Sample records for quantitative fluorescence microscopy

  1. Quantitative fluorescence microscopy and image deconvolution.

    PubMed

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used

  2. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  3. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.

    PubMed

    Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla

    2004-07-01

    Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.

  4. Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy.

    PubMed

    Dardikman, Gili; Nygate, Yoav N; Barnea, Itay; Turko, Nir A; Singh, Gyanendra; Javidi, Barham; Shaked, Natan T

    2018-03-01

    We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.

  5. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  6. Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging

    PubMed Central

    Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.

    2014-01-01

    Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321

  7. Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai

    2018-02-01

    Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.

  8. DNA origami-based standards for quantitative fluorescence microscopy.

    PubMed

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  9. Quantitative comparison of 3D third harmonic generation and fluorescence microscopy images.

    PubMed

    Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C

    2018-01-01

    Third harmonic generation (THG) microscopy is a label-free imaging technique that shows great potential for rapid pathology of brain tissue during brain tumor surgery. However, the interpretation of THG brain images should be quantitatively linked to images of more standard imaging techniques, which so far has been done qualitatively only. We establish here such a quantitative link between THG images of mouse brain tissue and all-nuclei-highlighted fluorescence images, acquired simultaneously from the same tissue area. For quantitative comparison of a substantial pair of images, we present here a segmentation workflow that is applicable for both THG and fluorescence images, with a precision of 91.3 % and 95.8 % achieved respectively. We find that the correspondence between the main features of the two imaging modalities amounts to 88.9 %, providing quantitative evidence of the interpretation of dark holes as brain cells. Moreover, 80 % bright objects in THG images overlap with nuclei highlighted in the fluorescence images, and they are 2 times smaller than the dark holes, showing that cells of different morphologies can be recognized in THG images. We expect that the described quantitative comparison is applicable to other types of brain tissue and with more specific staining experiments for cell type identification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  11. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    NASA Astrophysics Data System (ADS)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  12. In-focal-plane characterization of excitation distribution for quantitative fluorescence microscopy applications

    NASA Astrophysics Data System (ADS)

    Dietrich, Klaus; Brülisauer, Martina; ćaǧin, Emine; Bertsch, Dietmar; Lüthi, Stefan; Heeb, Peter; Stärker, Ulrich; Bernard, André

    2017-06-01

    The applications of fluorescence microscopy span medical diagnostics, bioengineering and biomaterial analytics. Full exploitation of fluorescent microscopy is hampered by imperfections in illumination, detection and filtering. Mainly, errors stem from deviations induced by real-world components inducing spatial or angular variations of propagation properties along the optical path, and they can be addressed through consistent and accurate calibration. For many applications, uniform signal to noise ratio (SNR) over the imaging area is required. Homogeneous SNR can be achieved by quantifying and compensating for the signal bias. We present a method to quantitatively characterize novel reference materials as a calibration reference for biomaterials analytics. The reference materials under investigation comprise thin layers of fluorophores embedded in polymer matrices. These layers are highly homogeneous in their fluorescence response, where cumulative variations do not exceed 1% over the field of view (1.5 x 1.1 mm). An automated and reproducible measurement methodology, enabling sufficient correction for measurement artefacts, is reported. The measurement setup is equipped with an autofocus system, ensuring that the measured film quality is not artificially increased by out-of-focus reduction of the system modulation transfer function. The quantitative characterization method is suitable for analysis of modified bio-materials, especially through patterned protein decoration. The imaging method presented here can be used to statistically analyze protein patterns, thereby increasing both precision and throughput. Further, the method can be developed to include a reference emitter and detector pair on the image surface of the reference object, in order to provide traceable measurements.

  13. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  14. Quantitative Super-Resolution Microscopy of Nanopipette-Deposited Fluorescent Patterns.

    PubMed

    Hennig, Simon; van de Linde, Sebastian; Bergmann, Stephan; Huser, Thomas; Sauer, Markus

    2015-08-25

    We describe a method for the deposition of minute amounts of fluorophore-labeled oligonucleotides with high local precision in conductive and transparent solid layers of poly(vinyl alcohol) (PVA) doped with glycerin and cysteamine (PVA-G-C layers). Deposition of negatively charged fluorescent molecules was accomplished with a setup based on a scanning ion conductance microscope (SICM) using nanopipettes with tip diameters of ∼100 nm by using the ion flux flowing between two electrodes through the nanopipette. To investigate the precision of the local deposition process, we performed in situ super-resolution microscopy by direct stochastic optical reconstruction microscopy (dSTORM). Exploiting the single-molecule sensitivity and reliability of dSTORM, we determine the number of fluorescent molecules deposited in single spots. The correlation of applied charge and number of deposited molecules enables the quantification of delivered molecules by measuring the charge during the delivery process. We demonstrate the reproducible deposition of 3-168 fluorescent molecules in single spots and the creation of fluorescent structures. The fluorescent structures are highly stable and can be reused several times.

  15. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    NASA Astrophysics Data System (ADS)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  16. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  17. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  18. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  19. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    NASA Astrophysics Data System (ADS)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  20. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    PubMed

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution. © 2014 Elsevier Inc. All rights reserved.

  1. Quantitative comparison between full-spectrum and filter-based imaging in hyperspectral fluorescence microscopy

    PubMed Central

    GAO, L.; HAGEN, N.; TKACZYK, T.S.

    2012-01-01

    Summary We implement a filterless illumination scheme on a hyperspectral fluorescence microscope to achieve full-range spectral imaging. The microscope employs polarisation filtering, spatial filtering and spectral unmixing filtering to replace the role of traditional filters. Quantitative comparisons between full-spectrum and filter-based microscopy are provided in the context of signal dynamic range and accuracy of measured fluorophores’ emission spectra. To show potential applications, a five-colour cell immunofluorescence imaging experiment is theoretically simulated. Simulation results indicate that the use of proposed full-spectrum imaging technique may result in three times improvement in signal dynamic range compared to that can be achieved in the filter-based imaging. PMID:22356127

  2. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.

    PubMed

    Russell, Richard A; Adams, Niall M; Stephens, David A; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S

    2009-04-22

    Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments.

  3. Segmentation of Fluorescence Microscopy Images for Quantitative Analysis of Cell Nuclear Architecture

    PubMed Central

    Russell, Richard A.; Adams, Niall M.; Stephens, David A.; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S.

    2009-01-01

    Abstract Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments. PMID:19383481

  4. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  5. Development of two-photon fluorescence microscopy for quantitative imaging in turbid tissues

    NASA Astrophysics Data System (ADS)

    Coleno, Mariah Lee

    Two-photon laser scanning fluorescence microscopy (TPM) is a high resolution, non-invasive biological imaging technique that can be used to image turbid tissues both in vitro and in vivo at depths of several hundred microns. Although TPM has been widely used to image tissue structures, no one has focused on using TPM to extract quantitative information from turbid tissues at depth. As a result, this thesis addresses the quantitative characterization of two-photon signals in turbid media. Initially, a two-photon microscope system is constructed, and two-photon images that validate system performance are obtained. Then TPM is established as an imaging technique that can be used to validate theoretical observations already listed in the literature. In particular, TPM is found to validate the exponential dependence of the fluorescence intensity decay with depth in turbid tissue model systems. Results from these studies next prompted experimental investigation into whether TPM could be used to determine tissue optical properties. Comparing the exponential dependence of the decay with a Monte Carlo model involving tissue optical properties, TPM is shown to be useful for determining the optical properties (total attenuation coefficient) of thick, turbid tissues on a small spatial scale. Next, a role for TPM for studying and optimizing wound healing is demonstrated. In particular, TPM is used to study the effects of perturbations (growth factors, PDT) on extracellular matrix remodeling in artificially engineered skin tissues. Results from these studies combined with tissue contraction studies are shown to demonstrate ways to modulate tissues to optimize the wound healing immune response and reduce scarring. In the end, TPM is shown to be an extremely important quantitative biological imaging technique that can be used to optimize wound repair.

  6. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  7. Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.

    PubMed

    Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H

    2017-07-28

    Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

  8. Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    DeArmond, Fredrick Michael

    As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra.

  9. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  10. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  11. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    PubMed

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  12. Fluorescence (Multiwave) Confocal Microscopy.

    PubMed

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  14. FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy

    PubMed Central

    Quammen, Cory W.; Richardson, Alvin C.; Haase, Julian; Harrison, Benjamin D.; Taylor, Russell M.; Bloom, Kerry S.

    2010-01-01

    Fluorescence microscopy provides a powerful method for localization of structures in biological specimens. However, aspects of the image formation process such as noise and blur from the microscope's point-spread function combine to produce an unintuitive image transformation on the true structure of the fluorescing molecules in the specimen, hindering qualitative and quantitative analysis of even simple structures in unprocessed images. We introduce FluoroSim, an interactive fluorescence microscope simulator that can be used to train scientists who use fluorescence microscopy to understand the artifacts that arise from the image formation process, to determine the appropriateness of fluorescence microscopy as an imaging modality in an experiment, and to test and refine hypotheses of model specimens by comparing the output of the simulator to experimental data. FluoroSim renders synthetic fluorescence images from arbitrary geometric models represented as triangle meshes. We describe three rendering algorithms on graphics processing units for computing the convolution of the specimen model with a microscope's point-spread function and report on their performance. We also discuss several cases where the microscope simulator has been used to solve real problems in biology. PMID:20431698

  15. Fluorescence confocal microscopy for pathologists.

    PubMed

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  16. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  17. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    NASA Astrophysics Data System (ADS)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  18. Adaptive optical fluorescence microscopy.

    PubMed

    Ji, Na

    2017-03-31

    The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.

  19. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    NASA Astrophysics Data System (ADS)

    Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea

    2016-05-01

    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.

  20. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  1. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  2. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    PubMed

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Handheld Fluorescence Microscopy based Flow Analyzer.

    PubMed

    Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva

    2016-03-01

    Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.

  4. Holographic techniques for cellular fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Myung K.

    2017-04-01

    We have constructed a prototype instrument for holographic fluorescence microscopy (HFM) based on self-interference incoherent digital holography (SIDH) and demonstrate novel imaging capabilities such as differential 3D fluorescence microscopy and optical sectioning by compressive sensing.

  5. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbe limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  6. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  7. Statistical Deconvolution for Superresolution Fluorescence Microscopy

    PubMed Central

    Mukamel, Eran A.; Babcock, Hazen; Zhuang, Xiaowei

    2012-01-01

    Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image resolution of ∼10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regardless of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as deconvolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluorophores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging speed by allowing a higher density of activated fluorophores/frame. PMID:22677393

  8. Evaluating performance in three-dimensional fluorescence microscopy

    PubMed Central

    MURRAY, JOHN M; APPLETON, PAUL L; SWEDLOW, JASON R; WATERS, JENNIFER C

    2007-01-01

    In biological fluorescence microscopy, image contrast is often degraded by a high background arising from out of focus regions of the specimen. This background can be greatly reduced or eliminated by several modes of thick specimen microscopy, including techniques such as 3-D deconvolution and confocal. There has been a great deal of interest and some confusion about which of these methods is ‘better’, in principle or in practice. The motivation for the experiments reported here is to establish some rough guidelines for choosing the most appropriate method of microscopy for a given biological specimen. The approach is to compare the efficiency of photon collection, the image contrast and the signal-to-noise ratio achieved by the different methods at equivalent illumination, using a specimen in which the amount of out of focus background is adjustable over the range encountered with biological samples. We compared spot scanning confocal, spinning disk confocal and wide-field/deconvolution (WFD) microscopes and find that the ratio of out of focus background to in-focus signal can be used to predict which method of microscopy will provide the most useful image. We also find that the precision of measurements of net fluorescence yield is very much lower than expected for all modes of microscopy. Our analysis enabled a clear, quantitative delineation of the appropriate use of different imaging modes relative to the ratio of out-of-focus background to in-focus signal, and defines an upper limit to the useful range of the three most common modes of imaging. PMID:18045334

  9. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    PubMed

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  10. Advanced Methods in Fluorescence Microscopy

    PubMed Central

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres. PMID:23271142

  11. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  12. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  13. Quantitative dispersion microscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael

    2010-01-01

    Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live cells. The measured dispersion of living HeLa cells is found to be around 1.088, which agrees well with that measured directly for protein solutions using total internal reflection. This technique, together with the dry mass and morphology measurements provided by quantitative phase microscopy, could prove to be a useful tool for distinguishing different types of biomaterials and studying spatial inhomogeneities of biological samples. PMID:21113234

  14. Inducible fluorescent speckle microscopy

    PubMed Central

    Aguiar, Paulo; Belsley, Michael; Maiato, Helder

    2016-01-01

    The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. PMID:26783303

  15. Inducible fluorescent speckle microscopy.

    PubMed

    Pereira, António J; Aguiar, Paulo; Belsley, Michael; Maiato, Helder

    2016-01-18

    The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. © 2016 Pereira et al.

  16. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis

    PubMed Central

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-01-01

    Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  17. Real-time fluorescence microscopy monitoring of porphyrin biodistribution

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Gottfried, Varda; Kunzi-Rapp, Karin; Akguen, Nermin; Schneckenburger, Herbert

    1996-01-01

    In vivo uptake of the natural porphyrins, uroporphyrin III (UP), coproporphyrin III (CP) and protoporphyrin IX (PP), was monitored by fluorescence microscopy. Experiments were performed using the chick chorioallantoic membrane (CAM) model, which allowed video documentation of fluorescence both in real time and after integration over a chosen time interval (usually 2 s). Sensitizers at a concentration of 50 (mu) M (100 (mu) L) were injected into a medium-sized vein (diameter approximately 40 micrometer) using an ultra-fine 10 micrometer diameter needle. Fluorescence images were quantitated by subtracting the fluorescence intensity of surrounding CAM tissue (Fmatrix) from the intravascular fluorescence intensity (Fintravascular), after transformation of the video frames into digital form. The differential fluorescence intensity, Fintravascular - Fmatrix, is a measure of the biodistribution. Real time measurements clearly showed that CP and UP fluorescence is associated with moving erythrocytes and not with endothelial cells of the vessel wall. Fluorescence intensity was monitored, up to 60 minutes after injection, by averaging the fluorescence over time intervals of 2 s and recording the integrated images. The fluorescence intensity reached its maximum in about 20 - 30 min after injection, presumably after monomerization inside erythrocyte membranes. The results are interpreted in terms of physical-chemical characteristics (e.g. hydrophilicity) and correlated with the photodynamically induced hemostasis in CAM blood vessels.

  18. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  19. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  20. Fluorescent proteins for quantitative microscopy: important properties and practical evaluation.

    PubMed

    Shaner, Nathan Christopher

    2014-01-01

    More than 20 years after their discovery, fluorescent proteins (FPs) continue to be the subject of massive engineering efforts yielding continued improvements. Among these efforts are many aspects that should be of great interest to quantitative imaging users. With new variants frequently introduced into the research community, "tried and true" FPs that have been relied on for many years may now be due for upgrades to more modern variants. However, the dizzying array of FPs now available can make the initial act of narrowing down the potential choices an intimidating prospect. This chapter describes the FP properties that most strongly impact their performance in quantitative imaging experiments, along with their physical origins as they are currently understood. A workflow for evaluating a given FP in the researcher's chosen experimental system (e.g., a specific cell line) is described. © 2014 Elsevier Inc. All rights reserved.

