Sample records for quantitative fiber tracking

  1. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  2. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  3. CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking

    PubMed Central

    van Aart, Evert; Sepasian, Neda; Jalba, Andrei; Vilanova, Anna

    2011-01-01

    Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times. PMID:21941525

  4. Repeatability of DTI-based skeletal muscle fiber tracking

    PubMed Central

    Heemskerk, Anneriet M.; Sinha, Tuhin K.; Wilson, Kevin J.; Ding, Zhaohua; Damon, Bruce M.

    2015-01-01

    Diffusion tensor imaging (DTI)-based muscle fiber tracking enables the measurement of muscle architectural parameters, such as pennation angle (θ) and fiber tract length (Lft), throughout the entire muscle. Little is known, however, about the repeatability of either the muscle architectural measures or the underlying diffusion measures. Therefore, the goal of this study was to investigate the repeatability of DTI fiber tracking-based measurements and θ and Lft. Four DTI acquisitions were performed on two days that allowed for between acquisition, within day, and between day analyses. The eigenvalues and fractional anisotropy were calculated at the maximum cross-sectional area of, and fiber tracking was performed in, the tibialis anterior muscle of nine healthy subjects. The between acquisitions condition had the highest repeatability for the DTI indices and the architectural parameters. The overall inter class correlation coefficients (ICC’s) were greater than 0.6 for both θ and Lft and the repeatability coefficients were θ <10.2° and Lft < 50 mm. In conclusion, under the experimental and data analysis conditions used, the repeatability of the diffusion measures is very good and repeatability of the architectural measurements is acceptable. Therefore, this study demonstrates the feasibility for longitudinal studies of alterations in muscle architecture using DTI-based fiber tracking, under similar noise conditions and with similar diffusion characteristics. PMID:20099372

  5. Efficient global fiber tracking on multi-dimensional diffusion direction maps

    NASA Astrophysics Data System (ADS)

    Klein, Jan; Köhler, Benjamin; Hahn, Horst K.

    2012-02-01

    Global fiber tracking algorithms have recently been proposed which were able to compute results of unprecedented quality. They account for avoiding accumulation errors by a global optimization process at the cost of a high computation time of several hours or even days. In this paper, we introduce a novel global fiber tracking algorithm which, for the first time, globally optimizes the underlying diffusion direction map obtained from DTI or HARDI data, instead of single fiber segments. As a consequence, the number of iterations in the optimization process can drastically be reduced by about three orders of magnitude. Furthermore, in contrast to all previous algorithms, the density of the tracked fibers can be adjusted after the optimization within a few seconds. We evaluated our method for diffusion-weighted images obtained from software phantoms, healthy volunteers, and tumor patients. We show that difficult fiber bundles, e.g., the visual pathways or tracts for different motor functions can be determined and separated in an excellent quality. Furthermore, crossing and kissing bundles are correctly resolved. On current standard hardware, a dense fiber tracking result of a whole brain can be determined in less than half an hour which is a strong improvement compared to previous work.

  6. White matter fiber tracking computation based on diffusion tensor imaging for clinical applications.

    PubMed

    Dellani, Paulo R; Glaser, Martin; Wille, Paulo R; Vucurevic, Goran; Stadie, Axel; Bauermann, Thomas; Tropine, Andrei; Perneczky, Axel; von Wangenheim, Aldo; Stoeter, Peter

    2007-03-01

    Fiber tracking allows the in vivo reconstruction of human brain white matter fiber trajectories based on magnetic resonance diffusion tensor imaging (MR-DTI), but its application in the clinical routine is still in its infancy. In this study, we present a new software for fiber tracking, developed on top of a general-purpose DICOM (digital imaging and communications in medicine) framework, which can be easily integrated into existing picture archiving and communication system (PACS) of radiological institutions. Images combining anatomical information and the localization of different fiber tract trajectories can be encoded and exported in DICOM and Analyze formats, which are valuable resources in the clinical applications of this method. Fiber tracking was implemented based on existing line propagation algorithms, but it includes a heuristic for fiber crossings in the case of disk-shaped diffusion tensors. We successfully performed fiber tracking on MR-DTI data sets from 26 patients with different types of brain lesions affecting the corticospinal tracts. In all cases, the trajectories of the central spinal tract (pyramidal tract) were reconstructed and could be applied at the planning phase of the surgery as well as in intraoperative neuronavigation.

  7. Quantitative nanoparticle tracking: applications to nanomedicine.

    PubMed

    Huang, Feiran; Dempsey, Christopher; Chona, Daniela; Suh, Junghae

    2011-06-01

    Particle tracking is an invaluable technique to extract quantitative and qualitative information regarding the transport of nanomaterials through complex biological environments. This technique can be used to probe the dynamic behavior of nanoparticles as they interact with and navigate through intra- and extra-cellular barriers. In this article, we focus on the recent developments in the application of particle-tracking technology to nanomedicine, including the study of synthetic and virus-based materials designed for gene and drug delivery. Specifically, we cover research where mean square displacements of nanomaterial transport were explicitly determined in order to quantitatively assess the transport of nanoparticles through biological environments. Particle-tracking experiments can provide important insights that may help guide the design of more intelligent and effective diagnostic and therapeutic nanoparticles.

  8. Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation.

    PubMed

    Schlaier, Juergen R; Beer, Anton L; Faltermeier, Rupert; Fellner, Claudia; Steib, Kathrin; Lange, Max; Greenlee, Mark W; Brawanski, Alexander T; Anthofer, Judith M

    2017-06-01

    This study compared tractography approaches for identifying cerebellar-thalamic fiber bundles relevant to planning target sites for deep brain stimulation (DBS). In particular, probabilistic and deterministic tracking of the dentate-rubro-thalamic tract (DRTT) and differences between the spatial courses of the DRTT and the cerebello-thalamo-cortical (CTC) tract were compared. Six patients with movement disorders were examined by magnetic resonance imaging (MRI), including two sets of diffusion-weighted images (12 and 64 directions). Probabilistic and deterministic tractography was applied on each diffusion-weighted dataset to delineate the DRTT. Results were compared with regard to their sensitivity in revealing the DRTT and additional fiber tracts and processing time. Two sets of regions-of-interests (ROIs) guided deterministic tractography of the DRTT or the CTC, respectively. Tract distances to an atlas-based reference target were compared. Probabilistic fiber tracking with 64 orientations detected the DRTT in all twelve hemispheres. Deterministic tracking detected the DRTT in nine (12 directions) and in only two (64 directions) hemispheres. Probabilistic tracking was more sensitive in detecting additional fibers (e.g. ansa lenticularis and medial forebrain bundle) than deterministic tracking. Probabilistic tracking lasted substantially longer than deterministic. Deterministic tracking was more sensitive in detecting the CTC than the DRTT. CTC tracts were located adjacent but consistently more posterior to DRTT tracts. These results suggest that probabilistic tracking is more sensitive and robust in detecting the DRTT but harder to implement than deterministic approaches. Although sensitivity of deterministic tracking is higher for the CTC than the DRTT, targets for DBS based on these tracts likely differ. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. DTI fiber tracking to differentiate demyelinating diseases from diffuse brain stem glioma.

    PubMed

    Giussani, Carlo; Poliakov, Andrew; Ferri, Raymond T; Plawner, Lauren L; Browd, Samuel R; Shaw, Dennis W W; Filardi, Tanya Z; Hoeppner, Corrine; Geyer, J Russell; Olson, James M; Douglas, James G; Villavicencio, Elisabeth H; Ellenbogen, Richard G; Ojemann, Jeffrey G

    2010-08-01

    Intrinsic diffuse brainstem tumors and demyelinating diseases primarily affecting the brainstem can share common clinical and radiological features, sometimes making the diagnosis difficult especially at the time of first clinical presentation. To explore the potential usefulness of new MRI sequences in particular diffusion tensor imaging fiber tracking in differentiating these two pathological entities, we review a series of brainstem tumors and demyelinating diseases treated at our institution. The clinical history including signs and symptoms and MRI findings of three consecutive demyelinating diseases involving the brainstem that presented with diagnostic uncertainty and three diffuse intrinsic brainstem tumors were reviewed, along with a child with a supratentorial tumor for comparison. Fiber tracking of the pyramidal tracts was performed for each patient using a DTI study at the time of presentation. Additionally Fractional Anisotropy values were calculated for each patient in the pons and the medulla oblongata. Routine MR imaging was unhelpful in differentiating between intrinsic tumor and demyelination. In contrast, retrospective DTI fiber tracking clearly differentiated the pathology showing deflection of the pyramidal tracts posteriorly and laterally in the case of intrinsic brainstem tumors and, in the case of demyelinating disease, poorly represented and truncated fibers. Regionalized FA values were variable and of themselves were not predictive either pathology. DTI fiber tracking of the pyramid tracts in patients with suspected intrinsic brainstem tumor or demyelinating disease presents two clearly different patterns that may help in differentiating between these two pathologies when conventional MRI and clinical data are inconclusive. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Advanced fiber tracking in early acquired brain injury causing cerebral palsy.

    PubMed

    Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B

    2015-01-01

    Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.

  11. Tri-linear interpolation-based cerebral white matter fiber imaging

    PubMed Central

    Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia

    2013-01-01

    Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524

  12. Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics.

    PubMed

    Reischer, G H; Haider, J M; Sommer, R; Stadler, H; Keiblinger, K M; Hornek, R; Zerobin, W; Mach, R L; Farnleitner, A H

    2008-10-01

    The impairment of water quality by faecal pollution is a global public health concern. Microbial source tracking methods help to identify faecal sources but the few recent quantitative microbial source tracking applications disregarded catchment hydrology and pollution dynamics. This quantitative microbial source tracking study, conducted in a large karstic spring catchment potentially influenced by humans and ruminant animals, was based on a tiered sampling approach: a 31-month water quality monitoring (Monitoring) covering seasonal hydrological dynamics and an investigation of flood events (Events) as periods of the strongest pollution. The detection of a ruminant-specific and a human-specific faecal Bacteroidetes marker by quantitative real-time PCR was complemented by standard microbiological and on-line hydrological parameters. Both quantitative microbial source tracking markers were detected in spring water during Monitoring and Events, with preponderance of the ruminant-specific marker. Applying multiparametric analysis of all data allowed linking the ruminant-specific marker to general faecal pollution indicators, especially during Events. Up to 80% of the variation of faecal indicator levels during Events could be explained by ruminant-specific marker levels proving the dominance of ruminant faecal sources in the catchment. Furthermore, soil was ruled out as a source of quantitative microbial source tracking markers. This study demonstrates the applicability of quantitative microbial source tracking methods and highlights the prerequisite of considering hydrological catchment dynamics in source tracking study design.

  13. Fiber tracking of brain white matter based on graph theory.

    PubMed

    Lu, Meng

    2015-01-01

    Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.

  14. A new compression format for fiber tracking datasets.

    PubMed

    Presseau, Caroline; Jodoin, Pierre-Marc; Houde, Jean-Christophe; Descoteaux, Maxime

    2015-04-01

    A single diffusion MRI streamline fiber tracking dataset may contain hundreds of thousands, and often millions of streamlines and can take up to several gigabytes of memory. This amount of data is not only heavy to compute, but also difficult to visualize and hard to store on disk (especially when dealing with a collection of brains). These problems call for a fiber-specific compression format that simplifies its manipulation. As of today, no fiber compression format has yet been adopted and the need for it is now becoming an issue for future connectomics research. In this work, we propose a new compression format, .zfib, for streamline tractography datasets reconstructed from diffusion magnetic resonance imaging (dMRI). Tracts contain a large amount of redundant information and are relatively smooth. Hence, they are highly compressible. The proposed method is a processing pipeline containing a linearization, a quantization and an encoding step. Our pipeline is tested and validated under a wide range of DTI and HARDI tractography configurations (step size, streamline number, deterministic and probabilistic tracking) and compression options. Similar to JPEG, the user has one parameter to select: a worst-case maximum tolerance error in millimeter (mm). Overall, we find a compression factor of more than 96% for a maximum error of 0.1mm without any perceptual change or change of diffusion statistics (mean fractional anisotropy and mean diffusivity) along bundles. This opens new opportunities for connectomics and tractometry applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  16. Analyses of Disruption of Cerebral White Matter Integrity in Schizophrenia with MR Diffusion Tensor Fiber Tracking Method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko

    We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.

  17. Technique for quantitative RT-PCR analysis directly from single muscle fibers.

    PubMed

    Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M

    2008-07-01

    The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.

  18. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors

    PubMed Central

    2017-01-01

    Fiber Bragg Grating (FBG) sensors are among the most popular elements for fiber optic sensor networks used for the direct measurement of temperature and strain. Modern FBG interrogation setups measure the FBG spectrum in real-time, and determine the shift of the Bragg wavelength of the FBG in order to estimate the physical parameters. The problem of determining the peak wavelength of the FBG from a spectral measurement limited in resolution and noise, is referred as the peak-tracking problem. In this work, the several peak-tracking approaches are reviewed and classified, outlining their algorithmic implementations: the methods based on direct estimation, interpolation, correlation, resampling, transforms, and optimization are discussed in all their proposed implementations. Then, a simulation based on coupled-mode theory compares the performance of the main peak-tracking methods, in terms of accuracy and signal to noise ratio resilience. PMID:29039804

  19. Instrumentation by distributed optical fiber sensors of a new ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël

    2013-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early

  20. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    NASA Astrophysics Data System (ADS)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm2, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  1. An improved Bayesian tensor regularization and sampling algorithm to track neuronal fiber pathways in the language circuit.

    PubMed

    Mishra, Arabinda; Anderson, Adam W; Wu, Xi; Gore, John C; Ding, Zhaohua

    2010-08-01

    The purpose of this work is to design a neuronal fiber tracking algorithm, which will be more suitable for reconstruction of fibers associated with functionally important regions in the human brain. The functional activations in the brain normally occur in the gray matter regions. Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of conventional tractography methods to trace the fiber links between them. A lower fractional anisotropy in this region makes it even difficult to track the fibers in the presence of noise. In this work, the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Bayesian regularization framework. To estimate the true fiber direction (propagation vector), the a priori and conditional probability density functions are calculated in advance and are modeled as multivariate normal. The variance of the estimated tensor element vector is associated with the uncertainty due to noise and partial volume averaging (PVA). An adaptive and multiple sampling of the estimated tensor element vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in this work. The algorithm has been rigorously tested using a variety of synthetic data sets. The quantitative comparison of the results to standard algorithms motivated the authors to implement it for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major language pathways (Broca's to SMA and Broca's to Wernicke's) across 12 healthy subjects. Though the mean of standard deviation was marginally bigger than conventional (Euler's) approach [P. J. Basser et al., "In vivo fiber tractography using DT-MRI data," Magn. Reson. Med. 44(4), 625-632 (2000)], the number of extracted fibers in this approach was significantly higher. The authors also compared the performance of the proposed method to Lu's method [Y. Lu et al., "Improved fiber tractography with Bayesian

  2. Quantitative risk assessment of durable glass fibers.

    PubMed

    Fayerweather, William E; Eastes, Walter; Cereghini, Francesco; Hadley, John G

    2002-06-01

    This article presents a quantitative risk assessment for the theoretical lifetime cancer risk from the manufacture and use of relatively durable synthetic glass fibers. More specifically, we estimate levels of exposure to respirable fibers or fiberlike structures of E-glass and C-glass that, assuming a working lifetime exposure, pose a theoretical lifetime cancer risk of not more than 1 per 100,000. For comparability with other risk assessments we define these levels as nonsignificant exposures. Nonsignificant exposure levels are estimated from (a) the Institute of Occupational Medicine (IOM) chronic rat inhalation bioassay of durable E-glass microfibers, and (b) the Research Consulting Company (RCC) chronic inhalation bioassay of durable refractory ceramic fibers (RCF). Best estimates of nonsignificant E-glass exposure exceed 0.05-0.13 fibers (or shards) per cubic centimeter (cm3) when calculated from the multistage nonthreshold model. Best estimates of nonsignificant C-glass exposure exceed 0.27-0.6 fibers/cm3. Estimates of nonsignificant exposure increase markedly for E- and C-glass when non-linear models are applied and rapidly exceed 1 fiber/cm3. Controlling durable fiber exposures to an 8-h time-weighted average of 0.05 fibers/cm3 will assure that the additional theoretical lifetime risk from working lifetime exposures to these durable fibers or shards is kept below the 1 per 100,000 level. Measured airborne exposures to respirable, durable glass fibers (or shards) in glass fiber manufacturing and fabrication operations were compared with the nonsignificant exposure estimates described. Sampling results for B-sized respirable E-glass fibers at facilities that manufacture or fabricate small-diameter continuous-filament products, from those that manufacture respirable E-glass shards from PERG (process to efficiently recycle glass), from milled fiber operations, and from respirable C-glass shards from Flakeglass operations indicate very low median exposures of 0

  3. Micro-heterogeneity of corn hulls cellulosic fiber biopolymer studied by multiple-particle tracking (MPT)

    USDA-ARS?s Scientific Manuscript database

    A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The Multiple-Particle Tracking (MPT) method was used in this study, which was originally described by ...

  4. Neuronavigation Based on Track Density Image Extracted from Deterministic High-Definition Fiber Tractography.

    PubMed

    Wei, Peng-Hu; Cong, Fei; Chen, Ge; Li, Ming-Chu; Yu, Xin-Guang; Bao, Yu-Hai

    2017-02-01

    Diffusion tensor imaging-based navigation is unable to resolve crossing fibers or to determine with accuracy the fanning, origin, and termination of fibers. It is important to improve the accuracy of localizing white matter fibers for improved surgical approaches. We propose a solution to this problem using navigation based on track density imaging extracted from high-definition fiber tractography (HDFT). A 28-year-old asymptomatic female patient with a left-lateral ventricle meningioma was enrolled in the present study. Language and visual tests, magnetic resonance imaging findings, both preoperative and postoperative HDFT, and the intraoperative navigation and surgery process are presented. Track density images were extracted from tracts derived using full q-space (514 directions) diffusion spectrum imaging (DSI) and integrated into a neuronavigation system. Navigation accuracy was verified via intraoperative records and postoperative DSI tractography, as well as a functional examination. DSI successfully represented the shape and range of the Meyer loop and arcuate fasciculus. Extracted track density images from the DSI were successfully integrated into the navigation system. The relationship between the operation channel and surrounding tracts was consistent with the postoperative findings, and the patient was functionally intact after the surgery. DSI-based TDI navigation allows for the visualization of anatomic features such as fanning and angling and helps to identify the range of a given tract. Moreover, our results show that our HDFT navigation method is a promising technique that preserves neural function. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Assessment of Postoperative Tendon Quality in Patients With Achilles Tendon Rupture Using Diffusion Tensor Imaging and Tendon Fiber Tracking.

    PubMed

    Sarman, Hakan; Atmaca, Halil; Cakir, Ozgur; Muezzinoglu, Umit Sefa; Anik, Yonca; Memisoglu, Kaya; Baran, Tuncay; Isik, Cengiz

    2015-01-01

    Although pre- and postoperative imaging of Achilles tendon rupture (ATR) has been well documented, radiographic evaluations of postoperative intratendinous healing and microstructure are still lacking. Diffusion tensor imaging (DTI) is an innovative technique that offers a noninvasive method for describing the microstructure characteristics and organization of tissues. DTI was used in the present study for quantitative assessment of fiber continuity postoperatively in patients with acute ATR. The data from 16 patients with ATR from 2005 to 2012 were retrospectively analyzed. The microstructure of ART was evaluated using tendon fiber tracking, tendon continuity, fractional anisotropy, and apparent diffusion coefficient values by way of DTI. The distal and proximal portions were measured separately in both the ruptured and the healthy extremities of each patient. The mean patient age was 41.56 ± 8.49 (range 26 to 56) years. The median duration of follow-up was 21 (range 6 to 80) months. The tendon fractional anisotropy values of the ruptured Achilles tendon were significantly lower statistically than those of the normal side (p = .001). However, none of the differences between the 2 groups with respect to the distal and proximal apparent diffusion coefficient were statistically significant (p = .358 and p = .899, respectively). In addition, the fractional anisotropy and apparent diffusion coefficient measurements were not significantly different in the proximal and distal regions of the ruptured tendons compared with the healthy tendons. The present study used DTI and fiber tracking to demonstrate the radiologic properties of postoperative Achilles tendons with respect to trajectory and tendinous fiber continuity. Quantifying DTI and fiber tractography offers an innovative and effective tool that might be able to detect microstructural abnormalities not appreciable using conventional radiologic techniques. Copyright © 2015 American College of Foot and Ankle

  6. Comparison of probabilistic and deterministic fiber tracking of cranial nerves.

    PubMed

    Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H

    2017-09-01

    OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false

  7. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages.

    PubMed

    Feigl, Guenther C; Hiergeist, Wolfgang; Fellner, Claudia; Schebesch, Karl-Michael M; Doenitz, Christian; Finkenzeller, Thomas; Brawanski, Alexander; Schlaier, Juergen

    2014-01-01

    Diffusion tensor imaging (DTI)-based tractography has become an integral part of preoperative diagnostic imaging in many neurosurgical centers, and other nonsurgical specialties depend increasingly on DTI tractography as a diagnostic tool. The aim of this study was to analyze the anatomic accuracy of visualized white matter fiber pathways using different, readily available DTI tractography software programs. Magnetic resonance imaging scans of the head of 20 healthy volunteers were acquired using a Siemens Symphony TIM 1.5T scanner and a 12-channel head array coil. The standard settings of the scans in this study were 12 diffusion directions and 5-mm slices. The fornices were chosen as an anatomic structure for the comparative fiber tracking. Identical data sets were loaded into nine different fiber tracking packages that used different algorithms. The nine software packages and algorithms used were NeuroQLab (modified tensor deflection [TEND] algorithm), Sörensen DTI task card (modified streamline tracking technique algorithm), Siemens DTI module (modified fourth-order Runge-Kutta algorithm), six different software packages from Trackvis (interpolated streamline algorithm, modified FACT algorithm, second-order Runge-Kutta algorithm, Q-ball [FACT algorithm], tensorline algorithm, Q-ball [second-order Runge-Kutta algorithm]), DTI Query (modified streamline tracking technique algorithm), Medinria (modified TEND algorithm), Brainvoyager (modified TEND algorithm), DTI Studio modified FACT algorithm, and the BrainLab DTI module based on the modified Runge-Kutta algorithm. Three examiners (a neuroradiologist, a magnetic resonance imaging physicist, and a neurosurgeon) served as examiners. They were double-blinded with respect to the test subject and the fiber tracking software used in the presented images. Each examiner evaluated 301 images. The examiners were instructed to evaluate screenshots from the different programs based on two main criteria: (i) anatomic

  8. A high-definition fiber tracking report for patients with traumatic brain injury and their doctors.

    PubMed

    Chmura, Jon; Presson, Nora; Benso, Steven; Puccio, Ava M; Fissel, Katherine; Hachey, Rebecca; Braun, Emily; Okonkwo, David O; Schneider, Walter

    2015-03-01

    We have developed a tablet-based application, the High-Definition Fiber Tracking Report App, to enable clinicians and patients in research studies to see and understand damage from Traumatic Brain Injury (TBI) by viewing 2-dimensional and 3-dimensional images of their brain, with a focus on white matter tracts with quantitative metrics. The goal is to visualize white matter fiber tract injury like bone fractures; that is, to make the "invisible wounds of TBI" understandable for patients. Using mobile computing technology (iPad), imaging data for individual patients can be downloaded remotely within hours of a magnetic resonance imaging brain scan. Clinicians and patients can view the data in the form of images of each tract, rotating animations of the tracts, 3-dimensional models, and graphics. A growing number of tracts can be examined for asymmetry, gaps in streamline coverage, reduced arborization (branching), streamline volume, and standard quantitative metrics (e.g., Fractional Anisotropy (FA)). Novice users can learn to effectively navigate and interact with the application (explain the figures and graphs representing normal and injured brain tracts) within 15 minutes of simple orientation with high accuracy (96%). The architecture supports extensive graphics, configurable reports, provides an easy-to-use, attractive interface with a smooth user experience, and allows for securely serving cases from a database. Patients and clinicians have described the application as providing dramatic benefits in understanding their TBI and improving their lives. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  9. Tracking cotton fiber quality and foreign matter through a stripper harvester

    USDA-ARS?s Scientific Manuscript database

    The main objective of this project was to track cotton fiber quality and foreign matter content throughout the harvesting units and conveying/cleaning systems on a brush-roll stripper harvester. Seed cotton samples were collected at six locations in 2011 and five in 2012 including: 1) hand-picked fr...

  10. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  11. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping.

    PubMed

    Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S

    2004-02-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.

  12. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping

    PubMed Central

    Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.

    2014-01-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564

  13. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

    PubMed Central

    Meng, He; Andresen, Kurt; van Noort, John

    2015-01-01

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  14. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes.

    PubMed

    Herbst, Allen; Widjaja, Kevin; Nguy, Beatrice; Lushaj, Entela B; Moore, Timothy M; Hevener, Andrea L; McKenzie, Debbie; Aiken, Judd M; Wanagat, Jonathan

    2017-10-01

    Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, andmore » a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1« less

  16. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  17. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    nano computer (called Pegase and developed at Ifsttar for data acquisition [3]) were performed automatically every time that a threshold is exceeded due to the passage of a train. These data are then send to a web server via a 3G Wireless Network. Many data was thus stored daily for several months. Moreover, several thermocouples were embedded at different depths in order to measure thermal gradients into the track slab. From the accelerometers signals, the deflection of the track slab are then obtained and compared to the measurements of thermal gradients. This comparison show clearly the daily evolution of the curvature with the thermal gradient changes as estimated by the simulation. This result was confirmed indirectly by strain profile measurements obtained by the Rayleigh fiber optic sensing technique. Two fiber optics embedded in the upper and lower part of the foundation slab show that contact conditions between the foundation slab and the track slab change with thermal gradient. 1 - X. Chapeleau, T. Sedran, L.-M. Cottineau, J. Cailliau, F. Taillade, I. Gueguen, J.-M. Henault. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Engineering Structures, 2013, 56, pp. 1751-1757. 2 - X. Chapeleau, L.-M. Cottineau, T. Sedran, J. Cailliau, I. Gueguen. Instrumentation by distributed optical fiber sensors of a new ballastless track structure. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-8946 3 - V. Le Cam, L. Lemarchand, L-M. Cottineau and F. Bourquin. Design of a generic smart and wireless sensors network - benefits of emerging technologies. Structural Health Monitoring 2008, 1(1), pp. 598-605.

  18. Polarization variations in installed fibers and their influence on quantum key distribution systems.

    PubMed

    Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2017-10-30

    Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.

  19. Micro-heterogeneity of corn hulls cellulosic fiber biopolymer studied by multiple-particle tracking (MPT)

    USDA-ARS?s Scientific Manuscript database

    A novel technique named multiple-particle tracking (MPT) was used to investigate the micro-structural heterogeneities of Z-trim, a zero calorie cellulosic fiber biopolymer produced from corn hulls. The principle of MPT technique is to monitor the thermally driven motion of inert micro-spheres, which...

  20. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.

    PubMed

    Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G

    1983-10-01

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and

  1. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  2. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.

    PubMed

    Kuszak, J R; Mazurkiewicz, M; Jison, L; Madurski, A; Ngando, A; Zoltoski, R K

    2006-01-01

    The results of a recent study on accommodation in humans and baboons has revealed that lens fiber structure and organization are key components of the mechanism of accommodation. Dynamic focusing involves the controlled displacement and replacement, or realignment, of cortical fiber-ends at sutures as the mechanism of accommodation at the fiber level. This emended explanation of the mechanism of accommodation raises the following question: as the structure of crystalline lenses are only similar, not identical between species, is accommodative amplitude related to differences in the structure and organization of fibers between species? To address this question, we have quantitatively examined the structure and organization of fibers in a number of the more commonly used animal models (mice, cattle, frogs, rabbits and chickens) for lens research. Lenses (a minimum of 12-18 lenses/species) from mice, cattle, frogs and rabbits were used for this study. Prior to fixation for structural analysis, measurements of the gross shape of the lenses (equatorial diameter, anterior and posterior minor radii [anterior + posterior minor radius = polar axis]) were taken directly through a stereo surgical dissecting microscope equipped with an ocular reticle. Lenses were then prepared for and examined by light (LM), transmission (TEM) and scanning electron microscopy (SEM). Scale computer-assisted drawings (CADs) of lenses and lens fibers were then constructed from quantitative data as described above and from quantitative data contained in micrographs. The differences in fiber structure and organization that effect accommodative range arise early in development and are continued throughout lifelong lens growth. In umbilical suture lenses (avian) secondary fibers develop with almost completely tapered anterior ends (85-90% reduction of their measures of width and thickness at the equator). By comparison, in lenses with line sutures (e.g. frogs and rabbits) secondary fibers develop

  3. Fiber estimation and tractography in diffusion MRI: Development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values

    PubMed Central

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-01-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and consequently tractography and the ability to recover complex white-matter pathways, as well as differences between results due to choice of analysis method and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies. We found the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of

  4. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

    PubMed

    Wilkins, Bryce; Lee, Namgyun; Gajawelli, Niharika; Law, Meng; Leporé, Natasha

    2015-04-01

    Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection

  5. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  6. Robust fiber clustering of cerebral fiber bundles in white matter

    NASA Astrophysics Data System (ADS)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  7. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    NASA Astrophysics Data System (ADS)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  8. Quantitative risk assessment for a glass fiber insulation product.

    PubMed

    Fayerweather, W E; Bender, J R; Hadley, J G; Eastes, W

    1997-04-01

    California Proposition 65 (Prop65) provides a mechanism by which the manufacturer may perform a quantitative risk assessment to be used in determining the need for cancer warning labels. This paper presents a risk assessment under this regulation for professional and do-it-yourself insulation installers. It determines the level of insulation glass fiber exposure (specifically Owens Corning's R-25 PinkPlus with Miraflex) that, assuming a working lifetime exposure, poses no significant cancer risk under Prop65's regulations. "No significant risk" is defined under Prop65 as a lifetime risk of no more than one additional cancer case per 100,000 exposed persons, and nonsignificant exposure is defined as a working lifetime exposure associated with "no significant risk." This determination can be carried out despite the fact that the relevant underlying studies (i.e., chronic inhalation bioassays) of comparable glass wool fibers do not show tumorigenic activity. Nonsignificant exposures are estimated from (1) the most recent RCC chronic inhalation bioassay of nondurable fiberglass in rats; (2) intraperitoneal fiberglass injection studies in rats; (3) a distributional, decision analysis approach applied to four chronic inhalation rat bioassays of conventional fiberglass; (4) an extrapolation from the RCC chronic rat inhalation bioassay of durable refractory ceramic fibers; and (5) an extrapolation from the IOM chronic rat inhalation bioassay of durable E glass microfibers. When the EPA linear nonthreshold model is used, central estimates of nonsignificant exposure range from 0.36 fibers/cc (for the RCC chronic inhalation bioassay of fiberglass) through 21 fibers/cc (for the i.p. fiberglass injection studies). Lower 95% confidence bounds on these estimates vary from 0.17 fibers/cc through 13 fibers/cc. Estimates derived from the distributional approach or from applying the EPA linear nonthreshold model to chronic bioassays of durable fibers such as refractory ceramic fiber

  9. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  10. Brain MRI fiber-tracking reveals white matter alterations in hypertensive patients without damage at conventional neuroimaging.

    PubMed

    Carnevale, Lorenzo; D'Angelosante, Valentina; Landolfi, Alessandro; Grillea, Giovanni; Selvetella, Giulio; Storto, Marianna; Lembo, Giuseppe; Carnevale, Daniela

    2018-06-12

    Hypertension is one of the main risk factor for dementia. The subtle damage provoked by chronic high blood pressure in the brain is usually evidenced by conventional magnetic resonance imaging (MRI), in terms of white matter (WM) hyperintensities or cerebral atrophy. However, it is clear that by the time brain damage is visible, it may be too late hampering neurodegeneration. Aim of this study was to characterize a signature of early brain damage induced by hypertension, before the neurodegenerative injury manifests. This work was conducted on hypertensive and normotensive subjects with no sign of structural damage at conventional neuroimaging and no diagnosis of dementia revealed by neuropsychological assessment. All individuals underwent cardiological clinical examination in order to define the hypertensive status and the related target organ damage. Additionally, patients were subjected to DTI-MRI scan to identify microstructural damage of WM by probabilistic fiber-tracking. To gain insights in the neurocognitive profile of patients a specific battery of tests was administered. As primary outcome of the study we aimed at finding any specific signature of fiber-tracts alterations in hypertensive patients, associated with an impairment of the related cognitive functions. Hypertensive patients showed significant alterations in three specific WM fiber-tracts: the anterior thalamic radiation, the superior longitudinal fasciculus and the forceps minor. Hypertensive patients also scored significantly worse in the cognitive domains ascribable to brain regions connected through those WM fiber-tracts, showing decreased performances in executive functions, processing speed, memory, and paired associative learning tasks. Overall, WM fiber-tracking on MRI evidenced an early signature of damage in hypertensive patients when otherwise undetectable by conventional neuroimaging. In perspective, this approach could allow identifying those patients that are in initial stages of

  11. A quantitative evaluation of cell migration by the phagokinetic track motility assay.

    PubMed

    Nogalski, Maciej T; Chan, Gary C T; Stevenson, Emily V; Collins-McMillen, Donna K; Yurochko, Andrew D

    2012-12-04

    Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14

  12. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs.

