassi, Julia T; Taylor, Peggy; Tsolaki, Magda; Vanmechelen, Eugeen; Verbeek, Marcel M; Zilka, Norbert; Blennow, Kaj; Zetterberg, Henrik; Mollenhauer, Brit

    2015-09-01

    Decreased levels of alpha-synuclein (aSyn) in cerebrospinal fluid (CSF) in Parkinson's disease and related synucleinopathies have been reported, however, not consistently in all cross-sectional studies. To test the performance of one recently released human-specific enzyme-linked immunosorbent assay (ELISA) for the quantification of aSyn in CSF, we carried out a round robin trial with 18 participating laboratories trained in CSF ELISA analyses within the BIOMARKAPD project in the EU Joint Program - Neurodegenerative Disease Research. CSF samples (homogeneous aliquots from pools) and ELISA kits (one lot) were provided centrally and data reported back to one laboratory for data analysis. Our study showed that although factors such as preanalytical sample handling and lot-to-lot variability were minimized by our study design, we identified high variation in absolute values of CSF aSyn even when the same samples and same lots of assays were applied. We further demonstrate that although absolute concentrations differ between laboratories the quantitative results are comparable. With further standardization this assay may become an attractive tool for comparing aSyn measurements in diverse settings. Recommendations for further validation experiments and improvement of the interlaboratory results obtained are given. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Identification of autoantigens in body fluids by combining pull-downs and organic precipitations of intact immune complexes with quantitative label-free mass spectrometry.

    PubMed

    Merl, Juliane; Deeg, Cornelia A; Swadzba, Margarete E; Ueffing, Marius; Hauck, Stefanie M

    2013-12-06

    Most autoimmune diseases are multifactorial diseases and are caused by the immunological reaction against a number of autoantigens. Key for understanding autoimmune pathologies is the knowledge of the targeted autoantigens, both initially and during disease progression. We present an approach for autoantigen identification based on isolation of intact autoantibody-antigen complexes from body fluids. After organic precipitation of high molecular weight proteins and free immunoglobulins, released autoantigens were identified by quantitative label-free liquid chromatography mass spectrometry. We confirmed feasibility of target enrichment and identification from highly complex body fluid proteomes by spiking of a predefined antibody-antigen complex at low level of abundance. As a proof of principle, we studied the blinding disease autoimmune uveitis, which is caused by autoreactive T-cells attacking the inner eye and is accompanied by autoantibodies. We identified three novel autoantigens in the spontaneous animal model equine recurrent uveitis (secreted acidic phosphoprotein osteopontin, extracellular matrix protein 1, and metalloproteinase inhibitor 2) and confirmed the presence of the corresponding autoantibodies in 15-25% of patient samples by enzyme-linked immunosorbent assay. Thus, this workflow led to the identification of novel autoantigens in autoimmune uveitis and may provide a versatile and useful tool to identify autoantigens in other autoimmune diseases in the future.

  7. Development of a quantitative NS1-capture enzyme-linked immunosorbent assay for early detection of yellow fever virus infection.

    PubMed

    Ricciardi-Jorge, Taissa; Bordignon, Juliano; Koishi, Andrea; Zanluca, Camila; Mosimann, Ana Luiza; Duarte Dos Santos, Claudia Nunes

    2017-11-24

    Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.

  8. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells.

    PubMed

    Harada, Yoichiro; Masahara-Negishi, Yuki; Suzuki, Tadashi

    2015-11-01

    During asparagine (N)-linked protein glycosylation, eukaryotic cells generate considerable amounts of free oligosaccharides (fOSs) in the cytosol. It is generally assumed that such fOSs are produced by the deglycosylation of misfolded N-glycoproteins that are destined for proteasomal degradation or as the result of the degradation of dolichol-linked oligosaccharides (DLOs), which serve as glycan donor substrates in N-glycosylation reactions. The findings reported herein show that the majority of cytosolic fOSs are generated by a peptide:N-glycanase (PNGase) and an endo-β-N-acetylglucosaminidase (ENGase)-independent pathway in mammalian cells. The ablation of the cytosolic deglycosylating enzymes, PNGase and ENGase, in mouse embryonic fibroblasts had little effect on the amount of cytosolic fOSs generated. Quantitative analyses of fOSs using digitonin-permeabilized cells revealed that they are generated by the degradation of fully assembled Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) in the lumen of the endoplasmic reticulum. Because the degradation of Glc3Man9GlcNAc2-PP-Dol is greatly inhibited in the presence of an N-glycosylation acceptor peptide that is recognized by the oligosaccharyltransferase (OST), the OST-mediated hydrolysis of DLO is the most likely mechanism responsible for the production of a large fraction of the cytosolic fOSs. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  11. Study in Mice Links Key Signaling Molecule to Underlying Cause of Osteogenesis Imperfecta

    MedlinePlus

    ... by mutations in a gene that codes for collagen, an abundant structural component of bone. This type ... linked to defects in enzymes that help process collagen to its mature form. These types of OI ...

  12. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  13. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    PubMed

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light mitochondria seems to be more affected in aged animals. These data allow the hypothesis that the observed modifications of catalytic activities in non-synaptic and intra-synaptic mitochondrial enzyme systems linked to energy metabolism, amino acids and glutamate metabolism are primary responsible for the physiopathological responses of cerebral tissue to complete cerebral ischemia for 15 min duration during ageing.

  14. Old Yellow Enzyme: Stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization

    PubMed Central

    Meah, Younus; Massey, Vincent

    2000-01-01

    The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme. PMID:10995477

  15. Preparation and characterization of a dextran-amylase conjugate.

    PubMed

    Marshall, J J

    1976-07-01

    Bacillus amyloliquefaciens alpha-amylase was attached to dextran after activation of the polysaccharide by using a modification of the cyanogen bromide method. The soluble dextran-amylase conjugate was purified by molecular-sieve chromatography. The conjugated enzyme has greater stability than the unmodified enzyme at low pH values, during heat treatment, and on removal of calcium ions with a chelating agent. Attachment of dextran to alpha-amylase did not alter the Michaelis constant of the enzyme acting on starch. The polysaccharide-enzyme conjugate probably consists of a cross-linked aggregate of many dextran and many enzyme molecules, in which a proportion of the enzyme molecules, although not inactivated, are unable to express their activity, except after dextranase treatment.

  16. Comparison of desmoglein ELISA and indirect immunofluorescence using two substrates (monkey oesophagus and normal human skin) in the diagnosis of pemphigus.

    PubMed

    Ng, Patricia P L; Thng, Steven T G; Mohamed, Khatija; Tan, Suat Hoon

    2005-11-01

    A prospective study was performed to assess the usefulness of desmoglein enzyme-linked immunosorbent assay testing compared with indirect immunofluorescence in the diagnosis of new cases of pemphigus, as well as to compare the relative sensitivities of monkey oesophagus and normal human skin as substrates for indirect immunofluorescence. These tests were performed on the sera of 29 consecutive new cases of pemphigus diagnosed over a 2-year period based on clinical, histological and direct immunofluorescence findings. Desmoglein enzyme-linked immunosorbent assay was positive in all patients whereas indirect immunofluorescence was positive in only 25 of 29 patients. All four patients with negative indirect immunofluorescence had positive antinuclear antibodies or cytoplasmic fluorescence that could have masked the anti-intercellular antibodies. Desmoglein enzyme-linked immunosorbent assay appeared to reflect the disease activity better than indirect immunofluorescence in a few patients who had active disease of recent onset. Monkey oesophagus was found to be superior or equal to human skin as a substrate for indirect immunofluorescence in both pemphigus vulgaris and foliaceus.

  17. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl.

    PubMed

    Zhang, Can; Cui, Hanyu; Han, Yufeng; Yu, Fangfang; Shi, Xiaoman

    2018-02-01

    A biomimetic enzyme-linked immunosorbent assay (BELISA) which was based on molecularly imprinted polymers on paper (MIPs-paper) with specific recognition was developed. As a detector, the surface of paper was modified with γ-MAPS by hydrolytic action and anchored the MIP layer on γ-MAPS modified-paper by copolymerization to construct the artificial antibody Through a series of experimentation and verification, we successful got the MIPs-paper and established BELISA for the detection of carbaryl. The development of MIPs-paper based on BELISA was applied to detect carbaryl in real samples and validated by an enzyme-linked immunosorbent assay (ELISA) based on anti-carbaryl biological antibody. The results of these two methods (BELISA and ELISA) were well correlated (R 2 =0.944). The established method of MIPs-paper BELISA exhibits the advantages of low cost, higher stability and being re-generable, which can be applied as a convenient tool for the fast and efficient detection of carbaryl. Copyright © 2017. Published by Elsevier Ltd.