  1. Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images.

    PubMed

    Basset, Antoine; Boulanger, Jérôme; Salamero, Jean; Bouthemy, Patrick; Kervrann, Charles

    2015-11-01

    Accurately detecting subcellular particles in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking, or classification. Our primary goal is to segment vesicles likely to share nearly the same size in fluorescence microscopy images. Our method termed adaptive thresholding of Laplacian of Gaussian (LoG) images with autoselected scale (ATLAS) automatically selects the optimal scale corresponding to the most frequent spot size in the image. Four criteria are proposed and compared to determine the optimal scale in a scale-space framework. Then, the segmentation stage amounts to thresholding the LoG of the intensity image. In contrast to other methods, the threshold is locally adapted given a probability of false alarm (PFA) specified by the user for the whole set of images to be processed. The local threshold is automatically derived from the PFA value and local image statistics estimated in a window whose size is not a critical parameter. We also propose a new data set for benchmarking, consisting of six collections of one hundred images each, which exploits backgrounds extracted from real microscopy images. We have carried out an extensive comparative evaluation on several data sets with ground-truth, which demonstrates that ATLAS outperforms existing methods. ATLAS does not need any fine parameter tuning and requires very low computation time. Convincing results are also reported on real total internal reflection fluorescence microscopy images.

  2. Geometrical characterization of fluorescently labelled surfaces from noisy 3D microscopy data.

    PubMed

    Shelton, Elijah; Serwane, Friedhelm; Campàs, Otger

    2018-03-01

    Modern fluorescence microscopy enables fast 3D imaging of biological and inert systems alike. In many studies, it is important to detect the surface of objects and quantitatively characterize its local geometry, including its mean curvature. We present a fully automated algorithm to determine the location and curvatures of an object from 3D fluorescence images, such as those obtained using confocal or light-sheet microscopy. The algorithm aims at reconstructing surface labelled objects with spherical topology and mild deformations from the spherical geometry with high accuracy, rather than reconstructing arbitrarily deformed objects with lower fidelity. Using both synthetic data with known geometrical characteristics and experimental data of spherical objects, we characterize the algorithm's accuracy over the range of conditions and parameters typically encountered in 3D fluorescence imaging. We show that the algorithm can detect the location of the surface and obtain a map of local mean curvatures with relative errors typically below 2% and 20%, respectively, even in the presence of substantial levels of noise. Finally, we apply this algorithm to analyse the shape and curvature map of fluorescently labelled oil droplets embedded within multicellular aggregates and deformed by cellular forces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  4. Genetically encoded sensors and fluorescence microscopy for anticancer research

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.

    2017-02-01

    Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities

  5. Fluorescence and fluorescence-lifetime imaging microscopy (FLIM) to characterize yeast strains by autofluorescence

    NASA Astrophysics Data System (ADS)

    Bhatta, H.; Goldys, E. M.; Ma, J.

    2006-02-01

    We characterised populations of wild type baking and brewing yeast cells using intrinsic fluorescence and fluorescence lifetime microscopy, in order to obtain quantitative identifiers of different strains. The cell autofluorescence was excited at 405 nm and observed within 440-540 nm range where strong cell to cell variability was observed. The images were analyzed using customised public domain software, which provided information on cell size, intensity and texture-related features. In light of significant diversity of the data, statistical methods were utilized to assess the validity of the proposed quantitative identifiers for strain differentiation. The Kolmogorov-Smirnov test was applied to confirm that empirical distribution functions for size, intensity and entropy for different strains were statistically different. These characteristics were followed with culture age of 24, 48 and 72 h, (the latter corresponding to a stationary growth phase) and size, and to some extent entropy, were found to be independent of age. The fluorescence intensity presented a distinctive evolution with age, different for each of the examined strains. The lifetime analysis revealed a short decay time component of 1.4 ns and a second, longer one with the average value of 3.5 ns and a broad distribution. High variability of lifetime values within cells was observed however a lifetime texture feature in the studied strains was statistically different.

  6. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  7. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    PubMed

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  8. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe.

    PubMed

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2016-06-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  9. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    PubMed Central

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K.; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W.; Cremer, Christoph; Birk, Udo

    2016-01-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei. PMID:27054149

  10. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  11. Super-resolution fluorescence microscopy by stepwise optical saturation

    PubMed Central

    Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.

    2018-01-01

    Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306

  12. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    PubMed

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  13. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    PubMed

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  14. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  15. Interferometric temporal focusing microscopy using three-photon excitation fluorescence.

    PubMed

    Toda, Keisuke; Isobe, Keisuke; Namiki, Kana; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2018-04-01

    Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.

  16. Plasmonics Enhanced Smartphone Fluorescence Microscopy.

    PubMed

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-05-18

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  17. Open-source do-it-yourself multi-color fluorescence smartphone microscopy

    PubMed Central

    Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan

    2017-01-01

    Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104

  18. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  19. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  20. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  1. Single-molecule fluorescence microscopy review: shedding new light on old problems

    PubMed Central

    Shashkova, Sviatlana

    2017-01-01

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303

  2. Quantitative assessment of neural outgrowth using spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Jae; Cintora, Pati; Arikkath, Jyothi; Akinsola, Olaoluwa; Kandel, Mikhail; Popescu, Gabriel; Best-Popescu, Catherine

    2017-06-01

    Optimal growth as well as branching of axons and dendrites is critical for the nervous system function. Neuritic length, arborization, and growth rate determine the innervation properties of neurons and define each cell's computational capability. Thus, to investigate the nervous system function, we need to develop methods and instrumentation techniques capable of quantifying various aspects of neural network formation: neuron process extension, retraction, stability, and branching. During the last three decades, fluorescence microscopy has yielded enormous advances in our understanding of neurobiology. While fluorescent markers provide valuable specificity to imaging, photobleaching, and photoxicity often limit the duration of the investigation. Here, we used spatial light interference microscopy (SLIM) to measure quantitatively neurite outgrowth as a function of cell confluence. Because it is label-free and nondestructive, SLIM allows for long-term investigation over many hours. We found that neurons exhibit a higher growth rate of neurite length in low-confluence versus medium- and high-confluence conditions. We believe this methodology will aid investigators in performing unbiased, nondestructive analysis of morphometric neuronal parameters.

  3. Interference techniques in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet

    We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the

  4. Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission

    NASA Astrophysics Data System (ADS)

    Dake, Fumihiro; Yazawa, Hiroki

    2017-10-01

    The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.

  5. Widefield fluorescence sectioning with HiLo microscopy.

    PubMed

    Mertz, Jerome; Lim, Daryl; Chu, Kengyeh K; Bozinovic, Nenad; Ford, Timothy

    2009-01-01

    HiLo microscopy is a widefield fluorescence imaging technique that provides depth discrimination by combining two images, one with non-uniform illumination and one with uniform illumination. We discuss the theory of this technique and a variety of practical implementations in brain-tissue imaging and fluorescence endomicroscopy.

  6. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  7. Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone

    PubMed Central

    Zhu, Hongying; Ozcan, Aydogan

    2013-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. ~ 10 μm over a very large field-of-view of ~ 81 mm2. This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893

  8. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  9. Quantitative, spectrally-resolved intraoperative fluorescence imaging

    PubMed Central

    Valdés, Pablo A.; Leblond, Frederic; Jacobs, Valerie L.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.

    2012-01-01

    Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field. PMID:23152935

  10. Advanced fluorescence microscopy techniques for the life sciences

    PubMed Central

    Aguib, Yasmine; Yacoub, Magdi H.

    The development of super-resolved fluorescence microscopy, for which the Nobel Prize was awarded in 2014, has been a topic of interest to physicists and biologists alike. It is inevitable that numerous questions in biomedical research cannot be answered by means other than direct observation. In this review, advances to fluorescence microscopy are covered in a widely accessible fashion to facilitate its use in decisions related to its acquisition and utilization in biomedical research. PMID:29043264

  11. Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.

    PubMed

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2017-06-01

    Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.

  12. Identification and restoration in 3D fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dieterlen, Alain; Xu, Chengqi; Haeberle, Olivier; Hueber, Nicolas; Malfara, R.; Colicchio, B.; Jacquey, Serge

    2004-06-01

    3-D optical fluorescent microscopy becomes now an efficient tool for volumic investigation of living biological samples. The 3-D data can be acquired by Optical Sectioning Microscopy which is performed by axial stepping of the object versus the objective. For any instrument, each recorded image can be described by a convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. To assess performance and ensure the data reproducibility, as for any 3-D quantitative analysis, the system indentification is mandatory. The PSF explains the properties of the image acquisition system; it can be computed or acquired experimentally. Statistical tools and Zernike moments are shown appropriate and complementary to describe a 3-D system PSF and to quantify the variation of the PSF as function of the optical parameters. Some critical experimental parameters can be identified with these tools. This is helpful for biologist to define an aquisition protocol optimizing the use of the system. Reduction of out-of-focus light is the task of 3-D microscopy; it is carried out computationally by deconvolution process. Pre-filtering the images improves the stability of deconvolution results, now less dependent on the regularization parameter; this helps the biologists to use restoration process.

  13. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes.

    PubMed

    Segers-Nolten, G M J; Wyman, C; Wijgers, N; Vermeulen, W; Lenferink, A T M; Hoeijmakers, J H J; Greve, J; Otto, C

    2002-11-01

    We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measurements were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level approximately 10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.

  14. Comparative evaluation of performance measures for shading correction in time-lapse fluorescence microscopy.

    PubMed

    Liu, L; Kan, A; Leckie, C; Hodgkin, P D

    2017-04-01

    Time-lapse fluorescence microscopy is a valuable technology in cell biology, but it suffers from the inherent problem of intensity inhomogeneity due to uneven illumination or camera nonlinearity, known as shading artefacts. This will lead to inaccurate estimates of single-cell features such as average and total intensity. Numerous shading correction methods have been proposed to remove this effect. In order to compare the performance of different methods, many quantitative performance measures have been developed. However, there is little discussion about which performance measure should be generally applied for evaluation on real data, where the ground truth is absent. In this paper, the state-of-the-art shading correction methods and performance evaluation methods are reviewed. We implement 10 popular shading correction methods on two artificial datasets and four real ones. In order to make an objective comparison between those methods, we employ a number of quantitative performance measures. Extensive validation demonstrates that the coefficient of joint variation (CJV) is the most applicable measure in time-lapse fluorescence images. Based on this measure, we have proposed a novel shading correction method that performs better compared to well-established methods for a range of real data tested. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells.

    PubMed

    Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum

    2011-01-03

    We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantitative Image Restoration in Bright Field Optical Microscopy.

    PubMed

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Saturated virtual fluorescence emission difference microscopy based on detector array

    NASA Astrophysics Data System (ADS)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  18. Use of astronomy filters in fluorescence microscopy.

    PubMed

    Piper, Jörg

    2012-02-01

    Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.

  19. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy.

    PubMed

    Rautaniemi, Kaisa; Vuorimaa-Laukkanen, Elina; Strachan, Clare J; Laaksonen, Timo

    2018-05-07

    Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.

  20. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.

    2016-01-01

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  1. Active substrates improving sensitivity in biomedical fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.

    2005-08-01

    Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.

  2. Real-time Fluorescence Polarization Microscopy of the Moving Boundary in Cross-Gradient SDS-PAGE

    NASA Astrophysics Data System (ADS)

    Hwang, Jeeseong; Giulian, Gary

    2003-03-01

    Real-time Fluorescence Polarization Microscopy of the Moving Boundary in Cross-Gradient SDS-PAGE Jeeseong Hwang, Jeffrey R. Krogmeier, Angela M. Bardo, Scott N. Goldie, Lori S. Goldner; Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 Gary G. Giulian, Carl R. Merril; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) is a popular method to separate proteins by their apparent molecular weight. However, it is a limited technique due, in part, to its low spatial resolution. In order to improve the resolution and to enhance the detection sensitivity of proteins separated by SDS-PAGE we are studying the detergent properties at the moving boundary of precast Tris-Tricine-Acetate cross-gradient gels using fluorescent cationic and pH indicating dyes. We have developed real-time full-field fluorescence polarization microscopy to monitor the dynamic fluorescence anisotropy from the cationic tetramethylindocarbocyanine dyes localized in the "extended stack", a concentrated detergent zone. We will present quantitative results of the fluorescence anisotropy. Our system is capable of analyzing local structures of the detergent molecules in the moving boundary of SDS-PAGE and the microenvironment(s) near the boundary. We will discuss the significance of these results and their potential role in enhanced protein separation.

  3. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  4. Light Sheet Fluorescence Microscopy (LSFM)

    PubMed Central

    Adams, Michael W.; Loftus, Andrew F.; Dunn, Sarah E.; Joens, Matthew S.; Fitzpatrick, James A.J.

    2015-01-01

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light Sheet Fluorescent Microscopy (LSFM), a century old idea (Siedentopf and Zsigmondy, 1902) made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light sheet based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. PMID:25559221

  5. Quantitative fluorescence nanoscopy for cancer biomedicine

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Nickerson, Andrew; Peters, Alec; Nan, Xiaolin

    2015-08-01

    Cancer is a major health threat worldwide. Options for targeted cancer therapy, however, are often limited, in a large part due to our incomplete understanding of how key processes including oncogenesis and drug response are mediated at the molecular level. New imaging techniques for visualizing biomolecules and their interactions at the nanometer and single molecule scales, collectively named fluorescence nanoscopy, hold the promise to transform biomedical research by providing direct mechanistic insight into cellular processes. We discuss the principles of quantitative single-molecule localization microscopy (SMLM), a subset of fluorescence nanoscopy, and their applications to cancer biomedicine. In particular, we will examine oncogenesis and drug resistance mediated by mutant Ras, which is associated with ~1/3 of all human cancers but has remained an intractable drug target. At ~20 nm spatial and single-molecule stoichiometric resolutions, SMLM clearly showed that mutant Ras must form dimers to activate its effector pathways and drive oncogenesis. SMLM further showed that the Raf kinase, one of the most important effectors of Ras, also forms dimers upon activation by Ras. Moreover, treatment of cells expressing wild type Raf with Raf inhibitors induces Raf dimer formation in a manner dependent on Ras dimerization. Together, these data suggest that Ras dimers mediate oncogenesis and drug resistance in tumors with hyperactive Ras and can potentially be targeted for cancer therapy. We also discuss recent advances in SMLM that enable simultaneous imaging of multiple biomolecules and their interactions at the nanoscale. Our work demonstrates the power of quantitative SMLM in cancer biomedicine.

  6. Optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Photobleaching correction in fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Vicente, Nathalie B.; Diaz Zamboni, Javier E.; Adur, Javier F.; Paravani, Enrique V.; Casco, Víctor H.

    2007-11-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique.

  8. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    PubMed

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  10. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions. PMID:29296504

  11. Thin-film tunable filters for hyperspectral fluorescence microscopy

    PubMed Central

    Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant

    2013-01-01

    Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519

  12. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    NASA Astrophysics Data System (ADS)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  13. Multimodal optoacoustic and multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sela, Gali; Razansky, Daniel; Shoham, Shy

    2013-03-01

    Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.

  14. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, D.; Jonge, M. D. de; Howard, D. L.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  15. Analysis of interphase node proteins in fission yeast by quantitative and superresolution fluorescence microscopy

    PubMed Central

    Akamatsu, Matthew; Lin, Yu; Bewersdorf, Joerg; Pollard, Thomas D.