    PubMed

    Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn

    2017-05-22

    The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This

  13. New Performance Metrics for Quantitative Polymerase Chain Reaction-Based Microbial Source Tracking Methods

    EPA Science Inventory

    Binary sensitivity and specificity metrics are not adequate to describe the performance of quantitative microbial source tracking methods because the estimates depend on the amount of material tested and limit of detection. We introduce a new framework to compare the performance ...

  14. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques.

    PubMed

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang

    2017-08-01

    correction in region of interest- and mask-based analyses (P < 0.05 each). Iteratively reweighted linear least squares and iRESTORE showed equivalent results, but WMSI was faster than iRESTORE. Muscle delineation and artifact load significantly improved after correction (P < 0.05 each). Weighted mean of signal intensity correction significantly improved STEAM-based quantitative DTI analyses and fiber tracking of lower-limb muscles, providing a robust tool for musculoskeletal applications.

  15. Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Mosse, Charles A.; Colchester, Richard J.; Mari, Jean Martial; Nikitichev, Daniil I.; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2015-07-01

    In a wide range of clinical procedures, accurate placement of medical devices such as needles and catheters is critical to optimize patient outcomes. Ultrasound imaging is often used to guide minimally invasive procedures, as it can provide real-time visualization of patient anatomy and medical devices. However, this modality can provide low image contrast for soft tissues, and poor visualization of medical devices that are steeply angled with respect to the incoming ultrasound beams. Photoacoustic sensors can provide information about the spatial distributions of tissue chromophores that could be valuable for guiding minimally invasive procedures. In this study, a system for guiding minimally invasive procedures using photoacoustic sensing was developed. This system included a miniature photoacoustic probe with three optical fibers: one with a bare end for photoacoustic excitation of tissue, a second for photoacoustic excitation of an optically absorbing coating at the distal end to transmit ultrasound, and a third with a Fabry-Perot cavity at the distal end for receiving ultrasound. The position of the photoacoustic probe was determined with ultrasonic tracking, which involved transmitting pulses from a linear-array ultrasound imaging probe at the tissue surface, and receiving them with the fiber-optic ultrasound receiver in the photoacoustic probe. The axial resolution of photoacoustic sensing was better than 70 μm, and the tracking accuracy was better than 1 mm in both axial and lateral dimensions. By translating the photoacoustic probe, depth scans were obtained from different spatial positions, and two-dimensional images were reconstructed using a frequency-domain algorithm.

  16. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  17. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs

    NASA Astrophysics Data System (ADS)

    Su, Long-Jyun; Wu, Meng-Shiue; Hui, Yuen Yung; Chang, Be-Ming; Pan, Lei; Hsu, Pei-Chen; Chen, Yit-Tsong; Ho, Hong-Nerng; Huang, Yen-Hua; Ling, Thai-Yen; Hsu, Hsao-Hsun; Chang, Huan-Cheng

    2017-03-01

    Cell therapy is a promising strategy for the treatment of human diseases. While the first use of cells for therapeutic purposes can be traced to the 19th century, there has been a lack of general and reliable methods to study the biodistribution and associated pharmacokinetics of transplanted cells in various animal models for preclinical evaluation. Here, we present a new platform using albumin-conjugated fluorescent nanodiamonds (FNDs) as biocompatible and photostable labels for quantitative tracking of human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) in miniature pigs by magnetic modulation. With this background-free detection technique and time-gated fluorescence imaging, we have been able to precisely determine the numbers as well as positions of the transplanted FND-labeled pcMSCs in organs and tissues of the miniature pigs after intravenous administration. The method is applicable to single-cell imaging and quantitative tracking of human stem/progenitor cells in rodents and other animal models as well.

  18. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    PubMed

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  19. Tractography of Association Fibers Associated with Language Processing.

    PubMed

    Egger, K; Yang, S; Reisert, M; Kaller, C; Mader, I; Beume, L; Weiller, C; Urbach, H

    2015-10-01

    Several major association fiber tracts are known to be part of the language processing system. There is evidence that high angular diffusion-based MRI is able to separate these fascicles in a constant way. In this study, we wanted to proof this thesis using a novel whole brain "global tracking" approach and to test for possible lateralization. Global tracking was performed in six healthy right-handed volunteers for the arcuate fascicle (AF), the medial longitudinal fascicle (MdLF), the inferior fronto-occipital fascicle (IFOF), and the inferior longitudinal fascicle (ILF). These fiber tracts were characterized quantitatively using the number of streamlines (SL) and the mean fractional anisotropy (FA). We were able to characterize the AF, the MdLF, the IFOF, and the ILF consistently in six healthy volunteers using global tracking. A left-sided dominance (LI > 0.2) for the AF was found in all participants. The MdLF showed a left-sided dominance in four participants (one female, three male). Regarding the FA, no lateralization (LI > 0.2) could be shown in any of the fascicles. Using a novel global tracking algorithm we confirmed that the courses of the primary language processing associated fascicles can consistently be differentiated. Additionally we were able to show a streamline-based left-sided lateralization in the AF of all right-handed healthy subjects.

  20. Quantifying white matter structural integrity with high-definition fiber tracking in traumatic brain injury.

    PubMed

    Presson, Nora; Krishnaswamy, Deepa; Wagener, Lauren; Bird, William; Jarbo, Kevin; Pathak, Sudhir; Puccio, Ava M; Borasso, Allison; Benso, Steven; Okonkwo, David O; Schneider, Walter

    2015-03-01

    There is an urgent, unmet demand for definitive biological diagnosis of traumatic brain injury (TBI) to pinpoint the location and extent of damage. We have developed High-Definition Fiber Tracking, a 3 T magnetic resonance imaging-based diffusion spectrum imaging and tractography analysis protocol, to quantify axonal injury in military and civilian TBI patients. A novel analytical methodology quantified white matter integrity in patients with TBI and healthy controls. Forty-one subjects (23 TBI, 18 controls) were scanned with the High-Definition Fiber Tracking diffusion spectrum imaging protocol. After reconstruction, segmentation was used to isolate bilateral hemisphere homologues of eight major tracts. Integrity of segmented tracts was estimated by calculating homologue correlation and tract coverage. Both groups showed high correlations for all tracts. TBI patients showed reduced homologue correlation and tract spread and increased outlier count (correlations>2.32 SD below control mean). On average, 6.5% of tracts in the TBI group were outliers with substantial variability among patients. Number and summed deviation of outlying tracts correlated with initial Glasgow Coma Scale score and 6-month Glasgow Outcome Scale-Extended score. The correlation metric used here can detect heterogeneous damage affecting a low proportion of tracts, presenting a potential mechanism for advancing TBI diagnosis. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. Quantitative thermal sensory testing -- value of testing for both cold and warm sensation detection in evaluation of small fiber neuropathy.

    PubMed

    Shukla, Garima; Bhatia, Manvir; Behari, Madhuri

    2005-10-01

    Small fiber neuropathy is a common neurological disorder, often missed or ignored by physicians, since examination and routine nerve conduction studies are usually normal in this condition. Many methods including quantitative thermal sensory testing are currently being used for early detection of this condition, so as to enable timely investigation and treatment. This study was conducted to assess the yield of quantitative thermal sensory testing in diagnosis of small fiber neuropathy. We included patients presenting with history suggestive of positive and/or negative sensory symptoms, with normal examination findings, clinically suggestive of small fiber neuropathy, with normal or minimally abnormal routine nerve conduction studies. These patients were subjected to quantitative thermal sensory testing using a Medoc TSA-II Neurosensory analyser at two sites and for two modalities. QST data were compared with those in 120 normal healthy controls. Twenty-five patients (16 males, 9 females) with mean age 46.8+/-16.6 years (range: 21-75 years) were included in the study. The mean duration of symptoms was 1.6+/-1.6 years (range: 3 months-6 years). Eighteen patients (72%) had abnormal thresholds in at least one modality. Thermal thresholds were normal in 7 out of the 25 patients. This study demonstrates that quantitative thermal sensory testing is a fairly sensitive method for detection of small fiber neuropathy especially in patients with normal routine nerve conduction studies.

  2. A Novel Feature-Tracking Echocardiographic Method for the Quantitation of Regional Myocardial Function

    PubMed Central

    Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.

    2012-01-01

    Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685

  3. An exploratory analysis linking neuropsychological testing to quantification of tractography using High Definition Fiber Tracking (HDFT) in military TBI.

    PubMed

    Presson, Nora; Beers, Sue R; Morrow, Lisa; Wagener, Lauren M; Bird, William A; Van Eman, Gina; Krishnaswamy, Deepa; Penderville, Joshua; Borrasso, Allison J; Benso, Steven; Puccio, Ava; Fissell, Catherine; Okonkwo, David O; Schneider, Walter

    2015-09-01

    To realize the potential value of tractography in traumatic brain injury (TBI), we must identify metrics that provide meaningful information about functional outcomes. The current study explores quantitative metrics describing the spatial properties of tractography from advanced diffusion imaging (High Definition Fiber Tracking, HDFT). In a small number of right-handed males from military TBI (N = 7) and civilian control (N = 6) samples, both tract homologue symmetry and tract spread (proportion of brain mask voxels contacted) differed for several tracts among civilian controls and extreme groups in the TBI sample (high scorers and low scorers) for verbal recall, serial reaction time, processing speed index, and trail-making. Notably, proportion of voxels contacted in the arcuate fasciculus distinguished high and low performers on the CVLT-II and PSI, potentially reflecting linguistic task demands, and GFA in the left corticospinal tract distinguished high and low performers in PSI and Trail Making Test Part A, potentially reflecting right hand motor response demands. The results suggest that, for advanced diffusion imaging, spatial properties of tractography may add analytic value to measures of tract anisotropy.

  4. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages

    PubMed Central

    Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.

    2017-01-01

    Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615

  5. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications.

    PubMed

    Fernandez-Miranda, Juan C; Pathak, Sudhir; Engh, Johnathan; Jarbo, Kevin; Verstynen, Timothy; Yeh, Fang-Cheng; Wang, Yibao; Mintz, Arlan; Boada, Fernando; Schneider, Walter; Friedlander, Robert

    2012-08-01

    High-definition fiber tracking (HDFT) is a novel combination of processing, reconstruction, and tractography methods that can track white matter fibers from cortex, through complex fiber crossings, to cortical and subcortical targets with subvoxel resolution. To perform neuroanatomical validation of HDFT and to investigate its neurosurgical applications. Six neurologically healthy adults and 36 patients with brain lesions were studied. Diffusion spectrum imaging data were reconstructed with a Generalized Q-Ball Imaging approach. Fiber dissection studies were performed in 20 human brains, and selected dissection results were compared with tractography. HDFT provides accurate replication of known neuroanatomical features such as the gyral and sulcal folding patterns, the characteristic shape of the claustrum, the segmentation of the thalamic nuclei, the decussation of the superior cerebellar peduncle, the multiple fiber crossing at the centrum semiovale, the complex angulation of the optic radiations, the terminal arborization of the arcuate tract, and the cortical segmentation of the dorsal Broca area. From a clinical perspective, we show that HDFT provides accurate structural connectivity studies in patients with intracerebral lesions, allowing qualitative and quantitative white matter damage assessment, aiding in understanding lesional patterns of white matter structural injury, and facilitating innovative neurosurgical applications. High-grade gliomas produce significant disruption of fibers, and low-grade gliomas cause fiber displacement. Cavernomas cause both displacement and disruption of fibers. Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain. Further studies to validate the clinical findings are needed.

  6. Identification and quantitative evaluation of the fiber structure in the pathological tissue using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2017-02-01

    Fiber structure changes in the various pathological processes, such as the increase of fibrosis in liver diseases, the derangement of fiber in cervical cancer and so on. Currently, clinical pathologic diagnosis is regarded as the golden criterion, but different doctors with discrepancy in knowledge and experience may obtain different conclusions. Up to a point, quantitative evaluation of the fiber structure in the pathological tissue can be of great service to quantitative diagnosis. Mueller matrix measurement is capable of probing comprehensive microstructural information of samples and different wavelength of lights can provide more information. In this paper, we use a Mueller matrix microscope with light sources in six different wavelength. We use unstained, dewaxing liver tissue slices in four stages and the pathological biopsy of the filtration channels from rabbit eyes as samples. We apply the Mueller matrix polar decomposition (MMPD) parameter δ which corresponds to retardance to liver slices. The mean value of abnormal region get bigger when the level of fibrosis get higher and light in short wavelength is more sensitive to the microstructure of fiber. On the other hand, we use the Mueller matrix transformation (MMT) parameter Φ which is associated to the angel of fast axis in the analysis of the slices of the filtration channels from rabbit eyes. The value of kurtosis and the value of skewness shows big difference between new born region and normal region and can reveal the arrangement of fiber. These results indicate that the Mueller matrix microscope has great potential in auxiliary diagnosis.

  7. A low-cost tracked C-arm (TC-arm) upgrade system for versatile quantitative intraoperative imaging.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Anglin, Carolyn

    2014-07-01

    C-arm fluoroscopy is frequently used in clinical applications as a low-cost and mobile real-time qualitative assessment tool. C-arms, however, are not widely accepted for applications involving quantitative assessments, mainly due to the lack of reliable and low-cost position tracking methods, as well as adequate calibration and registration techniques. The solution suggested in this work is a tracked C-arm (TC-arm) which employs a low-cost sensor tracking module that can be retrofitted to any conventional C-arm for tracking the individual joints of the device. Registration and offline calibration methods were developed that allow accurate tracking of the gantry and determination of the exact intrinsic and extrinsic parameters of the imaging system for any acquired fluoroscopic image. The performance of the system was evaluated in comparison to an Optotrak[Formula: see text] motion tracking system and by a series of experiments on accurately built ball-bearing phantoms. Accuracies of the system were determined for 2D-3D registration, three-dimensional landmark localization, and for generating panoramic stitched views in simulated intraoperative applications. The system was able to track the center point of the gantry with an accuracy of [Formula: see text] mm or better. Accuracies of 2D-3D registrations were [Formula: see text] mm and [Formula: see text]. Three-dimensional landmark localization had an accuracy of [Formula: see text] of the length (or [Formula: see text] mm) on average, depending on whether the landmarks were located along, above, or across the table. The overall accuracies of the two-dimensional measurements conducted on stitched panoramic images of the femur and lumbar spine were 2.5 [Formula: see text] 2.0 % [Formula: see text] and [Formula: see text], respectively. The TC-arm system has the potential to achieve sophisticated quantitative fluoroscopy assessment capabilities using an existing C-arm imaging system. This technology may be useful to

  8. Quantitative PCR for Tracking the Megaplasmid-Borne Biodegradation Potential of a Model Sphingomonad

    PubMed Central

    Hartmann, Erica M.; Badalamenti, Jonathan P.; Krajmalnik-Brown, Rosa

    2012-01-01

    We developed a quantitative PCR method for tracking the dxnA1 gene, the initial, megaplasmid-borne gene in Sphingomonas wittichii RW1's dibenzo-p-dioxin degradation pathway. We used this method on complex environmental samples and report on growth of S. wittichii RW1 in landfill leachate, thus furnishing a novel tool for monitoring megaplasmid-borne, dioxygenase-encoding genes. PMID:22492441

  9. Automated fiber tracking and tissue characterization of the anterior cruciate ligament with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.

    2017-02-01

    The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.

  10. Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy

    Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically <0.5 K/s. Polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.

  11. [Effect of dietary fiber in the quantitative expression of butyrate receptor GPR43 in rats colon].

    PubMed

    Corte Osorio, L Y; Martínez Flores, H E; Ortiz Alvarado, R

    2011-01-01

    Short chain fatty acids (SCFA) acetate, propionate and butyrate are the major anions produced by the bacterial fermentation of dietary fiber (DF) in colon. Recently, butyrate has been recently studied because is important to maintain colonic functions and because it has been related with a protective effect in colorectal cancer, which is mainly, explained by its potential to regulate gene expression by inhibiting enzyme histonedeacetylase (HDAC). Several investigationsshown that SCFAreceptor GPR43 is involved insignal transduction mechanisms once they bind to ligands such as butyrate to generate different physiological effects in colonocytes. Determine if dietary fiber consumption from nopal (Opuntia ficus I.) containing a ratio of soluble-insoluble fiber 40/60, has a direct influence on the quantitative expression of butyrate-specific receptor GPR43. Wistar rats were fed with four different diets formulated at different concentrations of dietary fiber of 0, 5, 15 and 25% of dietary fiber from opuntia, respectively. The results shown an increase in the expression of GPR43 (93.1%) when rats was fed with a 5% fiber diet, using β-actin as a reference gene. The results of this investigation will contribute to determinate the relation of diet with intestinal health for the purpose of expanding the knowledge of butyric acid on colonic functions.

  12. Diffusion tensor tracking of neuronal fiber pathways in the living human brain

    NASA Astrophysics Data System (ADS)

    Lori, Nicolas Francisco

    2001-11-01

    The technique of diffusion tensor tracking (DTT) is described, in which diffusion tensor magnetic resonance imaging (DT-MRI) data are processed to allow the visualization of white matter (WM) tracts in a living human brain. To illustrate the methods, a detailed description is given of the physics of DT-MRI, the structure of the DT-MRI experiment, the computer tools that were developed to visualize WM tracts, the anatomical consistency of the obtained WM tracts, and the accuracy and precision of DTT using computer simulations. When presenting the physics of DT-MRI, a completely quantum-mechanical view of DT-MRI is given where some of the results are new. Examples of anatomical tracts viewed using DTT are presented, including the genu and the splenium of the corpus callosum, the ventral pathway with its amygdala connection highlighted, the geniculo- calcarine tract separated into anterior and posterior parts, the geniculo-calcarine tract defined using functional magnetic resonance imaging (MRI), and U- fibers. In the simulation, synthetic DT-MRI data were constructed that would be obtained for a cylindrical WM tract with a helical trajectory surrounded by gray matter. Noise was then added to the synthetic DT-MRI data, and DTT trajectories were calculated using the noisy data (realistic tracks). Simulated DTT errors were calculated as the vector distance between the realistic tracks and the ideal trajectory. The simulation tested the effects of a comprehensive set of experimental conditions, including voxel size, data sampling, data averaging, type of tract tissue, tract diameter and type of tract trajectory. Simulated DTT accuracy and precision were typically below the voxel dimension, and precision was compatible with the experimental results.

  13. Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking

    PubMed Central

    Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus

    2013-01-01

    Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194

  14. Optical fibers and their applications 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2013-01-01

    XIVth Conference on Optical Fibers and Their Applications, Nałęczów 2012, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations from 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałęczów 2012. The papers from the conference presentations will be published in Proc.SPIE. The next conference from this series is scheduled for January 2014 in Białowieża.

  15. Light coupling into the Whispering Gallery Modes of a fiber array thin film solar cell for fixed partial Sun tracking

    PubMed Central

    Mariano, Marina; Rodríguez, Francisco J.; Romero-Gomez, Pablo; Kozyreff, Gregory; Martorell, Jordi

    2014-01-01

    We propose the use of whispering gallery mode coupling in a novel configuration based on implementing a thin film cell on the backside of an array of parallel fibers. We performed numerical calculations using the parameters of a thin film organic cell which demonstrate that light coupling becomes more effective as the angle for the incident light relative to the fiber array normal increases up to an optimal angle close to 55 deg. At this angle the power conversion efficiency of the fiber array solar cell we propose becomes 30% times larger than the one from an equivalent planar cell configuration. We demonstrate that the micro fiber array solar cell we propose may perform an effective partial tracking of the sun movement for over 100 degrees without any mechanical help. In addition, in the event that such fiber array cell would be installed with the adequate orientation on a vertical façade, an optimal photon-to-charge conversion would be reached for sunlight incident at 55 deg with respect to the horizon line, very close to the yearly average position for the sun at Latitude of 40 deg.

  16. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  17. Image correlation based method for the analysis of collagen fibers patterns

    NASA Astrophysics Data System (ADS)

    Rosa, Ramon G. T.; Pratavieira, Sebastião.; Kurachi, Cristina

    2015-06-01

    The collagen fibers are one of the most important structural proteins in skin, being responsible for its strength and flexibility. It is known that their properties, like fibers density, ordination and mean diameter can be affected by several skin conditions, what makes these properties a good parameter to be used on the diagnosis and evaluation of skin aging, cancer, healing, among other conditions. There is, however, a need for methods capable of analyzing quantitatively the organization patterns of these fibers. To address this need, we developed a method based on the autocorrelation function of the images that allows the construction of vector field plots of the fibers directions and does not require any kind of curve fitting or optimization. The analyzed images were obtained through Second Harmonic Generation Imaging Microscopy. This paper presents a concise review on the autocorrelation function and some of its applications to image processing, details the developed method and the results obtained through the analysis of hystopathological slides of landrace porcine skin. The method has high accuracy on the determination of the fibers direction and presents high performance. We look forward to perform further studies keeping track of different skin conditions over time.

  18. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  19. Analysis of Orientations of Collagen Fibers by Novel Fiber-Tracking Software

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Rajwa, Bartlomiej; Filmer, David L.; Hoffmann, Christoph M.; Yuan, Bo; Chiang, Ching-Shoei; Sturgis, Jennie; Robinson, J. Paul

    2003-12-01

    Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to not only its composition but also its structure. This article integrates confocal microscopy imaging and image-processing techniques to analyze the microstructural properties of ECM. This report describes a two- and three-dimensional fiber middle-line tracing algorithm that may be used to quantify collagen fibril organization. We utilized computer simulation and statistical analysis to validate the developed algorithm. These algorithms were applied to confocal images of collagen gels made with reconstituted bovine collagen type I, to demonstrate the computation of orientations of individual fibers.

  20. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  1. An airborne jet train that flies on a soft porous track

    NASA Astrophysics Data System (ADS)

    Mirbod, Parisa; Andreopoulos, Yiannis; Weinbaum, Sheldon

    2008-11-01

    This paper explores the quantitative feasibility of developing an airborne jet train that flies on a soft porous track within centimeters of the earth's surface at speeds approaching current commercial jet aircraft. The jet train employs a lift mechanism first proposed in Feng & Weinbaum (2000) J. Fluid Mech. 422:282 and a nearly frictionless track suggested in Wu et al. (2004) Phys. Rev. Lett. 93(19):194501. Using an asymptotic analysis for large values of the permeability parameter H/Kp, where H is the porous layer thickness and Kp the Darcy permeability, we first show that it is possible to support a 70 metric ton jet train carrying 200 passengers on a confined porous material if its Kp is approximately 5 x 10-9 m^2. For this Kp one finds that the tilt of the planform is < 0.1 degrees and the lift-off velocity is < 5 m/s. Compression tests on a fiber-fill material with these properties show that the fibers contribute < 0.2 percent of the total lift and hence the friction force of the fiber phase is negligible. Using jet engines of 10,000 lbf thrust, about 1/5 that of a 200 passenger jet aircraft, one is able to obtain a cruising velocity approaching 700 km/hr. This would allow for huge fuel savings, especially on short flights where much of the energy is used to climb to altitude and overcoming lift induced drag.

  2. Nerve Fiber Flux Analysis Using Wide-Field Swept-Source Optical Coherence Tomography.

    PubMed

    Tan, Ou; Liu, Liang; Liu, Li; Huang, David

    2018-02-01

    To devise a method to quantify nerve fibers over their arcuate courses over an extended peripapillary area using optical coherence tomography (OCT). Participants were imaged with 8 × 8-mm volumetric OCT scans centered at the optic disc. A new quantity, nerve fiber flux (NFF), represents the cross-sectional area transected perpendicular to the nerve fibers. The peripapillary area was divided into 64 tracks with equal flux. An iterative algorithm traced the trajectory of the tracks assuming that the relative distribution of the NFF was conserved with compensation for fiber connections to ganglion cells on the macular side. Average trajectory was averaged from normal eyes and use to calculate the NFF maps for glaucomatous eyes. The NFF maps were divided into eight sectors that correspond to visual field regions. There were 24 healthy and 10 glaucomatous eyes enrolled. The algorithm converged on similar patterns of NFL tracks for all healthy eyes. In glaucomatous eyes, NFF correlated with visual field sensitivity in the arcuate sectors (Spearman ρ = 0.53-0.62). Focal nerve fiber loss in glaucomatous eyes appeared as uniform tracks of NFF defects that followed the expected arcuate fiber trajectory. Using an algorithm based on the conservation of flux, we derived nerve fiber trajectories in the peripapillary area. The NFF map is useful for the visualization of focal defects and quantification of sector nerve fiber loss from wide-area volumetric OCT scans. NFF provides a cumulative measure of volumetric loss along nerve fiber tracks and could improve the detection of focal glaucoma damage.

  3. Amplitudes of Pain-Related Evoked Potentials Are Useful to Detect Small Fiber Involvement in Painful Mixed Fiber Neuropathies in Addition to Quantitative Sensory Testing – An Electrophysiological Study

    PubMed Central

    Hansen, Niels; Kahn, Ann-Kathrin; Zeller, Daniel; Katsarava, Zaza; Sommer, Claudia; Üçeyler, Nurcan

    2015-01-01

    To investigate the usefulness of pain-related evoked potentials (PREP) elicited by electrical stimulation for the identification of small fiber involvement in patients with mixed fiber neuropathy (MFN). Eleven MFN patients with clinical signs of large fiber impairment and neuropathic pain and ten healthy controls underwent clinical and electrophysiological evaluation. Small fiber function, electrical conductivity and morphology were examined by quantitative sensory testing (QST), PREP, and skin punch biopsy. MFN was diagnosed following clinical and electrophysiological examination (chronic inflammatory demyelinating neuropathy: n = 6; vasculitic neuropathy: n = 3; chronic axonal ­neuropathy: n = 2). The majority of patients with MFN characterized their pain by descriptors that mainly represent C-fiber-mediated pain. In QST, patients displayed elevated cold, warm, mechanical, and vibration detection thresholds and cold pain thresholds indicative of MFN. PREP amplitudes in patients correlated with cold (p < 0.05) and warm detection thresholds (p < 0.05). Burning pain and the presence of par-/dysesthesias correlated negatively with PREP amplitudes (p < 0.05). PREP amplitudes correlating with cold and warm detection thresholds, burning pain, and par-/dysesthesias support employing PREP amplitudes as an additional tool in conjunction with QST for detecting small fiber impairment in patients with MFN. PMID:26696950

  4. Tracking cotton fiber quality throughout a stipper harvester: Part II

    USDA-ARS?s Scientific Manuscript database

    Cotton fiber quality begins to degrade naturally with the opening of the boll and mechanical harvesting processes are perceived to exacerbate fiber degradation. Previous research indicates that stripper harvested cotton generally has lower fiber quality and higher foreign matter content than picker ...

  5. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity

    PubMed Central

    Sun, Meng; Bloom, Alexander B.; Zaman, Muhammad H.

    2015-01-01

    Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments. PMID:26158674

  6. Evaluation of normal appearing spinal cord by diffusion tensor imaging, fiber tracking, fractional anisotropy, and apparent diffusion coefficient measurement in 13 dogs

    PubMed Central

    2013-01-01

    Background Functional magnetic resonance (fMR) imaging offers plenty of new opportunities in the diagnosis of central nervous system diseases. Diffusion tensor imaging (DTI) is a technique sensitive to the random motion of water providing information about tissue architecture. We applied DTI to normal appearing spinal cords of 13 dogs of different breeds and body weights in a 3.0 T magnetic resonance (MR) scanner. The aim was to study fiber tracking (FT) patterns by tractography and the variations of the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) observed in the spinal cords of dogs with different sizes and at different locations (cervical and thoracolumbar). For that reason we added a DTI sequence to the standard clinical MR protocol. The values of FA and ADC were calculated by means of three regions of interest defined on the cervical or the thoracolumbar spinal cord (ROI 1, 2, and 3). Results The shape of the spinal cord fiber tracts was well illustrated following tractography and the exiting nerve roots could be differentiated from the spinal cord fiber tracts. Routine MR scanning times were extended for 8 to 12 min, depending on the size of the field of view (FOV), the slice thickness, and the size of the interslice gaps. In small breed dogs (< 15 kg body weight) the fibers could be tracked over a length of approximately 10 vertebral bodies with scanning times of about 8 min, whereas in large breed dogs (> 25 kg body weight) the traceable fiber length was about 5 vertebral bodies which took 10 to 12 min scanning time. FA and ADC values showed mean values of 0.447 (FA), and 0.560 × 10-3 mm2/s (ADC), respectively without any differences detected with regard to different dog sizes and spinal cord 45 segments examined. Conclusion FT is suitable for the graphical depiction of the canine spinal cord and the exiting nerve roots. The FA and ADC values offer an objective measure for evaluation of the spinal cord fiber

  7. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage.

    PubMed

    Shin, Samuel S; Verstynen, Timothy; Pathak, Sudhir; Jarbo, Kevin; Hricik, Allison J; Maserati, Megan; Beers, Sue R; Puccio, Ava M; Boada, Fernando E; Okonkwo, David O; Schneider, Walter

    2012-05-01

    For patients with traumatic brain injury (TBI), current clinical imaging methods generally do not provide highly detailed information about the location of axonal injury, severity of injury, or expected recovery. In a case of severe TBI, the authors applied a novel high-definition fiber tracking (HDFT) to directly visualize and quantify the degree of axonal fiber damage and predict functional deficits due to traumatic axonal injury and loss of cortical projections. This 32-year-old man sustained a severe TBI. Computed tomography and MRI revealed an area of hemorrhage in the basal ganglia with mass effect, but no specific information on the location of axonal injury could be obtained from these studies. Examinations of the patient at Week 3 and Week 8 after TBI revealed motor weaknesses of the left extremities. Four months postinjury, 257-direction diffusion spectrum imaging and HDFT analysis was performed to evaluate the degree of axonal damage in the motor pathway and quantify asymmetries in the left and right axonal pathways. High-definition fiber tracking was used to follow corticospinal and corona radiata pathways from the cortical surface to the midbrain and quantify projections from motor areas. Axonal damage was then localized by assessing the number of descending fibers at the level of the cortex, internal capsule, and midbrain. The motor deficit apparent in the clinical examinations correlated with the axonal losses visualized using HDFT. Fiber loss estimates at 4 months postinjury accurately predicted the nature of the motor deficits (severe, focal left-hand weakness) when other standard clinical imaging modalities did not. A repeat scan at 10 months postinjury, when edema and hemorrhage had receded, replicated the fiber loss. Using HDFT, the authors accurately identified the presence and location of damage to the underlying white matter in this patient with TBI. Detailed information of injury provided by this novel technique holds future potential for

  8. Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.

    PubMed

    Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T

    2017-04-21

    Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.

  9. Robotic vehicle with multiple tracked mobility platforms

    DOEpatents

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  10. Real-time fiber selection using the Wii remote

    NASA Astrophysics Data System (ADS)

    Klein, Jan; Scholl, Mike; Köhn, Alexander; Hahn, Horst K.

    2010-02-01

    In the last few years, fiber tracking tools have become popular in clinical contexts, e.g., for pre- and intraoperative neurosurgical planning. The efficient, intuitive, and reproducible selection of fiber bundles still constitutes one of the main issues. In this paper, we present a framework for a real-time selection of axonal fiber bundles using a Wii remote control, a wireless controller for Nintendo's gaming console. It enables the user to select fiber bundles without any other input devices. To achieve a smooth interaction, we propose a novel spacepartitioning data structure for efficient 3D range queries in a data set consisting of precomputed fibers. The data structure which is adapted to the special geometry of fiber tracts allows for queries that are many times faster compared with previous state-of-the-art approaches. In order to extract reliably fibers for further processing, e.g., for quantification purposes or comparisons with preoperatively tracked fibers, we developed an expectationmaximization clustering algorithm that can refine the range queries. Our initial experiments have shown that white matter fiber bundles can be reliably selected within a few seconds by the Wii, which has been placed in a sterile plastic bag to simulate usage under surgical conditions.