  18. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays.

    PubMed

    Wischhusen, Jennifer; Padilla, Frederic

    2017-07-01

    Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Cloning of the poly(ADP-ribose) Gene from Rat Liver.

    DTIC Science & Technology

    1986-09-24

    Levinson, Ph.D. (Cetus Corp., Berkeley). 5. Amino acid analysis done in UCSF Bioanal. Lab. TABLE OF CONTENTS Page METHOD I...TABLE I ............. ............................... ... 12 Proteolytic degradation, isolation of peptide and amino acid sequences...technique developed for enzyme quantitation in biological materials. The amino- acid sequence of the enzyme has so far been determined because the amino

  20. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.

    PubMed

    Sharma Ghimire, Prakriti; Ouyang, Haomiao; Wang, Qian; Luo, Yuanming; Shi, Bo; Yang, Jinghua; Lü, Yang; Jin, Cheng

    2016-12-02

    Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.

  1. Cloning and characterization of alpha-glucuronidase enzyme

    USDA-ARS?s Scientific Manuscript database

    Hemicellulose is the second largest source of biomass on Earth. Xylan, a polymer of beta-1,4-linked xylose residues, is a common component of hemicellulose. The enzymes xylanase and beta-xylosidase hydrolyze the xylan into xylose which can then be fermented into value-added products. However, the...

  2. qPIPSA: Relating enzymatic kinetic parameters and interaction fields

    PubMed Central

    Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C

    2007-01-01

    Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319

  3. Preparation of a Magnetically Switchable Bioelectrocatalytic System Employing Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinwoo; Lee, Dohun; Oh, Eunkeu

    2005-11-18

    Nanostructured magnetic materials (NMMs)[1] have attracted much attention recently because of their broad biotechnological applications including support matrices for enzyme immobilization,[2] immunoassays,[3] drug delivery,[4] and biosensors.[ 5] Specifically, the easy separation and controlled placement of NMMs by means of an external magnetic field enables their application in the development of immobilized enzyme processes[2] and the construction of magnetically controllable bio-electrocatalytic systems.[5, 6] Herein, we demonstrate the use of immobilized enzymes in NMMs for magnetically switchable bio-electrocatalysis.

  4. EVIDENCE FOR AN EXOCELLULAR SITE FOR THE ACID PHOSPHATASE OF SACCHAROMYCES MELLIS1

    PubMed Central

    Weimberg, Ralph; Orton, William L.

    1964-01-01

    Weimberg, Ralph (Northern Regional Research Laboratory, Peoria, Ill.), and William L. Orton. Evidence for an exocellular site for the acid phosphatase of Saccharomyces mellis. J. Bacteriol. 88:1743–1754. 1964.—Evidence is presented which demonstrates an exocellular location for acid phosphatase in Saccharomyces mellis. Derepressed intact cells exhibit acid phosphatase activity. The properties of the system are similar to those shown by the enzyme in cell-free extracts. There is no increase in total activity when cell-free extracts are prepared. Enzymatically active cell walls were prepared by leaching acetone-dried cells of this yeast in dilute acetate buffer (pH 6.5) plus β-mercaptoethanol. The insoluble residue, consisting mainly of cell-wall material and containing the phosphatase, was treated with a variety of hydrolytic enzymes and other chemicals. Only papain and crude snail gut extracts dissociated the enzyme from the particulate fraction in nearly quantitative amounts. The mechanism of release by these two enzymes probably differs. Of all enzymes tested, only the snail gut extract digested the cell walls. By dividing the procedure for making protoplasts of S. mellis into two steps, acid phosphatase may be dissociated from resting cells and recovered as an active soluble enzyme. The first step is to pretreat the cells with a thiol reagent. The second step is to digest the cell wall by enzymes present in crude snail gut extracts. Arsenite must be included in the second step to protect the phosphatase from inactivation. The phosphatase is quantitatively released before the cell becomes osmotically fragile. Images PMID:14240965

  5. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection

    NASA Astrophysics Data System (ADS)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-01

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules. Electronic supplementary information (ESI) available: Additional methods, IR and XRD spectroscopy, enzyme loading capacity, enzyme kinetic parameters, and enzyme stability data. See DOI: 10.1039/c5nr08734a

  6. Development of electrochemical biosensors with various types of zeolites

    NASA Astrophysics Data System (ADS)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  7. Molecular Typing of Staphylococcus Aureus Isolate Responsible for Staphylococcal Poisoning Incident in Homemade Food

    PubMed Central

    Bellio, Alberto; Bianchi, Daniela Manila; Gallina, Silvia; Adriano, Daniela; Zuccon, Fabio; Chiesa, Francesco; Acutis, Pier Luigi; Casalinuovo, Francesco; Decastelli, Lucia

    2016-01-01

    In October 2012, two persons fell ill with symptoms consistent with staphylococcal food poisoning after eating home-canned tuna fish and tomatoes. Laboratory investigation detected the enterotoxins in the home-canned tuna and molecular analysis of the isolated Staphylococcus aureus confirmed it carried toxin genes. Qualitative enzyme-linked immunosorbent assay and enzime linked fluorescent assay methods and quantitative assay identified the enterotoxins in the food leftovers, specifically staphylococcal enterotoxins type A (SEA) and D (SED), respectively 0.49 and 2.04 ng/g. The laboratory results are discussed considering the relation to the fish in oil, survival and heat resistance of S. aureus, and presumptive microbial contamination due to improper handling during home-canning procedures. This is the first reported cluster of foodborne illnesses due to staphylococcal enterotoxins in tuna in Italy. In this study, we reported cases described and analysed for their spa-type. Showing a high heterogeneity of isolates, spa-type t13252 is correlated in a node of the minimum spanning tree and it has never been reported as responsible for foodborne outbreak. This case underlines the importance of risk communication and dissemination of home-canning guidelines to reduce the incidence of foodborne outbreaks caused by homemade conserves. PMID:27800449

  8. Adsorption induced enzyme denaturation: the role of polymer hydrophobicity in adsorption and denaturation of alpha-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Lahari, Challa; Jasti, Lakshmi S; Fadnavis, Nitin W; Sontakke, Kalpana; Ingavle, Ganesh; Deokar, Sarika; Ponrathnam, Surendra

    2010-01-19

    Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.

  9. Placental sulfatase deficiency: maternal and fetal expression of steroid sulfatase deficiency and X-linked ichthyosis.

    PubMed

    Bradshaw, K D; Carr, B R

    1986-07-01

    PSD-X-linked ichthyosis are manifestations of a similar disorder of an inborn error of metabolism characterized by a deficiency of steroid sulfatase. The decreased enzyme activity is due to the absence of the expression of enzyme (steroid sulfatase) protein. Affected individuals with this disorder are males (X-linked inheritance) with a frequency of 1/2000 to 1/6000 births. Homozygous females from cosanguineous marriages have been reported with this disorder. The diagnosis is suspected and confirmed by: Low estriol excretion; Negative DHEAS loading test Increased DHEAS in amnionic fluid; Normal DHEAS in cord plasma; Possible delayed or abnormal labor patterns; Decreased sulfatase activity in the placenta, fibroblast, erythrocytes, lymphocytes or leukocytes of affected individuals; Development of ichthyosis in male infants at 2 to 3 months of age.

  10. A homolog of Drosophila grainy head is essential for epidermal integrity in mice.

    PubMed

    Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M

    2005-04-15

    The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.

  11. Comparison of commercial enzyme-linked immunosorbent assay kits with agar gel precipitation and hemagglutination-inhibition tests for detecting antibodies to avian influenza viruses.

    PubMed

    Shiraishi, Rikiya; Nishiguchi, Akiko; Tsukamoto, Kenji; Muramatsu, Masatake

    2012-09-01

    We evaluated the utility of 5 commercial enzyme-linked immunosorbent assay (ELISA) kits for detecting antibodies to avian influenza viruses. The sensitivities and specificities of the ELISA kits were compared with those of the agar gel precipitation (AGP) and hemagglutination-inhibition (HI) tests. The results suggest that some ELISA kits might not be suitable for monitoring during the early stages of avian influenza virus infections. Therefore, ELISA kits should only be used in conjunction with a profound knowledge about monitoring of avian influenza.