    2017-01-01

    We used quantitative confocal microscopy and FPALM superresolution microscopy of live fission yeast to investigate the structures and assembly of two types of interphase nodes—multiprotein complexes associated with the plasma membrane that merge together and mature into the precursors of the cytokinetic contractile ring. During the long G2 phase of the cell cycle, seven different interphase node proteins maintain constant concentrations as they accumulate in proportion to cell volume. During mitosis, the total numbers of type 1 node proteins (cell cycle kinases Cdr1p, Cdr2p, Wee1p, and anillin Mid1p) are constant even when the nodes disassemble. Quantitative measurements provide strong evidence that both types of nodes have defined sizes and numbers of constituent proteins, as observed for cytokinesis nodes. Type 1 nodes assemble in two phases—a burst at the end of mitosis, followed by steady increase during interphase to double the initial number. Type 2 nodes containing Blt1p, Rho-GEF Gef2p, and kinesin Klp8p remain intact throughout the cell cycle and are constituents of the contractile ring. They are released from the contractile ring as it disassembles and then associate with type 1 nodes around the equator of the cell during interphase. PMID:28539404

  16. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung

    2010-07-01

    Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.

  17. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    PubMed Central

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  18. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy.

    PubMed

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Swann, Karl; Borri, Paola

    2016-06-15

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. © 2016. Published by The Company of Biologists Ltd.

  19. Directional bilateral filters for smoothing fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Venkatesh, Manasij; Mohan, Kavya; Seelamantula, Chandra Sekhar

    2015-08-01

    Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments.

  20. Before In Vivo Imaging: Evaluation of Fluorescent Probes Using Fluorescence Microscopy, Multiplate Reader, and Cytotoxicity Assays.

    PubMed

    Zhang, Shaojuan

    2016-01-01

    Fluorescent probes are widely utilized for noninvasive fluorescence imaging. Continuing efforts have been made in developing novel fluorescent probes with improved fluorescence quantum yield, enhanced target-specificity, and lower cytotoxicity. Before such probes are administrated into a living system, it is essential to evaluate the subcellular uptake, targeting specificity, and cytotoxicity in vitro. In this chapter, we briefly outline common methods used to evaluate fluorescent probes using fluorescence microscopy, multiplate reader, and cytotoxicity assay.

  1. New Tools for Comparing Microscopy Images: Quantitative Analysis of Cell Types in Bacillus subtilis

    PubMed Central

    van Gestel, Jordi; Vlamakis, Hera

    2014-01-01

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. PMID:25448819

  2. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

    PubMed Central

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E.

    2018-01-01

    Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here. PMID:29541425

  3. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection.

    PubMed

    Brown, Koshonna; Thurn, Ted; Xin, Lun; Liu, William; Bazak, Remon; Chen, Si; Lai, Barry; Vogt, Stefan; Jacobsen, Chris; Paunesku, Tatjana; Woloschak, Gayle E

    2018-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ post-treatment labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyne-conjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

  4. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies.

    PubMed

    Sun, Wanxin; Chang, Shi; Tai, Dean C S; Tan, Nancy; Xiao, Guangfa; Tang, Huihuan; Yu, Hanry

    2008-01-01

    Liver fibrosis is associated with an abnormal increase in an extracellular matrix in chronic liver diseases. Quantitative characterization of fibrillar collagen in intact tissue is essential for both fibrosis studies and clinical applications. Commonly used methods, histological staining followed by either semiquantitative or computerized image analysis, have limited sensitivity, accuracy, and operator-dependent variations. The fibrillar collagen in sinusoids of normal livers could be observed through second-harmonic generation (SHG) microscopy. The two-photon excited fluorescence (TPEF) images, recorded simultaneously with SHG, clearly revealed the hepatocyte morphology. We have systematically optimized the parameters for the quantitative SHG/TPEF imaging of liver tissue and developed fully automated image analysis algorithms to extract the information of collagen changes and cell necrosis. Subtle changes in the distribution and amount of collagen and cell morphology are quantitatively characterized in SHG/TPEF images. By comparing to traditional staining, such as Masson's trichrome and Sirius red, SHG/TPEF is a sensitive quantitative tool for automated collagen characterization in liver tissue. Our system allows for enhanced detection and quantification of sinusoidal collagen fibers in fibrosis research and clinical diagnostics.

  5. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations

    NASA Astrophysics Data System (ADS)

    Hofer, Matthias; Soeller, Christian; Brasselet, Sophie; Bertolotti, Jacopo

    2018-04-01

    Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.

  6. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  7. Example-Based Super-Resolution Fluorescence Microscopy.

    PubMed

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  8. Low-cost fluorescence microscopy for point-of-care cell imaging

    NASA Astrophysics Data System (ADS)

    Lochhead, Michael J.; Ives, Jeff; Givens, Monique; Delaney, Marie; Moll, Kevin; Myatt, Christopher J.

    2010-02-01

    Fluorescence microscopy has long been a standard tool in laboratory medicine. Implementation of fluorescence microscopy for near-patient diagnostics, however, has been limited due to cost and complexity associated with traditional fluorescence microscopy techniques. There is a particular need for robust, low-cost imaging in high disease burden areas in the developing world, where access to central laboratory facilities and trained staff is limited. Here we describe a point-of-care assay that combines a disposable plastic cartridge with an extremely low cost fluorescence imaging instrument. Based on a novel, multi-mode planar waveguide configuration, the system capitalizes on advances in volume-manufactured consumer electronic components to deliver an imaging system with minimal moving parts and low power requirements. A two-color cell imager is presented, with magnification optimized for enumeration of immunostained human T cells. To demonstrate the system, peripheral blood mononuclear cells were stained with fluorescently labeled anti-human-CD4 and anti-human-CD3 antibodies. Registered images were used to generate fractional CD4+ and CD3+ staining and enumeration results that show excellent correlation with flow cytometry. The cell imager is under development as a very low cost CD4+ T cell counter for HIV disease management in limited resource settings.

  9. Comparative evaluation of fluorescent in situ hybridization and Giemsa microscopy with quantitative real-time PCR technique in detecting malaria parasites in a holoendemic region of Kenya.

    PubMed

    Osoga, Joseph; Waitumbi, John; Guyah, Bernard; Sande, James; Arima, Cornel; Ayaya, Michael; Moseti, Caroline; Morang'a, Collins; Wahome, Martin; Achilla, Rachel; Awinda, George; Nyakoe, Nancy; Wanja, Elizabeth

    2017-07-24

    Early and accurate diagnosis of malaria is important in treatment as well as in the clinical evaluation of drugs and vaccines. Evaluation of Giemsa-stained smears remains the gold standard for malaria diagnosis, although diagnostic errors and potential bias estimates of protective efficacy have been reported in practice. Plasmodium genus fluorescent in situ hybridization (P-Genus FISH) is a microscopy-based method that uses fluorescent labelled oligonucleotide probes targeted to pathogen specific ribosomal RNA fragments to detect malaria parasites in whole blood. This study sought to evaluate the diagnostic performance of P-Genus FISH alongside Giemsa microscopy compared to quantitative reverse transcription polymerase chain reaction (qRT-PCR) in a clinical setting. Five hundred study participants were recruited prospectively and screened for Plasmodium parasites by P-Genus FISH assay, and Giemsa microscopy. The microscopic methods were performed by two trained personnel and were blinded, and if the results were discordant a third reading was performed as a tie breaker. The diagnostic performance of both methods was evaluated against qRT-PCR as a more sensitive method. The number of Plasmodium positive cases was 26.8% by P-Genus FISH, 33.2% by Giemsa microscopy, and 51.2% by qRT-PCR. The three methods had 46.8% concordant results with 61 positive cases and 173 negative cases. Compared to qRT-PCR the sensitivity and specificity of P-Genus FISH assay was 29.3 and 75.8%, respectively, while microscopy had 58.2 and 93.0% respectively. Microscopy had a higher positive and negative predictive values (89.8 and 68.0% respectively) compared to P-Genus FISH (56.0 and 50.5%). In overall, microscopy had a good measure of agreement (76%, k = 0.51) compared to P-Genus FISH (52%, k = 0.05). The diagnostic performance of P-Genus FISH was shown to be inferior to Giemsa microscopy in the clinical samples. This hinders the possible application of the method in the field despite

  10. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    PubMed

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  11. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Koshonna; Thurn, Ted; Xin, Lun

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  12. Intracellular in situ labeling of TiO 2 nanoparticles for fluorescence microscopy detection

    DOE PAGES

    Brown, Koshonna; Thurn, Ted; Xin, Lun; ...

    2017-07-19

    Titanium dioxide (TiO 2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO 2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. In this paper, we describe two in situ posttreatmentmore » labeling approaches to stain TiO 2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO 2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Finally and therefore, future experiments with TiO 2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.« less

  13. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies.

    PubMed

    Belsey, Natalie A; Garrett, Natalie L; Contreras-Rojas, L Rodrigo; Pickup-Gerlaugh, Adam J; Price, Gareth J; Moger, Julian; Guy, Richard H

    2014-01-28

    Stimulated Raman scattering microscopy was used to assess the permeation of topically applied drugs and formulation excipients into porcine skin. This chemically selective technique generates high-resolution 3D images, from which semi-quantitative information may be elucidated. Ibuprofen, applied as a close-to-saturated solution in propylene glycol, was directly observed to crystallise in/on the skin, as the co-solvent permeated more rapidly, resulting in precipitation of the drug. Coherent Raman scattering microscopy is also an excellent tool, in conjunction with more conventional confocal fluorescence microscopy, with which to image micro/nanoparticle-based formulations. Specifically, the uptake of particles into thermal ablation transport pathways in the skin has been examined. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.

    PubMed

    Day, Richard N; Davidson, Michael W

    2012-05-01

    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. Copyright © 2012 WILEY Periodicals, Inc.

  15. New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.

    PubMed

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-02-15

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    NASA Astrophysics Data System (ADS)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  17. Benzofurazan Sulfides for Thiol Imaging and Quantification in Live Cells through Fluorescence Microscopy

    PubMed Central

    Li, Yinghong; Yang, Yang; Guan, Xiangming

    2012-01-01

    Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a–e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH2, -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 nm and 520 nm as the excitation and emission wavelengths respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an HPLC/UV total thiol assay method. The reagents and method will be of a great value to thiol redox-related research. PMID:22794193

  18. Identification of powdered Chinese herbal medicines by fluorescence microscopy, Part 1: Fluorescent characteristics of mechanical tissues, conducting tissues, and ergastic substances.

    PubMed

    Wang, Ya-Qiong; Liang, Zhi-Tao; Li, Qin; Yang, Hua; Chen, Hu-Biao; Zhao, Zhong-Zhen; Li, Ping

    2011-03-01

    The light microscope has been successfully used in identification of Chinese herbal medicines (CHMs) for more than a century. However, positive identification is not always possible. Given the popularity of fluorescence microscopy in bioanalysis, researchers dedicated to finding new ways to identify CHMs more effectively are now turning to fluorescence microscopy for authentication purposes. Some studies on distinguishing confused species from the same genus and on exploring distributions of chemicals in tissues of CHMs by fluorescence microscopy have been reported; however, no systematic investigations on fluorescent characteristics of powdered CHMs have been reported. Here, 46 samples of 16 CHMs were investigated. Specifically, the mechanical tissues including stone cells and fibers, the conducting tissues including three types of vessels, and ergastic substances including crystals of calcium oxalate and secretions, in various powdered CHMs were investigated by both light microscope and fluorescence microscope. The results showed many microscopic features emit fluorescence that makes them easily observed, even against complex backgrounds. Under the fluorescence microscope, different microscopic features from the same powdered CHM or some same features from different powdered CHMs emitted the different fluorescence, making this information very helpful for the authentication of CHMs in powder form. Moreover, secretions with unique chemical profiles from different powdered CHMs showed different fluorescent characteristics. Hence, fluorescence microscopy could be a useful additional method for the authentication of powdered CHMs if the fluorescent characteristics of specific CHMs are known. Copyright © 2010 Wiley-Liss, Inc.

  19. Image scanning fluorescence emission difference microscopy based on a detector array.

    PubMed

    Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X

    2017-06-01

    We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A Model-Based Approach for Microvasculature Structure Distortion Correction in Two-Photon Fluorescence Microscopy Images

    PubMed Central

    Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh

    2015-01-01

    SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257

  2. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags.

    PubMed

    Müller, Andreas; Neukam, Martin; Ivanova, Anna; Sönmez, Anke; Münster, Carla; Kretschmar, Susanne; Kalaidzidis, Yannis; Kurth, Thomas; Verbavatz, Jean-Marc; Solimena, Michele

    2017-02-02

    Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.

  3. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    PubMed

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  5. Fundamental limits to superresolution fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Small, Alex

    2013-02-01

    Superresolution fluorescence microscopy techniques such as PALM, STORM, STED, and Structured Illumination Microscopy (SIM) enable imaging of live cells at nanometer resolution. The common theme in all of these techniques is that the diffraction limit is circumvented by controlling the states of fluorescent molecules. Although the samples are labeled very densely (i.e. with spacing much smaller than the Airy distance), not all of the molecules are emitting at the same time. Consequently, one does not encounter overlapping blurs. In the deterministic techniques (STED, SIM) the achievable resolution scales as the wavelength of light divided by the square root of the intensity of a beam used to control the fluorescent state. In the stochastic techniques (PALM, STORM), the achievable resolution scales as the wavelength of light divided by the square root of the number of photons collected. Although these limits arise from very different mechanisms (parabolic beam profiles for STED and SIM, statistics for PALM and STORM), in all cases the resolution scales inversely with the square root of a measure of the number of photons used in the experiment. We have developed a proof that this relationship between resolution and photon count is universal to techniques that control the states of fluorophores using classical light. Our proof encompasses linear and nonlinear optics, as well as computational post-processing techniques for extracting information beyond the diffraction limit. If there are techniques that can achieve a more efficient relationship between resolution and photon count, those techniques will require light exhibiting non-classical correlations.

  6. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.

  7. Quantitative evaluation of the pulmonary microdistribution of TiO2 nanoparticles using X-ray fluorescence microscopy after intratracheal administration with a microsprayer in rats.

    PubMed

    Zhang, Guihua; Shinohara, Naohide; Kano, Hirokazu; Senoh, Hideki; Suzuki, Masaaki; Sasaki, Takeshi; Fukushima, Shoji; Gamo, Masashi

    2015-06-01

    The unevenness of pulmonary nanoparticle (NP) distribution, which hinders the establishment of an absolute dose-response relationship, has been described as one of the limitations of intratracheal administration techniques for toxicological assessment of inhaled NPs. Quantification of the NP microdistribution would facilitate the establishment of a concentration-response relationship in localized regions of the lung; however, such quantitative methods have not been reported. Here, we established a quantitative method for evaluating pulmonary TiO2 NP microdistribution in rats using X-ray fluorescence microscopy. Ti intensity in lung sections from rats intratracheally administered 10 mg kg(-1) TiO2 NPs with a microsprayer was measured using X-ray fluorescence with a 100 µm beam size. Ti reference samples were prepared by dropping different concentrations of Ti solutions on glass slide or lung sections of untreated rat. Ti intensity increased linearly with Ti content in the reference samples on both substrates. The detection limit of TiO2 was estimated to be 6.3 ng mm(-2) . The reproducibility was confirmed for measurements done in the short- (2 weeks) and long-term (6 months). The quantitative results of TiO2 NP microdistribution suggested that more TiO2 NPs were distributed in the right caudal and accessory lobes, which are located downstream of the administration direction of the NP suspension, and the lower portion of each lobe. The detection rates of TiO2 NPs were 16.6-25.0%, 5.19-15.6%, 28.6-39.2%, 21.4-38.7% and 10.6-23.2% for lung sections from the right cranial, middle, caudal, accessory and left lobes, respectively. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell

  9. Single-Shot Optical Sectioning Using Two-Color Probes in HiLo Fluorescence Microscopy

    PubMed Central

    Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent

    2011-01-01

    We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. PMID:21641327

  10. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  11. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    PubMed

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  12. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  13. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  14. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    PubMed

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  15. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    PubMed

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  16. Nanoscale characterization of vesicle adhesion by normalized total internal reflection fluorescence microscopy.