  11. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  12. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  13. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  14. Advanced shape tracking to improve flexible endoscopic diagnostics

    NASA Astrophysics Data System (ADS)

    Cao, Caroline G. L.; Wong, Peter Y.; Lilge, Lothar; Gavalis, Robb M.; Xing, Hua; Zamarripa, Nate

    2008-03-01

    Colonoscopy is the gold standard for screening for inflammatory bowel disease and colorectal cancer. Flexible endoscopes are difficult to manipulate, especially in the distensible and tortuous colon, sometimes leading to disorientation during the procedure and missed diagnosis of lesions. Our goal is to design a navigational aid to guide colonoscopies, presenting a three dimensional representation of the endoscope in real-time. Therefore, a flexible sensor that can track the position and shape of the entire length of the endoscope is needed. We describe a novel shape-tracking technology utilizing a single modified optical fiber. By embedding fluorophores in the buffer of the fiber, we demonstrated a relationship between fluorescence intensity and fiber curvature. As much as a 40% increase in fluorescence intensity was achieved when the fiber's local bend radius decreased from 58 mm to 11 mm. This approach allows for the construction of a three-dimensional shape tracker that is small enough to be easily inserted into the biopsy channel of current endoscopes.

  15. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  16. Tracking motions from satellite water vapor imagery: Quantitative applications to hurricane track forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher; Nieman, Steve; Aberson, Sim; Franklin, James

    1993-01-01

    Water vapor imagery from GOES satellites has been available for over a decade. These data are used extensively, mainly in a qualitative mode, by forecasters in the United States (Weldon and Holmes, 1991). Some attempts have been made at quantifying the data by tracking features in time sequences of the imagery (Stewart et al., 1985; Hayden and Stewart, 1987). For a variety of reasons, applications of this approach have produced marginal results (Velden, 1990). Recently, METEOSAT-3 (M-3) was repositioned at 50W by the European Space Agency, in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the GOES satellite, the M-3 has a superior resolution and signal-to-noise ratio in its water vapor channel, which translates into improved automated tracking capabilities. During a period in 1992 which included the Atlantic hurricane season, water vapor tracking algorithms were applied to the M-3 data in order to evaluate the coverage, accuracy and model impact of the derived vectors. Data sets were produced during several tropical cyclone cases, including Hurricane Andrew. In this paper, the M-3 water vapor wind sets are assessed, and their impact on a hurricane track forecast model is examined.

  17. Quantitative comparison between radial and cylindrically diffusing fibers for photothermal treatment of varicose vein disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Truong Van, Gia; Kang, Hyun Wook

    2017-02-01

    For last two decades, endovenous laser therapy (EVLT) is one of the most widely accepted surgical options for treating incompetent great and small saphenous veins. However, due to excessive heating during EVLT, the major complications include pain and burning that often increase the risk of dermatitis disease. The aim of the current study was to quantitatively compare commercially-available radial fibers with newly-developed diffusing applicators for 1470 nm-EVLA in terms of temperature elevation and vein deformation. Rabbit veins were used as an ex vivo model for EVLA. A 5-W 1470 nm laser system in conjunction with the radial and diffusing fibers was employed to thermally coagulate the venous tissue. A goniometric measurement validated uniform and isotropic distribution of laser light in polar and longitudinal directions (i.e., normalized intensity = 0.84±0.08). The diffusing applicator induced a 20 % lower maximum temperature than the radial fiber did (maximum temperature = 79.2 °C for radial vs. 63.3 °C for diffusing). Due to higher irradiance, the radial fiber was associated with a transient temperature change of 5.9 °C/s, which was 1.5-fold faster than the diffusing applicator (i.e., 2.4 °C/s). However, the degree of cross-sectional area reduction in the veins was almost comparable for both the fibers (i.e., 53% for radial vs. 48% for diffusing). Due to longer irradiation length, the diffusing applicator demonstrated wider treatment coverage and less fiber speed-dependent. On account of easy pullback technique and uniform thermal effect, the proposed cylindrically diffusing applicator can be a feasible optical device to effectively treat varicose veins. Further in vivo studies will be performed to identify the complete removal of the vein disease and healing response of the venous tissue.

  18. Reproducibility of retinal nerve fiber layer thickness measures using eye tracking in children with nonglaucomatous optic neuropathy.

    PubMed

    Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Packer, Roger J; Avery, Robert A

    2015-01-01

    To determine the intra- and intervisit reproducibility of circumpapillary retinal nerve fiber layer (RNFL) thickness measures using eye tracking-assisted spectral-domain optical coherence tomography (SD OCT) in children with nonglaucomatous optic neuropathy. Prospective longitudinal study. Circumpapillary RNFL thickness measures were acquired with SD OCT using the eye-tracking feature at 2 separate study visits. Children with normal and abnormal vision (visual acuity ≥ 0.2 logMAR above normal and/or visual field loss) who demonstrated clinical and radiographic stability were enrolled. Intra- and intervisit reproducibility was calculated for the global average and 9 anatomic sectors by calculating the coefficient of variation and intraclass correlation coefficient. Forty-two subjects (median age 8.6 years, range 3.9-18.2 years) met inclusion criteria and contributed 62 study eyes. Both the abnormal and normal vision cohort demonstrated the lowest intravisit coefficient of variation for the global RNFL thickness. Intervisit reproducibility remained good for those with normal and abnormal vision, although small but statistically significant increases in the coefficient of variation were observed for multiple anatomic sectors in both cohorts. The magnitude of visual acuity loss was significantly associated with the global (ß = 0.026, P < .01) and temporal sector coefficient of variation (ß = 0.099, P < .01). SD OCT with eye tracking demonstrates highly reproducible RNFL thickness measures. Subjects with vision loss demonstrate greater intra- and intervisit variability than those with normal vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    PubMed

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  20. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion.

    PubMed

    Pirat, Bahar; Khoury, Dirar S; Hartley, Craig J; Tiller, Les; Rao, Liyun; Schulz, Daryl G; Nagueh, Sherif F; Zoghbi, William A

    2008-02-12

    The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking-incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function.

  1. Quantitative Characterization of Cell Behaviors through Cell Cycle Progression via Automated Cell Tracking

    PubMed Central

    Wang, Yuliang; Jeong, Younkoo; Jhiang, Sissy M.; Yu, Lianbo; Menq, Chia-Hsiang

    2014-01-01

    Cell behaviors are reflections of intracellular tension dynamics and play important roles in many cellular processes. In this study, temporal variations in cell geometry and cell motion through cell cycle progression were quantitatively characterized via automated cell tracking for MCF-10A non-transformed breast cells, MCF-7 non-invasive breast cancer cells, and MDA-MB-231 highly metastatic breast cancer cells. A new cell segmentation method, which combines the threshold method and our modified edge based active contour method, was applied to optimize cell boundary detection for all cells in the field-of-view. An automated cell-tracking program was implemented to conduct live cell tracking over 40 hours for the three cell lines. The cell boundary and location information was measured and aligned with cell cycle progression with constructed cell lineage trees. Cell behaviors were studied in terms of cell geometry and cell motion. For cell geometry, cell area and cell axis ratio were investigated. For cell motion, instantaneous migration speed, cell motion type, as well as cell motion range were analyzed. We applied a cell-based approach that allows us to examine and compare temporal variations of cell behavior along with cell cycle progression at a single cell level. Cell body geometry along with distribution of peripheral protrusion structures appears to be associated with cell motion features. Migration speed together with motion type and motion ranges are required to distinguish the three cell-lines examined. We found that cells dividing or overlapping vertically are unique features of cell malignancy for both MCF-7 and MDA-MB-231 cells, whereas abrupt changes in cell body geometry and cell motion during mitosis are unique to highly metastatic MDA-MB-231 cells. Taken together, our live cell tracking system serves as an invaluable tool to identify cell behaviors that are unique to malignant and/or highly metastatic breast cancer cells. PMID:24911281

  2. Plasma and radiation detection via fiber interferometry

    NASA Astrophysics Data System (ADS)

    Dolan, D. H.; Bell, K.; Fox, B.; Jones, S. C.; Knapp, P.; Gomez, M. R.; Martin, M.; Porwitzky, A.; Laity, G.

    2018-01-01

    Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. These changes can diagnose extreme environments in a flexible, time-resolved manner.

  3. Plasma and radiation detection via fiber interferometry

    DOE PAGES

    Dolan, D. H.; Bell, Kate Suzanne; Fox, Brian Philip; ...

    2018-01-17

    Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.

  4. Plasma and radiation detection via fiber interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, D. H.; Bell, Kate Suzanne; Fox, Brian Philip

    Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.

  5. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    PubMed

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  6. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  7. Cerium-doped scintillating fused-silica fibers

    NASA Astrophysics Data System (ADS)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  8. Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology.

    PubMed

    Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S

    2014-12-02

    Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Small Business Innovations (Fiber Optics)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  10. Tracking Polymer Cure Via Embedded Optical Fibers

    NASA Technical Reports Server (NTRS)

    Dean, David L.; Davidson, T. Fred

    1993-01-01

    Fourier-transform infrared spectroscopy applied in interior of specimen of material by bringing infrared light through specimen in optical fiber. Light interacts with material via evanescent-wave effect. Spectra obtained in this way at various times during curing process also combined with data from ultrasonic, thermographic, and dielectric-impedance monitoring, and other measurement techniques to obtain more complete characterization of progress of curing process.

  11. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    EPA Science Inventory

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  12. In-plane ultrasonic needle tracking using a fiber-optic hydrophone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Wenfeng, E-mail: wenfeng.xia@ucl.ac.uk; Desjardins, Adrien E.; Mari, Jean Martial

    Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction withmore » the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle

  13. Method and apparatus for imaging through 3-dimensional tracking of protons

    NASA Technical Reports Server (NTRS)

    Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)

    2001-01-01

    A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.

  14. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less

  15. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  16. Magnetically-induced solid-phase microextraction fiber actuation system for quantitative headspace and liquid sampling

    DOEpatents

    Harvey, Chris; Carter, Jerry; Chambers, David M.

    2017-05-23

    A magnetically-induced SPME fiber actuation system includes a SPME fiber holder and a SPME fiber holder actuator, for holding and magnetically actuating a SPME fiber assembly. The SPME fiber holder has a plunger with a magnetic material to which the SPME fiber assembly is connected, and the magnetic SPME fiber holder actuator has an elongated barrel with a loading chamber for receiving the SPME fiber assembly-connected SPME fiber holder, and an external magnet which induces axial motion of the magnetic material of the plunger to extend/retract the SPME fiber from/into the protective needle of the SPME fiber assembly.

  17. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  18. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  19. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  20. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  1. Asbestos quantification in track ballast, a complex analytical problem

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2016-04-01

    Track ballast forms the trackbeb upon which railroad ties are laid. It is used to bear the load from the railroad ties, to facilitate water drainage, and also to keep down vegetation. It is typically made of angular crushed stone, with a grain size between 30 and 60 mm, with good mechanical properties (high compressive strength, freeze - thaw resistance, resistance to fragmentation). The most common rock types are represented by basalts, porphyries, orthogneisses, some carbonatic rocks and "green stones" (serpentinites, prasinites, amphibolites, metagabbros). Especially "green stones" may contain traces, and sometimes appreciable amounts of asbestiform minerals (chrysotile and/or fibrous amphiboles, generally tremolite - actinolite). In Italy, the chrysotile asbestos mine in Balangero (Turin) produced over 5 Mt railroad ballast (crushed serpentinites), which was used for the railways in northern and central Italy, from 1930 up to 1990. In addition to Balangero, several other serpentinite and prasinite quarries (e.g. Emilia Romagna) provided the railways ballast up to the year 2000. The legal threshold for asbestos content in track ballast is established in 1000 ppm: if the value is below this threshold, the material can be reused, otherwise it must be disposed of as hazardous waste, with very high costs. The quantitative asbestos determination in rocks is a very complex analytical issue: although techniques like TEM-SAED and micro-Raman are very effective in the identification of asbestos minerals, a quantitative determination on bulk materials is almost impossible or really expensive and time consuming. Another problem is represented by the discrimination of asbestiform minerals (e.g. chrysotile, asbestiform amphiboles) from the common acicular - pseudo-fibrous varieties (lamellar serpentine minerals, prismatic/acicular amphiboles). In this work, more than 200 samples from the main Italian rail yards were characterized by a combined use of XRD and a special SEM

  2. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  3. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  4. Civil infrastructure monitoring for IVHS using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.

    1995-01-01

    8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.

  5. Optical Fiber Evaluation for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    McGouldrick, K.; Maywalt, J.; Engel, L.; Rhoads, B.; Andersen, D. R.; Ramsey, L. W.

    1998-12-01

    Two major facility instruments on the Hobby-Eberly telescope (HET) are fiber coupled: the high and medium resolution spectrographs. Understanding the behavior of the fibers with the HET is central to understanding the performance of the telescope/spectrograph system. We will describe the Penn State fiber evaluation facility which enables us to measure focal ratio degradation (FRD) and total throughput. We will present some typical data obtained using the HET focal ratio at the fiber input. The HET design has a roving pupil that changes the illumination pattern somewhat during the typical 1 hour tracking time on a target. We will describe our plans to simulate the HET input test the degree to which the varying pupil is scrambled by the fiber.

  6. Dynamics and mechanisms of asbestos-fiber aggregate growth in water

    NASA Astrophysics Data System (ADS)

    Wu, L.; Ortiz, C. P.; Jerolmack, D. J.

    2015-12-01

    Most colloidal particles including asbestos fibers form aggregates in water, when solution chemistry provides favorable conditions. To date, the growth of colloidal aggregates has been observed in many model systems under optical and scanning electron microscopy; however, all of these studies have used near-spherical particles. The highly elongated nature of asbestos fibers may cause anomalous aggregate growth and morphology, but this has never been examined. Although the exposure pathway of concern for asbestos is through the air, asbestos particles typically reside in soil that is at least partially saturated, and aggregates formed in the aqueous phase may influence the mobility of particles in the environment. Here we study solution-phase aggregation kinetics of asbestos fibers using a liquid-cell by in situ microscopy, over micron to centimeter length scales and from a tenth of a second to hours. We employ an elliptical particle tracking technique to determine particle trajectories and to quantify diffusivity. Experiments reveal that diffusing fibers join by cross linking, but that such linking is sometimes reversible. The resulting aggregates are very sparse and non-compact, with a fractal dimension that is lower than any previously reported value. Their morphology, growth rate and particle size distribution exhibit non-classical behavior that deviates significantly from observations of aggregates composed of near-spherical particles. We also perform experiments using synthetic colloidal particles, and compare these to asbestos in order to separate the controls of particle shape vs. material properties. This direct method for quantitatively observing aggregate growth is a first step toward predicting asbestos fiber aggregate size distributions in the environment. Moreover, many emerging environmental contaminants - such as carbon nanotubes - are elongated colloids, and our work suggests that theories for aggregate growth may need to be modified in order to

  7. Development of Fiber Reinforced Track Pad Materials

    DTIC Science & Technology

    1986-04-01

    Transfer and Vulcanization of Rubber , I.R.I. Monograph, Elsevier, 1971. 12 Bergstrom, E.W., " Wear Resistant Rubber Tank Track Pads," Rock Island Arsenal...Fracture Mechanics to Rubber Articles, Including Tyres ," Phil. Trans. R. Soc. Lond. A299,,189-202 (1981). 10 Gent, Fielding-Russell, Livingston, and...System for Rubber Bonded to Brass-Plated Steel Tyre Cord," NR Technology, vol 11, Part 2, 1980, pp 21-27. 16 Lindley, P.B., Engineering Design with

  8. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  9. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    PubMed

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 78 FR 52166 - Quantitative Messaging Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... COMMODITY FUTURES TRADING COMMISSION Quantitative Messaging Research AGENCY: Commodity Futures... survey will follow qualitative message testing research (for which CFTC received fast-track OMB approval... message testing research (for which CFTC received fast-track OMB approval) and is necessary to identify...

  11. Experiments and analysis of tunable monolithic 1- μm single-frequency fiber lasers with loop mirror filters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.

  12. Design of a tracking device for on-line dose monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.

    2017-02-01

    Hadrontherapy is a technique for cancer treatment that exploits ion beams (mostly protons and carbons). A critical issue is the accuracy that is achievable when monitoring the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a tracking device, developed in the framework of the INSIDE project [1], capable of monitoring in real time the longitudinal profile of the dose delivered in the patient. This is possible by detecting the secondary particles produced by the interaction of the beam in the tissues. The position of the Bragg peak can be correlated to the charged particles emission point distribution measurement. The tracking device will be able to provide a fast response on the dose pattern by tracking the secondary charged fragments. The tracks are detected using 6 planes of scintillating fibers, providing the 3D coordinates of the track intersection with each plane. The fibers planes are followed by a plastic scintillator and by a small calorimeter built with a pixelated Lutetium Fine Silicate (LFS) crystal. A complete detector simulation, followed by the event reconstruction, has been performed to determine the achievable monitoring spatial resolution.

  13. Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking.

    PubMed

    Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2018-05-01

    Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p < 0.05). Differences in iodine concentrations between healthy pancreatic tissue and carcinoma were statistically significant for DECT acquisitions corresponding to trigger delays of 15-21 s (p < 0.05). An acquisition window between 15 and 21 s after exceeding bolus tracking threshold shows promising results for acquisition of DECT iodine maps as an alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT

  14. Thermal tuning On narrow linewidth fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  15. Analysis and Derivation of Allocations for Fiber Contaminants in Liquid Bipropellant Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, N. M; ibrahim, K. Y.

    2012-01-01

    An analysis was performed to identify the engineering rationale for the existing particulate limits in MSFC-SPEC-164, Cleanliness of Components for Use in Oxygen, Fuel, and Pneumatic Systems, determine the applicability of this rationale to fibers, identify potential risks that may result from fiber contamination in liquid oxygen/fuel bipropellant systems, and bound each of these risks. The objective of this analysis was to determine whether fiber contamination exceeding the established quantitative limits for particulate can be tolerated in these systems and, if so, to derive and recommend quantitative allocations for fibers beyond the limits established for other particulate. Knowledge gaps were identified that limit a complete understanding of the risk of promoted ignition from an accumulation of fibers in a gaseous oxygen system.

  16. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  17. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  18. Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy

    PubMed Central

    Waechter, Helen; Litman, Jessica; Cheung, Adrienne H.; Barnes, Jack A.; Loock, Hans-Peter

    2010-01-01

    Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared. PMID:22294895

  19. 78 FR 64202 - Quantitative Messaging Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... COMMODITY FUTURES TRADING COMMISSION Quantitative Messaging Research AGENCY: Commodity Futures... survey will follow qualitative message testing research (for which CFTC received fast- track OMB approval... comments. Please submit your comments using only one method and identify that it is for the ``Quantitative...

  20. The impact of white matter fiber orientation in single-acquisition quantitative susceptibility mapping.

    PubMed

    Lancione, Marta; Tosetti, Michela; Donatelli, Graziella; Cosottini, Mirco; Costagli, Mauro

    2017-11-01

    The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MRI). Multi-echo, gradient-echo sequences were used to obtain quantitative maps of frequency shift (FS) and χ. Information from diffusion tensor imaging (DTI) was used to investigate the relationship between tissue orientation and FS measures and QSM. After sorting voxels on the basis of their fractional anisotropy (FA), the variations in FS and χ values over tissue orientation were measured. Using a K-means clustering algorithm, voxels were separated into two groups depending on the variability of measures within each FA interval. The consistency of FS and QSM values, observed at low FA, was disrupted for FA > 0.6. The standard deviation of χ measured at high FA (0.0103 ppm) was nearly five times that at low FA (0.0022 ppm). This result was consistent through data across different head positions and for different brain regions considered separately, which confirmed that such behavior does not depend on structures with different bulk susceptibility oriented along particular angles. The reliability of single-orientation QSM anticorrelates with local FA. QSM provides replicable values with little variability in brain regions with FA < 0.6, but QSM should be interpreted cautiously in major and coherent fiber bundles, which are strongly affected by structural anisotropy and magnetic susceptibility anisotropy. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.

    2017-06-01

    In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over

  2. TrackMate: An open and extensible platform for single-particle tracking.

    PubMed

    Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W

    2017-02-15

    We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our

  4. The use of a tracking test battery in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.

    1973-01-01

    A number of tracking tasks that have proven useful to control engineers and psychologists measuring skilled performance have been evaluated for clinical use. Normal subjects as well as patients with previous diagnoses of Parkinson's disease, multiple sclerosis, and cerebral palsy were used in the evaluation. The tests that were studied included step tracking, random tracking, and critical tracking. The results of the present experiments encourage the continued use of tracking tasks as assessment precedures in a clinical environment. They have proven to be reliable, valid, and sensitive measures of neurological function.

  5. Ceramic Fiber Structures for Cryogenic Load-Bearing Applications

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Eckel, Andrew J.

    2009-01-01

    This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.

  6. Anatomy of the Limbic White Matter Tracts as Revealed by Fiber Dissection and Tractography.

    PubMed

    Pascalau, Raluca; Popa Stănilă, Roxana; Sfrângeu, Silviu; Szabo, Bianca

    2018-05-01

    The limbic tracts are involved in crucial cerebral functions such as memory, emotion, and behavior. The complex architecture of the limbic circuit makes it harder to approach compared with other white matter networks. Our study aims to describe the 3-dimensional anatomy of the limbic white matter by the use of 2 complementary study methods, namely ex vivo fiber dissection and in vivo magnetic resonance imaging-based tractography. Three fiber dissection protocols were performed using blunt wooden instruments and a surgical microscope on formalin-fixed brains prepared according to the Klingler method. Diffusion tensor imaging acquisitions were done with a 3-Tesla magnetic resonance scanner on patients with head and neck pathology that did not involve the brain. Fiber tracking was performed with manually selected regions of interest. Cingulum, fornix, the anterior thalamic peduncle, the accumbofrontal bundle, medial forebrain bundle, the uncinate fasciculus, the mammillothalamic tract, ansa peduncularis, and stria terminalis were dissected and fiber tracked. For each tract, location, configuration, segmentation, dimensions, dissection and tractography particularities, anatomical relations, and terminations are described. The limbic white matter tracts were systematized as 2 concentric rings around the thalamus. The inner ring is formed by fornix, mammillothalamic tract, ansa peduncularis, stria terminalis, accumbofrontal fasciculus, and medial forebrain bundle and anterior thalamic peduncle, and the outer ring is formed by the cingulum and uncinate fasciculus. This paper proposes a fiber-tracking protocol for the limbic tracts inspired and validated by fiber dissection findings that can be used routinely in the clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber.

    PubMed

    Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V

    2015-09-01

    A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.

  8. Low-residue and low-fiber diets in gastrointestinal disease management.

    PubMed

    Vanhauwaert, Erika; Matthys, Christophe; Verdonck, Lies; De Preter, Vicky

    2015-11-01

    Recently, low-residue diets were removed from the American Academy of Nutrition and Dietetics' Nutrition Care Manual due to the lack of a scientifically accepted quantitative definition and the unavailability of a method to estimate the amount of food residue produced. This narrative review focuses on defining the similarities and/or discrepancies between low-residue and low-fiber diets and on the diagnostic and therapeutic values of these diets in gastrointestinal disease management. Diagnostically, a low-fiber/low-residue diet is used in bowel preparation. A bowel preparation is a cleansing of the intestines of fecal matter and secretions conducted before a diagnostic procedure. Therapeutically, a low-fiber/low-residue diet is part of the treatment of acute relapses in different bowel diseases. The available evidence on low-residue and low-fiber diets is summarized. The main findings showed that within human disease research, the terms "low residue" and "low fiber" are used interchangeably, and information related to the quantity of residue in the diet usually refers to the amount of fiber. Low-fiber/low-residue diets are further explored in both diagnostic and therapeutic situations. On the basis of this literature review, the authors suggest redefining a low-residue diet as a low-fiber diet and to quantitatively define a low-fiber diet as a diet with a maximum of 10 g fiber/d. A low-fiber diet instead of a low-residue diet is recommended as a diagnostic value or as specific therapy for gastrointestinal conditions. © 2015 American Society for Nutrition.

  9. Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.

    PubMed

    Sebe, István; Kállai-Szabó, Barnabás; Kovács, Krisztián Norbert; Szabadi, Enikő; Zelkó, Romána

    2015-01-01

    The application of high-speed rotary spinning can offer a useful mean for either preparation of fibrous intermediate for conventional dosage forms or drug delivery systems. Polyvinylpyrrolidone (PVP) and poly(vinylpyrrolidone-vinylacetate) (PVP VA) micro- and nanofibers of different polymer concentrations and solvent ratios were prepared with a high-speed rotary spinning technique. In order to study the influence of parameters that enable successful fiber production from polymeric viscous solutions, a complex micro- and macrostructural screening method was implemented. The obtained fiber mats were subjected to detailed morphological analysis using scanning electron microscope (SEM), and rheological measurements while the microstructural changes of fiber samples, based on the free volume changes, was analyzed by positron annihilation lifetime spectroscopy (PALS) and compared with their mechanical characteristics. The plasticizing effect of water tracked by ortho-positronium lifetime changes in relation to the mechanical properties of fibers. A concentration range of polyvinylpyrrolidone solutions was defined for the preparation of fibers of optimum fiber morphology and mechanical properties. The method enabled fiber formulation of advantageous functionality-related properties for further formulation of solid dosage forms.

  10. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population.

    PubMed

    Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa

    2013-01-01

    Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

  11. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation.

    PubMed

    Mekkaoui, Choukri; Huang, Shuning; Chen, Howard H; Dai, Guangping; Reese, Timothy G; Kostis, William J; Thiagalingam, Aravinda; Maurovich-Horvat, Pal; Ruskin, Jeremy N; Hoffmann, Udo; Jackowski, Marcel P; Sosnovik, David E

    2012-10-12

    The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p < 0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03° ± 2.94° in normal hearts to -37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following

  12. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study.

    PubMed

    McCleary, Barry V; DeVries, Jonathan W; Rader, Jeanne I; Cohen, Gerald; Prosky, Leon; Mugford, David C; Champ, Martine; Okuma, Kazuhiro

    2010-01-01

    A method for the determination of total dietary fiber (TDF), as defined by the CODEX Alimentarius, was validated in foods. Based upon the principles of AOAC Official Methods 985.29, 991.43, 2001.03, and 2002.02, the method quantitates high- and low-molecular-weight dietary fiber (HMWDF and LMWDF, respectively). In 2007, McCleary described a method of extended enzymatic digestion at 37 degrees C to simulate human intestinal digestion followed by gravimetric isolation and quantitation of HMWDF and the use of LC to quantitate low-molecular-weight soluble dietary fiber (LMWSDF). The method thus quantitates the complete range of dietary fiber components from resistant starch (by utilizing the digestion conditions of AOAC Method 2002.02) to digestion resistant oligosaccharides (by incorporating the deionization and LC procedures of AOAC Method 2001.03). The method was evaluated through an AOAC collaborative study. Eighteen laboratories participated with 16 laboratories returning valid assay data for 16 test portions (eight blind duplicates) consisting of samples with a range of traditional dietary fiber, resistant starch, and nondigestible oligosaccharides. The dietary fiber content of the eight test pairs ranged from 11.57 to 47.83%. Digestion of samples under the conditions of AOAC Method 2002.02 followed by the isolation and gravimetric procedures of AOAC Methods 985.29 and 991.43 results in quantitation of HMWDF. The filtrate from the quantitation of HMWDF is concentrated, deionized, concentrated again, and analyzed by LC to determine the LMWSDF, i.e., all nondigestible oligosaccharides of degree of polymerization > or =3. TDF is calculated as the sum of HMWDF and LMWSDF. Repeatability standard deviations (Sr) ranged from 0.41 to 1.43, and reproducibility standard deviations (S(R)) ranged from 1.18 to 5.44. These results are comparable to other official dietary fiber methods, and the method is recommended for adoption as Official First Action.

  13. Fiber tractography using machine learning.

    PubMed

    Neher, Peter F; Côté, Marc-Alexandre; Houde, Jean-Christophe; Descoteaux, Maxime; Maier-Hein, Klaus H

    2017-09-01

    We present a fiber tractography approach based on a random forest classification and voting process, guiding each step of the streamline progression by directly processing raw diffusion-weighted signal intensities. For comparison to the state-of-the-art, i.e. tractography pipelines that rely on mathematical modeling, we performed a quantitative and qualitative evaluation with multiple phantom and in vivo experiments, including a comparison to the 96 submissions of the ISMRM tractography challenge 2015. The results demonstrate the vast potential of machine learning for fiber tractography. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.

    PubMed

    Yetisen, Ali K; Jiang, Nan; Fallahi, Afsoon; Montelongo, Yunuen; Ruiz-Esparza, Guillermo U; Tamayol, Ali; Zhang, Yu Shrike; Mahmood, Iram; Yang, Su-A; Kim, Ki Su; Butt, Haider; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-04-01

    Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dynamic evolution of the spectrum of long-period fiber Bragg gratings fabricated from hydrogen-loaded optical fiber by ultraviolet laser irradiation.

    PubMed

    Fujita, Keio; Masuda, Yuji; Nakayama, Keisuke; Ando, Maki; Sakamoto, Kenji; Mohri, Jun-pei; Yamauchi, Makoto; Kimura, Masanori; Mizutani, Yasuo; Kimura, Susumu; Yokouchi, Takashi; Suzaki, Yoshifumi; Ejima, Seiki

    2005-11-20

    Long-period fiber Bragg gratings fabricated by exposure of hydrogen-loaded fiber to UV laser light exhibit large-scale dynamic evolution for approximately two weeks at room temperature. During this time two distinct features show up in their spectrum: a large upswing in wavelength and a substantial deepening of the transmission minimum. The dynamic evolution of the transmission spectrum is explained quantitatively by use of Malo's theory of UV-induced quenching [Electron. Lett. 30, 442 (1994)] followed by refilling of hydrogen in the fiber core and the theory of hydrogen diffusion in the fiber material. The amount of hydrogen quenched by the UV irradiation is 6% of the loaded hydrogen.

  16. Pulmonary and pleural responses in Fischer 344 rats following short-term inhalation of a synthetic vitreous fiber. I. Quantitation of lung and pleural fiber burdens.

    PubMed

    Gelzleichter, T R; Bermudez, E; Mangum, J B; Wong, B A; Everitt, J I; Moss, O R

    1996-03-01

    The pleura is an important target tissue of fiber-induced disease, although it is not known whether fibers must be in direct contact with pleural cells to exert pathologic effects. In the present study, we determined the kinetics of fiber movement into pleural tissues of rats following inhalation of RCF-1, a ceramic fiber previously shown to induce neoplasms in the lung and pleura of rats. Male Fischer 344 rats were exposed by nose-only inhalation to RCF-1 at 89 mg/m3 (2645 WHO fibers/cc), 6 hr/day for 5 consecutive days. On Days 5 and 32, thoracic tissues were analyzed to determine pulmonary and pleural fiber burdens. Mean fiber counts were 22 x 10(6)/lung (25 x 10(3)/pleura) at Day 5 and 18 x 10(6)/lung (16 x 10(3)/pleura) at Day 32. Similar geometric mean lengths (GML) and diameters (GMD) of pulmonary fiber burdens were observed at both time points. Values were 5 microns for GML (geometric standard deviation GSD approximately 2.3) and 0.3 micron for GMD (GSD approximately 1.9), with correlations between length and diameter (tau) of 0.2-0.3. Size distributions of pleural fiber burdens at both time points were approximately 1.5 microns GML (GSD approximately 2.0) and 0.09 micron GMD (GSD approximately 1.5; tau approximately 0.2-0.5). Few fibers longer than 5 microns were observed at either time point. These findings demonstrate that fibers can rapidly translocate to pleural tissues. However, only short, thin (< 5 microns in length) fibers could be detected over the 32-day time course of the experiment.