  12. Sources of variation in an enzyme-linked immunoassay of bluetongue virus in Culicoides variipennis (Diptera: Ceratopogonidae).

    PubMed

    Tabachnick, W J; Mecham, J O

    1991-03-01

    An enzyme-linked immunoassay for detecting bluetongue virus in infected Culicoides variipennis was evaluated using a nested analysis of variance to determine sources of experimental error in the procedure. The major source of variation was differences among individual insects (84% of the total variance). Storing insects at -70 degrees C for two months contributed to experimental variation in the ELISA reading (14% of the total variance) and should be avoided. Replicate assays of individual insects were shown to be unnecessary, since variation among replicate wells and plates was minor (2% of the total variance).

  13. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities

    PubMed Central

    Joyet, Philippe; Mokhtari, Abdelhamid; Riboulet-Bisson, Eliette; Blancato, Víctor S.; Espariz, Martin; Magni, Christian; Sauvageot, Nicolas

    2017-01-01

    ABSTRACT Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose. IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis. PMID:28455338

  14. Studies of a Halophilic NADH Dehydrogenase. 1: Purification and Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Dalton, Bonnie P.

    1973-01-01

    An NADH dehydrogenase obtained from an extremely halophilic bacterium was purified 570-fold by a combination of gel filtration, chromatography on hydroxyapatite, and ion-exchange chromatography on QAE-Sephadex. The purified enzyme appeared to be FAD-linked and bad an apparent molecular weight of 64000. Even though enzyme activity was stimulated by NaCl, considerable activity (430 % of the maximum activity observed in the presence of 2.5 M NaCl) was observed in the absence of added NaCl. The enzyme was unstable when incubated in solutions of low ionic strength. The presence of NADH enhanced the stability of the enzyme.

  15. Enzyme-linked immunosorbent assays for determination of plasma aldosterone using highly specific polyclonal antibodies.

    PubMed

    Schwartz, F; Hadas, E; Harnik, M; Solomon, B

    1990-01-01

    Two enzyme-linked immunosorbent assays were established and compared for the estimation of plasma aldosterone. In the first method immobilized aldosterone-protein complexes on the ELISA plates compete with aldosterone to be determined for the binding of certain amount of anti-aldosterone antibodies. The sensitivity of this method depends on the protein carrier used to conjugate with aldosterone. In the second method, anti-aldosterone antibodies adsorbed on ELISA plates compete for binding of known amount of the enzyme-labeled aldosterone and aldosterone to be determined. The highly specific rabbit anti-aldosterone antibodies were obtained by injection of aldosterone-oxime thyroglobulin. The detection limit of aldosterone in both methods ranged between 2-20 pg. The proposed assays are suitable for the determination of aldosterone in biological fluids compared with other reported ELISA assays, as well as with RIA.

  16. A little sugar goes a long way: The cell biology of O-GlcNAc

    PubMed Central

    2015-01-01

    Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport. PMID:25825515

  17. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting.

    PubMed

    Burgos, Emmanuel S; Walters, Ryan O; Huffman, Derek M; Shechter, David

    2017-09-01

    Methyltransferases use S -adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo , we report a highly-sensitive one-step deaminase-linked continuous assay where the S -adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S -inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N -methyltransferase (DIM-5) and a sarcosine/dimethylglycine N -methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S -8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h -1 , thus making it possible to quantify low nanomolar concentrations of glycine N -methyltransferase within crude biological samples. With Z '-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.

  18. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... immunosorbent assay test (ELISA), or the rapid serum test for all poultry; and the stained antigen, rapid whole... test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that react on the stained... enzyme-linked immunosorbent assay (ELISA) test,3 a polymerase chain reaction (PCR)-based test, or a...

  19. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... immunosorbent assay test (ELISA), or the rapid serum test for all poultry; and the stained antigen, rapid whole... test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that react on the stained... enzyme-linked immunosorbent assay (ELISA) test,3 a polymerase chain reaction (PCR)-based test, or a...

  20. 9 CFR 145.14 - Testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... immunosorbent assay test (ELISA), or the rapid serum test for all poultry; and the stained antigen, rapid whole... test or enzyme-labeled immunosorbent assay test (ELISA), or blood from birds that react on the stained... enzyme-linked immunosorbent assay (ELISA) test,3 a polymerase chain reaction (PCR)-based test, or a...

  1. Characterising Complex Enzyme Reaction Data

    PubMed Central

    Rahman, Syed Asad; Thornton, Janet M.

    2016-01-01

    The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution. PMID:26840640

  2. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    DOEpatents

    Woodward, J.

    1998-12-08

    This research provides a structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads. 7 figs.

  3. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    DOEpatents

    Woodward, Jonathan

    1998-01-01

    A structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads.

  4. Metabolome of human gut microbiome is predictive of host dysbiosis.

    PubMed

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  5. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  6. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependentmore » on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  7. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE PAGES

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  8. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  9. Rapid quantitative analysis of 8-iso-prostaglandin-F(2alpha) using liquid chromatography-tandem mass spectrometry and comparison with an enzyme immunoassay method.

    PubMed

    Dahl, Jeffrey H; van Breemen, Richard B

    2010-09-15

    A rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the measurement of urinary 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), a biomarker of lipid peroxidation. Because urine contains numerous F(2) prostaglandin isomers, each with identical mass and similar mass spectrometric fragmentation patterns, chromatographic separation of 8-iso-PGF(2alpha) from its isomers is necessary for its quantitative analysis using MS/MS. We were able to achieve this separation using an isocratic LC method with a run time of less than 9min, which is at least threefold faster than previous methods, while maintaining sensitivity, accuracy, precision, and reliability. The limits of detection and quantitation were 53 and 178pg/ml urine, respectively. We compared our method with a commercially available affinity purification and enzyme immunoassay kit and found both assays to be in agreement. Despite the high sensitivity of the enzyme immunoassay method, it is more expensive and has a narrower dynamic range than LC-MS/MS. Our method was optimized for rapid measurement of 8-iso-PGF(2alpha) in urine, and it is ideally suited for clinical sample analysis. 2010 Elsevier Inc. All rights reserved.

  10. Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.

    PubMed

    Baltar, Federico

    2017-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  11. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts

    PubMed Central

    McDonald, Andrew G.; Tipton, Keith F.; Davey, Gavin P.

    2016-01-01

    O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4), four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms. PMID:27054587

  12. Magnetic biocatalysts and their uses to obtain bioproducts

    NASA Astrophysics Data System (ADS)

    López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María; Serra, Juan

    2014-08-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB.

  13. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution.

    PubMed

    Varrot, A; Hastrup, S; Schülein, M; Davies, G J

    1999-01-15

    The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.

  14. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    ERIC Educational Resources Information Center

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.

    2015-01-01

    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  15. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    PubMed

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  16. Use of Bispecific Antibodies in Molecular Velcro Assays Whose Specificity Approaches the Theoretical Limit of Immunodetection for Bordetella pertussis

    PubMed Central

    Tang, X. L.; Peppler, M. S.; Irvin, R. T.; Suresh, M. R.

    2004-01-01

    A bispecific monoclonal antibody (bsMAb) that detects Bordetella pertussis, the causative agent of whooping cough, and horseradish peroxidase (HRPO) has been developed by use of the quadroma technology. A quadroma, P123, was produced by fusing two well-characterized hybridomas against the bacterium and the enzyme and was subcloned to obtain a stable bsMAb-secreting cell line. The quadroma was theoretically expected to produce up to 10 different molecular species of immunoglobulins, so secreted bispecific antibody was complexed with excess HRPO and the HRPO-bsMAb complex was purified in one step by benzhydroxamic acid-agarose affinity cochromatography. An ultrasensitive homosandwich molecular “velcro” enzyme-linked immunosorbent assay for the detection of B. pertussis whole bacteria with HRPO-bsMAb was established in both microplate and nasopharyngeal swab formats. This assay demonstrates a high sensitivity that approaches the theoretical limit of detection of one bacterium. This new nanoprobe can be used to develop a new generation of assays that are simple, inexpensive alternatives to quantitative PCR and that can be used by clinical laboratories. This strategy of homosandwich assays with solid-phase monospecific antibodies and solution-phase bsMAb with specificity for the same repeating surface determinants can be applied to generate ultrasensitive immunodiagnostic assays for viruses and bacteria. PMID:15242951

  17. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    PubMed

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    PubMed

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  19. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    PubMed

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  20. Use of the Falcon assay screening test--enzyme-linked immunosorbent assay (FAST-ELISA) and the enzyme-linked immunoelectrotransfer blot (EITB) to determine the prevalence of human fascioliasis in the Bolivian Altiplano.