    PubMed

    Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-06-01

    We recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm. The purpose of this paper is to demonstrate that this technique is useful to quantify vesicle adhesion from ultra-weak to strong membrane-surface interactions. Thus, we have examined unspecific and specific adhesion conditions. Concerning unspecific adhesion, we have controlled the strength of electrostatic forces between negatively charged vesicles and various functionalized surfaces which exhibit a positive or a negative effective charge. Specific adhesion was highlighted with lock-and-key forces mediated by the well defined biotin/streptavidin recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mueller matrix signature in advanced fluorescence microscopy imaging

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Qiu, Jianjun; Kao, Fu-Jen; Diaspro, Alberto

    2017-02-01

    We have demonstrated the measurement and characterization of the polarization properties of a fluorescence signal using four-channel photon counting based Stokes-Mueller polarization microscopy. Thus, Lu-Chipman decomposition was applied to extract the critical polarization properties such as depolarization, linear retardance and the optical rotation of collagen type I fiber. We observed the spatial distribution of anisotropic and helical molecules of collagen from the reconstructed 2D Mueller images based on the fluorescence signal in a pixel-by-pixel manner.

  18. Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy

    NASA Astrophysics Data System (ADS)

    Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan

    2014-01-01

    Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.

  19. Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography

    NASA Astrophysics Data System (ADS)

    Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano

    2018-01-01

    We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.

  20. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  1. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    PubMed

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  2. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.

    PubMed

    Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara

    2011-12-27

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.

  3. Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy.

    PubMed

    Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent

    2011-06-08

    We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Quantitative analysis of phosphoinositide 3-kinase (PI3K) signaling using live-cell total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Johnson, Heath E; Haugh, Jason M

    2013-12-02

    This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.

  5. Shedding quantitative fluorescence light on novel regulatory mechanisms in skeletal biomedicine and biodentistry.

    PubMed

    Lee, Ji-Won; Iimura, Tadahiro

    2017-02-01

    Digitalized fluorescence images contain numerical information such as color (wavelength), fluorescence intensity and spatial position. However, quantitative analyses of acquired data and their validation remained to be established. Our research group has applied quantitative fluorescence imaging on tissue sections and uncovered novel findings in skeletal biomedicine and biodentistry. This review paper includes a brief background of quantitative fluorescence imaging and discusses practical applications by introducing our previous research. Finally, the future perspectives of quantitative fluorescence imaging are discussed.

  6. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  7. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy.

    PubMed

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-01-18

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  8. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    PubMed Central

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-01-01

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy. PMID:29160812

  9. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    PubMed

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  10. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Quinn, Kyle P.; Sridharan, Gautham V.; Hayden, Rebecca S.; Kaplan, David L.; Lee, Kyongbum; Georgakoudi, Irene

    2013-12-01

    The non-invasive high-resolution spatial mapping of cell metabolism within tissues could provide substantial advancements in assessing the efficacy of stem cell therapy and understanding tissue development. Here, using two-photon excited fluorescence microscopy, we elucidate the relationships among endogenous cell fluorescence, cell redox state, and the differentiation of human mesenchymal stem cells into adipogenic and osteoblastic lineages. Using liquid chromatography/mass spectrometry and quantitative PCR, we evaluate the sensitivity of an optical redox ratio of FAD/(NADH + FAD) to metabolic changes associated with stem cell differentiation. Furthermore, we probe the underlying physiological mechanisms, which relate a decrease in the redox ratio to the onset of differentiation. Because traditional assessments of stem cells and engineered tissues are destructive, time consuming, and logistically intensive, the development and validation of a non-invasive, label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a powerful tool for rapid, high-content characterization of cell and tissue cultures.

  11. Quantitative imaging with fluorescent biosensors.

    PubMed

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  12. High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast

    PubMed Central

    Ajo-Franklin, Caroline M.; Kam, Lance; Boxer, Steven G.

    2001-01-01

    Total internal reflection fluorescence microscopy is widely used to confine the excitation of a complex fluorescent sample very close to the material on which it is supported. By working with high refractive index solid supports, it is possible to confine even further the evanescent field, and by varying the angle of incidence, to obtain quantitative information on the distance of the fluorescent object from the surface. We report the fabrication of hybrid surfaces consisting of nm layers of SiO2 on lithium niobate (LiNbO3, n = 2.3). Supported lipid bilayer membranes can be assembled and patterned on these hybrid surfaces as on conventional glass. By varying the angle of incidence of the excitation light, we are able to obtain fluorescent contrast between 40-nm fluorescent beads tethered to a supported bilayer and fluorescently labeled protein printed on the surface, which differ in vertical position by only tens of nm. Preliminary experiments that test theoretical models for the fluorescence-collection factor near a high refractive index surface are presented, and this factor is incorporated into a semiquantitative model used to predict the contrast of the 40-nm bead/protein system. These results demonstrate that it should be possible to profile the vertical location of fluorophores on the nm distance scale in real time, opening the possibility of many experiments at the interface between supported membranes and living cells. Improvements in materials and optical techniques are outlined. PMID:11717428

  13. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Thermal maturity of Tasmanites microfossils from confocal laser scanning fluorescence microscopy

    USGS Publications Warehouse

    Hackley, Paul C.; Kus, Jolanta

    2015-01-01

    We report here, for the first time, spectral properties of Tasmanites microfossils determined by confocal laser scanning fluorescence microscopy (CLSM, using Ar 458 nm excitation). The Tasmanites occur in a well-characterized natural maturation sequence (Ro 0.48–0.74%) of Devonian shale (n = 3 samples) from the Appalachian Basin. Spectral property λmax shows excellent agreement (r2 = 0.99) with extant spectra from interlaboratory studies which used conventional fluorescence microscopy techniques. This result suggests spectral measurements from CLSM can be used to infer thermal maturity of fluorescent organic materials in geologic samples. Spectra of regions with high fluorescence intensity at fold apices and flanks in individual Tasmanites are blue-shifted relative to less-deformed areas in the same body that have lower fluorescence intensity. This is interpreted to result from decreased quenching moiety concentration at these locations, and indicates caution is needed in the selection of measurement regions in conventional fluorescence microscopy, where it is common practice to select high intensity regions for improved signal intensity and better signal to noise ratios. This study also documents application of CLSM to microstructural characterization of Tasmanites microfossils. Finally, based on an extant empirical relation between conventional λmax values and bitumen reflectance, λmax values from CLSM of Tasmanites microfossils can be used to calculate a bitumen reflectance equivalent value. The results presented herein can be used as a basis to broaden the future application of CLSM in the geological sciences into hydrocarbon prospecting and basin analysis.

  15. Video-rate hyperspectral two-photon fluorescence microscopy for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Deng, Fengyuan; Ding, Changqin; Martin, Jerald C.; Scarborough, Nicole M.; Song, Zhengtian; Eakins, Gregory S.; Simpson, Garth J.

    2018-02-01

    Fluorescence hyperspectral imaging is a powerful tool for in vivo biological studies. The ability to recover the full spectra of the fluorophores allows accurate classification of different structures and study of the dynamic behaviors during various biological processes. However, most existing methods require significant instrument modifications and/or suffer from image acquisition rates too low for compatibility with in vivo imaging. In the present work, a fast (up to 18 frames per second) hyperspectral two-photon fluorescence microscopy approach was demonstrated. Utilizing the beamscanning hardware inherent in conventional multi-photon microscopy, the angle dependence of the generated fluorescence signal as a function beam's position allowed the system to probe of a different potion of the spectrum at every single scanning line. An iterative algorithm to classify the fluorophores recovered spectra with up to 2,400 channels using a custom high-speed 16-channel photon multiplier tube array. Several dynamic samples including live fluorescent labeled C. elegans were imaged at video rate. Fluorescence spectra recovered using no a priori spectral information agreed well with those obtained by fluorimetry. This system required minimal changes to most existing beam-scanning multi-photon fluorescence microscopes, already accessible in many research facilities.

  16. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    PubMed

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  17. Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru

    2013-06-01

    The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.

  18. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  19. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  20. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  1. Wide-Field Fluorescence Microscopy of Real-Time Bioconjugation Sensing

    PubMed Central

    Szalkowski, Marcin; Sulowska, Karolina; Grzelak, Justyna; Niedziółka-Jönsson, Joanna; Roźniecka, Ewa

    2018-01-01

    We apply wide-field fluorescence microscopy to measure real-time attachment of photosynthetic proteins to plasmonically active silver nanowires. The observation of this effect is enabled, on the one hand, by sensitive detection of fluorescence and, on the other hand, by plasmonic enhancement of protein fluorescence. We examined two sample configurations with substrates being a bare glass coverslip and a coverslip functionalized with a monolayer of streptavidin. The different preparation of the substrate changes the observed behavior as far as attachment of the protein is concerned as well as its subsequent photobleaching. For the latter substrate the conjugation process is measurably slower. The described method can be universally applied in studying protein-nanostructure interactions for real-time fluorescence-based sensing. PMID:29351211

  2. Wide-Field Fluorescence Microscopy of Real-Time Bioconjugation Sensing.

    PubMed

    Szalkowski, Marcin; Sulowska, Karolina; Grzelak, Justyna; Niedziółka-Jönsson, Joanna; Roźniecka, Ewa; Kowalska, Dorota; Maćkowski, Sebastian

    2018-01-19

    We apply wide-field fluorescence microscopy to measure real-time attachment of photosynthetic proteins to plasmonically active silver nanowires. The observation of this effect is enabled, on the one hand, by sensitive detection of fluorescence and, on the other hand, by plasmonic enhancement of protein fluorescence. We examined two sample configurations with substrates being a bare glass coverslip and a coverslip functionalized with a monolayer of streptavidin. The different preparation of the substrate changes the observed behavior as far as attachment of the protein is concerned as well as its subsequent photobleaching. For the latter substrate the conjugation process is measurably slower. The described method can be universally applied in studying protein-nanostructure interactions for real-time fluorescence-based sensing.

  3. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    PubMed

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.

    PubMed

    Godinez, William J; Rohr, Karl

    2015-02-01

    Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.

  5. Quantitative Multispectral Analysis Of Discrete Subcellular Particles By Digital Imaging Fluorescence Microscopy (DIFM)

    NASA Astrophysics Data System (ADS)

    Dorey, C. K.; Ebenstein, David B.

    1988-10-01

    Subcellular localization of multiple biochemical markers is readily achieved through their characteristic autofluorescence or through use of appropriately labelled antibodies. Recent development of specific probes has permitted elegant studies in calcium and pH in living cells. However, each of these methods measured fluorescence at one wavelength; precise quantitation of multiple fluorophores at individual sites within a cell has not been possible. Using DIFM, we have achieved spectral analysis of discrete subcellular particles 1-2 gm in diameter. The fluorescence emission is broken into narrow bands by an interference monochromator and visualized through the combined use of a silicon intensified target (SIT) camera, a microcomputer based framegrabber with 8 bit resolution, and a color video monitor. Image acquisition, processing, analysis and display are under software control. The digitized image can be corrected for the spectral distortions induced by the wavelength dependent sensitivity of the camera, and the displayed image can be enhanced or presented in pseudocolor to facilitate discrimination of variation in pixel intensity of individual particles. For rapid comparison of the fluorophore composition of granules, a ratio image is produced by dividing the image captured at one wavelength by that captured at another. In the resultant ratio image, a granule which has a fluorophore composition different from the majority is selectively colored. This powerful system has been utilized to obtain spectra of endogenous autofluorescent compounds in discrete cellular organelles of human retinal pigment epithelium, and to measure immunohistochemically labelled components of the extracellular matrix associated with the human optic nerve.

  6. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy

    PubMed Central

    Valades Cruz, Cesar Augusto; Shaban, Haitham Ahmed; Kress, Alla; Bertaux, Nicolas; Monneret, Serge; Mavrakis, Manos; Savatier, Julien; Brasselet, Sophie

    2016-01-01

    Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells. PMID:26831082

  7. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy

    DOE PAGES

    Jin, Qiaoling; Paunesku, Tatjana; Lai, Barry; ...

    2016-08-31

    Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with freshmore » media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. Lastly, when chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.« less

  8. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Qiaoling; Paunesku, Tatjana; Lai, Barry

    Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with freshmore » media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. Lastly, when chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.« less

  9. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  10. Chapter 7: Total internal reflection fluorescence microscopy.

    PubMed

    Axelrod, Daniel

    2008-01-01

    Total internal reflection fluorescence microscopy (TIRFM), also known as evanescent wave microscopy, is used in a wide range of applications, particularly to view single molecules attached to planar surfaces and to study the position and dynamics of molecules and organelles in living culture cells near the contact regions with the glass coverslip. TIRFM selectively illuminates fluorophores only in a very thin (less than 100 nm deep) layer near the substrate, thereby avoiding excitation of fluorophores outside this subresolution optical section. This chapter reviews the history, current applications in cell biology and biochemistry, basic optical theory, combinations with numerous other optical and spectroscopic approaches, and a range of setup methods, both commercial and custom.

  11. Single cell genomic quantification by non-fluorescence nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Kota, Divya; Liu, Jing

    2017-02-01

    Human epidermal growth receptor 2 (Her2) is a gene which plays a major role in breast cancer development. The quantification of Her2 expression in single cells is limited by several drawbacks in existing fluorescence-based single molecule techniques, such as low signal-to-noise ratio (SNR), strong autofluorescence and background signals from biological components. For rigorous genomic quantification, a robust method of orthogonal detection is highly desirable and we demonstrated it by two non-fluorescent imaging techniques -transient absorption microscopy (TAM) and second harmonic generation (SHG). In TAM, gold nanoparticles (AuNPs) are chosen as an orthogonal probes for detection of single molecules which gives background-free quantifications of single mRNA transcript. In SHG, emission from barium titanium oxide (BTO) nanoprobes was demonstrated which allows stable signal beyond the autofluorescence window. Her2 mRNA was specifically labeled with nanoprobes which are conjugated with antibodies or oligonucleotides and quantified at single copy sensitivity in the cancer cells and tissues. Furthermore, a non-fluorescent super-resolution concept, named as second harmonic super-resolution microscopy (SHaSM), was proposed to quantify individual Her2 transcripts in cancer cells beyond the diffraction limit. These non-fluorescent imaging modalities will provide new dimensions in biomarker quantification at single molecule sensitivity in turbid biological samples, offering a strong cross-platform strategy for clinical monitoring at single cell resolution.