  17. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    PubMed

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  19. Displacement monitoring of switch track and its slab on a bridge of high speed railway by FBG

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Li, He; Cheng, Jian; Huang, Xiaomei; Pan, Jianjun; Zhou, Ciming; Yang, Minghong

    2011-05-01

    In a 350km/h high speed railway line, there is a seamless switch with ballastless slabs built on a bridge. 54 Fiber Bragg Grating detecting cells are employed to monitor the displacement of track and slab. The cell is of extending function of measurement range, up to 50mm displacement, and is of good linearity. Protecting methods for cells and fiber are adopted to keep them surviving from the harsh conditions. The results show that in 75 days, the displacement of the track and sleeper slab was 8-9mm, and the displacement is of high correlation with daily environmental temperature change.

  20. Hollow fiber: a biophotonic implant for live cells

    NASA Astrophysics Data System (ADS)

    Silvestre, Oscar F.; Holton, Mark D.; Summers, Huw D.; Smith, Paul J.; Errington, Rachel J.

    2009-02-01

    The technical objective of this study has been to design, build and validate biocompatible hollow fiber implants based on fluorescence with integrated biophotonics components to enable in fiber kinetic cell based assays. A human osteosarcoma in vitro cell model fiber system has been established with validation studies to determine in fiber cell growth, cell cycle analysis and organization in normal and drug treated conditions. The rationale for implant development have focused on developing benchmark concepts in standard monolayer tissue culture followed by the development of in vitro hollow fiber designs; encompassing imaging with and without integrated biophotonics. Furthermore the effect of introducing targetable biosensors into the encapsulated tumor implant such as quantum dots for informing new detection readouts and possible implant designs have been evaluated. A preliminary micro/macro imaging approach has been undertaken, that could provide a mean to track distinct morphological changes in cells growing in a 3D matrix within the fiber which affect the light scattering properties of the implant. Parallel engineering studies have showed the influence of the optical properties of the fiber polymer wall in all imaging modes. Taken all together, we show the basic foundation and the opportunities for multi-modal imaging within an in vitro implant format.

  1. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  2. Evaluation of micron size carbon fibers released from burning graphite composites

    NASA Technical Reports Server (NTRS)

    Sussholz, B.

    1980-01-01

    Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.

  3. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  4. Low-Residue and Low-Fiber Diets in Gastrointestinal Disease Management12

    PubMed Central

    Vanhauwaert, Erika; Matthys, Christophe; Verdonck, Lies; De Preter, Vicky

    2015-01-01

    Recently, low-residue diets were removed from the American Academy of Nutrition and Dietetics’ Nutrition Care Manual due to the lack of a scientifically accepted quantitative definition and the unavailability of a method to estimate the amount of food residue produced. This narrative review focuses on defining the similarities and/or discrepancies between low-residue and low-fiber diets and on the diagnostic and therapeutic values of these diets in gastrointestinal disease management. Diagnostically, a low-fiber/low-residue diet is used in bowel preparation. A bowel preparation is a cleansing of the intestines of fecal matter and secretions conducted before a diagnostic procedure. Therapeutically, a low-fiber/low-residue diet is part of the treatment of acute relapses in different bowel diseases. The available evidence on low-residue and low-fiber diets is summarized. The main findings showed that within human disease research, the terms “low residue” and “low fiber” are used interchangeably, and information related to the quantity of residue in the diet usually refers to the amount of fiber. Low-fiber/low-residue diets are further explored in both diagnostic and therapeutic situations. On the basis of this literature review, the authors suggest redefining a low-residue diet as a low-fiber diet and to quantitatively define a low-fiber diet as a diet with a maximum of 10 g fiber/d. A low-fiber diet instead of a low-residue diet is recommended as a diagnostic value or as specific therapy for gastrointestinal conditions. PMID:26567203

  5. High-Definition Fiber Tractography in the Evaluation and Surgical Planning of Lhermitte-Duclos Disease: A Case Report.

    PubMed

    Fernandes-Cabral, David T; Zenonos, Georgios A; Hamilton, Ronald L; Panesar, Sandip S; Fernandez-Miranda, Juan C

    2016-08-01

    Preoperative delineation of normal tissue displacement patterns in Lhermitte-Duclos disease has not been feasible with conventional imaging means. Surgical resection of this type of lesion remains challenging, because the boundaries of the lesion are indistinguishable during surgery. The clinical presentation, preoperative and postoperative magnetic resonance imaging (MRI) findings, high-definition fiber tractography (HDFT) and histopathological studies, are presented in a 46-year-old male subject with symptomatic Lhermitte-Duclos disease. HDFT was performed using a quantitative anisotropy-based generalized deterministic tracking algorithm to define fiber tracts. Displacement of the cerebellar and brainstem tracts on the affected side was performed using the unaffected contralateral side as a comparison. The displacement of the normal tissues was not apparent on preoperative MRI but was immediately evident on the preoperative HDFT. Of note, there was a relative paucity of fiber tracts within the lesion. By tailoring our operative boundaries based on the HDFT findings, we were able to spare the displaced fiber tracts when debulking the tumor. Restoration of normal fiber tract anatomy on postoperative HDFT imaging was correlated with clinical resolution of preoperative symptoms. This case report suggests that HDFT may be a powerful surgical planning tool in cases of Lhermitte-Duclos disease, in which the pattern of normal tissue displacement is not evident with conventional imaging, allowing maximal lesion resection without damage to the unaffected tracts. Therefore, this report contributes to solving the greatest challenge when operating on this type of lesion, which has not been resolved in any previous report in our review of the English literature. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  7. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.

    PubMed

    Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  8. Periventricular Nodular Heterotopia: Detection of Abnormal Microanatomic Fiber Structures with Whole-Brain Diffusion MR Imaging Tractography.

    PubMed

    Farquharson, Shawna; Tournier, J-Donald; Calamante, Fernando; Mandelstam, Simone; Burgess, Rosemary; Schneider, Michal E; Berkovic, Samuel F; Scheffer, Ingrid E; Jackson, Graeme D; Connelly, Alan

    2016-12-01

    Purpose To investigate whether it is possible in patients with periventricular nodular heterotopia (PVNH) to detect abnormal fiber projections that have only previously been reported in the histopathology literature. Materials and Methods Whole-brain diffusion-weighted (DW) imaging data from 14 patients with bilateral PVNH and 14 age- and sex-matched healthy control subjects were prospectively acquired by using 3.0-T magnetic resonance (MR) imaging between August 1, 2008, and December 5, 2012. All participants provided written informed consent. The DW imaging data were processed to generate whole-brain constrained spherical deconvolution (CSD)-based tractography data and super-resolution track-density imaging (TDI) maps. The tractography data were overlaid on coregistered three-dimensional T1-weighted images to visually assess regions of heterotopia. A panel of MR imaging researchers independently assessed each case and indicated numerically (no = 1, yes = 2) as to the presence of abnormal fiber tracks in nodular tissue. The Fleiss κ statistical measure was applied to assess the reader agreement. Results Abnormal fiber tracks emanating from one or more regions of heterotopia were reported by all four readers in all 14 patients with PVNH (Fleiss κ = 1). These abnormal structures were not visible on the tractography data from any of the control subjects and were not discernable on the conventional T1-weighted images of the patients with PVNH. Conclusion Whole-brain CSD-based fiber tractography and super-resolution TDI mapping reveals abnormal fiber projections in nodular tissue suggestive of abnormal organization of white matter (with abnormal fibers both within nodules and projecting to the surrounding white matter) in patients with bilateral PVNH. © RSNA, 2016.

  9. A Quantitative Comparison of Single-Dye Tracking Analysis Tools Using Monte Carlo Simulations

    PubMed Central

    McColl, James; Irvine, Kate L.; Davis, Simon J.; Gay, Nicholas J.; Bryant, Clare E.; Klenerman, David

    2013-01-01

    Single-particle tracking (SPT) is widely used to study processes from membrane receptor organization to the dynamics of RNAs in living cells. While single-dye labeling strategies have the benefit of being minimally invasive, this comes at the expense of data quality; typically a data set of short trajectories is obtained and analyzed by means of the mean square displacements (MSD) or the distribution of the particles’ displacements in a set time interval (jump distance, JD). To evaluate the applicability of both approaches, a quantitative comparison of both methods under typically encountered experimental conditions is necessary. Here we use Monte Carlo simulations to systematically compare the accuracy of diffusion coefficients (D-values) obtained for three cases: one population of diffusing species, two populations with different D-values, and a population switching between two D-values. For the first case we find that the MSD gives more or equally accurate results than the JD analysis (relative errors of D-values <6%). If two diffusing species are present or a particle undergoes a motion change, the JD analysis successfully distinguishes both species (relative error <5%). Finally we apply the JD analysis to investigate the motion of endogenous LPS receptors in live macrophages before and after treatment with methyl-β-cyclodextrin and latrunculin B. PMID:23737978

  10. A quantitative comparison of single-dye tracking analysis tools using Monte Carlo simulations.

    PubMed

    Weimann, Laura; Ganzinger, Kristina A; McColl, James; Irvine, Kate L; Davis, Simon J; Gay, Nicholas J; Bryant, Clare E; Klenerman, David

    2013-01-01

    Single-particle tracking (SPT) is widely used to study processes from membrane receptor organization to the dynamics of RNAs in living cells. While single-dye labeling strategies have the benefit of being minimally invasive, this comes at the expense of data quality; typically a data set of short trajectories is obtained and analyzed by means of the mean square displacements (MSD) or the distribution of the particles' displacements in a set time interval (jump distance, JD). To evaluate the applicability of both approaches, a quantitative comparison of both methods under typically encountered experimental conditions is necessary. Here we use Monte Carlo simulations to systematically compare the accuracy of diffusion coefficients (D-values) obtained for three cases: one population of diffusing species, two populations with different D-values, and a population switching between two D-values. For the first case we find that the MSD gives more or equally accurate results than the JD analysis (relative errors of D-values <6%). If two diffusing species are present or a particle undergoes a motion change, the JD analysis successfully distinguishes both species (relative error <5%). Finally we apply the JD analysis to investigate the motion of endogenous LPS receptors in live macrophages before and after treatment with methyl-β-cyclodextrin and latrunculin B.

  11. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  12. Quantitative validation of carbon-fiber laminate low velocity impact simulations

    DOE PAGES

    English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.

    2015-09-26

    Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less

  13. Micro-heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls

    USDA-ARS?s Scientific Manuscript database

    Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...

  14. Micro-Heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls

    USDA-ARS?s Scientific Manuscript database

    Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...

  15. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  16. Brain white matter fiber estimation and tractography using Q-ball imaging and Bayesian MODEL.

    PubMed

    Lu, Meng

    2015-01-01

    Diffusion tensor imaging allows for the non-invasive in vivo mapping of the brain tractography. However, fiber bundles have complex structures such as fiber crossings, fiber branchings and fibers with large curvatures that tensor imaging (DTI) cannot accurately handle. This study presents a novel brain white matter tractography method using Q-ball imaging as the data source instead of DTI, because QBI can provide accurate information about multiple fiber crossings and branchings in a single voxel using an orientation distribution function (ODF). The presented method also uses graph theory to construct the Bayesian model-based graph, so that the fiber tracking between two voxels can be represented as the shortest path in a graph. Our experiment showed that our new method can accurately handle brain white matter fiber crossings and branchings, and reconstruct brain tractograhpy both in phantom data and real brain data.

  17. On charged particle tracks in cellulose nitrate and Lexan

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1972-01-01

    Investigations were performed aimed at developing plastic nuclear track detectors into quantitative tools for recording and measuring multicharged, heavy particles. Accurate track etch rate measurements as a function of LET were performed for cellulose nitrate and Lexan plastic detectors. This was done using a variety of incident charged particle types and energies. The effect of aging of latent tracks in Lexan in different gaseous atmospheres was investigated. Range distributions of high energy N-14 particle bevatron beams in nuclear emulsion were measured. Investigation of charge resolution and Bragg peak measurements were carried out using plastic nuclear track detectors.

  18. Does Perception of Dietary Fiber Mediate the Impact of Nutrition Knowledge on Eating Fiber-Rich Bread?

    PubMed Central

    Królak, Maria; Jeżewska-Zychowicz, Marzena; Sajdakowska, Marta; Gębski, Jerzy

    2017-01-01

    The average daily intake of fiber is still too low in relation to nutritional recommendations, as was found in several studies. Therefore, it is necessary to recommend ways to increase fiber intake in the diet. Increasing the consumption of bread rich in fiber as a substitute of white bread is one of the ways to increase fiber intake. The aim of this study was to find out whether nutrition knowledge and perception of dietary fiber affected the frequency of eating wholemeal bread and white bread fortified with fiber. The data were collected in 2014 through a cross-sectional quantitative survey that was performed under the Bioproduct project among a group of 1013 Polish adults. The associations between variables were investigated using multiple regression analysis. The respondents’ general knowledge on nutrition influenced their knowledge on fiber intake (correlation coefficient r = 0.30). Respondents with a greater knowledge perceived higher benefits of consuming cereal products that were fortified with fiber (r = 0.78), and attached greater importance to the information on the label (r = 0.39) as well. The nutrition knowledge determined the familiarity with fiber-enriched bread and the consumption of this product (r = 0.40) to a greater degree than the frequency of wholemeal bread consumption (r = −0.10). The respondents’ perception of dietary fiber was observed to play a partial mediation role between the knowledge on nutrition and the consumption of both kinds of breads, suggesting that it can be an important predictor of bread consumption. To increase the consumption of bread that is rich in fiber, emphasis should be laid on specific information on fiber, referring to food products as well as on individual’s perception of those products. The said information should be reinforced along with overall communication regarding nutrition to influence the bread-related decisions. PMID:29144429

  19. Does Perception of Dietary Fiber Mediate the Impact of Nutrition Knowledge on Eating Fiber-Rich Bread?

    PubMed

    Królak, Maria; Jeżewska-Zychowicz, Marzena; Sajdakowska, Marta; Gębski, Jerzy

    2017-11-16

    The average daily intake of fiber is still too low in relation to nutritional recommendations, as was found in several studies. Therefore, it is necessary to recommend ways to increase fiber intake in the diet. Increasing the consumption of bread rich in fiber as a substitute of white bread is one of the ways to increase fiber intake. The aim of this study was to find out whether nutrition knowledge and perception of dietary fiber affected the frequency of eating wholemeal bread and white bread fortified with fiber. The data were collected in 2014 through a cross-sectional quantitative survey that was performed under the Bioproduct project among a group of 1013 Polish adults. The associations between variables were investigated using multiple regression analysis. The respondents' general knowledge on nutrition influenced their knowledge on fiber intake (correlation coefficient r = 0.30). Respondents with a greater knowledge perceived higher benefits of consuming cereal products that were fortified with fiber ( r = 0.78), and attached greater importance to the information on the label ( r = 0.39) as well. The nutrition knowledge determined the familiarity with fiber-enriched bread and the consumption of this product ( r = 0.40) to a greater degree than the frequency of wholemeal bread consumption ( r = -0.10). The respondents' perception of dietary fiber was observed to play a partial mediation role between the knowledge on nutrition and the consumption of both kinds of breads, suggesting that it can be an important predictor of bread consumption. To increase the consumption of bread that is rich in fiber, emphasis should be laid on specific information on fiber, referring to food products as well as on individual's perception of those products. The said information should be reinforced along with overall communication regarding nutrition to influence the bread-related decisions.

  20. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Tracking-Learning-Detection.

    PubMed

    Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri

    2012-07-01

    This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

  2. Rigid Amorphous Fraction in PLA Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Ma, Qian; Simona Cozza, Erika; Pyda, Marek; Mao, Bin; Zhu, Yazhe; Monticelli, Orietta

    2013-03-01

    Electrospun fibers of poly(lactic acid) (PLA) were formed by adopting a high-speed rotating wheel as the counter-electrode. The molecular orientation, crystallization mechanism, and phase structure and transitions of the aligned ES fibers were investigated. Using thermal analysis and wide angle X-ray scattering (WAXS), we evaluated the confinement that exists in as-spun amorphous, and heat-treated semicrystalline, fibers. Differential scanning calorimetry confirmed the existence of a constrained amorphous phase in as-spun aligned fibers, without the presence of crystals or fillers to serve as fixed physical constraints. Using WAXS, for the first time the mesophase fraction, consisting of oriented amorphous PLA chains, was quantitatively characterized in nanofibers. The authors acknowledge support from the National Science Foundation, Polymers Program under grant DMR-0602473. ESC acknowledges a Ph.D. grant supported by Italian Ministry of Education and Scientific Research.

  3. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  4. Quantitative Finance

    NASA Astrophysics Data System (ADS)

    James, Jessica

    2017-01-01

    Quantitative finance is a field that has risen to prominence over the last few decades. It encompasses the complex models and calculations that value financial contracts, particularly those which reference events in the future, and apply probabilities to these events. While adding greatly to the flexibility of the market available to corporations and investors, it has also been blamed for worsening the impact of financial crises. But what exactly does quantitative finance encompass, and where did these ideas and models originate? We show that the mathematics behind finance and behind games of chance have tracked each other closely over the centuries and that many well-known physicists and mathematicians have contributed to the field.

  5. Controlling Fiber Morphology in Simultaneous Centrifugal Spinning and Photopolymerization

    NASA Astrophysics Data System (ADS)

    Fang, Yichen; Dulaney, Austin; Ellison, Christopher

    2015-03-01

    Current synthetic fiber manufacturing technologies use either solvent or heat to transform a solid preformed polymer into a liquid before applying a force to draw the liquid into fiber. While the use of solvent poses concerns regarding process safety and environmental impact, the use of heat may also lead to polymer degradation and excessive energy consumption. To address these critical challenges, here we present an alternative fiber manufacturing method that encompasses extruding a monomer solution through an orifice, drawing it using centrifugal Forcespinning and polymerizing the monomer jet into solid fiber in flight using UV initiated thiol-ene chemistry. This method not only negates the use of both heat and solvent, but also produces fibers that are highly crosslinked, mechanically robust, and thermally stable. In this process, the balance between curing kinetics, fiber flight time, and solution viscoelasticity is essential. Studies were conducted to quantitatively investigate the effect of these factors on fiber formation and morphology. An operating diagram was developed to show how the intricate interplay of these factors led to the formation of smooth fibers and other undesirable fiber defects, such as beads-on-string, fused fibers, and droplets.

  6. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    PubMed Central

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  7. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    DOE PAGES

    Rodriguez, George; Gilbertson, Steve Michael

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  8. Application of probabilistic fiber-tracking method of MR imaging to measure impact of cranial irradiation on structural brain connectivity in children treated for medulloblastoma

    NASA Astrophysics Data System (ADS)

    Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar

    2016-03-01

    We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.

  9. Fiber fuse behavior in kW-level continuous-wave double-clad field laser

    NASA Astrophysics Data System (ADS)

    Jun-Yi, Sun; Qi-Rong, Xiao; Dan, Li; Xue-Jiao, Wang; Hai-Tao, Zhang; Ma-Li, Gong; Ping, Yan

    2016-01-01

    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. Project supported by the Key Laboratory of Science and Technology on High Energy Laser and China Academy of Engineering Physics (Grant No. 2014HEL02) and the National Natural Science Foundation of China (Grant No. 61307057).

  10. SIFTER: Scintillating Fiber Telescopes for Energetic Radiation, Gamma-Ray Applications

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2002-01-01

    The research project "SIFTER: Scintillating Fiber Telescopes for Energetic Radiation, Gamma-Ray Applications" approved under the NASA High Energy Astrophysics Research Program. The principal investigator of the proposal was Prof. Geoffrey N. Pendleton, who is currently on extended leave from UAH. Prof. William S. Paciesas administered the grant during Dr. Pendleton's absence. The project was originally funded for one year from 6/8/2000 to 6/7/2001. Due to conflicts with other commitments by the PI, the period of performance was extended at no additional cost until 6/30/2002. The goal of this project was to study scintillating fiber pair-tracking gamma-ray telescope configurations specifically designed to perform imaging and spectroscopy in the 5 - 250 MeV energy range. The main efforts were concentrated in two areas: 1) development of tracking techniques and event reconstruction algorithms, with particular emphasis on angular resolution; and 2) investigation of coded apertures as a means to improve the instrument angular resolution at low energies.

  11. A biopulping mechanism : creation of acid groups on fiber

    Treesearch

    Chris Hunt; William Kenealy; Eric Horn; Carl Houtman

    2004-01-01

    We investigated how biopulping modifies chemical and physical properties of wood and how these changes affect the properties of the resulting fiber. Mechanical and chemical testing revealed wood cell changes during 2 weeks of colonization by Ceriporiopsis subvermispora. Typical mechanical properties, such as modulus of elasticity and maximum load, tracked reductions in...

  12. Age Related Differences in Diffusion Tensor Indices and Fiber Architecture in the Medial and Lateral Gastrocnemius

    PubMed Central

    Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu

    2014-01-01

    Purpose To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). Materials and Methods The lower leg of five young and five senior subjects was scanned at 3T and DTI indices extracted using three methods: ROI, histogram and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. Results The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (p<0.05), while the small increase in fractional anisotropy (FA) with age was not significant (MG/LG: p=0.39/0.85; 95% CI:[ −0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (p<0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Conclusion Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. PMID:24771672

  13. Age-related differences in diffusion tensor indices and fiber architecture in the medial and lateral gastrocnemius.

    PubMed

    Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu

    2015-04-01

    To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). The lower leg of five young and five senior subjects was scanned at 3 Tesla and DTI indices extracted using three methods: region of interest, histogram, and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary, and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (P < 0.05), while the small increase in fractional anisotropy with age was not significant (MG/LG: P = 0.39/0.85; 95% confidence interval: [-0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (P < 0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. © 2014 Wiley Periodicals, Inc.

  14. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  15. An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors

    PubMed Central

    Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea

    2014-01-01

    We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology. PMID:25268920

  16. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...

  17. Coupled-mode propagation in multicore fibers characterized by optical low-coherence reflectometry.

    PubMed

    Salathé, R P; Gilgen, H; Bodmer, G

    1996-07-01

    A fiber-optical low-coherence ref lectometer has been used to probe a multicore fiber locally at a wavelength of 1.3 microm. This technique allows one to determine the group index of refraction of the modes in the multicore fiber with high accuracy. Light propagation that is due to noncoherent coupling of energy from one fiber core to adjacent cores through cladding modes can be distinguished quantitatively from light propagating in coherently coupled modes. Intercore coupling constants in the range of 0.6-2 mm(-1) have been evaluated for the coupled modes.

  18. Experiment K-308: Automatic analysis of muscle fibers from rats subjected to spaceflight

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Chui, L. A.; Vandermeullen, J. P.

    1981-01-01

    The morphology of histochemically prepared muscle sections from the gastrocnemius and plantaris muscles of flight and vivarium control rats was studied quantitatively. Both fast-twitch and slow-twitch fibers were significantly smaller in flight groups than in control groups. Fibers in group 4F were somewhat larger than in 1F, presumably due to growth after recovery. Fibers in 4V were slightly larger than in 1V, presumably due to age. The slow fibers showed more spaceflight induced size loss than fast fibers, suggesting they suffered more from hypogravity. The proportion of slow fibers was also lower in the flight groups, suggesting spaceflight induced fiber type conversion from slow to fast.

  19. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser

    PubMed Central

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457

  20. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic

  1. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  2. Fabrication of T142 Tank Track Pads for Evaluation of a Rubber-Kevlar Composite Compound

    DTIC Science & Technology

    1982-06-01

    fully developed with highly saturated rubbers such as butyl or ROYALENE® ( EPDM ) A-3 ...PERIOD COVERED Fabrication of T142 Tank Track Pads for Evaluation of a Rubber -Kevlar Composite FINAL Compound S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR...developed for evaluation in T142 tank track pads. Bonding of the rubber to the fiber was achieved by addition of bonding agents to the compound. 175, T142

  3. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.

    PubMed

    Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang

    2016-09-27

    Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.

  4. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.

    PubMed

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.

  5. Trace-fiber color discrimination by electrospray ionization mass spectrometry: a tool for the analysis of dyes extracted from submillimeter nylon fibers.

    PubMed

    Tuinman, Albert A; Lewis, Linda A; Lewis, Samuel A

    2003-06-01

    The application of electrospray ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color identity of different samples (i.e., comparative trace-fiber analysis) are shown to be submillimeter. Absolute verification of dye mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound-information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace-fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  6. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less

  7. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    DOE PAGES

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less

  8. Process Control and Development for Ultrasonic Additive Manufacturing with Embedded Fibers

    NASA Astrophysics Data System (ADS)

    Hehr, Adam J.

    Ultrasonic additive manufacturing (UAM) is a recent additive manufacturing technology which combines ultrasonic metal welding, CNC machining, and mechanized foil layering to create large gapless near net-shape metallic parts. The process has been attracting much attention lately due to its low formation temperature, the capability to join dissimilar metals, and the ability to create complex design features not possible with traditional subtractive processes alone. These process attributes enable light-weighting of structures and components in an unprecedented way. However, UAM is currently limited to niche areas due to the lack of quality tracking and inadequate scientific understanding of the process. As a result, this thesis work is focused on improving both component quality tracking and process understanding through the use of average electrical power input to the welder. Additionally, the understanding and application space of embedding fibers into metals using UAM is investigated, with particular focus on NiTi shape memory alloy fibers.

  9. Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry.

    PubMed

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori

    2017-09-01

    We demonstrate an extremely low-concentrated solar-pumped laser (SPL) using a fiber laser with transverse excitation geometry. A low concentration factor is highly desired in SPLs to eliminate the need for precise solar tracking and to considerably increase the practical applications of SPL technology. In this Letter, we have exploited the intrinsic low-loss property of silica fibers to compensate for the extremely low gain coefficient of the weakly pumped active medium. A 40 m long Nd 3+ -doped fiber coil is packed in a ring-shaped chamber filled with a sensitizer solution. We demonstrated a lasing threshold that is 15 times the concentration of natural sunlight and two orders of magnitude smaller than those of conventional SPLs.

  10. Wireless tracking of cotton modules Part II: automatic machine identification and system testing

    USDA-ARS?s Scientific Manuscript database

    Mapping the harvest location of cotton modules is essential to practical understanding and utilization of spatial-variability information in fiber quality. A wireless module-tracking system was recently developed, but automation of the system is required before it will find practical use on the far...

  11. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.

    PubMed

    Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian

    2015-12-16

    Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.

  12. Modified HS-SPME for determination of quantitative relations between low-molecular oxygen compounds in various matrices.

    PubMed

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-09-07

    Similar quantitative relations between individual constituents of the liquid sample established by its direct injection can be obtained applying Polydimethylsiloxane (PDMS) fiber in the headspace solid phase microextraction (HS-SPME) system containing the examined sample suspended in methyl silica oil. This paper proves that the analogous system composed of sample suspension/emulsion in polyethylene glycol (PEG) and Carbowax fiber allows to get similar quantitative relations between components of the mixture as those established by its direct analysis, but only for polar constituents. It is demonstrated for essential oil (EO) components of savory, sage, mint and thyme, and of artificial liquid mixture of polar constituents. The observed differences in quantitative relations between polar constituents estimated by both applied procedures are insignificant (Fexp < Fcrit). The presented results indicates that wider applicability of the system composed of a sample suspended in the oil of the same physicochemical character as that of used SPME fiber coating strongly depends on the character of interactions between analytes-suspending liquid and analytes-fiber coating. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation

    PubMed Central

    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.

    2013-01-01

    The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509

  14. Solar-pumped fiber laser with transverse-excitation geometry

    NASA Astrophysics Data System (ADS)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori

    2018-02-01

    In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.

  15. Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment, phase 1. [simulating vulnerability to airports and communities from fibers released during aircraft fires

    NASA Technical Reports Server (NTRS)

    Pocinki, L. S.; Kaplan, L. D.; Cornell, M. E.; Greenstone, R.

    1979-01-01

    A model was developed to generate quantitative estimates of the risk associated with the release of graphite fibers during fires involving commercial aircraft constructed with graphite fiber composite materials. The model was used to estimate the risk associated with accidents at several U.S. airports. These results were then combined to provide an estimate of the total risk to the nation.

  16. Optical fiber humidity sensor based on evanescent-wave scattering.

    PubMed

    Xu, Lina; Fanguy, Joseph C; Soni, Krunal; Tao, Shiquan

    2004-06-01

    The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.

  17. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena

    PubMed Central

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385

  18. An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses.

    PubMed

    Kuszak, J R; Novak, L A; Brown, H G

    1995-11-01

    The purpose of this study was to conduct a comprehensive ultrastructural analysis of the epithelial-fiber interface (EFI) in normal adult primate (Macaque nemestrina and fascicularis; 6-9 years old, n = 10) lenses. Scanning electron microscopy (SEM) was used to initially characterize the gross size, shape and three-dimensional organization of central zone (cz) epithelial cells and the anterior ends of elongating fibers beneath these cells. This fiducial information was essential to properly orient lens pieces in freeze fracture specimen carriers for the production of replicas with unambiguously identifiable EFI. Transmission electron microscopy (TEM) of replicas and thin-sectioned material were used to ultrastructurally analyse the cz EFI. TEM thin-sectioned material was also used to ultrastructurally analyse the pregerminative (pgz), germinative (gz) and transitional zone (tz) EFI. Correlative SEM and TEM of cz EFI components revealed that the apical membrane of both epithelial and elongating fiber cells were irregularly polygonal in shape, and aligned in parallel as smooth, concave-convex surfaces. However, whereas epithelial cell apical surfaces had minimal size variation, elongating fibers were larger and considerably variable in size. Quantitative analysis of > 10000 micron2 cz elongating fiber apical surfaces failed to detect any gap junctions defined in freeze fracture replicas as complementary aggregates of transmembrane proteins (connexons) conjoined across a narrowed extracellular space. However, a comparable frequency of vesicular events was noted in this region as quantified previously in adult and embryonic chick lens. Correlative TEM analysis > 1500 linear micrometers of thin-sectioned EFI from this region confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, and an extreme paucity of epithelial-elongating fiber gap junctions. In contrast, TEM analysis of > 1000 linear micrometers of thin

  19. An experimental comparison of online object-tracking algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan

    2011-09-01

    This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.

  20. Spectral Domain Optical Coherence Tomography in Glaucoma: Qualitative and Quantitative Analysis of the Optic Nerve Head and Retinal Nerve Fiber Layer (An AOS Thesis)

    PubMed Central

    Chen, Teresa C.

    2009-01-01

    Purpose: To demonstrate that video-rate spectral domain optical coherence tomography (SDOCT) can qualitatively and quantitatively evaluate optic nerve head (ONH) and retinal nerve fiber layer (RNFL) glaucomatous structural changes. To correlate quantitative SDOCT parameters with disc photography and visual fields. Methods: SDOCT images from 4 glaucoma eyes (4 patients) with varying stages of open-angle glaucoma (ie, early, moderate, late) were qualitatively contrasted with 2 age-matched normal eyes (2 patients). Of 61 other consecutive patients recruited in an institutional setting, 53 eyes (33 patients) met inclusion/exclusion criteria for quantitative studies. Images were obtained using two experimental SDOCT systems, one utilizing a superluminescent diode and the other a titanium:sapphire laser source, with axial resolutions of about 6 μm and 3 μm, respectively. Results: Classic glaucomatous ONH and RNFL structural changes were seen in SDOCT images. An SDOCT reference plane 139 μm above the retinal pigment epithelium yielded cup-disc ratios that best correlated with masked physician disc photography cup-disc ratio assessments. The minimum distance band, a novel SDOCT neuroretinal rim parameter, showed good correlation with physician cup-disc ratio assessments, visual field mean deviation, and pattern standard deviation (P values range, .0003–.024). RNFL and retinal thickness maps correlated well with disc photography and visual field testing. Conclusions: To our knowledge, this thesis presents the first comprehensive qualitative and quantitative evaluation of SDOCT images of the ONH and RNFL in glaucoma. This pilot study provides basis for developing more automated quantitative SDOCT-specific glaucoma algorithms needed for future prospective multicenter national trials. PMID:20126502

  1. Investigation on microfluidic particles manipulation by holographic 3D tracking strategies

    NASA Astrophysics Data System (ADS)

    Cacace, Teresa; Paturzo, Melania; Memmolo, Pasquale; Vassalli, Massimo; Fraldi, Massimiliano; Mensitieri, Giuseppe; Ferraro, Pietro

    2017-06-01

    We demonstrate a 3D holographic tracking method to investigate particles motion in a microfluidic channel while unperturbed while inducing their migration through microfluidic manipulation. Digital holography (DH) in microscopy is a full-field, label-free imaging technique able to provide quantitative phase-contrast. The employed 3D tracking method is articulated in steps. First, the displacements along the optical axis are assessed by numerical refocusing criteria. In particular, an automatic refocusing method to recover the particles axial position is implemented employing a contrast-based refocusing criterion. Then, the transverse position of the in-focus object is evaluated through quantitative phase map segmentation methods and centroid-based 2D tracking strategy. The introduction of DH is thus suggested as a powerful approach for control of particles and biological samples manipulation, as well as a possible aid to precise design and implementation of advanced lab-on-chip microfluidic devices.