    PubMed

    Hillyer, G V; Soler de Galanes, M; Rodriguez-Perez, J; Bjorland, J; Silva de Lagrava, M; Ramirez Guzman, S; Bryan, R T

    1992-05-01

    A collaborative study between the University of Puerto Rico School of Medicine, the Centers for Disease Control, the Bolivian Ministry of Health, and private voluntary organizations (Foster Parents Plan International and Danchurchaid) working in Bolivia has identified a region in the northwestern Altiplano of Bolivia near Lake Titicaca as harboring the highest prevalence of human fascioliasis in the world reported to date. Two serologic techniques (the Falcon assay screening test-enzyme-linked immunosorbent assay [FAST-ELISA] and the enzyme-linked immunoelectrotransfer blot [EITB]) were used in the determination of its prevalence. One hundred serum samples and 73 stool samples were obtained from Aymara Indians from Corapata, Bolivia. Antibody absorbance levels to Fasciola hepatica excretion-secretion antigens were compared with EITB banding patterns using the same antigen preparation. A positive FAST-ELISA result was defined as an absorbance value greater than the mean plus three standard deviations of two sets of normal negative controls (Puerto Rican and Bolivian). Using this criterion, 53 of 100 sera tested were found positive by this technique. Within this group, 19 (95%) of 20 individuals who were parasite positive were also positive by FAST-ELISA. An additional 24 individuals who were negative for F. hepatica eggs and 10 individuals for whom no specimens were received were also positive by FAST-ELISA. Among the 53 individuals negative for F. hepatica eggs, 29 were also negative by FAST-ELISA. The EITB analysis of the sera from confirmed infected individuals revealed at least three F. hepatica (Fh) bands with molecular weights of 12, 17, and 63 kD, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Development of an Enzyme-Linked Immunosorbent Assay and Immunoaffinity Column Chromatography for Saikosaponin d Using an Anti-Saikosaponin d Monoclonal Antibody.

    PubMed

    Sai, Jiayang; Zhao, Yan; Shan, Wenchao; Qu, Baoping; Zhang, Yue; Cheng, Jinjun; Qu, Huihua; Wang, Qingguo

    2016-03-01

    This work developed a novel immunochemical approach for the quality control of saikosaponin d using an enzyme-linked immunosorbent assay. Splenocytes from mice immunized with the saikosaponin d-bovine serum albumin conjugate were fused with the hypoxanthine-aminopterin-thymidine-sensitive mouse myeloma SP2/0 cell line, and a hybridoma secreting monoclonal antibody against saikosaponin d was successfully obtained. The prepared anti-saikosaponin d monoclonal antibody 1E7F3 has a novel characteristic, showing weak reactivity with compounds that are structurally related to saikosaponin d. Using monoclonal antibody 1E7F3, a specific and reliable enzyme-linked immunosorbent assay was developed to detect saikosaponin d. The system shows a full measurement range from 156.25 to 5000.00 ng × mL(-1). Both intra-assay and inter-assay repeatability and precision were achieved, with relative standard deviations lower than 10.00%. The recovery rates ranged from 92.36% to 101.00%, meeting the requirements for biological samples. There was a good correlation between the enzyme-linked immunosorbent assay and high-performance liquid chromatography analyses of saikosaponin d, and the saikosaponin d levels in formulated Chinese medicines were successfully determined. Furthermore, immunoaffinity column chromatography was established using this anti-saikosaponin d monoclonal antibody, and the elution profile of saikosaponin d was detected by a Bio-Rad QuadTec UV/Vis detector at 203 nm. The results demonstrate that we generated a reliable and more efficient assay system for measuring saikosaponin d and provide a potential approach for purifying and separating saikosaponin d. Georg Thieme Verlag KG Stuttgart · New York.

  2. 5-Hydroxymethylcytosine Promotes Proliferation of Human Uterine Leiomyoma: A Biological Link to a New Epigenetic Modification in Benign Tumors

    PubMed Central

    Navarro, Antonia; Yin, Ping; Ono, Masanori; Monsivais, Diana; Moravek, Molly B.; Coon, John S.; Dyson, Matthew T.; Wei, Jian-Jun

    2014-01-01

    Context: Uterine leiomyoma, or fibroids, represent the most common benign tumors of the female reproductive tract. A newly discovered epigenetic modification, 5-hydroxymethylation (5-hmC), and its regulators, the TET (Ten Eleven Translocation) enzymes, were implicated in the pathology of malignant tumors; however, their roles in benign tumors, including uterine fibroids, remain unknown. Objective: To determine the role of 5-hmC and TET proteins in the pathogenesis of leiomyoma using human uterine leiomyoma and normal matched myometrial tissues and primary cells. Design: 5-hmC levels were determined by ELISA and immunofluorescent staining in matched myometrial and leiomyoma tissues. TET expression was analyzed by quantitative RT-PCR and immunoblotting. TET1 or TET3 were silenced or inhibited by small interfering RNA or 2-hydroxyglutarate to study their effects on 5-hmC content and cell proliferation. Results: We demonstrated significantly higher 5-hmC levels in the genomic DNA of leiomyoma tissue compared to normal myometrial tissue. The increase in 5-hmC levels was associated with the up-regulation of TET1 or TET3 mRNA and protein expression in leiomyoma tissue. TET1 or TET3 knockdown significantly reduced 5-hmC levels in leiomyoma cells and decreased cell proliferation. Treatment with 2-hydroxyglutarate, a competitive TET enzyme inhibitor, significantly decreased both 5-hmC content and cell proliferation of leiomyoma cells. Conclusion: An epigenetic imbalance in the 5-hmC content of leiomyoma tissue, caused by up-regulation of the TET1 and TET3 enzymes, might lead to discovery of new therapeutic targets in leiomyoma. PMID:25057885

  3. Development of an online p38α mitogen-activated protein kinase binding assay and integration of LC–HR-MS

    PubMed Central

    Falck, David; de Vlieger, Jon S. B.; Niessen, Wilfried M. A.; Kool, Jeroen; Honing, Maarten; Irth, Hubertus

    2010-01-01

    A high-resolution screening method was developed for the p38α mitogen-activated protein kinase to detect and identify small-molecule binders. Its central role in inflammatory diseases makes this enzyme a very important drug target. The setup integrates separation by high-performance liquid chromatography with two parallel detection techniques. High-resolution mass spectrometry gives structural information to identify small molecules while an online enzyme binding detection method provides data on p38α binding. The separation step allows the individual assessment of compounds in a mixture and links affinity and structure information via the retention time. Enzyme binding detection was achieved with a competitive binding assay based on fluorescence enhancement which has a simple principle, is inexpensive, and is easy to interpret. The concentrations of p38α and the fluorescence tracer SK&F86002 were optimized as well as incubation temperature, formic acid content of the LC eluents, and the material of the incubation tubing. The latter notably improved the screening of highly lipophilic compounds. For optimization and validation purposes, the known kinase inhibitors BIRB796, TAK715, and MAPKI1 were used among others. The result is a high-quality assay with Z′ factors around 0.8, which is suitable for semi-quantitative affinity measurements and applicable to various binding modes. Furthermore, the integrated approach gives affinity data on individual compounds instead of averaged ones for mixtures. Figure P38 α online screening platform Electronic supplementary material The online version of this article (doi:10.1007/s00216-010-4087-8) contains supplementary material, which is available to authorized users. PMID:20730527

  4. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  5. Nrf2 and Snail-1 in the prevention of experimental liver fibrosis by caffeine