  12. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  13. High-resolution fluorescence microscopy of myelin without exogenous probes.

    PubMed

    Christensen, Pia Crone; Brideau, Craig; Poon, Kelvin W C; Döring, Axinia; Yong, V Wee; Stys, Peter K

    2014-02-15

    Myelin is a critical element of the central and peripheral nervous systems of all higher vertebrates. Any disturbance in the integrity of the myelin sheath interferes with the axon's ability to conduct action potentials. Thus, the study of myelin structure and biochemistry is critically important. Accurate and even staining of myelin is often difficult because of its lipid-rich nature and multiple tight membrane wraps, hindering penetration of immunoprobes. Here we show a method of visualizing myelin that is fast, inexpensive and reliable using the cross-linking fixative glutaraldehyde that produces strong, broad-spectrum auto-fluorescence in fixed tissue. Traditionally, effort is generally aimed at eliminating this auto-fluorescence. However, we show that this intrinsic signal, which is very photostable and particularly strong in glutaraldehyde-fixed myelin, can be exploited to visualize this structure to produce very detailed images of myelin morphology. We imaged fixed rodent tissues from the central and peripheral nervous systems using spectral confocal microscopy to acquire high-resolution 3-dimensional images spanning the visual range of wavelengths (400-750 nm). Mathematical post-processing allows accurate and unequivocal separation of broadband auto-fluorescence from exogenous fluorescent probes such as DAPI and fluorescently-tagged secondary antibodies. We additionally show the feasibility of immunohistochemistry with antigen retrieval, which allows co-localization of proteins of interest together with detailed myelin morphology. The lysolecithin model of de- and remyelination is shown as an example of a practical application of this technique, which can be routinely applied when high-resolution microscopy of central or peripheral myelinated tracts is required. © 2013.

  14. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  15. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function

  16. Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

  17. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  18. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  19. Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.

    PubMed

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.

  20. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    NASA Astrophysics Data System (ADS)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  1. Raman microscopy of bladder cancer cells expressing green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.

    2016-11-01

    Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.

  2. Projected Uses of Cellular Models and Fluorescence Microscopy for Identification of Antivesicants

    DTIC Science & Technology

    1993-05-13

    AD-P008 761 PROJECTED USES OF CELLULAR MODELS AND FLUORESCENCE MICROSCOPY FOR IDENTIFICATION OF ANTIVESICANTS Millard M. Mershon, Stacey M...epidermal keratinocytes (NHEK), fluorescent dye marker probes and spectrofluorometry led to a preliminary feasibility study’ This showed that the...acetoxymethyl ester that is taken into cells and cleaved by intracellular esterases’. It remains as a fluorescent marker until it leaks out through damaged

  3. Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine.

    PubMed

    Alexiev, Ulrike; Volz, Pierre; Boreham, Alexander; Brodwolf, Robert

    2017-07-01

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief, and for monitoring of disease progression. Topical application of drug-loaded nanoparticles for the treatment of skin disorders is a promising strategy to overcome the stratum corneum, the upper layer of the skin, which represents an effective physical and biochemical barrier. The understanding of drug penetration into skin and enhanced penetration into skin facilitated by nanocarriers requires analytical tools that ideally allow to visualize the skin, its morphology, the drug carriers, drugs, their transport across the skin and possible interactions, as well as effects of the nanocarriers within the different skin layers. Here, we review some recent developments in the field of fluorescence microscopy, namely Fluorescence Lifetime Imaging Microscopy (FLIM)), for improved characterization of nanocarriers, their interactions and penetration into skin. In particular, FLIM allows for the discrimination of target molecules, e.g. fluorescently tagged nanocarriers, against the autofluorescent tissue background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle and its interactions with other biomolecules. Thus, FLIM shows the potential to overcome several limits of intensity based microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array

    PubMed Central

    Wu, Jianglai; Tang, Anson H. L.; Mok, Aaron T. Y.; Yan, Wenwei; Chan, Godfrey C. F.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2017-01-01

    Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged. PMID:28966855

  5. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  6. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.

    PubMed

    Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno

    2010-08-01

    In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent

  7. Detection of oxidative hair treatment using fluorescence microscopy.

    PubMed

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  9. Frequency-domain photoacoustic and fluorescence microscopy: application on labeled and unlabeled cells

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Pfeffer, Karoline; Wohlfarth, Sven; Hannesschläger, Günther; Klar, Thomas A.; Berer, Thomas

    2018-02-01

    In this paper, multimodal optical-resolution frequency-domain photoacoustic and fluorescence scanning microscopy is presented on labeled and unlabeled cells. In many molecules, excited electrons relax radiatively and non-radiatively, leading to fluorescence and photoacoustic signals, respectively. Both signals can then be detected simultaneously. There also exist molecules, e.g. hemoglobin, which do not exhibit fluorescence, but provide photoacoustic signals solely. Other molecules, especially fluorescent dyes, preferentially exhibit fluorescence. The fluorescence quantum yield of a molecule and with it the strength of photoacoustic and fluorescence signals depends on the local environment, e.g. on the pH. Therefore, the local distribution of the simultaneously recorded photoacoustic and fluorescence signals may be used in order to obtain information about the local chemistry.

  10. Segmentation and Morphometric Analysis of Cells from Fluorescence Microscopy Images of Cytoskeletons

    PubMed Central

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures. PMID:23762186

  11. Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons.

    PubMed

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.

  12. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  13. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy.

    PubMed

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2017-04-01

    Green technologies, such as phytoremediation, are effective for removing organic pollutants derived from oil and oil products, including polycyclic aromatic hydrocarbons (PAHs). Given the increasing popularity of these sustainable remediation techniques, methods based on fluorescence microscopy and multiphoton microscopy for the environmental monitoring of such pollutants have emerged in recent decades as effective tools for phytoremediation studies aimed at understanding the fate of these contaminants in plants. However, little is known about the cellular and molecular mechanisms involved in PAH uptake, responses and degradation by plants. Thus, the present study aimed to detect the location of pyrene, anthracene and phenanthrene using fluorescence microscopy techniques in shoots and roots of Medicago sativa L. (alfalfa) plants grown in artificially contaminated soil (150ppm PAHs) for 40days. Leaflet and root samples were then collected and observed under a fluorescence microscope to detect the presence of PAHs in various tissues. One important finding of the present study was intense fluorescence in the glandular secreting trichomes (GSTs) of plants grown in contaminated soil. These trichomes, with a previously unknown function, may be sites of PAH conjugation and degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  15. Time-resolved wide-field optically sectioned fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine

    2013-02-01

    We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.

  16. Quantitative imaging of fibrotic and morphological changes in liver of non-alcoholic steatohepatitis (NASH) model mice by second harmonic generation (SHG) and auto-fluorescence (AF) imaging using two-photon excitation microscopy (TPEM).

    PubMed

    Yamamoto, Shin; Oshima, Yusuke; Saitou, Takashi; Watanabe, Takao; Miyake, Teruki; Yoshida, Osamu; Tokumoto, Yoshio; Abe, Masanori; Matsuura, Bunzo; Hiasa, Yoichi; Imamura, Takeshi

    2016-12-01

    Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.

  17. Brain morphology imaging by 3D microscopy and fluorescent Nissl staining.

    PubMed

    Lazutkin, A A; Komissarova, N V; Toptunov, D M; Anokhin, K V

    2013-07-01

    Modern optical methods (multiphoton and light-sheet fluorescent microscopy) allow 3D imaging of large specimens of the brain with cell resolution. It is therefore essential to refer the resultant 3D pictures of expression of transgene, protein, and other markers in the brain to the corresponding structures in the atlas. This implies counterstaining of specimens with morphological dyes. However, there are no methods for contrasting large samples of the brain without their preliminary slicing. We have developed a method for fluorescent Nissl staining of whole brain samples. 3D reconstructions of specimens of the hippocampus, olfactory bulbs, and cortex were created. The method can be used for morphological control and evaluation of the effects of various factors on the brain using 3D microscopy technique.

  18. Quantitative fluorescence angiography for neurosurgical interventions.

    PubMed

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  19. Modified Facile Synthesis for Quantitatively Fluorescent Carbon Dots.

    PubMed

    Hou, Xiaofang; Hu, Yin; Wang, Ping; Yang, Liju; Al Awak, Mohamad M; Tang, Yongan; Twara, Fridah K; Qian, Haijun; Sun, Ya-Ping

    2017-10-01

    A simple yet consequential modification was made to the popular carbonization processing of citric acid - polyethylenimine precursor mixtures to produce carbon dots (CDots). The modification was primarily on pushing the carbonization processing a little harder at a higher temperature, such as the hydrothermal processing condition of around 330 °C for 6 hours. The CDots thus produced are comparable in spectroscopic and other properties to those obtained in other more controlled syntheses including the deliberate chemical functionalization of preprocessed and selected small carbon nanoparticles, demonstrating the consistency in CDots and reaffirming their general definition as carbon nanoparticles with surface passivation by organic or other species. Equally significant is the finding that the modified processing of citric acid - polyethylenimine precursor mixtures could yield CDots of record-setting fluorescence performance, approaching the upper limit of being quantitatively fluorescent. Thus, the reported work serves as a demonstration on not only the need in selecting the right processing conditions and its associated opportunities in one-pot syntheses of CDots, but also the feasibility in pursuing the preparation of quantitatively fluorescent CDots, which represents an important milestone in the development and understanding of these fluorescent carbon nanomaterials.

  20. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    PubMed

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  1. Applying fluorescence microscopy to the investigation of the behavior of foodborne pathogens on produce

    NASA Astrophysics Data System (ADS)

    Brandl, Maria T.

    2009-05-01

    In the past decade, the development of new tools to better visualize microbes at the cellular scale has spurred a renaissance in the application of microscopy to the study of bacteria in their natural environment. This renewed interest in microscopy may be largely attributable to the advent of the confocal laser scanning microscope (CLSM) and to the discovery of the green fluorescent protein. This article provides information about the use of fluorescence microscopy combined with fluorescent labels such as GFP, DsRed, and DNA stains, with immunofluorescence, and with digital image analysis, to examine the behavior of bacteria and other microbes on plant surfaces. Some of the advantages and pitfalls of these methods will be described using practical examples derived from studies of the ecology of foodborne pathogens, namely Salmonella enterica and E. coli O157:H7, on fresh fruit and vegetables. Confocal microscopy has been a powerful approach to uncover some of the factors involved in the association of produce with epidemics caused by these human pathogens and their interaction with other microbes in their nonhost environment.

  2. Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination

    PubMed Central

    Wolenski, Joseph S.; Julich, Doerthe

    2014-01-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334

  3. Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme

    PubMed Central

    Woringer, Maxime; Darzacq, Xavier; Zimmer, Christophe

    2017-01-01

    Three-dimensional fluorescence microscopy based on Nyquist sampling of focal planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We propose a 3D compressed sensing approach that uses temporal modulation of the excitation intensity during axial stage sweeping and can be adapted to fluorescence microscopes without hardware modification. We describe implementations on a lattice light sheet microscope and an epifluorescence microscope, and show that images of beads and biological samples can be reconstructed with a 5-10 fold reduction of light exposure and acquisition time. Our scheme opens a new door towards faster and less damaging 3D fluorescence microscopy. PMID:28788909

  4. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  5. Fluorescence microscopy for measuring fibril angles in pine tracheids

    Treesearch

    Ralph O. Marts

    1955-01-01

    Observation and measurement of fibril angles in increment cores or similar small samples from living pine trees was facilitated by the use of fluorescence microscopy. Although some autofluorescence was present, brighter images could be obtained by staining the specimens with a 0.1% aqueous solution of a fluorochrome (Calcozine flavine TG extra concentrated, Calcozine...

  6. Quantitative DIC microscopy using an off-axis self-interference approach.

    PubMed

    Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

    2010-07-15

    Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

  7. Zebrafish Caudal Fin Angiogenesis Assay—Advanced Quantitative Assessment Including 3-Way Correlative Microscopy

    PubMed Central

    Correa Shokiche, Carlos; Schaad, Laura; Triet, Ramona; Jazwinska, Anna; Tschanz, Stefan A.; Djonov, Valentin

    2016-01-01

    Background Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. Objective To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. Approach & Results Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. Conclusions The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations. PMID:26950851

  8. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  9. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research.

    PubMed

    Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K

    2017-06-01

    Light-sheet-based fluorescence microscopy features optical sectioning in the excitation process. This reduces phototoxicity and photobleaching by up to four orders of magnitude compared with that caused by confocal fluorescence microscopy, simplifies segmentation and quantification for three-dimensional cell biology, and supports the transition from on-demand to systematic data acquisition in developmental biology applications.

  10. Fluorescent speckle microscopy of microtubules: how low can you go?

    PubMed

    Waterman-Storer, C M; Salmon, E D

    1999-12-01

    Fluorescent speckle microscopy (FSM) is a new technique for visualizing the movement, assembly, and turnover of macromolecular assemblies like the cytoskeleton in living cells. In this method, contrast is created by coassembly of a small fraction of fluorescent subunits in a pool of unlabeled subunits. Random variation in association creates a nonuniform "fluorescent speckle" pattern. Fluorescent speckle movements in time-lapse recordings stand out to the eye and can be measured. Because fluorescent speckles represent fiduciary marks on the polymer lattice, FSM provides the opportunity for the first time to see the 2- and 3-dimensional trajectories of lattice movements within large arrays of polymers as well as identifying sites of assembly and disassembly of individual polymers. The technique works with either microinjection of fluorescently labeled subunits or expression of subunits ligated to green fluorescent protein (GFP). We have found for microtubules assembled in vitro that speckles containing one fluorophore can be detected and recorded using a conventional wide-field epi-fluorescence light microscope and digital imaging with a low noise cooled CCD camera. In living cells, optimal speckle contrast occurs at fractions of labeled tubulin of approximately 0.1-0.5% where the fluorescence of each speckle corresponds to one to seven fluorophores per resolvable unit (approximately 0.27 microm) in the microscope. This small fraction of labeled subunits significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells.

  11. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    NASA Astrophysics Data System (ADS)

    McConnell, Gail; Riis, Erling

    2004-10-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM.

  12. Fluorescence Lifetime Imaging Microscopy Using Near-Infrared Contrast Agents

    PubMed Central

    Nothdurft, Ralph; Sarder, Pinaki; Bloch, Sharon; Culver, Joseph; Achilefu, Samuel

    2013-01-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labeled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes’ relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. PMID:22788550

  13. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  14. Quantitative Confocal Microscopy Analysis as a Basis for Search and Study of Potassium Kv1.x Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feofanov, Alexey V.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Vassilevski, Alexander A.; Kuzmenkov, Alexey I.; Korolkova, Yuliya V.; Grishin, Eugene V.; Kirpichnikov, Mikhail P.

    Artificial KcsA-Kv1.x (x = 1, 3) receptors were recently designed by transferring the ligand-binding site from human Kv1.x voltage-gated potassium channels into corresponding domain of the bacterial KscA channel. We found that KcsA-Kv1.x receptors expressed in E. coli cells are embedded into cell membrane and bind ligands when the cells are transformed to spheroplasts. We supposed that E. coli spheroplasts with membrane-embedded KcsA-Kv1.x and fluorescently labeled ligand agitoxin-2 (R-AgTx2) can be used as elements of an advanced analytical system for search and study of Kv1-channel blockers. To realize this idea, special procedures were developed for measurement and quantitative treatment of fluorescence signals obtained from spheroplast membrane using confocal laser scanning microscopy (CLSM). The worked out analytical "mix and read" systems supported by quantitative CLSM analysis were demonstrated to be reliable alternative to radioligand and electrophysiology techniques in the search and study of selective Kv1.x channel blockers of high scientific and medical importance.