  2. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    NASA Astrophysics Data System (ADS)

    Zhang, Kang; Kang, Jin U.

    2011-09-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.

  3. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    PubMed Central

    Zhang, Kang; Kang, Jin U.

    2011-01-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912

  4. Integration of miniature Fabry-Perot fiber optic sensor with FBG for the measurement of temperature and strain

    NASA Astrophysics Data System (ADS)

    Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.

    2011-03-01

    A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.

  5. Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang

    A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.

  6. Fast Fiber-Coupled Imaging Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockington, Samuel; Case, Andrew; Witherspoon, Franklin Douglas

    HyperV Technologies Corp. has successfully designed, built and experimentally demonstrated a full scale 1024 pixel 100 MegaFrames/s fiber coupled camera with 12 or 14 bits, and record lengths of 32K frames, exceeding our original performance objectives. This high-pixel-count, fiber optically-coupled, imaging diagnostic can be used for investigating fast, bright plasma events. In Phase 1 of this effort, a 100 pixel fiber-coupled fast streak camera for imaging plasma jet profiles was constructed and successfully demonstrated. The resulting response from outside plasma physics researchers emphasized development of increased pixel performance as a higher priority over increasing pixel count. In this Phase 2more » effort, HyperV therefore focused on increasing the sample rate and bit-depth of the photodiode pixel designed in Phase 1, while still maintaining a long record length and holding the cost per channel to levels which allowed up to 1024 pixels to be constructed. Cost per channel was 53.31 dollars, very close to our original target of $50 per channel. The system consists of an imaging "camera head" coupled to a photodiode bank with an array of optical fibers. The output of these fast photodiodes is then digitized at 100 Megaframes per second and stored in record lengths of 32,768 samples with bit depths of 12 to 14 bits per pixel. Longer record lengths are possible with additional memory. A prototype imaging system with up to 1024 pixels was designed and constructed and used to successfully take movies of very fast moving plasma jets as a demonstration of the camera performance capabilities. Some faulty electrical components on the 64 circuit boards resulted in only 1008 functional channels out of 1024 on this first generation prototype system. We experimentally observed backlit high speed fan blades in initial camera testing and then followed that with full movies and streak images of free flowing high speed plasma jets (at 30-50 km/s). Jet structure and jet

  7. Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification.

    PubMed

    Zerjatke, Thomas; Gak, Igor A; Kirova, Dilyana; Fuhrmann, Markus; Daniel, Katrin; Gonciarz, Magdalena; Müller, Doris; Glauche, Ingmar; Mansfeld, Jörg

    2017-05-30

    Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA) as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchioli, C.; Zhao, L., E-mail: lihao.zhao@ntnu.no; Andersson, H. I.

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin showmore » that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)« less

  9. Input-output characterization of fiber reinforced composites by P waves

    NASA Technical Reports Server (NTRS)

    Renneisen, John D.; Williams, James H., Jr.

    1990-01-01

    Input-output characterization of fiber composites is studied theoretically by tracing P waves in the media. A new path motion to aid in the tracing of P and the reflection generated SV wave paths in the continuum plate is developed. A theoretical output voltage from the receiving transducer is calculated for a tone burst. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation of fiber composites which can be modeled as transversely isotropic media.

  10. Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes.

    PubMed

    Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina

    2005-01-01

    The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.

  11. A RSSI-based parameter tracking strategy for constrained position localization

    NASA Astrophysics Data System (ADS)

    Du, Jinze; Diouris, Jean-François; Wang, Yide

    2017-12-01

    In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.

  12. Track-A-Worm, An Open-Source System for Quantitative Assessment of C. elegans Locomotory and Bending Behavior

    PubMed Central

    Wang, Sijie Jason; Wang, Zhao-Wen

    2013-01-01

    A major challenge of neuroscience is to understand the circuit and gene bases of behavior. C. elegans is commonly used as a model system to investigate how various gene products function at specific tissue, cellular, and synaptic foci to produce complicated locomotory and bending behavior. The investigation generally requires quantitative behavioral analyses using an automated single-worm tracker, which constantly records and analyzes the position and body shape of a freely moving worm at a high magnification. Many single-worm trackers have been developed to meet lab-specific needs, but none has been widely implemented for various reasons, such as hardware difficult to assemble, and software lacking sufficient functionality, having closed source code, or using a programming language that is not broadly accessible. The lack of a versatile system convenient for wide implementation makes data comparisons difficult and compels other labs to develop new worm trackers. Here we describe Track-A-Worm, a system rich in functionality, open in source code, and easy to use. The system includes plug-and-play hardware (a stereomicroscope, a digital camera and a motorized stage), custom software written to run with Matlab in Windows 7, and a detailed user manual. Grayscale images are automatically converted to binary images followed by head identification and placement of 13 markers along a deduced spline. The software can extract and quantify a variety of parameters, including distance traveled, average speed, distance/time/speed of forward and backward locomotion, frequency and amplitude of dominant bends, overall bending activities measured as root mean square, and sum of all bends. It also plots worm travel path, bend trace, and bend frequency spectrum. All functionality is performed through graphical user interfaces and data is exported to clearly-annotated and documented Excel files. These features make Track-A-Worm a good candidate for implementation in other labs. PMID

  13. Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.

    PubMed

    Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H

    2017-07-28

    Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

  14. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  15. Computational simulation of progressive fracture in fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.

  16. Quantitative trait loci analysis for net ginning energy requirements in upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...

  17. Improving UV Resistance of High Strength Fibers Used In Large Scientific Balloons

    NASA Technical Reports Server (NTRS)

    Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.

    2004-01-01

    For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran (trademark), Spectra (trademark), Kevlar (trademark) and, PBO (Zylon (trademark)). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strength, breaking elongation

  18. Uptake of atmospheric carbon dioxide into silk fiber by silkworms.

    PubMed

    Magoshi, Jun; Tanaka, Toshihisa; Sasaki, Haruto; Kobayashi, Masatoshi; Magoshi, Yoshiko; Tsuda, Hidetoshi; Becker, Mary A; Inoue, Shun-ichi; Ishimaru, Ken

    2003-01-01

    The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.

  19. Effects of cereal fiber on bowel function: A systematic review of intervention trials

    PubMed Central

    de Vries, Jan; Miller, Paige E; Verbeke, Kristin

    2015-01-01

    AIM: To comprehensively review and quantitatively summarize results from intervention studies that examined the effects of intact cereal dietary fiber on parameters of bowel function. METHODS: A systematic literature search was conducted using PubMed and EMBASE. Supplementary literature searches included screening reference lists from relevant studies and reviews. Eligible outcomes were stool wet and dry weight, percentage water in stools, stool frequency and consistency, and total transit time. Weighted regression analyses generated mean change (± SD) in these measures per g/d of dietary fiber. RESULTS: Sixty-five intervention studies among generally healthy populations were identified. A quantitative examination of the effects of non-wheat sources of intact cereal dietary fibers was not possible due to an insufficient number of studies. Weighted regression analyses demonstrated that each extra g/d of wheat fiber increased total stool weight by 3.7 ± 0.09 g/d (P < 0.0001; 95%CI: 3.50-3.84), dry stool weight by 0.75 ± 0.03 g/d (P < 0.0001; 95%CI: 0.69-0.82), and stool frequency by 0.004 ± 0.002 times/d (P = 0.0346; 95%CI: 0.0003-0.0078). Transit time decreased by 0.78 ± 0.13 h per additional g/d (P < 0.0001; 95%CI: 0.53-1.04) of wheat fiber among those with an initial transit time greater than 48 h. CONCLUSION: Wheat dietary fiber, and predominately wheat bran dietary fiber, improves measures of bowel function. PMID:26269686

  20. Current status of the HETDEX fiber optic support system

    NASA Astrophysics Data System (ADS)

    Good, John M.; Hill, Gary J.; Mollison, Nicholas T.; Vattiat, Brian L.; Murphy, Jeremy D.; Klez, Andreas; Roth, Martin M.; MacQueen, Phillip J.; Rafal, Marc D.; Savage, Richard D.; Smith, Michael P.; Bayless, Amanda J.

    2008-07-01

    The Hobby-Eberly Telescope Dark Energy eXperiment [HETDEX] will employ over 43,000 optical fibers to feed light to 192 Visible Integral-Field Replicable Unit Spectrographs [VIRUS]. Each VIRUS instrument is fed by 224 fibers. To reduce cost, the spectrographs are combined into pairs; thus, two bundles of 224 fibers are combined into a single Integral Field Unit [IFU] of 448 fibers. On the input end the fibers are arranged in a square 'dense-pack' array at the HET focal surface. At the output end the IFU terminates in two separate linear arrays which provide entry slits for each spectrometer unit. The IFU lengths must be kept to an absolute minimum to mitigate losses; however, consideration of overall project cost and duration of the science mission have resulted in the generation of two competing concepts. Multiple axes of motion are imposed on the IFUs as they span the shortest distance from the focal surface to each VIRUS unit. Arranging and supporting 96 IFUs, that have a total mass over 450 kg, in a manner that is compatible with these complex translations, together with the management of accompanying forces on the tracking mechanism of the HET, presents a significant technical challenge, which is further compounded by wind buffeting. The longer IFU concept is favored due to overall project cost, but requires tests to assure that the fibers can withstand forces associated with a height differential of 16.25 meters without FRD losses or breakage.

  1. System considerations for detection and tracking of small targets using passive sensors

    NASA Astrophysics Data System (ADS)

    DeBell, David A.

    1991-08-01

    Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.

  2. Bridging Methodological Gaps: Instructional and Institutional Effects of Tracking in Two English Classes

    ERIC Educational Resources Information Center

    Caughlan, Samantha; Kelly, Sean

    2004-01-01

    Quantitative analyses using CLASS 3.0 software and qualitative discourse analyses were conducted of the instructional and institutional effects of tracking in high-and low-track American literature classes taught by the same teacher, a participant in a national study of the effects of dialogic classroom discourse patterns on student achievement.…

  3. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS

    PubMed Central

    Cochran, Kristin H.; Barry, Jeremy A.; Robichaud, Guillaume

    2016-01-01

    Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers. PMID:25081013

  4. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Robichaud, Guillaume; Muddiman, David C

    2015-01-01

    Trace evidence is a significant portion of forensic cases. Textile fibers are a common form of trace evidence that are gaining importance in criminal cases. Currently, qualitative techniques that do not yield structural information are primarily used for fiber analysis, but mass spectrometry is gaining an increasing role in this field. Mass spectrometry yields more quantitative structural information about the dye and polymer that can be used for more conclusive comparisons. Matrix-assisted laser desorption electrospray ionization (MALDESI) is a hybrid ambient ionization source being investigated for use in mass spectrometric fiber analysis. In this manuscript, IR-MALDESI was used as a source for mass spectrometry imaging (MSI) of a dyed nylon fiber cluster and single fiber. Information about the fiber polymer as well as the dye were obtained from a single fiber which was on the order of 10 μm in diameter. These experiments were performed directly from the surface of a tape lift of the fiber with a background of extraneous fibers.

  5. Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber.

    PubMed

    Al Amin, Abdullah; Li, An; Chen, Simin; Chen, Xi; Gao, Guanjun; Shieh, William

    2011-08-15

    We report successful transmission of dual-LP(11) mode (LP(11a) and LP(11b)), dual polarization coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals over two-mode fibers (TMF) using all-fiber mode converters. Mode converters based on mechanically induced long-period grating with better than 20 dB extinction ratios are realized and used for interfacing single-mode fiber transmitter and receivers to the TMF. We demonstrate that by using 4×4 MIMO-OFDM processing, the random coupling of the two LP(11) spatial modes can be successfully tracked and equalized with a one-tap frequency-domain equalizer. We achieve successful transmission of 35.3 Gb/s over 26-km two-mode fiber with less than 3 dB penalty. © 2011 Optical Society of America

  6. Recent Developments in the Code RITRACKS (Relativistic Ion Tracks)

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Blattnig, Steve R.

    2018-01-01

    The code RITRACKS (Relativistic Ion Tracks) was developed to simulate detailed stochastic radiation track structures of ions of different types and energies. Many new capabilities were added to the code during the recent years. Several options were added to specify the times at which the tracks appear in the irradiated volume, allowing the simulation of dose-rate effects. The code has been used to simulate energy deposition in several targets: spherical, ellipsoidal and cylindrical. More recently, density changes as well as a spherical shell were implemented for spherical targets, in order to simulate energy deposition in walled tissue equivalent proportional counters. RITRACKS is used as a part of the new program BDSTracks (Biological Damage by Stochastic Tracks) to simulate several types of chromosome aberrations in various irradiation conditions. The simulation of damage to various DNA structures (linear and chromatin fiber) by direct and indirect effects has been improved and is ongoing. Many improvements were also made to the graphic user interface (GUI), including the addition of several labels allowing changes of units. A new GUI has been added to display the electron ejection vectors. The parallel calculation capabilities, notably the pre- and post-simulation processing on Windows and Linux machines have been reviewed to make them more portable between different systems. The calculation part is currently maintained in an Atlassian Stash® repository for code tracking and possibly future collaboration.

  7. Fiber-Optic Sensor Would Monitor Growth of Polymer Film

    NASA Technical Reports Server (NTRS)

    Beamesderfer, Michael

    2005-01-01

    A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known

  8. Design principles for noninvasive, longitudinal and quantitative cell tracking with nanoparticle-based CT imaging.

    PubMed

    Meir, Rinat; Betzer, Oshra; Motiei, Menachem; Kronfeld, Noam; Brodie, Chaya; Popovtzer, Rachela

    2017-02-01

    Contradictory results in clinical trials are preventing the advancement and implementation of cell-based therapy. To explain such results, there is a need to uncover the mystery regarding the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, displaying the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. Moreover, monitoring of cell functionality was demonstrated on a mouse model of Duchenne muscular dystrophy. This cell-tracking technology has the potential to become an essential tool in pre-clinical as well as clinical trials and to advance the future of cell therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  10. Limited fiber type grouping in self-reinnervation cat tibialis anterior muscles.

    PubMed

    Unguez, G A; Roy, R R; Bodine-Fowler, S; Edgerton, V R

    1996-10-01

    The percent and distribution patterns of three immunohistochemically identified fiber types within the anterior compartment of the cat tibialis anterior were determined 6 months after denervation and self-reinnervation. After self-reinnervation, mean frequencies of slow (9%) and fast (91%) fibers were similar to those in control (12% and 88%, respectively) muscles. However, a lower proportion of fast-1 (26%) and a higher proportion of fast-2 (65%) fibers were observed in self-reinnervated than control (32% and 56%) muscles. Quantitation of adjacencies between fibers of similar myosin heavy chain (MHC) phenotype, a measure of type grouping, revealed that the frequencies of two slow or two fast-1 fibers being adjacent in self-reinnervated muscles were similar to control. In contrast, the frequency of fast-2/fast-2 fiber adjacencies found in self-reinnervated muscles (45%) was significantly higher than in control muscles (37%). In both groups, the frequency of adjacencies between slow, fast-1, or fast-2 fibers was largely attributable to the number of each fiber type present. These data show that the incidence of grouping within each fiber type present was not altered after 6 months of self-reinnervation. Minimal changes in the spatial distribution of fiber types following self-reinnervation in adults suggests a limited degree of conversion of muscle fibers to a MHC phenotype matching the motoneuron characteristics.

  11. Development of a testing method for asbestos fibers in treated materials of asbestos containing wastes by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Takashi, E-mail: tyama@nies.go.jp; Kida, Akiko; Noma, Yukio

    Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approvedmore » by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.« less

  12. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  13. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    PubMed

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  14. Video-based eye tracking for neuropsychiatric assessment.

    PubMed

    Adhikari, Sam; Stark, David E

    2017-01-01

    This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests. © 2017 New York Academy of Sciences.

  15. Fiber-type differences in muscle mitochondrial profiles.

    PubMed

    Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D

    2003-10-01

    Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.

  16. Silkworm cocoons inspire models for random fiber and particulate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Fujia; Porter, David; Vollrath, Fritz

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  17. Silkworm cocoons inspire models for random fiber and particulate composites

    NASA Astrophysics Data System (ADS)

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2010-10-01

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  18. An object tracking method based on guided filter for night fusion image

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoyan; Wang, Yuedong; Han, Lei

    2016-01-01

    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.

  19. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    PubMed

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  20. Quantitative analysis and temperature-induced variations of moiré pattern in fiber-coupled imaging sensors.

    PubMed

    Karbasi, Salman; Arianpour, Ashkan; Motamedi, Nojan; Mellette, William M; Ford, Joseph E

    2015-06-10

    Imaging fiber bundles can map the curved image surface formed by some high-performance lenses onto flat focal plane detectors. The relative alignment between the focal plane array pixels and the quasi-periodic fiber-bundle cores can impose an undesirable space variant moiré pattern, but this effect may be greatly reduced by flat-field calibration, provided that the local responsivity is known. Here we demonstrate a stable metric for spatial analysis of the moiré pattern strength, and use it to quantify the effect of relative sensor and fiber-bundle pitch, and that of the Bayer color filter. We measure the thermal dependence of the moiré pattern, and the achievable improvement by flat-field calibration at different operating temperatures. We show that a flat-field calibration image at a desired operating temperature can be generated using linear interpolation between white images at several fixed temperatures, comparing the final image quality with an experimentally acquired image at the same temperature.

  1. Corneal confocal microscopy detects small fiber neuropathy in CMT1A patients

    PubMed Central

    Tavakoli, Mitra; Marshall, Andy; Banka, Siddharth; Petropoulos, Ioannis N; Fadavi, Hassan; Kingston, Helen; Malik, Rayaz A

    2012-01-01

    Although unmyelinated nerve fibers are affected in CMT1A, they have not been studied in detail due to the invasive nature of the techniques needed to study them. We established alterations in C-fiber bundles of the cornea in patients with CMT1A using non-invasive corneal confocal microscopy (CCM). Twelve patients with CMT1A and twelve healthy control subjects underwent assessment of neuropathic symptoms and deficits, electrophysiology, quantitative sensory testing, corneal sensitivity and corneal confocal microscopy. Corneal sensitivity, corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length and corneal nerve fiber tortuosity were significantly reduced in CMT1A patients compared to controls. There was a significant correlation between corneal sensation and CCM parameters with the severity of painful neuropathic symptoms, cold and warm thresholds and median nerve CMAP amplitude. CCM demonstrates significant damage to C-fiber bundles, which relates to some measures of neuropathy in CMT1A patients. PMID:22996176

  2. Specific features of implosion of metallized fiber arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    2017-02-15

    Implosion of metallized fiber arrays was studied experimentally at the Angara-5-1 facility. The use of such arrays makes it possible to investigate the production and implosion dynamics of plasmas of various metals (such as tin, indium, and bismuth) that were previously unavailable for such studies. The plasma production rates m-dot (in μg/(cm{sup 2} ns)) for different metals were determined and quantitatively compared. Varying the thickness of the metal layer deposited on kapron fibers (the total linear mass of the metal coating being maintained at the level of 220 μg/cm), the current and velocity of the plasma precursor were studied asmore » functions of the thickness of the metal coating. The strong difference in the rates of plasma production from the metal coating and kapron fibers results in the redistribution of the discharge current between the Z-pinch and the trailing fiber plasma. The outer boundary of the plasma produced from the metal coating is found to be stable against instabilities typical of the final stage of implosion of conventional wire arrays.« less

  3. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.

    PubMed

    Sollmann, Nico; Wildschuetz, Noémie; Kelm, Anna; Conway, Neal; Moser, Tobias; Bulubas, Lucia; Kirschke, Jan S; Meyer, Bernhard; Krieg, Sandro M

    2018-03-01

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking (DTI FT) based on nTMS data are increasingly used for preoperative planning and resection guidance in patients suffering from motor-eloquent brain tumors. The present study explores whether nTMS-based DTI FT can also be used for individual preoperative risk assessment regarding surgery-related motor impairment. METHODS Data derived from preoperative nTMS motor mapping and subsequent nTMS-based tractography in 86 patients were analyzed. All patients suffered from high-grade glioma (HGG), low-grade glioma (LGG), or intracranial metastasis (MET). In this context, nTMS-based DTI FT of the corticospinal tract (CST) was performed at a range of fractional anisotropy (FA) levels based on an individualized FA threshold ([FAT]; tracking with 50%, 75%, and 100% FAT), which was defined as the highest FA value allowing for visualization of fibers (100% FAT). Minimum lesion-to-CST distances were measured, and fiber numbers of the reconstructed CST were assessed. These data were then correlated with the preoperative, postoperative, and follow-up status of motor function and the resting motor threshold (rMT). RESULTS At certain FA levels, a statistically significant difference in lesion-to-CST distances was observed between patients with HGG who had no impairment and those who developed surgery-related transient or permanent motor deficits (75% FAT: p = 0.0149; 100% FAT: p = 0.0233). In this context, no patient with a lesion-to-CST distance ≥ 12 mm suffered from any new surgery-related permanent paresis (50% FAT and 75% FAT). Furthermore, comparatively strong negative correlations were observed between the rMT and lesion-to-CST distances of patients with surgery-related transient paresis (Spearman correlation coefficient [r s ]; 50% FAT: r s = -0.8660; 75% FAT: r s = -0.8660) or surgery-related permanent paresis (50% FAT: r s = -0.7656; 75% FAT: r s = -0.6763). CONCLUSIONS

  4. Approaches to quantitating the results of differentially dyed cottons

    USDA-ARS?s Scientific Manuscript database

    The differential dyeing (DD) method has served as a subjective method for visually determining immature cotton fibers. In an attempt to quantitate the results of the differential dyeing method, and thus offer an efficient means of elucidating cotton maturity without visual discretion, image analysi...

  5. Waveform agile high-power fiber laser illuminators for directed-energy weapon systems

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu

    2012-06-01

    A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.

  6. Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience.

    PubMed

    Faraji, Amir H; Abhinav, Kumar; Jarbo, Kevin; Yeh, Fang-Cheng; Shin, Samuel S; Pathak, Sudhir; Hirsch, Barry E; Schneider, Walter; Fernandez-Miranda, Juan C; Friedlander, Robert M

    2015-11-01

    Brainstem cavernous malformations (CMs) are challenging due to a higher symptomatic hemorrhage rate and potential morbidity associated with their resection. The authors aimed to preoperatively define the relationship of CMs to the perilesional corticospinal tracts (CSTs) by obtaining qualitative and quantitative data using high-definition fiber tractography. These data were examined postoperatively by using longitudinal scans and in relation to patients' symptomatology. The extent of involvement of the CST was further evaluated longitudinally using the automated "diffusion connectometry" analysis. Fiber tractography was performed with DSI Studio using a quantitative anisotropy (QA)-based generalized deterministic tracking algorithm. Qualitatively, CST was classified as being "disrupted" and/or "displaced." Quantitative analysis involved obtaining mean QA values for the CST and its perilesional and nonperilesional segments. The contralateral CST was used for comparison. Diffusion connectometry analysis included comparison of patients' data with a template from 90 normal subjects. Three patients (mean age 22 years) with symptomatic pontomesencephalic hemorrhagic CMs and varying degrees of hemiparesis were identified. The mean follow-up period was 37.3 months. Qualitatively, CST was partially disrupted and displaced in all. Direction of the displacement was different in each case and progressively improved corresponding with the patient's neurological status. No patient experienced neurological decline related to the resection. The perilesional mean QA percentage decreases supported tract disruption and decreased further over the follow-up period (Case 1, 26%-49%; Case 2, 35%-66%; and Case 3, 63%-78%). Diffusion connectometry demonstrated rostrocaudal involvement of the CST consistent with the quantitative data. Hemorrhagic brainstem CMs can disrupt and displace perilesional white matter tracts with the latter occurring in unpredictable directions. This requires the

  7. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics

    PubMed Central

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi

    2017-01-01

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069

  8. Quantitative Identification of the Annealing Degree of Apatite Fission Tracks Using Terahertz Time Domain Spectroscopy (THz-TDS).

    PubMed

    Wu, Hang; Wu, Shixiang; Qiu, Nansheng; Chang, Jian; Bao, Rima; Zhang, Xin; Liu, Nian; Liu, Shuai

    2018-01-01

    Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238 U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.

  9. Fiber optic based multiparametric spectroscopy in vivo: Toward a new quantitative tissue vitality index

    NASA Astrophysics Data System (ADS)

    Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham

    2006-02-01

    In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.

  10. Switchable and tunable dual-wavelength Er-doped fiber ring laser with single-frequency lasing wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan

    2018-02-01

    We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.

  11. Molecular modeling of the microstructure evolution during carbon fiber processing

    NASA Astrophysics Data System (ADS)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  12. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  13. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    USDA-ARS?s Scientific Manuscript database

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  14. Siamese convolutional networks for tracking the spine motion

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  15. NASA Automated Fiber Placement Capabilities: Similar Systems, Complementary Purposes

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Jackson, Justin R.; Pelham, Larry I.; Stewart, Brian K.

    2015-01-01

    New automated fiber placement systems at the NASA Langley Research Center and NASA Marshall Space Flight Center provide state-of-art composites capabilities to these organizations. These systems support basic and applied research at Langley, complementing large-scale manufacturing and technology development at Marshall. These systems each consist of a multi-degree of freedom mobility platform including a commercial robot, a commercial tool changer mechanism, a bespoke automated fiber placement end effector, a linear track, and a rotational tool support structure. In addition, new end effectors with advanced capabilities may be either bought or developed with partners in industry and academia to extend the functionality of these systems. These systems will be used to build large and small composite parts in support of the ongoing NASA Composites for Exploration Upper Stage Project later this year.

  16. Tapered optical fiber sensor based on localized surface plasmon resonance.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen

    2012-09-10

    A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.

  17. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng

    2017-07-01

    This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.

  18. Quantitative evaluation of 3D mouse behaviors and motor function in the open-field after spinal cord injury using markerless motion tracking.

    PubMed

    Sheets, Alison L; Lai, Po-Lun; Fisher, Lesley C; Basso, D Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study's goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal's silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal's front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement methods

  19. Quantitative Evaluation of 3D Mouse Behaviors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion Tracking

    PubMed Central

    Sheets, Alison L.; Lai, Po-Lun; Fisher, Lesley C.; Basso, D. Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement

  20. Thulium fiber laser lithotripsy using tapered fibers.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2010-01-01

    The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.

  1. Performance Evaluation of Single Sideband Radio over Fiber System through Modulation Index Enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu

    2014-09-01

    The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.

  2. Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.

    PubMed Central

    Uttenweiler, D; Weber, C; Fink, R H

    1998-01-01

    A mathematical model was developed for the simulation of the spatial and temporal time course of Ca2+ ion movement in caffeine-induced calcium transients of chemically skinned muscle fiber preparations. Our model assumes cylindrical symmetry and quantifies the radial profile of Ca2+ ion concentration by solving the diffusion equations for Ca2+ ions and various mobile buffers, and the rate equations for Ca2+ buffering (mobile and immobile buffers) and for the release and reuptake of Ca2+ ions by the sarcoplasmic reticulum (SR), with a finite-difference algorithm. The results of the model are compared with caffeine-induced spatial Ca2+ transients obtained from saponin skinned murine fast-twitch fibers by fluorescence photometry and imaging measurements using the ratiometric dye Fura-2. The combination of mathematical modeling and digital image analysis provides a tool for the quantitative description of the total Ca2+ turnover and the different contributions of all interacting processes to the overall Ca2+ transient in skinned muscle fibers. It should thereby strongly improve the usage of skinned fibers as quantitative assay systems for many parameters of the SR and the contractile apparatus helping also to bridge the gap to the intact muscle fiber. PMID:9545029

  3. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less

  4. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Tewari, A.; Gokhale, A.M.

    In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.

  5. Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software.

    PubMed

    Negoita, Madalina; Zolgharni, Massoud; Dadkho, Elham; Pernigo, Matteo; Mielewczik, Michael; Cole, Graham D; Dhutia, Niti M; Francis, Darrel P

    2016-09-01

    To determine the optimal frame rate at which reliable heart walls velocities can be assessed by speckle tracking. Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A systematic review of patient tracking systems for use in the pediatric emergency department.

    PubMed

    Dobson, Ian; Doan, Quynh; Hung, Geoffrey

    2013-01-01

    Patient safety is of great importance in the pediatric emergency department (PED). The combination of acutely and critically ill patients and high patient volumes creates a need for systems to support physicians in making accurate and timely diagnoses. Electronic patient tracking systems can potentially improve PED safety by reducing overcrowding and enhancing security. To enhance our understanding of current electronic tracking technologies, how they are implemented in a clinical setting, and resulting effect on patient care outcomes including patient safety. Nine databases were searched. Two independent reviewers identified articles that contained reference to patient tracking technologies in pediatrics or emergency medicine. Quantitative studies were assessed independently for methodological strength by two reviewers using an external assessment tool. Of 2292 initial articles, 22 were deemed relevant. Seventeen were qualitative, and the remaining five quantitative articles were assessed as being methodologically weak. Existing patient tracking systems in the ED included: infant monitoring/abduction prevention; barcode identification; radiofrequency identification (RFID)- or infrared (IR)-based patient tracking. Twenty articles supported the use of tracking technology to enhance patient safety or improve efficiency. One article failed to support the use of IR patient sensors due to study design flaws. Support exists for the use of barcode-, IR-, and RFID-based patient tracking systems to improve ED patient safety and efficiency. A lack of methodologically strong studies indicates a need for further evidence-based support for the implementation of patient tracking technology in a clinical or research setting. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Myocardium tracking via matching distributions.

    PubMed

    Ben Ayed, Ismail; Li, Shuo; Ross, Ian; Islam, Ali

    2009-01-01

    The goal of this study is to investigate automatic myocardium tracking in cardiac Magnetic Resonance (MR) sequences using global distribution matching via level-set curve evolution. Rather than relying on the pixelwise information as in existing approaches, distribution matching compares intensity distributions, and consequently, is well-suited to the myocardium tracking problem. Starting from a manual segmentation of the first frame, two curves are evolved in order to recover the endocardium (inner myocardium boundary) and the epicardium (outer myocardium boundary) in all the frames. For each curve, the evolution equation is sought following the maximization of a functional containing two terms: (1) a distribution matching term measuring the similarity between the non-parametric intensity distributions sampled from inside and outside the curve to the model distributions of the corresponding regions estimated from the previous frame; (2) a gradient term for smoothing the curve and biasing it toward high gradient of intensity. The Bhattacharyya coefficient is used as a similarity measure between distributions. The functional maximization is obtained by the Euler-Lagrange ascent equation of curve evolution, and efficiently implemented via level-set. The performance of the proposed distribution matching was quantitatively evaluated by comparisons with independent manual segmentations approved by an experienced cardiologist. The method was applied to ten 2D mid-cavity MR sequences corresponding to ten different subjects. Although neither shape prior knowledge nor curve coupling were used, quantitative evaluation demonstrated that the results were consistent with manual segmentations. The proposed method compares well with existing methods. The algorithm also yields a satisfying reproducibility. Distribution matching leads to a myocardium tracking which is more flexible and applicable than existing methods because the algorithm uses only the current data, i.e., does not

  8. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  9. Power modulation based fiber-optic loop-sensor having a dual measurement range

    NASA Astrophysics Data System (ADS)

    Nguyen, Nguyen Q.; Gupta, Nikhil

    2009-08-01

    A fiber-optic sensor is investigated in this work for potential applications in structural health monitoring. The sensor, called fiber-loop-sensor, is based on bending an optical fiber beyond a critical radius to obtain intensity losses and calibrating the losses with respect to the applied force or displacement. Additionally, in the present case, the use of single-mode optical fibers allows the appearance of several resonance peaks in the transmitted power-displacement graph. The intensity of one of these resonances can be tracked in a narrow range to obtain high sensitivity. Experimental results show that the resolution of 10-4 N for force and 10-5 m for displacement can be obtained in these sensors. The sensors are calibrated for various loop radii and for various loading rates. They are also tested under loading-unloading conditions for over 104 cycles to observe their fatigue behavior. The sensors show very repeatable response and no degradation in performance under these test conditions. Simple construction and instrumentation, high sensitivity, and low cost are the advantages of these sensors.