    PubMed Central

    Gordillo-Bastidas, Daniela; Oceguera-Contreras, Edén; Salazar-Montes, Adriana; González-Cuevas, Jaime; Hernández-Ortega, Luis Daniel; Armendáriz-Borunda, Juan

    2013-01-01

    AIM: To determine the molecular mechanisms involved in experimental hepatic fibrosis prevention by caffeine (CFA). METHODS: Liver fibrosis was induced in Wistar rats by intraperitoneal thioacetamide or bile duct ligation and they were concomitantly treated with CFA (15 mg/kg per day). Fibrosis and inflammatory cell infiltrate were evaluated and classified by Knodell index. Inflammatory infiltrate was quantified by immunohistochemistry (anti-CD11b). Gene expression was analyzed by quantitative reverse transcription-polymerase chain reaction for collagen I (Col-1), connective tissue growth factor (CTGF), transforming growth factor β1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, superoxide dismutase (SOD) and catalase (CAT). Activation of Nrf2 and Snail-1 was analyzed by Western-blot. TNF-α expression was proved by enzyme-linked immunosorbant assay, CAT activity was performed by zymography. RESULTS: CFA treatment diminished fibrosis index in treated animals. The Knodell index showed both lower fibrosis and necroinflammation. Expression of profibrogenic genes CTGF, Col-1 and TGF-β1 and proinflammatory genes TNF-α, IL-6 and IL-1 was substantially diminished with CFA treatment with less CD11b positive areas. Significantly lower values of transcriptional factor Snail-1 were detected in CFA treated rats compared with cirrhotic rats without treatment; in contrast Nrf2 was increased in the presence of CFA. Expression of SOD and CAT was greater in animals treated with CFA showing a strong correlation between mRNA expression and enzyme activity. CONCLUSION: Our results suggest that CFA inhibits the transcriptional factor Snail-1, down-regulating profibrogenic genes, and activates Nrf2 inducing antioxidant enzymes system, preventing inflammation and fibrosis. PMID:24379627

  6. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Ake; Aerts, Andrea; Asiegbu, Fred

    Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H.more » irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.« less

  8. Characterization of Antibodies for Grain-Specific Gluten Detection.

    PubMed

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. Development of Glycoprotein Capture-Based Label-Free Method for the High-throughput Screening of Differential Glycoproteins in Hepatocellular Carcinoma*

    PubMed Central

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-01-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers. PMID:21474793

  10. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    PubMed

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    PubMed

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  12. An Acute Butyr-Fentanyl Fatality: A Case Report with Postmortem Concentrations.

    PubMed

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Wright, Jennifer; Mena, Othon

    2016-03-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of butyr-fentanyl in a fatality attributed principally to the drug. A man who had a history of intravenous drug abuse was found unresponsive on the bathroom floor of his home. Drug paraphernalia was located on the bathroom counter. Toxicology testing, which initially screened positive for fentanyl by enzyme-linked immunosorbent assay, subsequently confirmed butyr-fentanyl, which was then quantitated by gas chromatography-mass spectrometry-specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. The butyr-fentanyl peripheral blood concentration was quantitated at 58 ng/mL compared with the central blood concentration of 97 ng/mL. The liver concentration was 320 ng/g, the vitreous was 40 ng/mL, the urine was 670 ng/mL and the gastric contained 170 mg. Acetyl-fentanyl was also detected in all biological specimens tested. Peripheral blood concentration was quantitated at 38 ng/mL compared with the central blood concentration of 32 ng/mL. The liver concentration was 110 ng/g, the vitreous was 38 ng/mL, the urine was 540 ng/mL and the gastric contained <70 mg. The only other drug detected was a relatively low concentration of benzoylecgonine. The cause of death was certified as acute butyr-fentanyl, acetyl-fentanyl and cocaine intoxication, and the manner of death was certified as accident. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Simplified Quantitative Assay System for Measuring Activities of Drugs against Intracellular Legionella pneumophila

    PubMed Central

    Higa, Futoshi; Kusano, Nobuchika; Tateyama, Masao; Shinzato, Takashi; Arakaki, Noriko; Kawakami, Kazuyoshi; Saito, Atsushi

    1998-01-01

    We developed a new simple assay for the quantitation of the activities of drugs against intracellular Legionella pneumophila. The cells of a murine macrophage-like cell line (J774.1 cells) allowed the intracellular growth and replication of the bacteria, which ultimately resulted in cell death. The infected J774.1 cell monolayers in 96-well microplates were first treated with antibiotics and were further cultured for 72 h. The number of viable J774.1 cells in each well was quantified by a colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and an enzyme-linked immunosorbent assay reader. The number of growing bacteria in each well was also determined by counting the numbers of CFU on buffered charcoal yeast extract-α agar plates. Viable J774.1 cell counts, determined by the colorimetric assay, were inversely proportional to the number of intracellular replicating bacteria. The minimum extracellular concentrations (MIECs) of 24 antibiotics causing inhibition of intracellular growth of L. pneumophila were determined by the colorimetric assay system. The MIECs of beta-lactams and aminoglycosides were markedly higher than the MICs in buffered yeast extract-α broth. The MIECs of macrolides, fluoroquinolones, rifampin, and minocycline were similar to the respective MICs. According to their intracellular activities, clarithromycin and sparfloxacin were the most potent among the macrolides or fluoroquinolones tested in this study. Our results indicated that the MTT assay system allows comparative and quantitative evaluations of the intracellular activities of antibiotics and efficient processing of a large number of samples. PMID:9574712

  14. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1beta.

    PubMed

    Ainola, M M; Mandelin, J A; Liljeström, M P; Li, T F; Hukkanen, M V J; Konttinen, Y T

    2005-01-01

    Synovial inflammation in rheumatoid arthritis (RA) leads to pannus tissue invasion and destruction of cartilage/bone matrix by proteinases. Our intention was to analyze some of the key matrix metalloproteinases (MMPs) in pannus tissue overlying evolving cartilage erosions in RA. Frozen tissue samples of pannus and synovium from advanced RA and synovium from osteoarthritic patients were used for immunohistochemical, western blotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis of MMP-1, -3, -13 and -14. Synovial fibroblast cultures, stimulated with tumour necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), were analyzed with enzyme-linked immunosorbent assays (ELISA) and quantitative RT-PCR. MMP-3 was highly expressed in pannus tissue compared with significantly lower expression levels of MMP-1, -13 and -14. In fibroblast cultures IL-1beta was a potent stimulus for MMP-3, whereas TNF-alpha was more potent for MMP-1. This is the first study to demonstrate quantitatively in real time that MMP-3 mRNA expression is clearly higher in advanced RA pannus tissue compared to parallel RA or osteoarthritic synovium. MMP-3 mRNA levels were also clearly overexpressed in RA pannus compared to MMP-1, -13 and -14. Advanced RA has previously been found to overexpress IL-1beta. The high expression of MMP-3 in pannus and IL-1beta, mediated stimulation of MMP-3 suggest that MMP-3 plays a significant role in the progression of erosions through the proteoglycan-rich cartilage matrix.

  15. Clinical and biochemical studies support smokeless tobacco’s carcinogenic potential in the human oral cavity

    PubMed Central

    Mallery, Susan R.; Tong, Meng; Michaels, Gregory C.; Kiyani, Amber R.; Hecht, Stephen S.

    2014-01-01

    In 2007, International Agency for Cancer Research presented compelling evidence that linked smokeless tobacco use to the development of human oral cancer. While these findings imply vigorous local carcinogen metabolism, little is known regarding levels and distribution of Phase I, II and drug egress enzymes in human oral mucosa. In the study presented here, we integrated clinical data, imaging and histopathologic analyses of an oral squamous cell carcinoma that arose at the site of smokeless tobacco quid placement in a patient. Immunoblot and immunohistochemical (IHC) analyses were employed to identify tumor and normal human oral mucosal smokeless tobacco-associated metabolic activation and detoxification enzymes. Human oral epithelium contains every known Phase I enzyme associated with nitrosamine oxidative bioactivation with ~2 fold inter-donor differences in protein levels. Previous studies have confirmed ~3.5 fold inter-donor variations in intraepithelial Phase II enzymes. Unlike the superficially located enzymes in non-replicating esophageal surface epithelium, IHC studies confirmed oral mucosal nitrosamine metabolizing enzymes reside in the basilar and suprabasilar region which notably is the site of ongoing keratinocyte DNA replication. Clearly, variations in product composition, nitrosamine metabolism and exposure duration will modulate clinical outcomes. The data presented here form a coherent picture consistent with the abundant experimental data that links tobacco-specific nitrosamines to human oral cancer. PMID:24265177

  16. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.