  15. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  16. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.

    PubMed

    Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin

    2011-03-01

    Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.

  17. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  18. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion

    PubMed Central

    Kiessling, Volker; Liang, Binyong; Kreutzberger, Alex J. B.; Tamm, Lukas K.

    2017-01-01

    Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods. PMID:28360838

  19. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  20. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  1. Infrared fluorescence microscopy of stained tissues: principles and technic.

    PubMed

    Puchtler, H; Meloan, S N; Paschal, L D

    1980-01-01

    Infrared photomicrography was used extensively from 1927 to the 1940's, but received little attention during the last decades. However, studies of infrared fluorescence of stained sections could not be found in the accessible literature. Ramsley (1968) published quantitative data on infrared fluorescence of approximately 250 dyes bound to textile fibers. The intensity of infrared fluorescence of many dyes varied widely with the substrate. It was therefore deemed of interest to determine whether or not similar differences in infrared fluorescence may occur when dyes are bound to histochemically distinct tissue structures. Myofibrils and collagens stained with triarylmethane dyes were chosen as test objects. Kodak infrared cut-off filter No. 301 and Wratten filter #16 were used as exciter filters to remove infrared and UV-blue and the light of a xenon lamp. Wratten filter #70 and #89B were employed as barrier filters. Infrared radiation was recorded with Kodak Ektachrome infrared film. To facilitate correlation of infrared fluorescence patterns with visible images, tissues were photographed also with conventional color film. Stained myofibrils, e.g. in myoepithelium, smooth and striated muscle emitted strong infrared fluorescence; collagen showed little or no fluorescence. Barrier filter Wratten #70 permitted simultaneous demonstration of infrared fluorescence and of non-fluorescent structures and thus facilitated histopathological studies. Preliminary findings indicate decrease or loss of infrared fluorescence of stained muscle fibers in various lesions, e.g. myocardial infarction, Duchenne-type muscular dystrophy.

  2. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  3. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    NASA Astrophysics Data System (ADS)

    Duman, M.; Pfleger, M.; Zhu, R.; Rankl, C.; Chtcheglova, L. A.; Neundlinger, I.; Bozna, B. L.; Mayer, B.; Salio, M.; Shepherd, D.; Polzella, P.; Moertelmaier, M.; Kada, G.; Ebner, A.; Dieudonne, M.; Schütz, G. J.; Cerundolo, V.; Kienberger, F.; Hinterdorfer, P.

    2010-03-01

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ~ 25 to ~ 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  4. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging.

    PubMed

    Duman, M; Pfleger, M; Zhu, R; Rankl, C; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Mayer, B; Salio, M; Shepherd, D; Polzella, P; Moertelmaier, M; Kada, G; Ebner, A; Dieudonne, M; Schütz, G J; Cerundolo, V; Kienberger, F; Hinterdorfer, P

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on alpha-galactosylceramide (alphaGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from approximately 25 to approximately 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  5. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  6. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  7. Comparison of LED and Conventional Fluorescence Microscopy for Detection of Acid Fast Bacilli in a Low-Incidence Setting

    PubMed Central

    Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina

    2011-01-01

    Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622

  8. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert

    2010-04-01

    Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.

  9. New techniques for fluorescence background rejection in microscopy and endoscopy

    NASA Astrophysics Data System (ADS)

    Ventalon, Cathie

    2009-03-01

    Confocal microscopy is a popular technique in the bioimaging community, mainly because it provides optical sectioning. However, its standard implementation requires 3-dimensional scanning of focused illumination throughout the sample. Efficient non-scanning alternatives have been implemented, among which the simple and well-established incoherent structured illumination microscopy (SIM) [1]. We recently proposed a similar technique, called Dynamic Speckle Illumination (DSI) microscopy, wherein the incoherent grid illumination pattern is replaced with a coherent speckle illumination pattern from a laser, taking advantage of the fact that speckle contrast is highly maintained in a scattering media, making the technique well adapted to tissue imaging [2]. DSI microscopy relies on the illumination of a sample with a sequence of dynamic speckle patterns and an image processing algorithm based only on an a priori knowledge of speckle statistics. The choice of this post-processing algorithm is crucial to obtain a good sectioning strength: in particular, we developed a novel post-processing algorithm based one wavelet pre-filtering of the raw images and obtained near-confocal fluorescence sectioning in a mouse brain labeled with GFP, with a good image quality maintained throughout a depth of ˜100 μm [3]. In the purpose of imaging fluorescent tissue at higher depth, we recently applied structured illumination to endoscopy. We used a similar set-up wherein the illumination pattern (a one-dimensional grid) is transported to the sample with an imaging fiber bundle with miniaturized objective and the fluorescence image is collected through the same bundle. Using a post-processing algorithm similar to the one previously described [3], we obtained high-quality images of a fluorescein-labeled rat colonic mucosa [4], establishing the potential of our endomicroscope for bioimaging applications. [4pt] Ref: [0pt] [1] M. A. A. Neil et al, Opt. Lett. 22, 1905 (1997) [0pt] [2] C

  10. Augmented microscopy with near-infrared fluorescence detection

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  11. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Evaluation of mobile digital light-emitting diode fluorescence microscopy in Hanoi, Viet Nam.

    PubMed

    Chaisson, L H; Reber, C; Phan, H; Switz, N; Nilsson, L M; Myers, F; Nhung, N V; Luu, L; Pham, T; Vu, C; Nguyen, H; Nguyen, A; Dinh, T; Nahid, P; Fletcher, D A; Cattamanchi, A

    2015-09-01

    Hanoi Lung Hospital, Hanoi, Viet Nam. To compare the accuracy of CellScopeTB, a manually operated mobile digital fluorescence microscope, with conventional microscopy techniques. Patients referred for sputum smear microscopy to the Hanoi Lung Hospital from May to September 2013 were included. Ziehl-Neelsen (ZN) smear microscopy, conventional light-emitting diode (LED) fluorescence microscopy (FM), CellScopeTB-based LED FM and Xpert(®) MTB/RIF were performed on sputum samples. The sensitivity and specificity of microscopy techniques were determined in reference to Xpert results, and differences were compared using McNemar's paired test of proportions. Of 326 patients enrolled, 93 (28.5%) were Xpert-positive for TB. The sensitivity of ZN microscopy, conventional LED FM, and CellScopeTB-based LED FM was respectively 37.6% (95%CI 27.8-48.3), 41.9% (95%CI 31.8-52.6), and 35.5% (95%CI 25.8-46.1). The sensitivity of CellScopeTB was similar to that of conventional LED FM (difference -6.5%, 95%CI -18.2 to 5.3, P = 0.33) and ZN microscopy (difference -2.2%, 95%CI -9.2 to 4.9, P = 0.73). The specificity was >99% for all three techniques. CellScopeTB performed similarly to conventional microscopy techniques in the hands of experienced TB microscopists. However, the sensitivity of all sputum microscopy techniques was low. Options enabled by digital microscopy, such as automated imaging with real-time computerized analysis, should be explored to increase sensitivity.

  13. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  14. Integrated photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy for multimodal chorioretinal imaging

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Zhang, Wei; Nguyen, Van Phuc; Huang, Ziyi; Wang, Xueding; Paulus, Yannis M.

    2018-02-01

    Current clinical available retinal imaging techniques have limitations, including limited depth of penetration or requirement for the invasive injection of exogenous contrast agents. Here, we developed a novel multimodal imaging system for high-speed, high-resolution retinal imaging of larger animals, such as rabbits. The system integrates three state-of-the-art imaging modalities, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), and fluorescence microscopy (FM). In vivo experimental results of rabbit eyes show that the PAM is able to visualize laser-induced retinal burns and distinguish individual eye blood vessels using a laser exposure dose of 80 nJ, which is well below the American National Standards Institute (ANSI) safety limit 160 nJ. The OCT can discern different retinal layers and visualize laser burns and choroidal detachments. The novel multi-modal imaging platform holds great promise in ophthalmic imaging.

  15. Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Schickinger, Sarah; Wittig, Rainer; Schneckenburger, Herbert

    2012-10-01

    A device for selective plane illumination microscopy (SPIM) of three-dimensional multicellular spheroids, in culture medium under stationary or microfluidic conditions, is described. Cell spheroids are located in a micro-capillary and a light sheet, for illumination, is generated in an optical setup adapted to a conventional inverse microscope. Layers of the sample, of about 10 μm or less in diameter, are, thus, illuminated selectively and imaged by high resolution fluorescence microscopy. SPIM is operated at low light exposure even if a larger number of layers is imaged and is easily combined with laser scanning microscopy. Chinese hamster ovary cells expressing a membrane-associated green fluorescent protein are used for preliminary tests, and the uptake of the fluorescent marker, acridine orange via a microfluidic system, is visualized to demonstrate its potential in cancer research such as for the detection of cellular responses to anticancer drugs.

  16. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  17. Light Emitting Diode Flashlights as Effective and Inexpensive Light Sources for Fluorescence Microscopy

    PubMed Central

    Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie

    2009-01-01

    Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530

  18. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory

    PubMed Central

    Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W.

    2015-01-01

    It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are

  19. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory.

    PubMed

    Zhang, Yang; Máté, Gabriell; Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W

    2015-01-01

    It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are

  20. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples

    NASA Astrophysics Data System (ADS)

    Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.

    2018-05-01

    We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.

  1. Time-resolved fluorescence microscopy to study biologically related applications using sol-gel derived and cellular media

    NASA Astrophysics Data System (ADS)

    Toury, Marion; Chandler, Lin; Allison, Archie; Campbell, David; McLoskey, David; Holmes-Smith, A. Sheila; Hungerford, Graham

    2011-03-01

    Fluorescence microscopy provides a non-invasive means for visualising dynamic protein interactions. As well as allowing the calculation of kinetic processes via the use of time-resolved fluorescence, localisation of the protein within cells or model systems can be monitored. These fluorescence lifetime images (FLIM) have become the preferred technique for elucidating protein dynamics due to the fact that the fluorescence lifetime is an absolute measure, in the main independent of fluorophore concentration and intensity fluctuations caused by factors such as photobleaching. In this work we demonstrate the use of a time-resolved fluorescence microscopy, employing a high repetition rate laser excitation source applied to study the influence of a metal surface on fluorescence tagged protein and to elucidate viscosity using the fluorescence lifetime probe DASPMI. These were studied in a cellular environment (yeast) and in a model system based on a sol-gel derived material, in which silver nanostructures were formed in situ using irradiation from a semiconductor laser in CW mode incorporated on a compact time-resolved fluorescence microscope (HORIBA Scientific DeltaDiode and DynaMyc).

  2. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  3. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    NASA Astrophysics Data System (ADS)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  4. Investigation of alveolar tissue deformations using OCT combined with fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2011-06-01

    In critical care medicine, artificial ventilation is a life saving tool providing sufficient blood oxygenation to patients suffering from respiratory failure. Essential for their survival is the use of protective ventilation strategies to prevent further lung damage due to ventilator induced lung injury (VILI). Since there is only little known about implications of lung tissue overdistension on the alveolar level, especially in the case of diseased lungs, this research deals with the investigation of lung tissue deformation on a microscale. A combined setup utilizing optical coherence tomography (OCT) and confocal fluorescence microscopy, is used to study the elastic behavior of the alveolar tissue. Three-dimensional geometrical information with voxel sizes of 6 μm × 6 μm × 11 μm (in air) is provided by OCT, structural information about localization of elastin fibers is elucidated via confocal fluorescence microscopy with a lateral resolution of around 1 μm. Imaging depths of 90 μm for OCT and 20 μm for confocal fluorescence microscopy were obtained. Dynamic studies of subpleural tissue were carried out on the basis of an in vivo mouse model post mortem, mimicking the physiological environment of an intact thorax and facilitating a window for the application of optical methods. Morphological changes were recorded by applying constant positive airway pressures of different values. With this, alveolar volume changes could clearly be recognized and quantified to form a compliance value of 3.5 • 10-6(see manuscript). The distribution of elastin fibers was detected and will be subject to further elasticity analysis.

  5. X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2017-03-27

    X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less

  6. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope

    PubMed Central

    Adams, Jesse K.; Boominathan, Vivek; Avants, Benjamin W.; Vercosa, Daniel G.; Ye, Fan; Baraniuk, Richard G.; Robinson, Jacob T.; Veeraraghavan, Ashok

    2017-01-01

    Modern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental trade-off: As lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental trade-off between device size and performance, we present a new concept for three-dimensional (3D) fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred micrometers above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: perhaps the world’s tiniest and lightest microscope. FlatScope is a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 g in weight and less than 1 mm thick) and yet able to produce micrometer-resolution, high–frame rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope while providing comparable resolution. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies. PMID:29226243

  7. NicoLase—An open-source diode laser combiner, fiber launch, and sequencing controller for fluorescence microscopy

    PubMed Central

    Walsh, James; Böcking, Till; Gaus, Katharina

    2017-01-01

    Modern fluorescence microscopy requires software-controlled illumination sources with high power across a wide range of wavelengths. Diode lasers meet the power requirements and combining multiple units into a single fiber launch expands their capability across the required spectral range. We present the NicoLase, an open-source diode laser combiner, fiber launch, and software sequence controller for fluorescence microscopy and super-resolution microscopy applications. Two configurations are described, giving four or six output wavelengths and one or two single-mode fiber outputs, with all CAD files, machinist drawings, and controller source code openly available. PMID:28301563

  8. Semi-quantitative estimation of cellular SiO2 nanoparticles using flow cytometry combined with X-ray fluorescence measurements.

    PubMed

    Choi, Seo Yeon; Yang, Nuri; Jeon, Soo Kyung; Yoon, Tae Hyun

    2014-09-01

    In this study, we have demonstrated feasibility of a semi-quantitative approach for the estimation of cellular SiO2 nanoparticles (NPs), which is based on the flow cytometry measurements of their normalized side scattering intensity. In order to improve our understanding on the quantitative aspects of cell-nanoparticle interactions, flow cytometry, transmission electron microscopy, and X-ray fluorescence experiments were carefully performed for the HeLa cells exposed to SiO2 NPs with different core diameters, hydrodynamic sizes, and surface charges. Based on the observed relationships among the experimental data, a semi-quantitative cellular SiO2 NPs estimation method from their normalized side scattering and core diameters was proposed, which can be applied for the determination of cellular SiO2 NPs within their size-dependent linear ranges. © 2014 International Society for Advancement of Cytometry.

  9. Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Bandmann, Vera; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.

  10. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.

    PubMed

    Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-09-07

    We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.

  11. High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke

    2017-04-01

    We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.

  12. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins.

    PubMed

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-10-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tong, Yongpeng; Li, Changming; Liang, Feng; Chen, Jianmin; Zhang, Hong; Liu, Guoqing; Sun, Huibin; Luong, John H. T.