  10. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  11. The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Chen, Jiahong; Zhao, Wenhua

    2016-02-01

    The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.

  12. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  13. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps

    PubMed Central

    Sharma, Puja; Ng, Colin; Jana, Aniket; Padhi, Abinash; Szymanski, Paige; Lee, Jerry S. H.; Behkam, Bahareh; Nain, Amrinder S.

    2017-01-01

    Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence–based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell–cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 µm and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology. PMID:28747440

  14. Stakeholder consultation on tracking in UK veterinary degrees: part 1.

    PubMed

    Crowther, E; Hughes, K; Handel, I; Whittington, R; Pryce, M; Warman, S; Rhind, S; Baillie, S

    2014-07-26

    There is on-going debate regarding whether veterinary students should focus on one (or a small number of) species during their undergraduate training (ie, track). The aims of this study were to: evaluate UK stakeholders' opinion on partial tracking (whereby students continue to qualify able to practise in all species) and full tracking (students qualify in a limited number of species necessitating restricted registration); and evaluate students' career aspirations in relation to the UK veterinary profession's employment profile. This paper presents the quantitative results of surveys completed by practitioners, students and university staff. The majority of respondents (69.4 per cent) disagreed or strongly disagreed with full tracking, however, there was widespread support for partial tracking (79.0 per cent agreed or strongly agreed). Students favoured partial tracking more so than practitioners (P<0.001). Univariate analysis of demographic factors did not identify differences in opinion regarding tracking within stakeholder groups. Students' knowledge of the UK veterinary employment profile appeared accurate. However, their career aspiration changed with year of the course, and only final year students' intentions were aligned with the profession's current profile. Qualitative data from these surveys are presented in a second paper and include the advantages, disadvantages and implications of partial and full tracking. British Veterinary Association.

  15. Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.

    PubMed

    Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong

    2016-08-01

    The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.

  16. Kinetic study of hydrolysis of coconut fiber into glucose

    NASA Astrophysics Data System (ADS)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  17. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber.

    PubMed

    Singh, Bir; Cheek, Hannah D; Haigler, Candace H

    2009-07-01

    Use of a synthetic auxin (naphthalene-1-acetic acid, NAA) to start (Gossypium hirsutum) ovule/fiber cultures hindered fiber secondary wall cellulose synthesis compared with natural auxin (indole-3-acetic acid, IAA). In contrast, NAA promoted fiber elongation and ovule weight gain, which resulted in larger ovule/fiber units. To reach these conclusions, fiber and ovule growth parameters were measured and cell wall characteristics were examined microscopically. The differences in fiber from NAA and IAA culture were underpinned by changes in the expression patterns of marker genes for three fiber developmental stages (elongation, the transition stage, and secondary wall deposition), and these gene expression patterns were also analyzed quantitatively in plant-grown fiber. The results demonstrate that secondary wall cellulose synthesis: (1) is under strong transcriptional control that is influenced by auxin; and (2) must be specifically characterized in the cotton ovule/fiber culture system given the many protocol variables employed in different laboratories.

  18. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

    PubMed

    Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A

    2018-04-06

    Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  20. Effect of dietary fiber on constipation: A meta analysis

    PubMed Central

    Yang, Jing; Wang, Hai-Peng; Zhou, Li; Xu, Chun-Fang

    2012-01-01

    AIM: To investigate the effect of dietary fiber intake on constipation by a meta-analysis of randomized controlled trials (RCTs). METHODS: We searched Ovid MEDLINE (from 1946 to October 2011), Cochrane Library (2011), PubMed for articles on dietary fiber intake and constipation using the terms: constipation, fiber, cellulose, plant extracts, cereals, bran, psyllium, or plantago. References of important articles were searched manually for relevant studies. Articles were eligible for the meta-analysis if they were high-quality RCTs and reported data on stool frequency, stool consistency, treatment success, laxative use and gastrointestinal symptoms. The data were extracted independently by two researchers (Yang J and Wang HP) according to the described selection criteria. Review manager version 5 software was used for analysis and test. Weighted mean difference with 95%CI was used for quantitative data, odds ratio (OR) with 95%CI was used for dichotomous data. Both I2 statistic with a cut-off of ≥ 50% and the χ2 test with a P value < 0.10 were used to define a significant degree of heterogeneity. RESULTS: We searched 1322 potential relevant articles, 19 of which were retrieved for further assessment, 14 studies were excluded for various reasons, five studies were included in the analysis. Dietary fiber showed significant advantage over placebo in stool frequency (OR = 1.19; 95%CI: 0.58-1.80, P < 0.05). There was no significant difference in stool consistency, treatment success, laxative use and painful defecation between the two groups. Stool frequency were reported by five RCTs, all results showed either a trend or a significant difference in favor of the treatment group, number of stools per week increased in treatment group than in placebo group (OR = 1.19; 95%CI: 0.58-1.80, P < 0.05), with no significant heterogeneity among studies (I2= 0, P = 0.77). Four studies evaluated stool consistency, one of them presented outcome in terms of percentage of hard stool

  1. Studying the fundamental limit of optical fiber links to the 10-21 level.

    PubMed

    Xu, Dan; Lee, Won-Kyu; Stefani, Fabio; Lopez, Olivier; Amy-Klein, Anne; Pottie, Paul-Eric

    2018-04-16

    We present a hybrid fiber link combining effective optical frequency transfer and evaluation of performances with a self-synchronized two-way comparison. It enables us to detect the round-trip fiber noise and each of the forward and backward one-way fiber noises simultaneously. The various signals acquired with this setup allow us to study quantitatively several properties of optical fiber links. We check the reciprocity of the accumulated noise forth and back over a bi-directional fiber to the level of 3.1(±3.9) × 10 -20 based on a 160000s continuous data. We also analyze the noise correlation between two adjacent fibers and show the first experimental evidence of interferometric noise at very low Fourier frequency. We estimate redundantly and consistently the stability and accuracy of the transferred optical frequency over 43 km at 4 × 10 -21 level after 16 days of integration and demonstrate that a frequency comparison with instability as low as 8 × 10 -18 would be achievable with uni-directional fibers in urban area.

  2. The use of a battery of tracking tests in the quantitative evaluation of neurological function

    NASA Technical Reports Server (NTRS)

    Repa, B. S.; Albers, J. W.; Potvin, A. R.; Tourtellotte, W. W.

    1972-01-01

    A tracking test battery has been applied in a drug trail designed to compare the efficacy of L-DOPA and amantadine to that of L-DOPA and placebo in the treatment of 28 patients with Parkinson's disease. The drug trial provided an ideal opportunity for objectively evaluating the usefulness of tracking tests in assessing changes in neurologic function. Evaluating changes in patient performance resulting from disease progression and controlled clinical trials is of great importance in establishing effective treatment programs.

  3. Significant body point labeling and tracking.

    PubMed

    Azhar, Faisal; Tjahjadi, Tardi

    2014-09-01

    In this paper, a method is presented to label and track anatomical landmarks (e.g., head, hand/arm, feet), which are referred to as significant body points (SBPs), using implicit body models. By considering the human body as an inverted pendulum model, ellipse fitting and contour moments are applied to classify it as being in Stand, Sit, or Lie posture. A convex hull of the silhouette contour is used to determine the locations of SBPs. The particle filter or a motion flow-based method is used to predict SBPs in occlusion. Stick figures of various activities are generated by connecting the SBPs. The qualitative and quantitative evaluation show that the proposed method robustly labels and tracks SBPs in various activities of two different (low and high) resolution data sets.

  4. Associated reactions during a visual pursuit position tracking task in hemiplegic and quadriplegic cerebral palsy.

    PubMed

    Chiu, Hsiu-Ching; Halaki, Mark; O'Dwyer, Nicholas

    2013-04-30

    Most previous studies of associated reactions (ARs) in people with cerebral palsy have used observation scales, such as recording the degree of movement through observation. The sensitive quantitative method can detect ARs that are not amply visible. The aim of this study was to provide quantitative measures of ARs during a visual pursuit position tracking task. Twenty-three hemiplegia (H) (mean +/- SD: 21y 8m +/- 11y 10m), twelve quadriplegia (Q) (21y 5m +/- 10y 3m) and twenty-two subjects with normal development (N) (21y 2m +/- 10y 10m) participated in the study. An upper limb visual pursuit tracking task was used to study ARs. The participants were required to follow a moving target with a response cursor via elbow flexion and extension movements. The occurrence of ARs was quantified by the overall coherence between the movements of tracking and non-tracking limbs and the amount of movement due to ARs was quantified by the amplitude of movement the non-tracking limbs. The amplitude of movement of the non-tracking limb indicated that the amount of ARs was larger in the Q group than the H and N groups with no significant differences between the H and N groups. The amplitude of movement of the non-tracking limb was larger during non-dominant than dominant tracking in all three groups. Some movements in the non-tracking limb were correlated with the tracking limb (correlated ARs) and some movements that were not correlated with the tracking limb (uncorrelated ARs). The correlated ARs comprised less than 40% of the total ARs for all three groups. Correlated ARs were negatively associated with clinical evaluations, but not the uncorrelated ARs. The correlated and uncorrelated ARs appear to have different relationships with clinical evaluations, implying the effect of ARs on upper limb activities could be varied.

  5. Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    PubMed Central

    Hwang, Yongyun; Barakat, Abdul I.

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  6. Fabrication of novel bundled fiber and performance assessment for clinical applications.

    PubMed

    Kim, Changhwan; Jeon, Myung Jin; Jung, Jin Hyang; Yang, Jung Dug; Park, Hoyong; Kang, Hyun Wook; Lee, Ho

    2014-11-01

    During laser vaporization of benign prostate hyperplasia (BPH), high precision of optical fiber handling is pivotal to minimize any post-operative complications. The aim of the study was to evaluate the feasible applications of a bundled fiber to treat BPH by directionally and selectively manipulating laser light onto the targeted tissue. A bundled optical fiber, consisting of four side-firing fibers, was fabricated to selectively emit laser beams in from one to four directions. Both transmission efficiency and light distribution were qualitatively and quantitatively characterized on the bundled fiber. In terms of interstitial application of the proposed fiber with 1064 nm on porcine liver tissue, the extent of thermal denaturation was estimated and compared at various laser parameterizations and for different directions of light. From the laser source to the fiber tip, the fabricated fiber device demonstrated a total light transmission of 52%. Due to internal light reflection, a secondary beam was emitted backward from the fiber tip and was responsible for 25% of the transmission loss. According to tissue testing, the extent of tissue denaturation generally increased with laser power, irradiation time, and number of light directions. The geometrical shape of thermal coagulation correlated well with the direction of light emission. Thermal damage to the glass tube occurred during excessive heat accumulation generated by continuous irradiation. The proposed fiber can be beneficial for laser vaporization of BPH by providing a selective light direction irradiation along with minimal thermal damage. Further studies will extend the applicability of the bundled fiber to treat tubular tissue structure. © 2014 Wiley Periodicals, Inc.

  7. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    PubMed

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  8. Tracking integration in concentrating photovoltaics using laterally moving optics.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  9. Contractile properties of rat, rhesus monkey, and human type I muscle fibers

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.

    1997-01-01

    It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.

  10. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  11. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  12. Effects of periodic weight support on medial gastrocnemius fibers of suspended rats

    NASA Technical Reports Server (NTRS)

    Graham, Scot C.; Roy, Roland R.; Hauschka, Edward O.; Edgerton, V. Reggie

    1989-01-01

    The effects of seven-day-long hindlimb suspension (HS) and HS plus daily periodic weight support activity on the size and metabolic properties of individual fibers in the medial gastrocnemius (MG) of rats were examined. Sections of muscle tissue removed after seven day suspension were stained quantitatively for succinate dehydrogenase and alpha-glycerophosphate dehydrogenase, and qualitatively for myosin ATPase. It was found that short intermittent periods of weight support had a beneficial effect in maintaining the size and metabolic properties of both dark and light ATPase fibers in the deep regions (i.e., close to the bone) and of dark ATPase fibers in the superficial regions of the MG. The effect was greater in the deep regions.

  13. Processing tracking in jMRUI software for magnetic resonance spectra quantitation reproducibility assurance.

    PubMed

    Jabłoński, Michał; Starčuková, Jana; Starčuk, Zenon

    2017-01-23

    Proton magnetic resonance spectroscopy is a non-invasive measurement technique which provides information about concentrations of up to 20 metabolites participating in intracellular biochemical processes. In order to obtain any metabolic information from measured spectra a processing should be done in specialized software, like jMRUI. The processing is interactive and complex and often requires many trials before obtaining a correct result. This paper proposes a jMRUI enhancement for efficient and unambiguous history tracking and file identification. A database storing all processing steps, parameters and files used in processing was developed for jMRUI. The solution was developed in Java, authors used a SQL database for robust storage of parameters and SHA-256 hash code for unambiguous file identification. The developed system was integrated directly in jMRUI and it will be publically available. A graphical user interface was implemented in order to make the user experience more comfortable. The database operation is invisible from the point of view of the common user, all tracking operations are performed in the background. The implemented jMRUI database is a tool that can significantly help the user to track the processing history performed on data in jMRUI. The created tool is oriented to be user-friendly, robust and easy to use. The database GUI allows the user to browse the whole processing history of a selected file and learn e.g. what processing lead to the results, where the original data are stored, to obtain the list of all processing actions performed on spectra.

  14. An Algorithm to Automate Yeast Segmentation and Tracking

    PubMed Central

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  15. Quantitative Tracking of Salmonella Enteritidis Transmission Routes Using Barcode-Tagged Isogenic Strains in Chickens: Proof-of-Concept Study

    PubMed Central

    Yang, Yichao; Ricke, Steven C.; Tellez, Guillermo; Kwon, Young Min

    2017-01-01

    Salmonella is an important foodborne bacterial pathogen, however, a fundamental understanding on Salmonella transmission routes within a poultry flock remains unclear. In this study, a series of barcode-tagged strains were constructed by inserting six random nucleotides into a functionally neutral region on the chromosome of S. Enteritidis as a tool for quantitative tracking of Salmonella transmission in chickens. Six distinct barcode-tagged strains were used for infection or contamination at either low dose (103 CFUs; three strains) or high dose (105 CFUs; three strains) in three independent experiments (Experiment 1 oral gavage; Experiment 2 contaminated feed; Experiment 3 contaminated water). For all chick experiments, cecal and foot-wash samples were collected from a subset of the chickens at days 7 or/and 14, from which genomic DNA was extracted and used to amplify the barcode regions. After the resulting PCR amplicons were pooled and analyzed by MiSeq sequencing, a total of approximately 1.5 million reads containing the barcode sequences were analyzed to determine the relative frequency of every barcode-tagged strain in each sample. In Experiment 1, the high dose of oral infection was correlated with greater dominance of the strains in the ceca of the respective seeder chickens and also in the contact chickens yet at lesser degrees. When chicks were exposed to contaminated feed (Experiment 2) or water (Experiment 3), there were no clear patterns of the barcode-tagged strains in relation to the dosage, except that the strains introduced at low dose required a longer time to colonize the ceca with contaminated feed. Most foot-wash samples contained only one to three strains for the majority of the samples, suggesting potential existence of an unknown mechanism(s) for strain exclusion. These results demonstrated the proof of concept of using barcode tagged to investigate transmission dynamics of Salmonella in chickens in a quantitative manner. PMID:28261587

  16. Stakeholder consultation on tracking in UK veterinary degrees: part 2.

    PubMed

    Crowther, E; Hughes, K; Handel, I; Whittington, R; Pryce, M; Warman, S; Rhind, S; Baillie, S

    2014-07-26

    There is ongoing debate in the profession as to whether veterinary students should focus on one (or a small number of) species during their undergraduate training (ie, track). This paper presents the qualitative data from surveys evaluating UK stakeholder opinion on introducing partial tracking (whereby students continue to qualify able to practise in all species) and full tracking (students qualify in a limited number of species with restricted registration). Surveys were distributed to practitioners, students and university staff; 1061 responses were completed. Thematic framework analysis was conducted on the free-text responses; responses were coded to a hierarchical framework developed inductively from the data. Six major themes were identified: choice, flexibility, competency and knowledge, stakeholder implications, specialisation and 'what is a vet?'. The majority of the themes related to both full and partial tracking, usually being more pronounced in full tracking. The theme 'choice' is particularly important in light of the study's quantitative findings on students' awareness of the profession and their career aspirations (presented in a previous paper); should tracking be implemented, veterinary schools will need to take a proactive role in educating and assisting students while making career choices. British Veterinary Association.

  17. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  18. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  19. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    PubMed

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  20. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  1. Automation of peak-tracking analysis of stepwise perturbed NMR spectra.

    PubMed

    Banelli, Tommaso; Vuano, Marco; Fogolari, Federico; Fusiello, Andrea; Esposito, Gennaro; Corazza, Alessandra

    2017-02-01

    We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TINT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TINT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TINT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.

  2. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  3. Atmospheric heating of meteorites: Results from nuclear track studies

    NASA Technical Reports Server (NTRS)

    Jha, R.

    1984-01-01

    A quantitative model to estimate the degree of annealing of nuclear tracks in mineral grains subjected to a variable temperature history was proposed. This model is applied to study the track annealing records in different meteorites resulting from their atmospheric heating. Scale lengths were measured of complete and partial track annealing, delta X sub 1 and delta X sub 2, respectively. In mineral grain close to fusion crust in about a dozen meteorites. Values of delta X sub 1 and delta X sub 2 depend on extent and duration of heating during atmospheric transit and hence on meteorite entry parameters. To estimate track annealing, the temperature history during atmospheric heating at different distances from the crusted surface of the meteorite is obtained by solving heat conduction equation in conjunction with meteorite entry model, and use of the annealing model to evaluate the degree of annealing of tracks. It is shown that the measured values of delta X sub 1 and delta X sub 2 in three of the meteorites studied are consistent with values using preatmospheric mass, entry velocity and entry angle of these meteorites.

  4. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  5. Development of a miniaturized optical viscosity sensor with an optical surface tracking system

    NASA Astrophysics Data System (ADS)

    Abe, H.; Nagamachi, R.; Taguchi, Y.; Nagasaka, Y.

    2010-02-01

    A new viscosity sensor enabling non-contact measurement at high speed, with less sample volume and high stability is required in a broad field. For example, in the industrial field, process control by real time monitoring of viscosity can enhance the quality of coating films and the process yield such as conductive films and optical films. Therefore, we have developed a new miniaturized optical viscosity sensor, namely MOVS (Miniaturized Optical Viscosity Sensor), based on a laser-induced capillary wave (LiCW) method which can meet the requirements above. In the MOVS, viscosity is estimated by observing the damping oscillation of LiCW, which is generated by an interference of two excitation laser beams on a liquid surface. By irradiating a probing laser on LiCW, a first order diffracted beam containing information of sample viscosity, is generated. The intensity of the reflected beam is utilized to control the distance between liquid-level and the sensor. The newly integrated optical surface tracking system makes possible the stable viscosity measurement in the presence of disturbance such as evaporation and external vibration. MOVS consists of five U-grooves fabricated by MEMS (Micro Electro Mechanical Systems) process to possess the optical fibers (photonic crystal fibers and fusion-spliced lensed fibers). In this study, by integrating the optical surface tracking system on the chip, nanosecond order damping oscillation of LiCW is successfully observed in the presence of external forced vibration, high speed evaporation (speed of 1 micrometer per second) and drying process of a liquid film (thickness of hundreds micrometer order).

  6. Fiber optic suctioning of urinary stone phantoms during laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    Fiber optic attraction of urinary stones during laser lithotripsy has been previously observed, and this phenomenon may potentially be exploited to pull stones inside the urinary tract without mechanical grasping tools, thus saving the urologist valuable time and space in the ureteroscope's single working channel. In this study, Thulium fiber laser (TFL) high-pulse-rate/low-pulse-energy operation and Holmium:YAG low-pulse-rate/high-pulse-energy operation are compared for fiber optic "suctioning" of Plaster-of-Paris stone phantoms. A TFL with wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10-350 Hz, and Holmium laser with wavelength of 2120 nm, pulse energy of 35-360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz were tested using 270-μm-core fibers. A peak "pull" speed of 2.5 mm/s was measured for both TFL (35 mJ and 150-250 Hz) and Holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber optic suctioning of urinary stone phantoms is feasible for both lasers. However, TFL operation at high-pulse-rates/low-pulse-energies provides faster, smoother stone pulling than Holmium operation at low-pulserates/ high-pulse-energies. After further study, this method may be used to manipulate urinary stones in the clinic.

  7. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  8. All-fiber Faraday Devices Based on Terbium-doped Fiber

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet

  9. Fiber Bragg grating inscription in optical multicore fibers

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut

    2015-09-01

    Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.

  10. Fiber Bragg Grating Based System for Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  11. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGES

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  12. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  13. Algebra for Everyone? Student Perceptions of Tracking in Mathematics

    ERIC Educational Resources Information Center

    Spielhagen, Frances R.

    2010-01-01

    This research explored the experiences of students in a school district that limited early access to the study of algebra and to inform education policymakers of the impact of such tracking policies on the lives and futures of the students. Quantitative analysis had already yielded a snapshot of inequities deriving from the policies surrounding…

  14. Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia

    PubMed Central

    Oudejans, Linda; He, Xuan; Niesters, Marieke; Dahan, Albert; Brines, Michael; van Velzen, Monique

    2016-01-01

    Cornea confocal microscopy (CCM) is a novel non-invasive method to detect small nerve fiber pathology. CCM generally correlates with outcomes of skin biopsies in patients with small fiber pathology. The aim of this study was to quantify the morphology of small nerve fibers of the cornea of patients with fibromyalgia in terms of density, length and branching and further phenotype these patients using standardized quantitative sensory testing (QST). Small fiber pathology was detected in the cornea of 51% of patients: nerve fiber length was significantly decreased in 44% of patients compared to age- and sex-matched reference values; nerve fiber density and branching were significantly decreased in 10% and 28% of patients. The combination of the CCM parameters and sensory tests for central sensitization, (cold pain threshold, mechanical pain threshold, mechanical pain sensitivity, allodynia and/or windup), yielded four phenotypes of fibromyalgia patients in a subgroup analysis: one group with normal cornea morphology without and with signs of central sensitization, and a group with abnormal cornea morphology parameters without and with signs of central sensitization. In conclusion, half of the tested fibromyalgia population demonstrates signs of small fiber pathology as measured by CCM. The four distinct phenotypes suggest possible differences in disease mechanisms and may require different treatment approaches. PMID:27006259

  15. Tracking single mRNA molecules in live cells

    NASA Astrophysics Data System (ADS)

    Moon, Hyungseok C.; Lee, Byung Hun; Lim, Kiseong; Son, Jae Seok; Song, Minho S.; Park, Hye Yoon

    2016-06-01

    mRNAs inside cells interact with numerous RNA-binding proteins, microRNAs, and ribosomes that together compose a highly heterogeneous population of messenger ribonucleoprotein (mRNP) particles. Perhaps one of the best ways to investigate the complex regulation of mRNA is to observe individual molecules. Single molecule imaging allows the collection of quantitative and statistical data on subpopulations and transient states that are otherwise obscured by ensemble averaging. In addition, single particle tracking reveals the sequence of events that occur in the formation and remodeling of mRNPs in real time. Here, we review the current state-of-the-art techniques in tagging, delivery, and imaging to track single mRNAs in live cells. We also discuss how these techniques are applied to extract dynamic information on the transcription, transport, localization, and translation of mRNAs. These studies demonstrate how single molecule tracking is transforming the understanding of mRNA regulation in live cells.

  16. KiT: a MATLAB package for kinetochore tracking.

    PubMed

    Armond, Jonathan W; Vladimirou, Elina; McAinsh, Andrew D; Burroughs, Nigel J

    2016-06-15

    During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. Supplementary data are available at Bioinformatics online. jonathan.armond@warwick.ac.uk. © The Author 2016. Published by Oxford University Press.

  17. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography

    PubMed Central

    2017-01-01

    Efforts to develop novel cell-based therapies originated with the first bone marrow transplant on a leukemia patient in 1956. Preclinical and clinical examples of cell-based treatment strategies have shown promising results across many disciplines in medicine, with recent advances in immune cell therapies for cancer producing remarkable response rates, even in patients with multiple treatment failures. However, cell-based therapies suffer from inconsistent outcomes, motivating the search for tools that allow monitoring of cell delivery and behavior in vivo. Noninvasive cell imaging techniques, also known as cell tracking, have been developed to address this issue. These tools can allow real-time, quantitative, and long-term monitoring of transplanted cells in the recipient, providing insight on cell migration, distribution, viability, differentiation, and fate, all of which play crucial roles in treatment efficacy. Understanding these parameters allows the optimization of cell choice, delivery route, and dosage for therapy and advances cell-based therapy for specific clinical uses. To date, most cell tracking work has centered on imaging modalities such as MRI, radionuclide imaging, and optical imaging. However, X-ray computed tomography (CT) is an emerging method for cell tracking that has several strengths such as high spatial and temporal resolution, and excellent quantitative capabilities. The advantages of CT for cell tracking are enhanced by its wide availability and cost effectiveness, allowing CT to become one of the most popular clinical imaging modalities and a key asset in disease diagnosis. In this review, we will discuss recent advances in cell tracking methods using X-ray CT in various applications, in addition to predictions on how the field will progress. PMID:28485976

  18. QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER

    PubMed Central

    Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.

    2010-01-01

    The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087

  19. Climbing fibers predict movement kinematics and performance errors.

    PubMed

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each

  20. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  1. Motion-compensated speckle tracking via particle filtering

    NASA Astrophysics Data System (ADS)

    Liu, Lixin; Yagi, Shin-ichi; Bian, Hongyu

    2015-07-01

    Recently, an improved motion compensation method that uses the sum of absolute differences (SAD) has been applied to frame persistence utilized in conventional ultrasonic imaging because of its high accuracy and relative simplicity in implementation. However, high time consumption is still a significant drawback of this space-domain method. To seek for a more accelerated motion compensation method and verify if it is possible to eliminate conventional traversal correlation, motion-compensated speckle tracking between two temporally adjacent B-mode frames based on particle filtering is discussed. The optimal initial density of particles, the least number of iterations, and the optimal transition radius of the second iteration are analyzed from simulation results for the sake of evaluating the proposed method quantitatively. The speckle tracking results obtained using the optimized parameters indicate that the proposed method is capable of tracking the micromotion of speckle throughout the region of interest (ROI) that is superposed with global motion. The computational cost of the proposed method is reduced by 25% compared with that of the previous algorithm and further improvement is necessary.

  2. Coded excitation ultrasonic needle tracking: An in vivo study.

    PubMed

    Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E

    2016-07-01

    Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded

  3. Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision.

    PubMed

    Rumei Zhang; Hao Liu; Jianda Han

    2017-07-01

    Robust and efficient tracking of continuum robots is important for improving patient safety during space-confined minimally invasive surgery, however, it has been a particularly challenging task for researchers. In this paper, we present a novel tracking scheme by fusing fiber Bragg grating (FBG) shape sensing and stereo vision to estimate the position of continuum robots. Previous visual tracking easily suffers from the lack of robustness and leads to failure, while the FBG shape sensor can only reconstruct the local shape with integral cumulative error. The proposed fusion is anticipated to compensate for their shortcomings and improve the tracking accuracy. To verify its effectiveness, the robots' centerline is recognized by morphology operation and reconstructed by stereo matching algorithm. The shape obtained by FBG sensor is transformed into distal tip position with respect to the camera coordinate system through previously calibrated registration matrices. An experimental platform was set up and repeated tracking experiments were carried out. The accuracy estimated by averaging the absolute positioning errors between shape sensing and stereo vision is 0.67±0.65 mm, 0.41±0.25 mm, 0.72±0.43 mm for x, y and z, respectively. Results indicate that the proposed fusion is feasible and can be used for closed-loop control of continuum robots.

  4. A novel optical imaging system for investigating sarcomere dynamics in single skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Panchangam, Appaji; Witte, Russell S.; Claflin, Dennis R.; O'Donnell, Matthew; Faulkner, John A.

    2006-02-01

    The protein substructure of skeletal muscle fibers forms a diffraction grating with repeating units, termed 'sarcomeres'. A laser scanning system is described that maps the lengths of sarcomeres (SL) and the widths of the first-order diffraction lines (DLW) of permeabilized single fibers in real-time. The apparatus translates a laser beam (λ = 670 nm and w 0 = ~75 μm) along the length of a fiber segment through 20 contiguous regions per sweep at 500 sweeps/s. The fiber segments (~1 mm long) were obtained from vastus lateralis muscles of humans by needle biopsy. During both passive stretches and maximum fixed-end activations, the mappings of SL and DLW of the fibers were extracted from the diffraction spectra. Heterogeneity of SLs was evaluated by computing the standard deviation ( σ SL) of the 20 SLs measured during a single sweep. Compared with the σ SL before a passive stretch, the increase of 5+/-0.5% in σ SL after the passive stretch, indicated differences in passive length-tension relationships along the fiber. In contrast, no change, ~0.5+/-0.1%, was observed in DLW. Within 10s after the fiber was returned to its initial length, the shape of the SL profile returned close to pre-stretch conditions ( σ SL = 1+/- 0.2%). Following maximum Ca 2+ - activation of the fiber, the heterogeneity of the steady state SLs increased greatly (DLW up by ~300% and σ SL up by ~100%). The scanning system provided high resolution tracking of sarcomere behavior single muscle fibers. Potential applications are for studies of the mechanisms of muscle fiber injury and injury propagation.

  5. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    NASA Astrophysics Data System (ADS)

    Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh

    2010-11-01

    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.

  6. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    PubMed Central

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion. PMID:25825973

  7. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    PubMed

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  8. Quantitative analysis of scapholunate diastasis using stress speckle-tracking sonography: a proof-of-concept and feasibility study.

    PubMed

    Gondim Teixeira, Pedro Augusto; Badr, Sammy; Hossu, Gabriela; Lefebvre, Guillaume; Abou Arab, Waled; Blum, Alain; Cotten, Anne

    2017-12-01

    To evaluate the feasibility and potential clinical applicability of speckle-tracking sonography for the dynamic evaluation of the scapholunate diastasis during stress manoeuvres. Two readers used speckle tracking sonography to evaluate scapholunate diastasis during a clenching fist manoeuver in 30 normal wrists. Scapholunate peak strain, mean scapholunate diastasis and the diastasis variation coefficient were analysed. IRB exemption was granted for this study. Conventional and stress wrist radiographs of 26 patients with and without a scapholunate ligament tear were retrospectively analysed to ascertain the range of variation in scapholunate diastasis. Speckle-tracking parameters in normal wrists were similar between the two readers (p  > 0.2061). The maximal scapholunate peak strain during stress was relatively low (<0.34-0.47 mm). The normal radiographic diastasis amplitude was similar to maximal strain peak values in normal volunteers (0.49 ± 0.51 mm). The radiographic diastasis amplitude in cases of scapholunate ligament tears was 1.48 ± 0.78 mm, which was higher than the 95% confidence interval of the scapholunate gap peak strain. Speckle-tracking sonography could represent an interesting alternative for stress evaluation of the scapholunate ligament in patients with scapholunate diastasis. • Speckle-tracking sonography can assess scapholunate diastasis under stress testing. • Scapholunate gap shows little variation under stress in healthy volunteers. • Scapholunate gap measurements are influenced by grip strength. • Sex and BMI have a significant influence on strain measurements.

  9. In situ microscopic analysis of asbestos and synthetic vitreous fibers retained in hamster lungs following inhalation.