    PubMed

    Ruedas-Rama, Maria J; Hall, Elizabeth A H

    2010-11-01

    An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.

  17. Erythrocyte enzymes in groups of Rattus norvegicus with genetic differences in 2,3-diphosphoglycerate levels.

    PubMed

    Noble, N A; Tanaka, K R

    1979-01-01

    1. A major locus with two alleles is responsible for large differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels in Rattus norvegicus. Blood from homozygous High-DPG, homozygous Low-DPG and heterozygous animals was used to measure blood indices and red cell enzyme activities. 2. Significant differences between groups were found in DPG levels, white blood cell counts and hemoglobin levels. 3. The results suggest that none of the red cell enzymes assayed is structurally or quantitatively different in the three groups.

  18. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome.

    PubMed

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J

    2008-04-01

    In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not found to be down-regulated in neurons treated with 24S-hydroxycholesterol, while apolipoprotein E (apo E), a cholesterol trafficking protein, was found to be up-regulated. Taken together, this data leads to the hypothesis that, in times of cholesterol excess, 24S-hydroxycholesterols signals down-regulation of cholesterol synthesis enzymes through SREBP-2, but up-regulates apo E synthesis (through the liver X receptor) leading to cholesterol storage and restoration of cholesterol balance.

  19. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    PubMed

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.

  20. Quantitative Comparison of Catalytic Mechanisms and Overall Reactions in Convergently Evolved Enzymes: Implications for Classification of Enzyme Function

    PubMed Central

    Almonacid, Daniel E.; Yera, Emmanuel R.; Mitchell, John B. O.; Babbitt, Patricia C.

    2010-01-01

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. PMID:20300652

  1. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    PubMed Central

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the hydrolysis and degree of synergism among enzymes. Conclusions The model was effective in capturing the dynamic behavior of cellulose hydrolysis during action of individual as well as multiple cellulases. Simulations were in qualitative and quantitative agreement with experimental data. Several experimentally observed phenomena were simulated without the need for any additional assumptions or parameter changes and confirmed the validity of using the stochastic molecular modeling approach to quantitatively and qualitatively describe the cellulose hydrolysis. PMID:23638989

  2. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts.

    PubMed

    Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz

    2018-04-15

    Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Enzyme immunoassays for detection of gypsy moth nuclear polyhedrosis virus

    Treesearch

    Michael Ma

    1985-01-01

    Enzyme-linked immunosorbent assays (ELISA) were developed for detecting gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (NPV). They were used to detect the presence of NPV in hemoplymph samples collected from infected larvae. The incorporation of hybridoma antibodies with these procedures would make them even more specific for gypsy moth...

  4. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  5. Impact of observational incompleteness on the structural properties of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin

    2007-01-01

    The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.

  6. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  7. Comparison of systemic and local immunity in dogs with canine parvovirus gastroenteritis.

    PubMed

    Rice, J B; Winters, K A; Krakowka, S; Olsen, R G

    1982-12-01

    To determine whether resistance to canine parvovirus (CPV) gastroenteritis is mediated by local or systemic immunity or both, an enzyme-linked immunospecific antibody assay (ELISA) was developed that quantitated different classes of antibody to CPV. Antibody levels in serum and feces of dogs with CPV-associated gastroenteritis were compared with their clinical signs and viral hemagglutination (HA) titers. Dogs with high levels of CPV coproantibody had a favorable clinical prognosis, high serum antibody levels (hemagglutination inhibition [HI] and ELISA), and low viral HA titers in feces. Conversely, dogs with little or no detectable CPV coproantibody had severe clinical signs and associated mortality rates and high viral HA titers in feces. Many of these dogs had high HI antibody titers. Statistical analysis revealed that only coproantibody level correlated (inversely) with HA titer; serum antibody, whether measured by HI or ELISA, did not. These data suggest that local intestinal immunity is more important than humoral immunity in developing immunological resistance to CPV gastroenteritis.

  8. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  9. Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus).

    PubMed

    Yu, Jie; Fu, Yuanshuai; Shi, Zhiyi

    2017-04-01

    In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.

  10. Quantitative assessment of serum-specific IgE in the diagnosis of human cystic echinococcosis.

    PubMed

    Marinova, I; Nikolov, G; Michova, A; Kurdova, R; Petrunov, B

    2011-07-01

    Anti-Echinococcus serum immunoglobulin (Ig)E was assessed by the ImmunoCAP system and compared with anti-Echinococcus serum IgG assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot. The ImmunoCAP system revealed very high specificity (one false positive of 110 healthy individuals), low cross-reactivity (one false positive of 58 patients with other diseases) and decreased sensitivity (73.55%). Receiver operating characteristic analysis displayed a beneficial diagnostic value with high accuracy. Comparison of the ImmunoCAP system with ELISA and Western blot showed significantly higher specificity and significantly lower cross-reactivity compared with the ELISA. Examination of sera from 155 patients with cystic echinococcosis (CE) showed varying levels of anti-Echinococcus IgE (range, 0.01-118.33 kUA/L). However, most samples had moderately elevated IgE levels. Analysis of serum-specific IgE revealed significantly higher sensitivity of the ImmunoCAP system and significantly higher antibody levels in hepatic CE compared with pulmonary CE. © 2011 Blackwell Publishing Ltd.

  11. Serum vascular endothelial growth factor in dogs with soft tissue sarcomas.

    PubMed

    de Queiroz, G Fernandes; Dagli, M Lúcia Zaidan; Meira, S Aparecida; Matera, J Maria

    2013-09-01

    This work aimed to evaluate serum vascular endothelial growth factor (VEGF) in 25 dogs with soft tissue sarcoma, and in 30 healthy dogs. Blood was collected once time from the control animals and three times, in the same way, from animals with sarcoma. Blood count was performed in the blood collected, and serum VEGF was measured by enzyme-linked immunosorbent assay quantitative method. Serum VEGF in control animals was similar to patients with soft tissue sarcoma. There was a reduction in serum VEGF after the sarcoma resection. There was positive correlation between serum VEGF and neutrophil counts, and negative between VEGF and hemoglobin content in animals with sarcoma. Animals with hemangiopericytoma showed higher serum VEGF levels compared to the patients with malignant peripheral nerve sheath. Circulating blood cells can contribute to elevate VEGF serum concentrations in dogs with soft tissue sarcomas and a possible role of VEGF in the angiogenesis of these tumors. © 2012 John Wiley & Sons Ltd.

  12. Arbovirus Surveillance near the Mexico-U.S. Border: Isolation and Sequence Analysis of Chikungunya Virus from Patients with Dengue-like Symptoms in Reynosa, Tamaulipas.

    PubMed

    Laredo-Tiscareño, S Viridiana; Machain-Williams, Carlos; Rodríguez-Pérez, Mario A; Garza-Hernandez, Javier A; Doria-Cobos, Gloria L; Cetina-Trejo, Rosa C; Bacab-Cab, Lucio A; Tangudu, Chandra S; Charles, Jermilia; De Luna-Santillana, Erick J; Garcia-Rejon, Julian E; Blitvich, Bradley J

    2018-05-14

    A total of 1,090 residents of the city of Reynosa, Tamaulipas, on the Mexico-U.S. border presented at hospitals and clinics of the Secretariat of Health, Mexico, in 2015 with symptoms characteristic of dengue. Dengue virus (DENV) antigen was detected by enzyme-linked immunosorbent assay in acute sera from 134 (12.3%) patients. Sera from select patients ( N = 34) were also tested for chikungunya virus (CHIKV) RNA by quantitative reverse transcription-polymerase chain reaction. Thirteen (38.2%) patients, including five DENV antigen-positive patients, were positive. Sera from three CHIKV RNA-positive patients were further assayed by virus isolation in cell culture and CHIKV was recovered on each occasion. The genome of one isolate and structural genes of the other two isolates were sequenced. In conclusion, we present evidence of CHIKV and DENV coinfections in patients who live near the Mexico-U.S. border and provide the first genome sequence of a CHIKV isolate from northern Mexico.