    2008-12-01

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al 2O 3 and TiO 2) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl 2) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al 2O 3 and TiO 2 nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe 2O 3 nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  14. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  16. In vivo quantitative visualization of hypochlorous acid in the liver using a novel selective two-photon fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Haolu; Jayachandran, Aparna; Gravot, Germain; Liang, Xiaowen; Thorling, Camilla A.; Zhang, Run; Liu, Xin; Roberts, Michael S.

    2016-11-01

    Hypochlorous acid (HOCl) plays a vital role in physiological events and diseases. During hepatic ischemia-reperfusion (I/R) injury, HOCl is generated by neutrophils and diffuses into hepatocytes, causing oxidant stress-mediated injury. Although many probes have been developed to detect HOCl, most were difficult to be distinguished from endogenous fluorophores in intravital imaging and only can be employed under one-photon microscopy. A novel iridium(III) complex-based ferrocene dual-signaling chemosensor (Ir-Fc) was designed and synthesized. Ir-Fc exhibited a strong positive fluorescent response only in the presence of HOCl, whereas negligible fluorescent signals were observed upon the additions of other reactive oxygen/nitrogen species and metal ions. There was a good linear relationship between probe responsive fluorescent intensity and HOCl concentration. Ir-Fc was then intravenously injected into BALB/c mice at the final concentration of 50 μM and the mouse livers were imaged using multiphoton microscopy (MPM). In the I/R liver, reduced autofluorescence was detected by MPM, indicating the hepatocyte necrosis. Remarkable enhancement of red fluorescence was observed in hepatocytes with decreased autofluorescence, indicating the reaction of Ir-Fc with endogenous HOCl molecules. The cellular concentration of HOCl was first calculated based on the intensity of MPM images. No obvious toxic effects were observed in histological examination of major organs after Ir-Fc injection. In summary, Ir-Fc has low cytotoxicity, high specificity to HOCl, and rapid "off-on" fluorescence. It is suitable for dynamic quantitatively monitoring HOCl generation using MPM at the cellular level. This technique can be readily extended to examination of liver diseases and injury.

  17. Developing methods based on light sheet fluorescence microscopy for biophysical investigations of larval zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Michael J.

    Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using

  18. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  19. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  20. Visualization of Motor Axon Navigation and Quantification of Axon Arborization In Mouse Embryos Using Light Sheet Fluorescence Microscopy.

    PubMed

    Liau, Ee Shan; Yen, Ya-Ping; Chen, Jun-An

    2018-05-11

    Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.

  1. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  2. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  3. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    PubMed

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  4. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins[S

    PubMed Central

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-01-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170

  5. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells

    PubMed Central

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569

  6. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    PubMed

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  7. Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

    PubMed Central

    Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological

  8. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    PubMed

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  9. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins.

    PubMed

    Chanoca, Alexandra; Burkel, Brian; Kovinich, Nik; Grotewold, Erich; Eliceiri, Kevin W; Otegui, Marisa S

    2016-12-01

    Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild-type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude-weighted mean fluorescence lifetime (τ m ) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τ m than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the

  11. Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2014-11-01

    Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.

  12. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas

    2015-01-01

    Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742

  13. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  14. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  15. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    PubMed

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA) for quantitative nanoscale assessment of spatial protein organization.

    PubMed

    Veeraraghavan, Rengasayee; Gourdie, Robert G

    2016-11-07

    The spatial association between proteins is crucial to understanding how they function in biological systems. Colocalization analysis of fluorescence microscopy images is widely used to assess this. However, colocalization analysis performed on two-dimensional images with diffraction-limited resolution merely indicates that the proteins are within 200-300 nm of each other in the xy-plane and within 500-700 nm of each other along the z-axis. Here we demonstrate a novel three-dimensional quantitative analysis applicable to single-molecule positional data: stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA). This method offers significant advantages: 1) STORM imaging affords 20-nm resolution in the xy-plane and <50 nm along the z-axis; 2) STORM-RLA provides a quantitative assessment of the frequency and degree of overlap between clusters of colabeled proteins; and 3) STORM-RLA also calculates the precise distances between both overlapping and nonoverlapping clusters in three dimensions. Thus STORM-RLA represents a significant advance in the high-throughput quantitative assessment of the spatial organization of proteins. © 2016 Veeraraghavan and Gourdie. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Combining large area fluorescence with multiphoton microscopy for improved detection of oral epithelial neoplasia (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-03-01

    Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.

  18. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  19. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  20. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  1. Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency.

    PubMed

    Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca

    2014-12-01

    In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.

  2. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    PubMed

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  3. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.

    PubMed

    ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A

    2016-04-05

    We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.

  4. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes

    PubMed Central

    Kopek, Benjamin G.; Shtengel, Gleb; Xu, C. Shan; Clayton, David A.; Hess, Harald F.

    2012-01-01

    Microscopic images of specific proteins in their cellular context yield important insights into biological processes and cellular architecture. The advent of superresolution optical microscopy techniques provides the possibility to augment EM with nanometer-resolution fluorescence microscopy to access the precise location of proteins in the context of cellular ultrastructure. Unfortunately, efforts to combine superresolution fluorescence and EM have been stymied by the divergent and incompatible sample preparation protocols of the two methods. Here, we describe a protocol that preserves both the delicate photoactivatable fluorescent protein labels essential for superresolution microscopy and the fine ultrastructural context of EM. This preparation enables direct 3D imaging in 500- to 750-nm sections with interferometric photoactivatable localization microscopy followed by scanning EM images generated by focused ion beam ablation. We use this process to “colorize” detailed EM images of the mitochondrion with the position of labeled proteins. The approach presented here has provided a new level of definition of the in vivo nature of organization of mitochondrial nucleoids, and we expect this straightforward method to be applicable to many other biological questions that can be answered by direct imaging. PMID:22474357

  5. Adaptive platform for fluorescence microscopy-based high-content screening

    NASA Astrophysics Data System (ADS)

    Geisbauer, Matthias; Röder, Thorsten; Chen, Yang; Knoll, Alois; Uhl, Rainer

    2010-04-01

    Fluorescence microscopy has become a widely used tool for the study of medically relevant intra- and intercellular processes. Extracting meaningful information out of a bulk of acquired images is usually performed during a separate post-processing task. Thus capturing raw data results in an unnecessary huge number of images, whereas usually only a few images really show the particular information that is searched for. Here we propose a novel automated high-content microscope system, which enables experiments to be carried out with only a minimum of human interaction. It facilitates a huge speed-increase for cell biology research and its applications compared to the widely performed workflows. Our fluorescence microscopy system can automatically execute application-dependent data processing algorithms during the actual experiment. They are used for image contrast enhancement, cell segmentation and/or cell property evaluation. On-the-fly retrieved information is used to reduce data and concomitantly control the experiment process in real-time. Resulting in a closed loop of perception and action the system can greatly decrease the amount of stored data on one hand and increases the relative valuable data content on the other hand. We demonstrate our approach by addressing the problem of automatically finding cells with a particular combination of labeled receptors and then selectively stimulate them with antagonists or agonists. The results are then compared against the results of traditional, static systems.

  6. Quantitative fluorescence tomography using a trimodality system: in vivo validation

    PubMed Central

    Lin, Yuting; Barber, William C.; Iwanczyk, Jan S.; Roeck, Werner W.; Nalcioglu, Orhan; Gulsen, Gultekin

    2010-01-01

    A fully integrated trimodality fluorescence, diffuse optical, and x-ray computed tomography (FT∕DOT∕XCT) system for small animal imaging is reported in this work. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration images using a multimodality approach. XCT offers anatomical information, while DOT provides the necessary background optical property map to improve FT image accuracy. The quantitative accuracy of this trimodality system is demonstrated in vivo. In particular, we show that a 2-mm-diam fluorescence inclusion located 8 mm deep in a nude mouse can only be localized when functional a priori information from DOT is available. However, the error in the recovered fluorophore concentration is nearly 87%. On the other hand, the fluorophore concentration can be accurately recovered within 2% error when both DOT functional and XCT structural a priori information are utilized together to guide and constrain the FT reconstruction algorithm. PMID:20799770

  7. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    PubMed

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  8. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images.

    PubMed

    Wu, Allison Chia-Yi; Rifkin, Scott A

    2015-03-27

    Recent techniques for tagging and visualizing single molecules in fixed or living organisms and cell lines have been revolutionizing our understanding of the spatial and temporal dynamics of fundamental biological processes. However, fluorescence microscopy images are often noisy, and it can be difficult to distinguish a fluorescently labeled single molecule from background speckle. We present a computational pipeline to distinguish the true signal of fluorescently labeled molecules from background fluorescence and noise. We test our technique using the challenging case of wide-field, epifluorescence microscope image stacks from single molecule fluorescence in situ experiments on nematode embryos where there can be substantial out-of-focus light and structured noise. The software recognizes and classifies individual mRNA spots by measuring several features of local intensity maxima and classifying them with a supervised random forest classifier. A key innovation of this software is that, by estimating the probability that each local maximum is a true spot in a statistically principled way, it makes it possible to estimate the error introduced by image classification. This can be used to assess the quality of the data and to estimate a confidence interval for the molecule count estimate, all of which are important for quantitative interpretations of the results of single-molecule experiments. The software classifies spots in these images well, with >95% AUROC on realistic artificial data and outperforms other commonly used techniques on challenging real data. Its interval estimates provide a unique measure of the quality of an image and confidence in the classification.

  9. Direct Observations of Graphene Dispersed in Solution by Twilight Fluorescence Microscopy.

    PubMed

    Matsuno, Yutaka; Sato, Yu-Uya; Sato, Hikaru; Sano, Masahito

    2017-06-01

    Graphene and graphene oxide (GO) in solution were directly observed by a newly developed twilight fluorescence (TwiF) microscopy. A nanocarbon dispersion was mixed with a highly concentrated fluorescent dye solution and placed in a cell with a viewing glass at the bottom. TwiF microscopy images the nanocarbon material floating within a few hundred μm of the glass surface by utilizing two optical processes to provide a faintly illuminating backlight and visualizes GO as either a dark image by absorption and energy transfer processes or a bright image by alternation of fluorophore chemistry and autofluorescence. Individual graphene and GO sheets ranging from submicron to submillimeter widths were clearly imaged at different wavelengths, which were selectable based on the dye used. Graphene could be differentiated from GO coexisting in the same solution. Partial transparency revealed layering and network structures. Motions in tumbling flow were recognized in real time. An effect of changing the solvent and the process of adhesion on the glass surface were followed in situ.

  10. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis.

    PubMed

    Puchkov, Evgeny O

    2010-06-01

    In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) <1 microm size, stainable by a fluorescent dye, 4',6-diamidino-2-phenylindole (DAPI), may appear under some growth conditions. The aim of this study was to quantitatively characterize the movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate-labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two-dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein-Smoluchowski equation using the obtained data, were found to be 2.16 +/- 0.60, 2.52 +/- 0.63, 3.32 +/- 0.9 and 11.3 +/- 1.7 cP. The first three viscosity values correspond to 30-40% glycerol solutions. The viscosity value of 11.3 +/- 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells.

  11. Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy

    PubMed Central

    Oreopoulos, John; Yip, Christopher M.

    2009-01-01

    Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557

  12. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    PubMed

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Localisation and semi-quantitative measurement of lipocortin 1 in rat anterior pituitary cells by fluorescence-activated cell analysis/sorting and electron microscopy.

    PubMed

    Christian, H C; Flower, R J; Morris, J F; Buckingham, J C

    1999-09-01

    Lipocortin 1 (LC1, also called annexin 1), a Ca2(+)- and phospholipid-binding protein, is an important mediator of glucocorticoid action in the anterior pituitary gland. Previous studies based on immunoprecipitation and Western blot analysis suggest that LC1 is found intracellularly both in the cytoplasm and in association with membranes and also on the cell surface where it attaches to the membrane by a Ca2(+)-dependent mechanism. However, as yet it is unclear which anterior pituitary cell types express the protein. Accordingly, we have developed a method based on a combination of fluorescence activated cell (FAC) analysis/sorting and electron microscopy to detect and quantify intracellular LC1 in rat anterior pituitary cells and to identify the cell types in which it is expressed. In addition, we have measured cell surface LC1 and examined the influence of glucocorticoids on the cellular disposition of the protein. Anterior pituitary cells were dispersed with collagenase. For experiments measuring intracellular LC1, three cell fixation/permeabilisation methods were examined initially, i.e. (1) Zamboni's fluid (30 min) and Triton-X-100 (0.12%, 1 or 12 h); (2) paraformaldehyde (2%, 1 h) and Triton-X-100 (0.2%, 10 min); and (3) paraformaldehyde (0.2%, 15 min) and saponin (0.1%, 5 min). The protocol using paraformaldehyde/Triton-X-100 provided optimal preservation of cell ultrastructure and of LC1 immunoreactivity (ir-LC1) while also effectively permeabilising the cells; it was therefore used in subsequent studies. Using an anti-LC1 monoclonal antibody as a probe, 82+/-5% of the secretory cells in the heterogeneous anterior pituitary cell preparation were shown by FAC analysis to display specific fluorescence for intracellular ir-LC1. Morphological analysis and immunogold-histochemistry of cells separated by FAC sorting identified corticotrophs, lactotrophs, somatotrophs and gonadotrophs in the population displaying LC1 immunofluorescence. LC1 was also detected on

  14. Wide-field imaging through scattering media by scattered light fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yulan; Li, Xun

    2017-08-01

    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  15. Quantitative imaging of bilirubin by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  16. Detection of intracellular glutathione using ThiolTracker violet stain and fluorescence microscopy.

    PubMed

    Mandavilli, Bhaskar S; Janes, Michael S

    2010-07-01

    Glutathione plays an important role in protecting mammalian cells from oxidative stress and cell death. Because reduced glutathione (GSH) represents the large majority of intracellular free thiols, cell-permeant, thiol-reactive fluorescent probes represent potentially useful indicators of intracellular GSH. The ThiolTracker Violet stain (a registered trademark of Invitrogen) is a bright fluorescent probe that is highly reactive to thiols and can be used as a convenient and effective indicator of intracellular GSH and general redox status by a variety of detection modalities. While this probe has been validated in flow cytometry and microplate fluorimetry assays, the following method will describe details on the use of the ThiolTracker Violet dye in traditional fluorescence microscopy, as well as high-content imaging and analysis.

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.

    Robert M. Zucker 1 and Jeremy M. Lerner 2,
    1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  18. Motion estimation of subcellular structures from fluorescence microscopy images.

    PubMed

    Vallmitjana, A; Civera-Tregon, A; Hoenicka, J; Palau, F; Benitez, R

    2017-07-01

    We present an automatic image processing framework to study moving intracellular structures from live cell fluorescence microscopy. The system includes the identification of static and dynamic structures from time-lapse images using data clustering as well as the identification of the trajectory of moving objects with a probabilistic tracking algorithm. The method has been successfully applied to study mitochondrial movement in neurons. The approach provides excellent performance under different experimental conditions and is robust to common sources of noise including experimental, molecular and biological fluctuations.

  19. Ongoing advances in quantitative PpIX fluorescence guided intracranial tumor resection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Olson, Jonathan D.; Kanick, Stephen C.; Bravo, Jaime J.; Roberts, David W.; Paulsen, Keith D.