    PubMed

    Rogers, R A; Antonini, J M; Brismar, H; Lai, J; Hesterberg, T W; Oldmixon, E H; Thevenaz, P; Brain, J D

    1999-05-01

    Hamsters breathed, nose-only, for 13 weeks, 5 days/week, 6 hr/day, either man-made vitreous fiber (MMVF)10a, MMVF33, or long amosite asbestos at approximately 300 World Health Organization (WHO) fibers/cc or long amosite at 25 WHO fibers/cc. [World Health Organization fibers are longer than 5 microm and thicker than 3 microm, with aspect ratio >3.] After sacrifice, fiber burden was estimated (left lungs) by ashing and scanning electron microscopy (ashing/SEM) or (right middle lobes) by confocal laser scanning microscopy (CLSM) in situ. In situ CLSM also provided three-dimensional views of fibers retained, undisturbed, in lung tissue. Fibers of each type were lodged in alveoli and small airways, especially at airway bifurcations, and were seen fully or partly engulfed by alveolar macrophages. Amosite fibers penetrated into and through alveolar septa. Length densities of fibers in parenchyma (total length of fiber per unit volume of lung) were estimated stereologically from fiber transsections counted on two-dimensional optical sections and were 30.5, 25.3, 20.0, and 81.6 mm/mm3 for MMVF10a, MMVF33, and low- and high-dose amosite, respectively. Lengths of individual fibers were measured in three dimensions by tracking individual fibers through series of optical sections. Length distributions of amosite fibers aerosolized, but before inhalation versus after retention in the lung were similar, whether determined by ashing/SEM or in situ CLSM. In contrast, the fraction of short MMVF10a and MMVF33 fibers increased and the geometric mean fiber lengths of both MMVFs decreased by approximately 60% during retention. Most likely due to fiber deposition pattern and differences in sampling, fiber burdens [MMVF10a, MMVF33, and amosite (high dose; 269 WHO fibers/cc)] determined by ashing/SEM were 1.4, 1. 5, and 3.5 times greater, respectively, than those calculated from in situ CLSM data. In situ CLSM is able to provide detailed information about the anatomic sites of fiber

  10. Experimental implementation of fiber optic bundle array wide FOV free space optical communications receiver.

    PubMed

    Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E

    2012-06-20

    A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.

  11. Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan.

    PubMed

    Filonova, Lada; Kallas, Asa M; Greffe, Lionel; Johansson, Gunnar; Teeri, Tuula T; Daniel, Geoffrey

    2007-01-01

    Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.

  12. Automatically Detect and Track Multiple Fish Swimming in Shallow Water with Frequent Occlusion

    PubMed Central

    Qian, Zhi-Ming; Cheng, Xi En; Chen, Yan Qiu

    2014-01-01

    Due to its universality, swarm behavior in nature attracts much attention of scientists from many fields. Fish schools are examples of biological communities that demonstrate swarm behavior. The detection and tracking of fish in a school are of important significance for the quantitative research on swarm behavior. However, different from other biological communities, there are three problems in the detection and tracking of fish school, that is, variable appearances, complex motion and frequent occlusion. To solve these problems, we propose an effective method of fish detection and tracking. In this method, first, the fish head region is positioned through extremum detection and ellipse fitting; second, The Kalman filtering and feature matching are used to track the target in complex motion; finally, according to the feature information obtained by the detection and tracking, the tracking problems caused by frequent occlusion are processed through trajectory linking. We apply this method to track swimming fish school of different densities. The experimental results show that the proposed method is both accurate and reliable. PMID:25207811

  13. Fiber webs

    Treesearch

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  14. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    PubMed

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  15. Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry.

    PubMed

    Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan

    2016-01-15

    A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace. Published by Elsevier B.V.

  16. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.

    PubMed

    Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M

    2018-06-01

    This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.

  17. A novel approach to teach the generation of bioelectrical potentials from a descriptive and quantitative perspective.

    PubMed

    Rodriguez-Falces, Javier

    2013-12-01

    In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are difficult to describe and conceptualize. In addition, most traditional approaches aimed at describing extracellular potentials consist of complex mathematical machinery that gives no chance for physical interpretation. The aim of the present study is to present a new method to teach the formation of extracellular potentials around a muscle fiber from both a descriptive and quantitative perspective. The implementation of this method was tested through a written exam and a satisfaction survey. The new method enhanced the ability of students to visualize the generation of bioelectrical potentials. In addition, the new approach improved students' understanding of how changes in the fiber-to-electrode distance and in the shape of the excitation source are translated into changes in the extracellular potential. The survey results show that combining general principles of electrical fields with accurate graphic imagery gives students an intuitive, yet quantitative, feel for electrophysiological signals and enhances their motivation to continue their studies in the biomedical engineering field.

  18. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    NASA Astrophysics Data System (ADS)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  19. Understanding the varied response of the extratropical storm tracks to climate change

    PubMed Central

    O’Gorman, Paul A.

    2010-01-01

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past. PMID:20974916

  20. Understanding the varied response of the extratropical storm tracks to climate change.

    PubMed

    O'Gorman, Paul A

    2010-11-09

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past.

  1. Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI

    PubMed Central

    Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.

    2016-01-01

    We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524

  2. Intraoral fiber optic-based diagnostic for periodontal disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, P W; Gutierrez, D M; Everett, M J

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both formore » clinical diagnostics and as a research tool.« less

  3. Track and track-side video survey technology development.

    DOT National Transportation Integrated Search

    2015-05-01

    Researchers at HiDef/Createc have completed prototype development and testing of a novel track video surveying technology : called Track and Track-Side Video Survey (TTVS). TTVS is designed to capture clear video images of the track and track side : ...

  4. Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy.

    PubMed

    Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J

    2004-04-05

    We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.

  5. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    PubMed Central

    Song, Weimin; Yin, Jian

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824

  6. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    PubMed

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  7. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  8. Catheter tracking via online learning for dynamic motion compensation in transcatheter aortic valve implantation.

    PubMed

    Wang, Peng; Zheng, Yefeng; John, Matthias; Comaniciu, Dorin

    2012-01-01

    Dynamic overlay of 3D models onto 2D X-ray images has important applications in image guided interventions. In this paper, we present a novel catheter tracking for motion compensation in the Transcatheter Aortic Valve Implantation (TAVI). To address such challenges as catheter shape and appearance changes, occlusions, and distractions from cluttered backgrounds, we present an adaptive linear discriminant learning method to build a measurement model online to distinguish catheters from background. An analytic solution is developed to effectively and efficiently update the discriminant model and to minimize the classification errors between the tracking object and backgrounds. The online learned discriminant model is further combined with an offline learned detector and robust template matching in a Bayesian tracking framework. Quantitative evaluations demonstrate the advantages of this method over current state-of-the-art tracking methods in tracking catheters for clinical applications.

  9. STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.

    PubMed

    Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H

    2015-07-24

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties. Copyright © 2015, American Association for the Advancement of Science.

  10. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  11. Effects of fiber manipulation methods on optical fiber properties

    NASA Astrophysics Data System (ADS)

    Reynolds, Robert O.; Bechter, Andrew; Crass, Jonathan

    2016-07-01

    Optical fibers are routinely used to couple high-resolution spectrographs to modern telescopes, enabling important advantages in areas such as the search for extrasolar planets using spectroscopic radial velocity measurements of candidate stars. Optical fibers partially scramble the input illumination, and this feature enables a fiber feed to provide more uniform illumination to the spectrograph optics, thereby reducing systematic errors in radial velocity measurements. However fibers suffer from focal ratio degradation (FRD), a spreading of the beam at the output of the fiber with respect to that at the fiber input, which results in losses in throughput and resolution. Modal noise, a measurement uncertainty caused by inherent fiber properties and evident as a varying spatial intensity at the fiber exit plane, reduces the signal to noise ratio in the data. Devices such as double scramblers are often used to improve scrambling, and better fiber end preparation can mitigate FRD. Many instruments agitate the fiber during an observation to reduce modal noise, and stretching the fiber during use has been shown to offer a greater reduction in that noise. But effects of agitation and stretching on fiber parameters such as total transmission and focal ratio degradation have not been adequately studied. In this paper we present measurements of transmission loss and focal ratio degradation for both agitated and stretched fibers.

  12. Evaluation of agave fiber delignification by means of microscopy techniques and image analysis.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Calderón-Domínguez, Georgina; Perea-Flores, María J; Mendoza-Pérez, Jorge A; Vega, Alberto; Ligero, Pablo; Palacios-González, Eduardo; Farrera-Rebollo, Reynold R

    2014-10-01

    Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.

  13. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    PubMed Central

    Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok

    2010-01-01

    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884

  14. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    crystal fiber cladding . Advanced Optical Fibers for High Power Fiber Lasers http://dx.doi.org/10.5772/58958 223 lengths above the second-order mode cut...brightness multimode diode lasers for a given pump waveguide dimen‐ sion. In conventional double- clad fibers, low-index polymer coatings are typically used to...was below 0.2. The fiber was passive and there was no laser demonstration in this first attempt. The first cladding - pumping demonstration in an

  15. Automated tracking of animal posture and movement during exploration and sensory orientation behaviors.

    PubMed

    Gomez-Marin, Alex; Partoune, Nicolas; Stephens, Greg J; Louis, Matthieu; Brembs, Björn

    2012-01-01

    The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying neural circuit computation. Accordingly, computer-vision applications for animal tracking are becoming a key complementary toolkit to genetic, molecular and electrophysiological characterization in systems neuroscience. We present Sensory Orientation Software (SOS) to measure behavior and infer sensory experience correlates. SOS is a simple and versatile system to track body posture and motion of single animals in two-dimensional environments. In the presence of a sensory landscape, tracking the trajectory of the animal's sensors and its postural evolution provides a quantitative framework to study sensorimotor integration. To illustrate the utility of SOS, we examine the orientation behavior of fruit fly larvae in response to odor, temperature and light gradients. We show that SOS is suitable to carry out high-resolution behavioral tracking for a wide range of organisms including flatworms, fishes and mice. Our work contributes to the growing repertoire of behavioral analysis tools for collecting rich and fine-grained data to draw and test hypothesis about the functioning of the nervous system. By providing open-access to our code and documenting the software design, we aim to encourage the adaptation of SOS by a wide community of non-specialists to their particular model organism and questions of interest.

  16. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.

    PubMed

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2017-01-01

    Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.

  17. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure

    PubMed Central

    Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.

    2017-01-01

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527

  18. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure.

    PubMed

    Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A

    2017-11-28

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.

  19. Single mode fiber and twin-core fiber connection technique for in-fiber integrated interferometer

    NASA Astrophysics Data System (ADS)

    Yuan, Tingting; Zhang, Xiaotong; Guan, Chunying; Yang, Xinghua; Yuan, Libo

    2015-09-01

    A novel twin-core fiber connector has been made by two side-polished fibers. By using side polishing technique, we present a connector based on the twin-core fiber (TCF) and two D-shaped single-core fibers. After simple alignment and splicing, all fiber miniaturizing connector can be obtained. Two cores can operate independently and are non-interfering. The coupling loss of this connector is low and the fabrication technologies are mature. The connector device could be used for sensors or particle trapping.

  20. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    PubMed

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  1. Educational Tracking and Sense of Futility: A Matter of Stigma Consciousness?

    ERIC Educational Resources Information Center

    Spruyt, Bram; Van Droogenbroeck, Filip; Kavadias, Dimokritos

    2015-01-01

    During the past decade, both qualitative and quantitative research have documented strong feelings of fatalism amongst pupils enrolled in technical and vocational tracks in secondary education. Whereas those feelings have been shown to predict decreased school involvement and school misconduct, relatively little is known about their exact origins.…

  2. Optical fiber voltage sensor based on Michelsion interferometer using Fabry-Perot demodulation interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai

    2014-11-01

    We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.

  3. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  4. Influence of uneven rail irregularities on the dynamic response of the railway track using a three-dimensional model of the vehicle-track system

    NASA Astrophysics Data System (ADS)

    Naeimi, Meysam; Zakeri, Jabbar Ali; Esmaeili, Morteza; Shadfar, Morad

    2015-01-01

    A mathematical model of the vehicle-track interaction is developed to investigate the coupled behaviour of vehicle-track system, in the presence of uneven irregularities at left/right rails. The railway vehicle is simplified as a 3D multi-rigid-body model, and the track is treated as the two parallel beams on a layered discrete support system. Besides the car-body, the bogies and the wheel sets, the sleepers are assumed to have roll degree of freedom, in order to simulate the in-plane rotation of the components. The wheel-rail interface is treated using a nonlinear Hertzian contact model, coupling the mathematical equations of the vehicle-track systems. The dynamic interaction of the entire system is numerically studied in time domain, employing Newmark's integration method. The track irregularity spectra of both the left/right rails are taken into account, as the inputs of dynamic excitations. The dynamic responses of the track system induced by such irregularities are obtained, particularly in terms of the vertical (bounce) and roll displacements. The numerical model of the present research is validated using several benchmark models reported in the literature, for both the smooth and unsmooth track conditions. Four sample profiles of the measured rail irregularities are considered as the case studies of excitation sources, examining their influences on the dynamic behaviour of the coupled system. The results of numerical simulations demonstrate that the motion of track system is significantly influenced by the presence of uneven irregularities in left/right rails. Dynamic response of the sleepers in the roll direction becomes more sensitive to the rail irregularities, as the unevenness severity of the parallel profiles (quantitative difference between left and right rail spectra) is increased. The severe geometric deformation of the track in the bounce-pitch-roll directions is mainly related to such profile unevenness (cross-level) in left/right rails.

  5. Using laser capture microdissection to study fiber specific signaling in locomotor muscle in COPD: A pilot study.

    PubMed

    Mohan, Divya; Lewis, Amy; Patel, Mehul S; Curtis, Katrina J; Lee, Jen Y; Hopkinson, Nicholas S; Wilkinson, Ian B; Kemp, Paul R; Polkey, Michael I

    2017-06-01

    Quadriceps dysfunction is important in chronic obstructive pulmonary disease (COPD), with an associated increased proportion of type II fibers. Investigation of protein synthesis and degradation has yielded conflicting results, possibly due to study of whole biopsy samples, whereas signaling may be fiber-specific. Our objective was to develop a method for fiber-specific gene expression analysis. 12 COPD and 6 healthy subjects underwent quadriceps biopsy. Cryosections were immunostained for type II fibers, which were separated using laser capture microdissection (LCM). Whole muscle and different fiber populations were subject to quantitative polymerase chain reaction. Levels of muscle-RING-finger-protein-1 and Atrogin-1 were lower in type II fibers of COPD versus healthy subjects (P = 0.02 and P = 0.03, respectively), but differences were not apparent in whole muscle or type I fibers. We describe a novel method for studying fiber-specific gene expression in optimum cutting temperature compound-embedded muscle specimens. LCM offers a more sensitive way to identify molecular changes in COPD muscle. Muscle Nerve 55: 902-912, 2017. © 2016 Wiley Periodicals, Inc.

  6. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  7. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  8. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  9. Natural fibers

    Treesearch

    Craig M. Clemons

    2010-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and plant-based bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement....

  10. Natural fibers

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  11. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns

  12. Modeling track access charge to enhance railway industry performance

    NASA Astrophysics Data System (ADS)

    Berawi, Mohammed Ali; Miraj, Perdana; Berawi, Abdur Rohim Boy; Susantono, Bambang; Leviakangas, Pekka; Radiansyah, Hendra

    2017-11-01

    Indonesia attempts to improve nation's competitiveness by increasing the quality and the availability of railway network. However, the infrastructure improperly managed by the operator in terms of the technical issue. One of the reasons for this problem is an unbalanced value of infrastructure charge. In 2000's track access charge and infrastructure maintenance and operation for Indonesia railways are equal and despite current formula of the infrastructure charge, issues of transparency and accountability still in question. This research aims to produce an alternative scheme of track access charge by considering marginal cost plus markup (MC+) approach. The research combines qualitative and quantitative method through an in-depth interview and financial analysis. The result will generate alternative formula of infrastructure charge in Indonesia's railway industry. The simulation also conducted to estimate track access charge for the operator and to forecast government support in terms of subsidy. The result is expected to enhance railway industry performance and competitiveness.

  13. High fiber-low matrix composites: kenaf fiber/polypropylene.

    Treesearch

    Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree

    2002-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...

  14. Design and research of sun sensor based on technology of optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhou, Wang; Li, Dan

    2010-08-01

    A kind of sun sensor is designed based on the optical fiber. This project consists of three parts: optical head, photoelectric sensor and signal processing unit. The innovation of this design lies in the improvement of traditional sun sensor, where multi-fibers, used as a leader, are symmetrically distributed on the surface of a spacecraft. To determine the attitude of a spacecraft, the sun sensor should measure the direction of the sun. Because the fiber length can be adjusted according to the fact, photoelectric sensor can be placed deeply inside a spacecraft to protect the photoelectric sensor against the damage by the high-energy particles from outer space. The processing unit calculates the difference value of sun energy imported by each pair of opposite optical fiber so as to obtain the angle and the orientation between the spacecraft and the sun. This sun sensor can suit multi-field of view, both small and large. It improves the accuracy of small field of view and increases the precision of locating a spacecraft. This paper briefly introduces the design of processing unit. This sun sensor is applicable to detect the attitude of a spacecraft. In addition, it can also be used in solar tracking system of PV technology.

  15. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

  16. Control of operating parameters of laser ceilometers with the application of fiber optic delay line imitation

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.

    2017-11-01

    The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.

  17. Contrast limiting factors of optical fiber bundles for flexible endoscopy

    NASA Astrophysics Data System (ADS)

    Ortega-Quijano, N.; Arce-Diego, J. L.; Fanjul-Vélez, F.

    2008-11-01

    Medical endoscopy constitutes a basic device for the development of minimally invasive procedures for a wide range of medical applications, involving diagnosis, treatment and surgery, as well as biopsy sampling. Its minimally invasive nature results in no surgery, or only small incisions, which involves a minimal hospitalization time. The medical relevance of endoscopes relies on the fact that they are one of the most effective means of early stages of cancer diagnosis, with the subsequent improvement in the patient's quality of life. Flexible endoscopy by means of coherent optical fiber bundles shows both flexibility and a high active area. However, the parallel arrangement of the fibers within the bundle produces interference phenomena between them, which results in optical crosstalk. As a consequence, there is a power exchange between contiguous fibers, producing a worsening in the contrast of the image. In this work, this quality limiting factor is deeply studied. We quantitatively analyze crosstalk, performing several studies that show the limitations imposed to the endoscopic system. Finally, we propose some solutions by an analytical method to accurately determine the appropriate optical fibers for each particular design. The method is also applied to endoscopic OCT.

  18. Optical fiber sensors measurement system and special fibers improvement

    NASA Astrophysics Data System (ADS)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  19. CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS

    PubMed Central

    D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.

    2010-01-01

    Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930

  20. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.

    PubMed

    Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu

    2016-01-01

    Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time.

  1. In situ microscopic analysis of asbestos and synthetic vitreous fibers retained in hamster lungs following inhalation.

    PubMed Central

    Rogers, R A; Antonini, J M; Brismar, H; Lai, J; Hesterberg, T W; Oldmixon, E H; Thevenaz, P; Brain, J D

    1999-01-01

    Hamsters breathed, nose-only, for 13 weeks, 5 days/week, 6 hr/day, either man-made vitreous fiber (MMVF)10a, MMVF33, or long amosite asbestos at approximately 300 World Health Organization (WHO) fibers/cc or long amosite at 25 WHO fibers/cc. [World Health Organization fibers are longer than 5 microm and thicker than 3 microm, with aspect ratio >3.] After sacrifice, fiber burden was estimated (left lungs) by ashing and scanning electron microscopy (ashing/SEM) or (right middle lobes) by confocal laser scanning microscopy (CLSM) in situ. In situ CLSM also provided three-dimensional views of fibers retained, undisturbed, in lung tissue. Fibers of each type were lodged in alveoli and small airways, especially at airway bifurcations, and were seen fully or partly engulfed by alveolar macrophages. Amosite fibers penetrated into and through alveolar septa. Length densities of fibers in parenchyma (total length of fiber per unit volume of lung) were estimated stereologically from fiber transsections counted on two-dimensional optical sections and were 30.5, 25.3, 20.0, and 81.6 mm/mm3 for MMVF10a, MMVF33, and low- and high-dose amosite, respectively. Lengths of individual fibers were measured in three dimensions by tracking individual fibers through series of optical sections. Length distributions of amosite fibers aerosolized, but before inhalation versus after retention in the lung were similar, whether determined by ashing/SEM or in situ CLSM. In contrast, the fraction of short MMVF10a and MMVF33 fibers increased and the geometric mean fiber lengths of both MMVFs decreased by approximately 60% during retention. Most likely due to fiber deposition pattern and differences in sampling, fiber burdens [MMVF10a, MMVF33, and amosite (high dose; 269 WHO fibers/cc)] determined by ashing/SEM were 1.4, 1. 5, and 3.5 times greater, respectively, than those calculated from in situ CLSM data. In situ CLSM is able to provide detailed information about the anatomic sites of fiber

  2. Auto-tracking system for human lumbar motion analysis.

    PubMed

    Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong

    2011-01-01

    Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.

  3. Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.

    PubMed

    Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae

    2013-01-01

    Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.

  4. Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays

    PubMed Central

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-01-01

    Objective Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks. PMID:27705958

  5. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  6. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  7. Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications.

    PubMed

    Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael; Comotto, Mattia; Lesha, Emal; Serex, Ludovic; Bagherifard, Sara; Chen, Yu; Fu, Guoqing; Ameri, Shideh Kabiri; Ruan, Weitong; Miller, Eric L; Dokmeci, Mehmet R; Sonkusale, Sameer; Khademhosseini, Ali

    2016-03-01

    Epidermal pH is an indication of the skin's physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic nonhealing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous pH measurement can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, pH-responsive hydrogel fibers are presented that can be used for long-term monitoring of epidermal wound condition. pH-responsive dyes are loaded into mesoporous microparticles and incorporated into hydrogel fibers using a microfluidic spinning system. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel-based wound dressings with clinically relevant dimensions. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Prototype of a coherent tracking and detection receiver with wideband vibration compensation for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Giggenbach, Dirk; Schex, Anton; Wandernoth, Bernhard

    1996-04-01

    The Optical Communications Group of the German Aerospace Research Establishment (DLR) has investigated the feasibility of a fiberless receiver telescope for high sensitive coherent optical space communication, resulting in an elegant pointing, acquisition and tracking (PAT) concept. To demonstrate the feasibility of this new concept, an optical receiver terminal that coherently obtains both the spatial error signal for tracking and the data signal with only one set of detectors has been built. The result is a very simple and compact setup with few optical surfaces. It does not require fibers for superpositioning and is capable to compensate for microaccelerations up to about one kilohertz.

  9. Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study.

    PubMed

    McCleary, Barry V; DeVries, Jonathan W; Rader, Jeanne I; Cohen, Gerald; Prosky, Leon; Mugford, David C; Okuma, Kazuhiro

    2012-01-01

    A method for the determination of insoluble (IDF), soluble (SDF), and total dietary fiber (TDF), as defined by the CODEX Alimentarius, was validated in foods. Based upon the principles of AOAC Official Methods 985.29, 991.43, 2001.03, and 2002.02, the method quantitates water-insoluble and water-soluble dietary fiber. This method extends the capabilities of the previously adopted AOAC Official Method 2009.01, Total Dietary Fiber in Foods, Enzymatic-Gravimetric-Liquid Chromatographic Method, applicable to plant material, foods, and food ingredients consistent with CODEX Definition 2009, including naturally occurring, isolated, modified, and synthetic polymers meeting that definition. The method was evaluated through an AOAC/AACC collaborative study. Twenty-two laboratories participated, with 19 laboratories returning valid assay data for 16 test portions (eight blind duplicates) consisting of samples with a range of traditional dietary fiber, resistant starch, and nondigestible oligosaccharides. The dietary fiber content of the eight test pairs ranged from 10.45 to 29.90%. Digestion of samples under the conditions of AOAC 2002.02 followed by the isolation, fractionation, and gravimetric procedures of AOAC 985.29 (and its extensions 991.42 and 993.19) and 991.43 results in quantitation of IDF and soluble dietary fiber that precipitates (SDFP). The filtrate from the quantitation of water-alcohol-insoluble dietary fiber is concentrated, deionized, concentrated again, and analyzed by LC to determine the SDF that remains soluble (SDFS), i.e., all dietary fiber polymers of degree of polymerization = 3 and higher, consisting primarily, but not exclusively, of oligosaccharides. SDF is calculated as the sum of SDFP and SDFS. TDF is calculated as the sum of IDF and SDF. The within-laboratory variability, repeatability SD (Sr), for IDF ranged from 0.13 to 0.71, and the between-laboratory variability, reproducibility SD (SR), for IDF ranged from 0.42 to 2.24. The within

  10. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  11. Novel laser communications transceiver with internal gimbal-less pointing and tracking

    NASA Astrophysics Data System (ADS)

    Chalfant, Charles H., III; Orlando, Fred J., Jr.; Gregory, Jeff T.; Sulham, Clifford; O'Neal, Chad B.; Taylor, Geoffrey W.; Craig, Douglas M.; Foshee, James J.; Lovett, J. Timothy

    2002-12-01

    This paper describes a novel laser communications transceiver for use in multi-platform satellite networks or clusters that provides internal pointing and tracking technique allowing static mounting of the transceiver subsystems and minimal use of mechanical stabilization techniques. This eliminates the need for the large, power hungry, mechanical gimbals that are required for laser cross-link pointing, acquisition and tracking. The miniature transceiver is designed for pointing accuracies required for satellite cross-link distances of between 500 meters to 5000 meters. Specifically, the designs are targeting Air Force Research Lab's TechSat21 Program, although alternative transceiver configurations can provide for much greater link distances and other satellite systems. The receiver and transmitter are connected via fiber optic cabling from a separate electronics subsystem containing the optoelectronics PCBs, thereby eliminating active optoelectronic elements from the transceiver's mechanical housing. The internal acquisition and tracking capability is provided by an advanced micro-electro-mechanical system (MEMS) and an optical design that provides a specific field-of-view based on the satellite cluster's interface specifications. The acquisition & tracking control electronics will utilize conventional closed loop tracking techniques. The link optical power budget and optoelectronics designs allow use of transmitter sources with output powers of near 100 mW. The transceiver will provide data rates of up to 2.5 Gbps and operate at either 1310 nm or 1550 nm. In addition to space-based satellite to satellite cross-links, we are planning to develop a broad range of applications including air to air communications between highly mobile airborne platforms and terrestrial fixed point to point communications.

  12. Enlightening the ultrahigh electrical conductivities of doped double-wall carbon nanotube fibers by Raman spectroscopy and first-principles calculations.

    PubMed

    Tristant, Damien; Zubair, Ahmed; Puech, Pascal; Neumayer, Frédéric; Moyano, Sébastien; Headrick, Robert J; Tsentalovich, Dmitri E; Young, Colin C; Gerber, Iann C; Pasquali, Matteo; Kono, Junichiro; Leotin, Jean

    2016-12-01

    Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 10 8 A m -2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.

  13. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    PubMed

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  14. Quantitative Trait Locus Analysis of SIX1-SIX6 with Retinal Nerve Fiber Layer Thickness in Individuals of European Descent

    PubMed Central

    Kuo, Jane Z.; Zangwill, Linda M.; Medeiros, Felipe A.; Liebmann, Jeffery M.; Girkin, Christopher A.; Hammel, Na’ama; Rotter, Jerome I.; Weinreb, Robert N.

    2015-01-01

    Purpose To perform a quantitative trait locus (QTL) analysis and evaluate whether a locus between SIX1 and SIX6 is associated with retinal nerve fiber layer (RNFL) thickness in individuals of European descent. Design Observational, multi-center, cross-sectional study. Methods 231 participants were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Association of rs10483727 in SIX1-SIX6 with global and sectoral RNFL thickness was performed. Quantitative trait analysis with the additive model of inheritance was analyzed using linear regression. Trend analysis was performed to evaluate the mean global and sectoral RNFL thickness with 3 genotypes of interest (T/T, C/T, C/C). All models were adjusted for age and gender. Results Direction of association between T allele and RNFL thickness was consistent in the global and different sectoral RNFL regions. Each copy of the T risk allele in rs10483727 was associated with −0.16 μm thinner global RNFL thickness (β=−0.16, 95% CI: −0.28 to −0.03; P=0.01). Similar patterns were found for the sectoral regions, including inferior (P=0.03), inferior-nasal (P=0.017), superior-nasal (P=0.0025), superior (P=0.002) and superior-temporal (P=0.008). The greatest differences were observed in the superior and inferior quadrants, supporting clinical observations for RNFL thinning in glaucoma. Thinner global RNFL was found in subjects with T/T genotypes compared to subjects with C/T and C/C genotypes (P=0.044). Conclusions Each copy of the T risk allele has an additive effect and was associated with thinner global and sectoral RNFL. Findings from this QTL analysis further support a genetic contribution to glaucoma pathophysiology. PMID:25849520

  15. Microwatt power consumption maximum power point tracking circuit using an analogue differentiator for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Zhu, M.

    2015-12-01

    A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.

  16. Extending fiber resources : fiber loading recycled fiber and mechanical pulps for lightweight, high opacity paper

    Treesearch

    Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr

    1999-01-01

    Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...

  17. Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women

    PubMed Central

    Myers, Kristin M.; Vink, Joy Y.; Wapner, Ronald J.; Hendon, Christine P.

    2016-01-01

    The structural integrity of the cervix in pregnancy is necessary for carrying a pregnancy until term, and the organization of human cervical tissue collagen likely plays an important role in the tissue’s structural function. Collagen fibers in the cervical extracellular matrix exhibit preferential directionality, and this collagen network ultrastructure is hypothesized to reorient and remodel during cervical softening and dilation at time of parturition. Within the cervix, the upper half is substantially loaded during pregnancy and is where the premature funneling starts to happen. To characterize the cervical collagen ultrastructure for the upper half of the human cervix, we imaged whole axial tissue slices from non-pregnant and pregnant women undergoing hysterectomy or cesarean hysterectomy respectively using optical coherence tomography (OCT) and implemented a pixel-wise fiber orientation tracking method to measure the distribution of fiber orientation. The collagen fiber orientation maps show that there are two radial zones and the preferential fiber direction is circumferential in a dominant outer radial zone. The OCT data also reveal that there are two anatomic regions with distinct fiber orientation and dispersion properties. These regions are labeled: Region 1—the posterior and anterior quadrants in the outer radial zone and Region 2—the left and right quadrants in the outer radial zone and all quadrants in the inner radial zone. When comparing samples from nulliparous vs multiparous women, no differences in these fiber properties were noted. Pregnant tissue samples exhibit an overall higher fiber dispersion and more heterogeneous fiber properties within the sample than non-pregnant tissue. Collectively, these OCT data suggest that collagen fiber dispersion and directionality may play a role in cervical remodeling during pregnancy, where distinct remodeling properties exist according to anatomical quadrant. PMID:27898677

  18. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  19. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawet, D.; Ruane, G.; Xuan, W.

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolutionmore » spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.« less

  20. A Track Initiation Method for the Underwater Target Tracking Environment

    NASA Astrophysics Data System (ADS)

    Li, Dong-dong; Lin, Yang; Zhang, Yao

    2018-04-01

    A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.

  1. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Gonzalez, David A; Irby, Pierce B; Fried, Nathaniel M

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A “fiber muzzle brake” was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 ?? ? s , and 300 Hz using a 100 - ? m -core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560 - ? m -outer-diameter, 360 - ? m -inner-diameter tube with a 275 - ? m -diameter through hole located 250 ?? ? m from the distal end. The fiber tip was recessed a distance of 500 ?? ? m . Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40 ± 4 ?? mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 ± 4 ?? s

  2. Optical fiber science and technology: Novel fibers and fiber sensors

    NASA Astrophysics Data System (ADS)

    Morse, T. F.

    1988-02-01

    This equipment grant has permitted the purchase of a complete optical fiber draw facility and auxilliary equipment for our fiber characterization laboratory. The draw tower has been erected in a specially prepared laboratory. It is a 7.8 m automated tower with a 20 kw carbon induction furnace, and sufficient room for two UV coating stages, or a UV coating stage, and a thermal curing stage. The tower installation took perhaps somewhat more time than initially anticipated, largely due to difficulties in the site preparation. The tower itself has been installed on a reinforced concrete pad, with appropriate vibration isolation. For about six months, we have been gaining experience in the use of the tower, and have been drawing kilometer lengths of fiber that range in diameter from 50 microns to 250 microns with a tolerance of the order of a few microns. In anticipation of expanding the coating capabilities of our draw tower, a vacuum system was purchased for use with radio frequency sputtering on-line on the tower. This will be particularly useful for ceramic coated fibers in the study of the behavior of fiber strengthened composite materials.