  13. A comparison of the immune responses of dogs exposed to canine distemper virus (CDV) - Differences between vaccinated and wild-type virus exposed dogs.

    PubMed

    Perrone, Danielle; Bender, Scott; Niewiesk, Stefan

    2010-07-01

    Canine distemper virus (CDV)-specific immune response was measured in different dog populations. Three groups of vaccinated or wild-type virus exposed dogs were tested: dogs with a known vaccination history, dogs without a known vaccination history (shelter dogs), and dogs with potential exposure to wild-type CDV. The use of a T-cell proliferation assay demonstrated a detectable CDV-specific T-cell response from both spleen and blood lymphocytes of dogs. Qualitatively, antibody assays [enzyme-linked immunosorbent assay (ELISA) and neutralization assay] predicted the presence of a T-cell response well, although quantitatively neither antibody assays nor the T-cell assay correlated well with each other. An interesting finding from our study was that half of the dogs in shelters were not vaccinated (potentially posing a public veterinary health problem) and that antibody levels in dogs living in an environment with endemic CDV were lower than in vaccinated animals.

  14. A comparison of the immune responses of dogs exposed to canine distemper virus (CDV) — Differences between vaccinated and wild-type virus exposed dogs

    PubMed Central

    Perrone, Danielle; Bender, Scott; Niewiesk, Stefan

    2010-01-01

    Canine distemper virus (CDV)-specific immune response was measured in different dog populations. Three groups of vaccinated or wild-type virus exposed dogs were tested: dogs with a known vaccination history, dogs without a known vaccination history (shelter dogs), and dogs with potential exposure to wild-type CDV. The use of a T-cell proliferation assay demonstrated a detectable CDV-specific T-cell response from both spleen and blood lymphocytes of dogs. Qualitatively, antibody assays [enzyme-linked immunosorbent assay (ELISA) and neutralization assay] predicted the presence of a T-cell response well, although quantitatively neither antibody assays nor the T-cell assay correlated well with each other. An interesting finding from our study was that half of the dogs in shelters were not vaccinated (potentially posing a public veterinary health problem) and that antibody levels in dogs living in an environment with endemic CDV were lower than in vaccinated animals. PMID:20885846

  15. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    PubMed Central

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543

  16. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.

    PubMed

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-02-16

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.

  17. Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay.

    PubMed

    Naik, Laxmana; Sharma, Rajan; Mann, Bimlesh; Lata, Kiran; Rajput, Y S; Surendra Nath, B

    2017-03-15

    A rapid, semi-quantitative lateral flow assay (LFA) was developed to screen the oxytetracycline (OTC) antibiotics residues in milk samples. In this study a competitive immuno-assay format was established. Colloidal gold nano-particles (GNP) were prepared and used as labelling material in LFA. Polyclonal antibodies were generated against OTC molecule (anti-OTC), purified and the quality was assessed by enzyme linked immuno sorbet assay. For the first time membrane components required for LFA in milk system was optimized. GNP and anti-OTC stable conjugate preparation method was standardized, and then these components were placed over the conjugate pad. OTC coupled with carrier protein was placed on test line; species specific secondary antibodies were placed on the control line of the membrane matrix. Assay was validated by spiking OTC to antibiotic free milk samples and results could be accomplished within 5min. without need of any equipment. The visual detection limit was 30ppb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Trigger loop folding determines transcription rate of Escherichia coli’s RNA polymerase

    DOE PAGES

    Mejia, Yara X.; Nudler, Evgeny; Bustamante, Carlos

    2014-12-31

    Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP’s pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kineticmore » model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. The model suggests a finely tuned mechanism that balances transcription speed and fidelity.« less

  19. Quantitative evaluation of Candia antarctica lipase B displayed on the cell surface of a Pichia pastoris based on an FS anchor system.

    PubMed

    Liang, Xing-xiang; Wang, Bei-bei; Sun, Yu-fei; Lin, Ying; Han, Shuang-yan; Zheng, Sui-ping; Cui, Tang-bing

    2013-03-01

    A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 10(4) molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.

  20. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    PubMed

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  1. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Indro Neil; Landick, Robert

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  2. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE PAGES

    Ghosh, Indro Neil; Landick, Robert

    2016-07-16

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  3. Enzyme-linked immunosorbent assay for total sennosides using anti-sennside A and anti-sennoside B monoclonal antibodies.

    PubMed

    Morinaga, Osamu; Uto, Takuhiro; Sakamoto, Seiichi; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2009-01-01

    Total sennosides concentration is a very important factor when rhubarb and senna will be used as crude drugs. However, one-step analytical technique for total sennosides has not been reported except HPLC. An enzyme-linked immunosorbent assay (ELISA) for total sennosides concentration by using the combination of anti-sennoside A (SA) and anti-sennoside B (SB) monoclonal antibodies (MAbs) in a single assay has been investigated. Total sennosides concentration in rhubarb and senna samples determined by newly developed assay system showed good agreement with those analyzed by ELISA using anti-SA MAb and anti-SB MAb, respectively.

  4. Treatment with agalsidase beta during pregnancy in Fabry disease.

    PubMed

    Politei, Juan M

    2010-04-01

    Fabry disease is an X-linked lysosomal storage disease caused by a deficiency of alpha-galactosidase A, which leads to excessive accumulation of glycosphingolipids in most tissues in the body, with life-threatening clinical consequences in the kidney, heart, and cerebrovascular system. Enzyme replacement therapy using exogenously produced alpha-galactosidase has been available for treatment of this multisystem progressive disease since 2001. Two different preparations of enzyme replacement therapy for Fabry disease are available outside of the USA: agalsidase alfa and agalsidase beta. Despite being X-linked, Fabry disease affects many female patients, and this report presents a successful pregnancy of a female patient receiving agalsidase beta.

  5. Development of an Enzyme-Linked Immunosorbent Assay Based on Fusion VP2332-452 Antigen for Detecting Antibodies against Aleutian Mink Disease Virus.

    PubMed

    Chen, Xiaowei; Song, Cailing; Liu, Yun; Qu, Liandong; Liu, Dafei; Zhang, Yun; Liu, Ming

    2016-02-01

    For detection of Aleutian mink disease virus (AMDV) antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed using the recombinant VP2332-452 protein as an antigen. Counterimmunoelectrophoresis (CIEP) was used as a reference test to compare the results of the ELISA and Western blotting (WB); the specificity and sensitivity of the VP2332-452 ELISA were 97.9% and 97.3%, respectively, which were higher than those of WB. Therefore, this VP2332-452 ELISA may be a preferable method for detecting antibodies against AMDV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Enzyme-linked immunosorbent assay compared with neutralization tests for evaluation of live mumps vaccines.

    PubMed Central

    Sakata, H; Hishiyama, M; Sugiura, A

    1984-01-01

    Mumps-specific antibody levels before and after vaccination with live mumps vaccines were determined by enzyme-linked immunosorbent assay (ELISA) and neutralization tests. A correlation was found between neutralization titers and optical density in ELISA. However, postvaccination sera from some vaccinees who failed to seroconvert by neutralization contained significant levels of mumps-specific antibody detectable by ELISA. In some of these serum specimens, the antibody directed to the F polypeptide of mumps virus was predominant. Most sera positive in ELISA neutralized mumps virus upon the addition of fresh guinea pig serum to the virus-serum mixture. Images PMID:6361060

  7. Enzyme-linked immunosorbent assay for Escherichia coli heat-stable enterotoxin type II.

    PubMed Central

    Handl, C; Rönnberg, B; Nilsson, B; Olsson, E; Jonsson, H; Flock, J I

    1988-01-01

    The gene for Escherichia coli heat-stable enterotoxin type II (STII) was fused to the genes for protein A from Staphylococcus aureus and beta-galactosidase in two different expression systems. Antibodies raised in rabbits against the protein A-STII fusion protein recognized the beta-galactosidase-STII fusion protein. The latter fusion protein was used as the immobilized antigen in an enzyme-linked immunosorbent assay (ELISA) for detection of STII. The correlation between the results of the ELISA and the intestinal loop test in piglets was 95%, suggesting that the ELISA can be used to reliably detect STII. Images PMID:3049659

  8. Review on enzyme-linked immunosorbent assays for sulfonamide residues in edible animal products.

    PubMed

    Zhang, Hongyan; Wang, Shuo

    2009-10-31

    The current status of enzyme-linked immunosorbent assays (ELISAs) for sulfonamides in edible animal products is reviewed. The attention was focused on the design and synthesis of haptens, conjugation to carrier protein, production of antibody, application of homologous and heterologous systems, as well as the molecular modeling of the haptens and sulfonamides. Researches have shown that sulfonamides seem to be particularly resistant to attempts to produce broad specificity antibodies. By summarizing the available research on sulfonamide ELISAs, it is hoped that it can be considered as a basis for further investigation aimed at developing the most efficient approaches for detection.

  9. Detection of urinary Vi antigen as a diagnostic test for typhoid fever.

    PubMed Central

    Taylor, D N; Harris, J R; Barrett, T J; Hargrett, N T; Prentzel, I; Valdivieso, C; Palomino, C; Levine, M M; Blake, P A

    1983-01-01

    Since Vi antigen is limited primarily to Salmonella typhi, it has been thought that detection of the antigen may be a useful method for diagnosing acute typhoid fever. The slide coagglutination method and enzyme-linked immunosorbent assay have recently been suggested as ways to detect small quantities of Vi antigen in urine. In Santiago, Chile, we compared the results of these two methods in patients with acute typhoid fever, paratyphoid fever, and other febrile illnesses and in afebrile control subjects. Using a cut-off value that maximally separated typhoid patients from controls, the enzyme-linked immunosorbent assay was positive in 62.4% of 141 patients with culture-proven typhoid infections and in 13.2% of 159 afebrile control subjects. The enzyme-linked immunosorbent assay was false positive in 64.7% of 34 culture-proven paratyphoid A or B patients and 47.1% of 21 patients with other nontyphoidal febrile illnesses. The coagglutination test was positive in 34% of typhoid patients, 14% of afebrile control subjects, and 46% of febrile control subjects. We conclude that these tests when performed with the Vi antibodies employed in this study are of little value for the diagnosis of typhoid fever in this setting. PMID:6630465

  10. Competitive and blocking enzyme-linked immunoassay for detection of fetal bovine serum antibodies to bovine viral diarrhea virus.

    PubMed

    Katz, J B; Hanson, S K

    1987-02-01

    A competitive blocking enzyme-linked immunoassay (CELIA) was developed to detect bovine viral diarrhea virus (BVDV) antibodies in undiluted fetal bovine serum (FBS). The CELIA was based on competition of serum BVDV antibodies with biotin-labelled anti-BVDV immunoglobulins (Ig) for a limited quantity of solid-phase BVDV antigen. Antigen preparation was simple, FBS could be tested undiluted, and detergent-containing washes were unnecessary. A series of dilutions of postnatal bovine BVDV antiserum prepared in FBS and a set of 147 undiluted abbatoir FBS samples were tested by both CELIA and serum neutralization tests (SNT). CELIA results on both sets of specimens correlated positively with SNT titers (r = 0.99 and r = 0.85). Relative to the SNT, CELIA sensitivity was 100%; specificity was 76%. CELIA detected a level of BVDV antibody below the 1:2-titer threshold detectable with the SNT. Advantages, limitations, and theoretical differences between the CELIA and SNT are discussed. A similar comparison of CELIA with non-competitive enzyme-linked immunoassay approaches to BVDV serodiagnosis is made. It is concluded that the CELIA is valuable in selecting only BVDV-seronegative FBS for use in virologic cell culture media.

  11. Application and evaluation of enzyme-linked immunosorbent assay and immunoblotting for detection of antibodies to Treponema hyodysenteriae in swine.

    PubMed Central

    Smith, S. C.; Barrett, L. M.; Muir, T.; Christopher, W. L.; Coloe, P. J.

    1991-01-01

    An enzyme-linked immunoassay (ELISA) has been developed to detect serum Immunoglobulin antibodies G and M to Treponema hyodysenteriae in vaccinated, experimentally infected and naturally infected swine. Naturally infected swine gave ELISA titres that were similar to experimentally infected swine, but were significantly less than the titres of vaccinated swine. When serum from naturally infected swine was used to probe nitrocellulose blots of sodium dodecyl sulphate-polyacrylamide gel electrophoresed whole cell proteins of T. hyodysenteriae, the immunoblotting patterns showed IgG antibodies were produced against many T. hyodysenteriae protein antigens and against lipopolysaccharide (LPS). The IgG antibodies directed against LPS were serotype-specific for that LPS and could be used to identify the serotype involved in the T. hyodysenteriae infection in that herd. IgM immunoblots also reacted with the many protein antigens but were less specific for LPS antigen, with a substantial degree of cross-reaction between the LPS of all serotypes. The data demonstrate that a microplate enzyme-linked immunosorbent assay, coupled with immunoblotting, is a very specific and sensitive test for detection of antibody to Treponema hyodysenteriae in swine. Images Fig. 3 Fig. 4 PMID:1936151

  12. Measurement of ring A-reduced progesterone metabolites by enzyme-linked immunoassay with colorimetric detection: baseline levels of six metabolites, including pregnanolone, in male rat plasma.

    PubMed

    Ocvirk, Rok; Franklin, Keith B J; Pearson Murphy, Beverley E

    2009-02-01

    The performance of an antiserum to progesterone and pregnane neurosteroids was assessed in two competitive assay setups: radioimmunoassay and enzyme-linked immunoassay with colorimetric detection, both with the same limit of detection of 2 pg. The enzyme-linked immunoassay was less labor-intensive and had better precision of measurement and was used to measure progesterone and six of its ring A-reduced metabolites in rat plasma. The measured levels of allopregnanolone and progesterone were in agreement with those reported previously when measured by gas chromatography/mass spectrometry and high-performance liquid chromatography coupled with radioimmunoassay and substantially lower than those previously measured by radioimmunoassay without chromatographic separation. Both isomers of dihydroprogesterone and all four isomers of pregnanolone were detected in rat plasma, indicating that progesterone is metabolized by reduction at the C5 and C3 position of the A ring, in both alpha and beta configurations. In addition to 5beta-dihydroprogesterone and isopregnanolone, which have not been previously detected in the rat, we found considerable amounts of pregnanolone, which is neuroactive, with similar potency to that of allopregnanolone but was previously thought not to be produced in rats.

  13. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  14. Immobilized enzymes in blood plasma exchangers via radiation grafting

    NASA Astrophysics Data System (ADS)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  15. Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant.

    PubMed

    Zhong, Wei; Kuntz, Douglas A; Ember, Brian; Singh, Harminder; Moremen, Kelley W; Rose, David R; Boons, Geert-Jan

    2008-07-16

    Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.

  16. An enzyme-linked immunosorbent assay-based system for determining the physiological level of poly(ADP-ribose) in cultured cells.

    PubMed

    Ida, Chieri; Yamashita, Sachiko; Tsukada, Masaki; Sato, Teruaki; Eguchi, Takayuki; Tanaka, Masakazu; Ogata, Shin; Fujii, Takahiro; Nishi, Yoshisuke; Ikegami, Susumu; Moss, Joel; Miwa, Masanao

    2016-02-01

    PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions-an Industry Perspective.

    PubMed

    Bohnert, Tonika; Patel, Aarti; Templeton, Ian; Chen, Yuan; Lu, Chuang; Lai, George; Leung, Louis; Tse, Susanna; Einolf, Heidi J; Wang, Ying-Hong; Sinz, Michael; Stearns, Ralph; Walsky, Robert; Geng, Wanping; Sudsakorn, Sirimas; Moore, David; He, Ling; Wahlstrom, Jan; Keirns, Jim; Narayanan, Rangaraj; Lang, Dieter; Yang, Xiaoqing

    2016-08-01

    Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Regulation of Glycan Structures in Animal Tissues

    PubMed Central

    Nairn, Alison V.; York, William S.; Harris, Kyle; Hall, Erica M.; Pierce, J. Michael; Moremen, Kelley W.

    2008-01-01

    Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes. PMID:18411279

  20. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    PubMed

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-06

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic properties of the flap in the Trp mutant, compared to the wild-type enzyme, manifest as a defect in interactions that facilitate the rate-limiting step. Consistent with this notion, the Trp mutant was able to cleave Lys48-linked and Lys11-linked diubiquitin better than the wild-type enzyme, indicating altered mobility and hence reduced selectivity.

Top