  3. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    PubMed Central

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595

  4. Quantitative analysis of the effect of environmental-scanning electron microscopy on collagenous tissues.

    PubMed

    Lee, Woowon; Toussaint, Kimani C

    2018-05-31

    Environmental-scanning electron microscopy (ESEM) is routinely applied to various biological samples due to its ability to maintain a wet environment while imaging; moreover, the technique obviates the need for sample coating. However, there is limited research carried out on electron-beam (e-beam) induced tissue damage resulting from using the ESEM. In this paper, we use quantitative second-harmonic generation (SHG) microscopy to examine the effects of e-beam exposure from the ESEM on collagenous tissue samples prepared as either fixed, frozen, wet or dehydrated. Quantitative SHG analysis of tissues, before and after ESEM e-beam exposure in low-vacuum mode, reveals evidence of cross-linking of collagen fibers, however there are no structural differences observed in fixed tissue. Meanwhile wet-mode ESEM appears to radically alter the structure from a regular fibrous arrangement to a more random fiber orientation. We also confirm that ESEM images of collagenous tissues show higher spatial resolution compared to SHG microscopy, but the relative tradeoff with collagen specificity reduces its effectiveness in quantifying collagen fiber organization. Our work provides insight on both the limitations of the ESEM for tissue imaging, and the potential opportunity to use as a complementary technique when imaging fine features in the non-collagenous regions of tissue samples.

  5. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites

    PubMed Central

    Reinprecht, Yarmilla; Arif, Muhammad; Simon, Leonardo C.; Pauls, K. Peter

    2015-01-01

    Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue. PMID:26167917

  6. Reconstruction and Visualization of Fiber and Laminar Structure inthe Normal Human Heart from Ex Vivo DTMRI Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-12-18

    Background - The human heart is composed of a helicalnetwork of muscle fibers. These fibers are organized to form sheets thatare separated by cleavage surfaces. This complex structure of fibers andsheets is responsible for the orthotropic mechanical properties ofcardiac muscle. The understanding of the configuration of the 3D fiberand sheet structure is important for modeling the mechanical andelectrical properties of the heart and changes in this configuration maybe of significant importance to understand the remodeling aftermyocardial infarction.Methods - Anisotropic least square filteringfollowed by fiber and sheet tracking techniques were applied to DiffusionTensor Magnetic Resonance Imaging (DTMRI) data of the excisedmore » humanheart. The fiber configuration was visualized by using thin tubes toincrease 3-dimensional visual perception of the complex structure. Thesheet structures were reconstructed from the DTMRI data, obtainingsurfaces that span the wall from the endo- to the epicardium. Allvisualizations were performed using the high-quality ray-tracing softwarePOV-Ray. Results - The fibers are shown to lie in sheets that haveconcave or convex transmural structure which correspond to histologicalstudies published in the literature. The fiber angles varied depending onthe position between the epi- and endocardium. The sheets had a complexstructure that depended on the location within the myocardium. In theapex region the sheets had more curvature. Conclusions - A high-qualityvisualization algorithm applied to demonstrated high quality DTMRI datais able to elicit the comprehension of the complex 3 dimensionalstructure of the fibers and sheets in the heart.« less

  7. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies.

    PubMed

    Kim, Youngyo; Je, Youjin

    2014-09-15

    Greater intake of dietary fiber has been associated with lower risk of several chronic diseases. Some observational studies have examined the association between dietary fiber intake and total mortality, but the results were inconclusive. We conducted a meta-analysis of data from prospective cohort studies to quantitatively assess the association. Eligible studies were identified by searching the PubMed and Embase databases for all articles published through November 30, 2013, and by reviewing the reference lists of retrieved articles. Study-specific estimates adjusting for potential confounders were combined to calculate a pooled relative risk and 95% confidence interval using a random-effects model. Seven prospective cohort studies of dietary fiber intake and total mortality, including 62,314 deaths among 908,135 participants, were identified. The pooled adjusted relative risk of total mortality for the highest category of dietary fiber intake versus the lowest was 0.77 (95% confidence interval: 0.74, 0.80). In a dose-response meta-analysis, the pooled adjusted relative risk for a 10-g/day increment of dietary fiber intake was 0.89 (95% confidence interval: 0.85, 0 92). By source of fiber, cereal and, to a lesser extent, vegetable fiber were significantly associated with lower total mortality, while fruit fiber showed no association. In conclusion, high dietary fiber intake may reduce the risk of total mortality. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Automated Tracking of Animal Posture and Movement during Exploration and Sensory Orientation Behaviors

    PubMed Central

    Gomez-Marin, Alex; Partoune, Nicolas; Stephens, Greg J.; Louis, Matthieu

    2012-01-01

    Background The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying neural circuit computation. Accordingly, computer-vision applications for animal tracking are becoming a key complementary toolkit to genetic, molecular and electrophysiological characterization in systems neuroscience. Methodology/Principal Findings We present Sensory Orientation Software (SOS) to measure behavior and infer sensory experience correlates. SOS is a simple and versatile system to track body posture and motion of single animals in two-dimensional environments. In the presence of a sensory landscape, tracking the trajectory of the animal's sensors and its postural evolution provides a quantitative framework to study sensorimotor integration. To illustrate the utility of SOS, we examine the orientation behavior of fruit fly larvae in response to odor, temperature and light gradients. We show that SOS is suitable to carry out high-resolution behavioral tracking for a wide range of organisms including flatworms, fishes and mice. Conclusions/Significance Our work contributes to the growing repertoire of behavioral analysis tools for collecting rich and fine-grained data to draw and test hypothesis about the functioning of the nervous system. By providing open-access to our code and documenting the software design, we aim to encourage the adaptation of SOS by a wide community of non-specialists to their particular model organism and questions of interest. PMID:22912674

  9. Effect of cross-correlation on track-to-track fusion

    NASA Astrophysics Data System (ADS)

    Saha, Rajat K.

    1994-07-01

    Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.

  10. NucliTrack: an integrated nuclei tracking application.

    PubMed

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  11. Quantitative validation of a nonlinear histology-MRI coregistration method using Generalized Q-sampling Imaging in complex human cortical white matter

    PubMed Central

    Gangolli, Mihika; Holleran, Laurena; Kim, Joong Hee; Stein, Thor D.; Alvarez, Victor; McKee, Ann C.; Brody, David L.

    2017-01-01

    Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter. PMID:28365421

  12. Birc7: A Late Fiber Gene of the Crystalline Lens.

    PubMed

    De Maria, Alicia; Bassnett, Steven

    2015-07-01

    A distinct subset of genes, so-called "late fiber genes," is expressed in cells bordering the central, organelle-free zone (OFZ) of the lens. The purpose of this study was to identify additional members of this group. Fiber cells were harvested from various layers of the lens by laser micro-dissection and subjected to microarray, in situ hybridization, and Western blot analysis. Expression of Livin, a member of the inhibitor of apoptosis protein (IAP) family encoded by Birc7, was strongly upregulated in deep cortical fiber cells. The depth-dependent distribution of Livin mRNA was confirmed by quantitative PCR and in situ hybridization. The onset of Livin expression coincided with loss of organelles from primary fiber cells. Livin expression peaked at 1 month but was sustained even in aged lenses. Antibodies raised against mouse Livin labeled multiple bands on immunoblots, reflecting progressive proteolysis of the parent molecule during differentiation. Mice harboring a floxed Birc7 allele were generated and used to conditionally delete Birc7 in lens. Lenses from knockout mice grew normally and retained their transparency, suggesting that Livin does not have an indispensable role in fiber cell differentiation. Birc7 is a late fiber gene of the mouse lens. In tumor cells, Livin acts as an antiapoptotic protein, but its function in the lens is enigmatic. Livin is a RING domain protein with putative E3 ubiquitin ligase activity. Its expression in cells bordering the OFZ is consistent with a role in organelle degradation, a process in which the ubiquitin proteasome pathway has been implicated previously.

  13. Evidence Value of Textile Fiber - Transfer and Persistence of Fibers.

    PubMed

    Siegel, J A

    1997-12-01

    Fibers comprise probably the most common form of trace evidence in forensic science today. They occur in perhaps one-quarter of all cases that involve trace evidence and a large majority of crime laboratories routinely characterize textile fibers. Although a great deal of research has been done on how to best characterize and compare fibers, relatively little time has been spent on determining the significance of fiber evidence. This article presents a summary of the studies of fiber transfer and persistence and determination of the significance of fiber evidence. This accumulated research and analysis will enable fiber examiners to better interpret evidence in cases where foreign fibers have been transferred during contact between victims and perpetrators of crimes. Copyright © 1997 Central Police University.

  14. The Negative Correlation between Fiber Color and Quality Traits Revealed by QTL Analysis.

    PubMed

    Feng, Hongjie; Guo, Lixue; Wang, Gaskin; Sun, Junling; Pan, Zhaoe; He, Shoupu; Zhu, Heqin; Sun, Jie; Du, Xiongming

    2015-01-01

    Naturally existing colored cotton was far from perfection due to having genetic factors for lower yield, poor fiber quality and monotonous color. These factors posed a challenge to colored cotton breeding and innovation. To identify novel quantitative trait loci (QTL) for fiber color along with understanding of correlation between fiber color and quality in colored cotton, a RIL and two F2 populations were generated from crosses among Zong128 (Brown fiber cotton) and two white fiber cotton lines which were then analyzed in four environments. Two stable and major QTLs (qLC-7-1, qFC-7-1) for fiber lint and fuzz color were detected accounting for 16.01%-59.85% of the phenotypic variation across multiple generations and environments. Meanwhile, some minor QTLs were also identified on chromosomes 5, 14, 21 and 24 providing low phenotypic variation (<5%) from only F2 populations, not from the RILs population. Especially, a multiple-effect locus for fiber color and quality has been detected between flanking markers NAU1043 and NAU3654 on chromosome 7 (A genome) over multiple environments. Of which, qLC-7-1, qFC-7-1 were responsible for positive effects and improved fiber color in offsprings. Meanwhile, the QTLs (qFL-7-1, qFU-7-1, qFF-7-1, qFE-7-1, and qFS-7-1) for fiber quality had negative effects and explained 2.19%-8.78% of the phenotypic variation. This multiple-effect locus for fiber color and quality may reveal the negative correlation between the two types of above traits, so paving the way towards cotton genetic improvement.

  15. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement.

    PubMed

    Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian

    2008-02-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  16. ESC-Track: A computer workflow for 4-D segmentation, tracking, lineage tracing and dynamic context analysis of ESCs.

    PubMed

    Fernández-de-Manúel, Laura; Díaz-Díaz, Covadonga; Jiménez-Carretero, Daniel; Torres, Miguel; Montoya, María C

    2017-05-01

    Embryonic stem cells (ESCs) can be established as permanent cell lines, and their potential to differentiate into adult tissues has led to widespread use for studying the mechanisms and dynamics of stem cell differentiation and exploring strategies for tissue repair. Imaging live ESCs during development is now feasible due to advances in optical imaging and engineering of genetically encoded fluorescent reporters; however, a major limitation is the low spatio-temporal resolution of long-term 3-D imaging required for generational and neighboring reconstructions. Here, we present the ESC-Track (ESC-T) workflow, which includes an automated cell and nuclear segmentation and tracking tool for 4-D (3-D + time) confocal image data sets as well as a manual editing tool for visual inspection and error correction. ESC-T automatically identifies cell divisions and membrane contacts for lineage tree and neighborhood reconstruction and computes quantitative features from individual cell entities, enabling analysis of fluorescence signal dynamics and tracking of cell morphology and motion. We use ESC-T to examine Myc intensity fluctuations in the context of mouse ESC (mESC) lineage and neighborhood relationships. ESC-T is a powerful tool for evaluation of the genealogical and microenvironmental cues that maintain ESC fitness.

  17. Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.; hide

    2017-01-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.

  18. Stability test of the silicon Fiber Bragg Grating embroidered on textile for joint angle measurement

    NASA Astrophysics Data System (ADS)

    Apiwattanadej, Thanit; Chun, Byung Jae; Lee, Hyub; Li, King Ho Holden; Kim, Young-Jin

    2017-06-01

    Recently, Fiber Bragg Grating (FBG) sensors are being used for motion tracking applications. However, the sensitivity, linearity and stability of the systems have not been fully studied. Herein, an embroidered optical Fiber Bragg Grating (FBG) on a stretchable supportive textile for elbow movement measurement was developed. The sensing principle of this system is based on the alteration of Bragg wavelength due to strain from the elbow movements. The relationship between elbow movements and reflected Bragg wavelength was found to be linear. The dynamic range of FBG sensor on elbow support is between 0 and 120 degree. Finally, the stability of the FBG sensor on the supportive textile was tested during the exercise and the cleaning process with water. The sensitivity of FBG sensors for joint angle measurement and the effect of the movement and cleaning process to signals from FBG sensors after using in the real activity will be the basis knowledge for design and actual implementation of future optical fiber based wearable devices.

  19. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  20. Fiber-optic beam control systems using microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby

  1. In vivo testing of a biodegradable woven fabric made of bioactive glass fibers and PLGA80--a pilot study in the rabbit.

    PubMed

    Alm, Jessica J; Frantzén, Janek P A; Moritz, Niko; Lankinen, Petteri; Tukiainen, Mikko; Kellomäki, Minna; Aro, Hannu T

    2010-05-01

    The purpose of this study was to perform an intra-animal comparison of biodegradable woven fabrics made of bioactive glass (BG) fibers and poly(L-lactide-co-glycolide) 80/20 copolymer (PLGA(80)) fibers or PLGA(80) fibers alone, in surgical stabilization of bone graft. The BG fibers (BG 1-98) were aimed to enhance bone growth at site of bone grafting, whereas the PLGA component was intended to provide structural strength and flexibility to the fabric. Bone formation was analyzed qualitatively by histology and quantitatively by peripheral quantitative computed tomography (pQCT) at 12 weeks. The surgical handling properties of the control PLGA(80) fabric were more favorable. Both fabrics were integrated with the cortical bone surfaces, but BG fibers showed almost complete resorption. There were no signs of adverse local tissue reactions. As a proof of material integration and induced new bone formation, there was a significant increase in bone volume of the operated femurs compared with the contralateral intact bone (25% with BG/PLGA(80) fabric, p < 0.001 and 28% with the control PLGA(80) fabric, p = 0.006). This study failed to demonstrate the previously seen positive effect of BG 1-98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. Therefore, the feasibility and safety of BG as fibers needs to be reevaluated before use in clinical applications. (c) 2010 Wiley Periodicals, Inc.

  2. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  3. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen; So, Peter T. C.; Yu, Hanry

    2014-07-01

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  4. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg; Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007; Yan, Jie

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlativemore » with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.« less

  5. Mild hypothermia for treatment of diffuse axonal injury: a quantitative analysis of diffusion tensor imaging

    PubMed Central

    Jing, Guojie; Yao, Xiaoteng; Li, Yiyi; Xie, Yituan; Li, Wang#x2019;an; Liu, Kejun; Jing, Yingchao; Li, Baisheng; Lv, Yifan; Ma, Baoxin

    2014-01-01

    Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axonal injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significantly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury. PMID:25206800

  6. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  7. Free-breathing cardiac MR stress perfusion with real-time slice tracking.

    PubMed

    Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.

  8. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  9. Methods of quantitative and qualitative analysis of bird migration with a tracking radar

    NASA Technical Reports Server (NTRS)

    Bruderer, B.; Steidinger, P.

    1972-01-01

    Methods of analyzing bird migration by using tracking radar are discussed. The procedure for assessing the rate of bird passage is described. Three topics are presented concerning the grouping of nocturnal migrants, the velocity of migratory flight, and identification of species by radar echoes. The height and volume of migration under different weather conditions are examined. The methods for studying the directions of migration and the correlation between winds and the height and direction of migrating birds are presented.

  10. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  11. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging.

    PubMed

    Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas

    2005-06-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.

  12. Robust multiperson detection and tracking for mobile service and social robots.

    PubMed

    Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou

    2012-10-01

    This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.

  13. Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    PubMed Central

    Rosser, Gabriel; Fletcher, Alexander G.; Wilkinson, David A.; de Beyer, Jennifer A.; Yates, Christian A.; Armitage, Judith P.; Maini, Philip K.; Baker, Ruth E.

    2013-01-01

    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species. PMID:24204227

  14. Quality assurance of a gimbaled head swing verification using feature point tracking.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Enosaki, Tsubasa; Kawakubo, Atsushi; Hosono, Fumika; Yamada, Kiyoshi; Nagata, Yasushi

    2017-01-01

    To perform dynamic tumor tracking (DTT) for clinical applications safely and accurately, gimbaled head swing verification is important. We propose a quantitative gimbaled head swing verification method for daily quality assurance (QA), which uses feature point tracking and a web camera. The web camera was placed on a couch at the same position for every gimbaled head swing verification, and could move based on a determined input function (sinusoidal patterns; amplitude: ± 20 mm; cycle: 3 s) in the pan and tilt directions at isocenter plane. Two continuous images were then analyzed for each feature point using the pyramidal Lucas-Kanade (LK) method, which is an optical flow estimation algorithm. We used a tapped hole as a feature point of the gimbaled head. The period and amplitude were analyzed to acquire a quantitative gimbaled head swing value for daily QA. The mean ± SD of the period were 3.00 ± 0.03 (range: 3.00-3.07) s and 3.00 ± 0.02 (range: 3.00-3.07) s in the pan and tilt directions, respectively. The mean ± SD of the relative displacement were 19.7 ± 0.08 (range: 19.6-19.8) mm and 18.9 ± 0.2 (range: 18.4-19.5) mm in the pan and tilt directions, respectively. The gimbaled head swing was reliable for DTT. We propose a quantitative gimbaled head swing verification method for daily QA using the feature point tracking method and a web camera. Our method can quantitatively assess the gimbaled head swing for daily QA from baseline values, measured at the time of acceptance and commissioning. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water

    PubMed Central

    Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu

    2016-01-01

    Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time. PMID:27128096

  16. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  17. Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.

    PubMed

    Xiao, Ruoxiu; Yang, Jian; Goyal, Mahima; Liu, Yue; Wang, Yongtian

    2013-01-01

    As the uneven distribution of contrast agents and the perspective projection principle of X-ray, the vasculatures in angiographic image are with low contrast and are generally superposed with other organic tissues; therefore, it is very difficult to identify the vasculature and quantitatively estimate the blood flow directly from angiographic images. In this paper, we propose a fully automatic algorithm named adaptive geometrical vessel tracking (AGVT) for coronary artery identification in X-ray angiograms. Initially, the ridge enhancement (RE) image is obtained utilizing multiscale Hessian information. Then, automatic initialization procedures including seed points detection, and initial directions determination are performed on the RE image. The extracted ridge points can be adjusted to the geometrical centerline points adaptively through diameter estimation. Bifurcations are identified by discriminating connecting relationship of the tracked ridge points. Finally, all the tracked centerlines are merged and smoothed by classifying the connecting components on the vascular structures. Synthetic angiographic images and clinical angiograms are used to evaluate the performance of the proposed algorithm. The proposed algorithm is compared with other two vascular tracking techniques in terms of the efficiency and accuracy, which demonstrate successful applications of the proposed segmentation and extraction scheme in vasculature identification.

  18. Single-mode annular chirally-coupled core fibers for fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  19. Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion.

    PubMed

    Sawanon, Suriya; Koike, Satoshi; Kobayashi, Yasuo

    2011-12-01

    Selenomonas ruminantium strains were isolated from sheep rumen, and their significance for fiber digestion was evaluated. Based on the phylogenetic classification, two clades of S. ruminantium (clades I and II) were proposed. Clade II is newly found, as it comprised only new isolates that were phylogenetically distant from the type strain, while all of the known isolates were grouped in the major clade I. More than half of clade I isolates displayed CMCase activity with no relation to the degree of bacterial adherence to fibers. Although none of the isolates digested fiber in monoculture, they stimulated fiber digestion when co-cultured with Fibrobacter succinogenes, and there was an enhancement of propionate production. The extent of such synergy depended on the clade, with higher digestion observed by co-culture of clade I isolates with F. succinogenes than by co-culture with clade II isolates. Quantitative PCR analysis showed that bacterial abundance in the rumen was higher for clade I than for clade II. These results suggest that S. ruminantium, in particular the major clade I, is involved in rumen fiber digestion by cooperating with F. succinogenes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Fiber-optic photoelastic pressure sensor with fiber-loss compensation

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Anthan, D. J.

    1987-01-01

    A new fiber-optic pressure sensor is described that has high immunity to the effects of fiber-loss variations. This device uses the photoelastic effect to modulate the proportion of the light from each of two input fibers that is coupled into each of two output fibers. This four-fiber link permits two detectors to be used to measure the sensor's responses to the light from each of two independently controlled sources. These four detector outputs are processed to yield a loss-compensated signal that is a stable and sensitive pressure indicator.

  1. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  2. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    NASA Astrophysics Data System (ADS)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  3. Method for the preparation of carbon fiber from polyolefin fiber precursor

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  4. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  5. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  6. An image processing approach to analyze morphological features of microscopic images of muscle fibers.

    PubMed

    Comin, Cesar Henrique; Xu, Xiaoyin; Wang, Yaming; Costa, Luciano da Fontoura; Yang, Zhong

    2014-12-01

    We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  8. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  9. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    PubMed Central

    Sawakuchi, Gabriel O.; Ferreira, Felisberto A.; McFadden, Conor H.; Hallacy, Timothy M.; Granville, Dal A.; Sahoo, Narayan; Akselrod, Mark S.

    2016-01-01

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments. PMID:27147359

  10. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan; Ferreira, Felisberto A.

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared withmore » LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.« less

  11. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  12. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  13. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  14. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  15. Visual Tracking via Sparse and Local Linear Coding.

    PubMed

    Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan

    2015-11-01

    The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.

  16. Effect of Fiber Orientation on Ball Failures Under Rolling-contact Conditions

    NASA Technical Reports Server (NTRS)

    Butler, Robert H; Bear, H Robert; Carter, Thomas L

    1957-01-01

    The rolling-contact fatigue spin rig was used to test bails of a bearing steel at maximum Hertz stresses of 600,000 to 750,000 psi. The effect of fiber orientation was observed with the ball track restricted to passing directly over the poles, coincident with the equator, or randomly around the ball. The polar areas were found to be weaker in fatigue than the nonpolar areas. This resulted in a much greater portion of the failures occurring in the polar areas than would be expected from a homogeneous material. The early failures are discussed.

  17. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  18. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  19. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells.

    PubMed

    Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng

    2015-03-01

    Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (R(C)) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD∼nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and R(C) values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.

  20. Transverse mode instability of fiber oscillators in comparison with fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hejaz, Kamran; Shayganmanesh, Mahdi; Azizi, Saeed; Abedinajafi, Ali; Roohforouz, Ali; Rezaei-Nasirabad, Reza; Vatani, Vahid

    2018-05-01

    Transverse mode instability (TMI) is experimentally investigated in a fiber oscillator and a fiber amplifier. For a reasonable comparison of TMI in these two configurations, the same optical components and design parameters are applied to both. Our experimental results show that the TMI power threshold in a fiber oscillator is lower than in a corresponding fiber amplifier. By using simulation software, a fiber oscillator and an amplifier are designed with similar characteristics, to provide identical conditions for all effective parameters on TMI in both of them. Since the signal propagation in fiber oscillators is different from that of single-pass fiber amplifiers, and also since both forward and backward propagating signals in fiber oscillators can generate thermo-optic index gratings, the observed lower TMI threshold in the fiber oscillator is due to its different interaction of light with index gratings.

  1. Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain.

    PubMed

    Zhang, Yuan-Xian; Pu, Xiao-Yun; Feng, Li; Han, De-Yu; Ren, Yi-Tao

    2013-05-20

    The polarization characteristics of Whispering-Gallery-Mode (WGM) fiber lasers based on evanescent-wave-coupled gain are investigated. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized states of the pump beams. The polarization property of lasing emission depends on the propagating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the refractive index (RI) of the cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.

  2. Stat-tracks and mediotypes: powerful tools for modern ichnology based on 3D models

    PubMed Central

    Bennett, Matthew R.; Marty, Daniel; Budka, Marcin; Reynolds, Sally C.; Bakirov, Rashid

    2018-01-01

    Vertebrate tracks are subject to a wide distribution of morphological types. A single trackmaker may be associated with a range of tracks reflecting individual pedal anatomy and behavioural kinematics mediated through substrate properties which may vary both in space and time. Accordingly, the same trackmaker can leave substantially different morphotypes something which must be considered in creating ichnotaxa. In modern practice this is often captured by the collection of a series of 3D track models. We introduce two concepts to help integrate these 3D models into ichnological analysis procedures. The mediotype is based on the idea of using statistically-generated three-dimensional track models (median or mean) of the type specimens to create a composite track to support formal recognition of a ichno type. A representative track (mean and/or median) is created from a set of individual reference tracks or from multiple examples from one or more trackways. In contrast, stat-tracks refer to other digitally generated tracks which may explore variance. For example, they are useful in: understanding the preservation variability of a given track sample; identifying characteristics or unusual track features; or simply as a quantitative comparison tool. Both concepts assist in making ichnotaxonomical interpretations and we argue that they should become part of the standard procedure when instituting new ichnotaxa. As three-dimensional models start to become a standard in publications on vertebrate ichnology, the mediotype and stat-track concepts have the potential to help guiding a revolution in the study of vertebrate ichnology and ichnotaxonomy. PMID:29340246

  3. Optical fiber sensors for damage analysis in aerospace materials

    NASA Technical Reports Server (NTRS)

    Schindler, Paul; May, Russell; Claus, Richard

    1995-01-01

    the quantity of material, the sensor does not return to its original position upon removal of the applied stress, and some residual strain is maintained within the sensor element. As the metal thickness decreases due to corrosion, this strain is released, providing the sensing mechanism for corrosion detection. In the second approach, photosensitive optical fibers with long period Bragg gratings in the core were coated with metal. The Bragg gratings serve to couple core modes at discrete wavelengths to cladding modes. Since cladding modes interact with the metal coating surrounding the fiber cladding, the specific wavelengths coupled from core to cladding depend on the refractive index of the metal coating. Therefore, as the metal corrodes, the resulting change in index of the coating may be measured by measuring the change in wavelength of the coupled mode. Results demonstrate that both approaches can be successfully used to track the loss in metal coating on the optical fiber sensors due to corrosion.

  4. Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Keselman, Paul; Yu, Elaine Y.; Zhou, Xinyi Y.; Goodwill, Patrick W.; Chandrasekharan, Prashant; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Krishnan, Kannan M.; Zheng, Bo; Conolly, Steven M.

    2017-05-01

    Magnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI’s utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body. Here, we describe the biodistribution and clearance for two commonly used tracers in MPI: Ferucarbotran (Meito Sangyo Co., Japan) and LS-oo8 (LodeSpin Labs, Seattle, WA). We successfully demonstrate that 3D MPI is able to quantitatively assess short-term biodistribution, as well as long-term tracking and clearance of these tracers in vivo.

  5. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  6. Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method.

    PubMed

    Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan

    2010-09-01

    Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and q

  7. NucliTrack: an integrated nuclei tracking application

    PubMed Central

    Cooper, Sam; Barr, Alexis R.; Glen, Robert; Bakal, Chris

    2017-01-01

    Abstract Summary Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack’s interactive, graphical interface makes it significantly more user friendly. Availability and implementation NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. Contact sam@socooper.com Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637183

  8. Birc7: A Late Fiber Gene of the Crystalline Lens

    PubMed Central

    De Maria, Alicia; Bassnett, Steven

    2015-01-01

    Purpose A distinct subset of genes, so-called “late fiber genes,” is expressed in cells bordering the central, organelle-free zone (OFZ) of the lens. The purpose of this study was to identify additional members of this group. Methods Fiber cells were harvested from various layers of the lens by laser micro-dissection and subjected to microarray, in situ hybridization, and Western blot analysis. Results Expression of Livin, a member of the inhibitor of apoptosis protein (IAP) family encoded by Birc7, was strongly upregulated in deep cortical fiber cells. The depth-dependent distribution of Livin mRNA was confirmed by quantitative PCR and in situ hybridization. The onset of Livin expression coincided with loss of organelles from primary fiber cells. Livin expression peaked at 1 month but was sustained even in aged lenses. Antibodies raised against mouse Livin labeled multiple bands on immunoblots, reflecting progressive proteolysis of the parent molecule during differentiation. Mice harboring a floxed Birc7 allele were generated and used to conditionally delete Birc7 in lens. Lenses from knockout mice grew normally and retained their transparency, suggesting that Livin does not have an indispensable role in fiber cell differentiation. Conclusions Birc7 is a late fiber gene of the mouse lens. In tumor cells, Livin acts as an antiapoptotic protein, but its function in the lens is enigmatic. Livin is a RING domain protein with putative E3 ubiquitin ligase activity. Its expression in cells bordering the OFZ is consistent with a role in organelle degradation, a process in which the ubiquitin proteasome pathway has been implicated previously. PMID:26218911

  9. Emerging fiber optic endomicroscopy technologies towards noninvasive real-time visualization of histology in situ

    NASA Astrophysics Data System (ADS)

    Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde

    2010-09-01

    This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.

  10. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  11. Optoelectronic Fibers via Selective Amplification of In-Fiber Capillary Instabilities.

    PubMed

    Wei, Lei; Hou, Chong; Levy, Etgar; Lestoquoy, Guillaume; Gumennik, Alexander; Abouraddy, Ayman F; Joannopoulos, John D; Fink, Yoel

    2017-01-01

    Thermally drawn metal-insulator-semiconductor fibers provide a scalable path to functional fibers. Here, a ladder-like metal-semiconductor-metal photodetecting device is formed inside a single silica fiber in a controllable and scalable manner, achieving a high density of optoelectronic components over the entire fiber length and operating at a bandwidth of 470 kHz, orders of magnitude larger than any other drawn fiber device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos

    PubMed Central

    Giurumescu, Claudiu A.; Kang, Sukryool; Planchon, Thomas A.; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D.

    2012-01-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking. PMID:23052905

  13. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos.

    PubMed

    Giurumescu, Claudiu A; Kang, Sukryool; Planchon, Thomas A; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D

    2012-11-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.

  14. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  15. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    PubMed

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  16. Multiple-object tracking while driving: the multiple-vehicle tracking task.

    PubMed

    Lochner, Martin J; Trick, Lana M

    2014-11-01

    Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.

  17. Random fiber laser based on artificially controlled backscattering fibers.

    PubMed

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  18. Active elastic dimers: cells moving on rigid tracks.

    PubMed

    Lopez, J H; Das, Moumita; Schwarz, J M

    2014-09-01

    Experiments suggest that the migration of some cells in the three-dimensional extracellular matrix bears strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The active spring models the stress fibers with their myosin-driven contractility and α-actinin-driven extendability, while the friction coefficients of the two beads describe the catch and slip-bond behaviors of the integrins in focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility (and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to catch-bond behavior of integrins at the front of the cell and slip-bond behavior of integrins at the back. We obtain reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the active spring, due to catch-bond behavior and the dynamics of cross linking, and the addition of active noise on the motion of the cell. Our model highlights the role of α-actinin in three-dimensional cell motility and does not require Arp2/3 actin filament nucleation for net motion.

  19. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  20. Development and validation of a LC-MS/MS method for quantitation of fosfomycin - Application to in vitro antimicrobial resistance study using hollow-fiber infection model.

    PubMed

    Gandhi, Adarsh; Matta, Murali; Garimella, Narayana; Zere, Tesfalem; Weaver, James

    2018-06-01

    Extensive use and misuse of antibiotics over the past 50 years has contributed to the emergence and spread of antibiotic-resistant bacterial strains, rendering them as a global health concern. To address this issue, a dynamic in vitro hollow-fiber system, which mimics the in vivo environment more closely than the static model, was used to study the emergence of bacterial resistance of Escherichia coli against fosfomycin (FOS). To aid in this endeavor we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for quantitative analysis of FOS in lysogeny broth. FOS was resolved on a Kinetex HILIC (2.1 × 50 mm, 2.6 μm) column with 2 mm ammonium acetate (pH 4.76) and acetonitrile as mobile phase within 3 min. Multiple reaction monitoring was used to acquire data on a triple quadrupole mass spectrometer. The assay was linear from 1 to 1000 μg/mL. Inter- and intra-assay precision and accuracy were <15% and between ±85 and 115% respectively. No significant matrix effect was observed when corrected with the internal standard. FOS was stable for up to 24 h at room temperature, up to three freeze-thaw cycles and up to 24 h when stored at 4°C in the autosampler. In vitro experimental data were similar to the simulated plasma pharmacokinetic data, further confirming the appropriateness of the experimental design to quantitate antibiotics and study occurrence of antimicrobial resistance in real time. The validated LC-MS/MS assays for quantitative determination of FOS in lysogeny broth will help antimicrobial drug resistance studies. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.