    2016-03-01

    Aminolevulinc-acid induced protoporphyrin IX (ALA-PpIX) is being investigated as a biomarker to guide neurosurgical resection of brain tumors. ALA-PpIX fluorescence can be observed visually in the surgical field; however, raw fluorescence emissions can be distorted by factors other than the fluorophore concentration. Specifically, fluorescence emissions are mixed with autofluorescence and attenuated by background absorption and scattering properties of the tissue. Recent work at Dartmouth has developed advanced fluorescence detection approaches that return quantitative assessments of PpIX concentration, which are independent of background optical properties. The quantitative fluorescence imaging (qFI) approach has increased sensitivity to residual disease within the resection cavity at the end of surgery that was not visible to the naked eye through the operating microscope. This presentation outlines clinical observations made during an ongoing investigation of ALA-PpIX based guidance of tumor resection. PpIX fluorescence measurements made in a wide-field hyperspectral imaging approach are co-registered with point-assessment using a fiber optic probe. Data show variations in the measured PpIX accumulation among different clinical tumor grades (i.e. high grade glioma, low grade glioma), types (i.e. primary tumors. metastases) and normal structures of interest (e.g. normal cortex, hippocampus). These results highlight the contrast enhancement and underscore the potential clinical benefit offered from quantitative measurements of PpIX concentration during resection of intracranial tumors.

  20. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  1. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    PubMed

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  2. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    PubMed

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  3. Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Psycharakis, Stylianos; Schönig, Kai; Bartsch, Dusan; Mamalaki, Clio; Papamatheakis, Joseph; Ripoll, Jorge; Zacharakis, Giannis

    2016-02-01

    Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture.

  4. Evanescent excitation and emission in fluorescence microscopy.

    PubMed

    Axelrod, Daniel

    2013-04-02

    Evanescent light-light that does not propagate but instead decays in intensity over a subwavelength distance-appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  6. Quantitative light-induced fluorescence technology for quantitative evaluation of tooth wear

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyeom; Lee, Hyung-Suk; Park, Seok-Woo; Lee, Eun-Song; de Josselin de Jong, Elbert; Jung, Hoi-In; Kim, Baek-Il

    2017-12-01

    Various technologies used to objectively determine enamel thickness or dentin exposure have been suggested. However, most methods have clinical limitations. This study was conducted to confirm the potential of quantitative light-induced fluorescence (QLF) using autofluorescence intensity of occlusal surfaces of worn teeth according to enamel grinding depth in vitro. Sixteen permanent premolars were used. Each tooth was gradationally ground down at the occlusal surface in the apical direction. QLF-digital and swept-source optical coherence tomography images were acquired at each grinding depth (in steps of 100 μm). All QLF images were converted to 8-bit grayscale images to calculate the fluorescence intensity. The maximum brightness (MB) values of the same sound regions in grayscale images before (MB) and phased values after (MB) the grinding process were calculated. Finally, 13 samples were evaluated. MB increased over the grinding depth range with a strong correlation (r=0.994, P<0.001). In conclusion, the fluorescence intensity of the teeth and grinding depth was strongly correlated in the QLF images. Therefore, QLF technology may be a useful noninvasive tool used to monitor the progression of tooth wear and to conveniently estimate enamel thickness.

  7. Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein–DNA complexes

    PubMed Central

    Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon

    2011-01-01

    Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448

  8. Image processing tools dedicated to quantification in 3D fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dieterlen, A.; De Meyer, A.; Colicchio, B.; Le Calvez, S.; Haeberlé, O.; Jacquey, S.

    2006-05-01

    3-D optical fluorescent microscopy now becomes an efficient tool for the volume investigation of living biological samples. Developments in instrumentation have permitted to beat off the conventional Abbe limit. In any case the recorded image can be described by the convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. Due to the finite resolution of the instrument, the original object is recorded with distortions and blurring, and contaminated by noise. This induces that relevant biological information cannot be extracted directly from raw data stacks. If the goal is 3-D quantitative analysis, then to assess optimal performance of the instrument and to ensure the data acquisition reproducibility, the system characterization is mandatory. The PSF represents the properties of the image acquisition system; we have proposed the use of statistical tools and Zernike moments to describe a 3-D PSF system and to quantify the variation of the PSF. This first step toward standardization is helpful to define an acquisition protocol optimizing exploitation of the microscope depending on the studied biological sample. Before the extraction of geometrical information and/or intensities quantification, the data restoration is mandatory. Reduction of out-of-focus light is carried out computationally by deconvolution process. But other phenomena occur during acquisition, like fluorescence photo degradation named "bleaching", inducing an alteration of information needed for restoration. Therefore, we have developed a protocol to pre-process data before the application of deconvolution algorithms. A large number of deconvolution methods have been described and are now available in commercial package. One major difficulty to use this software is the introduction by the user of the "best" regularization parameters. We have pointed out that automating the choice of the regularization level; also greatly improves the reliability

  9. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  10. Quantifying the assembly of multicomponent molecular machines by single-molecule total internal reflection fluorescence microscopy

    PubMed Central

    Boehm, Elizabeth M.; Subramanyam, Shyamal; Ghoneim, Mohamed; Washington, M. Todd; Spies, Maria

    2016-01-01

    Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary, quaternary, etc.) complexes using multi-color setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches has become today. PMID:27793278

  11. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  12. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.

    PubMed

    Matsuda, Tomoki; Nagai, Takeharu

    2014-12-01

    Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A Simple Configuration for Quantitative Phase Contrast Microscopy of Transmissible Samples

    NASA Astrophysics Data System (ADS)

    Sengupta, Chandan; Dasgupta, Koustav; Bhattacharya, K.

    Phase microscopy attempts to visualize and quantify the phase distribution of samples which are otherwise invisible under microscope without the use of stains. The two principal approaches to phase microscopy are essentially those of Fourier plane modulation and interferometric techniques. Although the former, first proposed by Zernike, had been the harbinger of phase microscopy, it was the latter that allowed for quantitative evaluation of phase samples. However interferometric techniques are fraught with associated problems such as complicated setup involving mirrors and beam-splitters, the need for a matched objective in the reference arm and also the need for vibration isolation. The present work proposes a single element cube beam-splitter (CBS) interferometer combined with a microscope objective (MO) for interference microscopy. Because of the monolithic nature of the interferometer, the system is almost insensitive to vibrations and relatively simple to align. It will be shown that phase shifting properties may also be introduced by suitable and proper use of polarizing devices. Initial results showing the quantitative three dimensional phase profiles of simulated and actual biological specimens are presented.

  14. Fluorescence Lifetime Imaging Microscopy (FLIM) of quantum dots in living cells

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Carlini, Lina

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is an emerging imaging technique that can indicate environmental factors such as pH and redox potential by the effect of these factors on the fluorescence lifetimes of fluorophores. Semiconductor quantum dots (QDs) are highly sensitive to environment and so are ideal for use in FLIM, although certain experimental parameters must be carefully considered for QD imaging to account for their long lifetimes and two-photon behavior. We image the uptake of three types of QDs in cultured fibroblasts and show some preliminary results on the effects of endosomes and lysosomes on QD lifetimes. These results indicate the feasibility of FLIM for studies using QDs in live cells.

  15. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.

    2016-04-01

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.

  16. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy.

    PubMed

    Kress, Alla; Wang, Xiao; Ranchon, Hubert; Savatier, Julien; Rigneault, Hervé; Ferrand, Patrick; Brasselet, Sophie

    2013-07-02

    Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    PubMed Central

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  18. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  19. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    PubMed

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  20. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into

  1. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Zang, Yali; Dong, Di; Zhang, Liwen; Fang, Mengjie; Yang, Xin; Arranz, Alicia; Ripoll, Jorge; Hui, Hui; Tian, Jie

    2016-10-01

    Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path, are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM), significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multidirectional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak signal-to-noise ratio, showing an improved noise removal when using the MDSR method.

  2. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  3. Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy.

    PubMed

    Gu, Min; Bird, Damian

    2003-05-01

    The three-dimensional optical transfer function is derived for analyzing the imaging performance in fiber-optical two-photon fluorescence microscopy. Two types of fiber-optical geometry are considered: The first involves a single-mode fiber for delivering a laser beam for illumination, and the second is based on the use of a single-mode fiber coupler for both illumination delivery and signal collection. It is found that in the former case the transverse and axial cutoff spatial frequencies of the three-dimensional optical transfer function are the same as those in conventional two-photon fluorescence microscopy without the use of a pinhole.However, the transverse and axial cutoff spatial frequencies in the latter case are 1.7 times as large as those in the former case. Accordingly, this feature leads to an enhanced optical sectioning effect when a fiber coupler is used, which is consistent with our recent experimental observation.

  4. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  5. Quantitative microscopy uncovers ploidy changes during mitosis in live Drosophila embryos and their effect on nuclear size.

    PubMed

    Puah, Wee Choo; Chinta, Rambabu; Wasser, Martin

    2017-03-15

    Time-lapse microscopy is a powerful tool to investigate cellular and developmental dynamics. In Drosophila melanogaster , it can be used to study division cycles in embryogenesis. To obtain quantitative information from 3D time-lapse data and track proliferating nuclei from the syncytial stage until gastrulation, we developed an image analysis pipeline consisting of nuclear segmentation, tracking, annotation and quantification. Image analysis of maternal-haploid ( mh ) embryos revealed that a fraction of haploid syncytial nuclei fused to give rise to nuclei of higher ploidy (2n, 3n, 4n). Moreover, nuclear densities in mh embryos at the mid-blastula transition varied over threefold. By tracking synchronized nuclei of different karyotypes side-by-side, we show that DNA content determines nuclear growth rate and size in early interphase, while the nuclear to cytoplasmic ratio constrains nuclear growth during late interphase. mh encodes the Drosophila ortholog of human Spartan, a protein involved in DNA damage tolerance. To explore the link between mh and chromosome instability, we fluorescently tagged Mh protein to study its subcellular localization. We show Mh-mKO2 localizes to nuclear speckles that increase in numbers as nuclei expand in interphase. In summary, quantitative microscopy can provide new insights into well-studied genes and biological processes. © 2017. Published by The Company of Biologists Ltd.

  6. Quantitative Imaging in Laboratory: Fast Kinetics and Fluorescence Quenching

    ERIC Educational Resources Information Center

    Cumberbatch, Tanya; Hanley, Quentin S.

    2007-01-01

    The process of quantitative imaging, which is very commonly used in laboratory, is shown to be very useful for studying the fast kinetics and fluorescence quenching of many experiments. The imaging technique is extremely cheap and hence can be used in many absorption and luminescence experiments.

  7. Rapid analysis and exploration of fluorescence microscopy images.

    PubMed

    Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason M; Steininger, Robert J; Wu, Lani F; Altschuler, Steven J

    2014-03-19

    Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.

  8. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent

    PubMed Central

    Göttfert, Fabian; Pleiner, Tino; Heine, Jörn; Westphal, Volker; Görlich, Dirk; Sahl, Steffen J.; Hell, Stefan W.

    2017-01-01

    Photobleaching remains a limiting factor in superresolution fluorescence microscopy. This is particularly true for stimulated emission depletion (STED) and reversible saturable/switchable optical fluorescence transitions (RESOLFT) microscopy, where adjacent fluorescent molecules are distinguished by sequentially turning them off (or on) using a pattern of light formed as a doughnut or a standing wave. In sample regions where the pattern intensity reaches or exceeds a certain threshold, the molecules are essentially off (or on), whereas in areas where the intensity is lower, that is, around the intensity minima, the molecules remain in the initial state. Unfortunately, the creation of on/off state differences on subdiffraction scales requires the maxima of the intensity pattern to exceed the threshold intensity by a large factor that scales with the resolution. Hence, when recording an image by scanning the pattern across the sample, each molecule in the sample is repeatedly exposed to the maxima, which exacerbates bleaching. Here, we introduce MINFIELD, a strategy for fundamentally reducing bleaching in STED/RESOLFT nanoscopy through restricting the scanning to subdiffraction-sized regions. By safeguarding the molecules from the intensity of the maxima and exposing them only to the lower intensities (around the minima) needed for the off-switching (on-switching), MINFIELD largely avoids detrimental transitions to higher molecular states. A bleaching reduction by up to 100-fold is demonstrated. Recording nanobody-labeled nuclear pore complexes in Xenopus laevis cells showed that MINFIELD-STED microscopy resolved details separated by <25 nm where conventional scanning failed to acquire sufficient signal. PMID:28193881

  9. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  10. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    PubMed

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  11. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population.

    PubMed

    Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos

    2015-05-20

    Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.

  12. Identification of Proliferative and Apoptotic Sertoli Cells Using Fluorescence and Confocal Microscopy.

    PubMed

    Martínez-Hernández, Jesús; Seco-Rovira, Vicente; Beltrán-Frutos, Ester; Quesada-Cubo, Victor; Ferrer, Concepción; Pastor, Luis Miguel

    2018-01-01

    Sertoli cells, the testicular somatic cells of the seminiferous epithelium, are vital for the survival of the epithelium. They undergo proliferation and apoptosis during fetal, neonatal, and prepubertal development. Apoptosis is increased in certain situations such as exposure to many substances, for example, toxics, or short photoperiod in the non-breeding season of some mammals. Therefore, it has always been considered that Sertoli cells that reach adulthood are quiescent cells, that is to say, nonproliferative, do not die, are terminally differentiated, and whose numbers remain constant. Recently, a degree of both proliferation and apoptosis has been observed in normal adult conditions, suggesting that consideration of this cell as quiescent may be subject to change. All this make it necessary to use histochemical techniques to demonstrate whether Sertoli cells are undergoing proliferation or apoptosis in histological sections and to allow the qualitative and quantitative study of these. In this chapter, we present two double-staining techniques that can be used for identifying Sertoli cells in proliferation or apoptosis by fluorescence microscopy. In both, the Sertoli cells are identified by an immunohistochemistry for vimentin followed by an immunohistochemistry for PCNA or a TUNEL histochemistry.

  13. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  14. New Regulators of Clathrin-Mediated Endocytosis Identified in Saccharomyces cerevisiae by Systematic Quantitative Fluorescence Microscopy

    PubMed Central

    Farrell, Kristen B.; Grossman, Caitlin; Di Pietro, Santiago M.

    2015-01-01

    Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process. PMID:26362318

  15. Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames

    NASA Astrophysics Data System (ADS)

    Lee, T.; Bessler, W. G.; Yoo, J.; Schulz, C.; Jeffries, J. B.; Hanson, R. K.

    2008-11-01

    The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame ( φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8×10-6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10-6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.

  16. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles.

    PubMed

    Kuipers, Jeroen; van Ham, Tjakko J; Kalicharan, Ruby D; Veenstra-Algra, Anneke; Sjollema, Klaas A; Dijk, Freark; Schnell, Ulrike; Giepmans, Ben N G

    2015-04-01

    Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely difficult. Even when combining light microscopy (LM) with EM (correlated LM and EM: CLEM) to find areas of interest, the labeling of molecules is still a challenge. We present a new genetically encoded probe for CLEM, named "FLIPPER", which facilitates quantitative analysis of ultrastructural features in cells. FLIPPER consists of a fluorescent protein (cyan, green, orange, or red) for LM visualization, fused to a peroxidase allowing visualization of targets at the EM level. The use of FLIPPER is straightforward and because the module is completely genetically encoded, cells can be optimally prepared for EM examination. We use FLIPPER to quantify cellular morphology at the EM level in cells expressing a normal and disease-causing point-mutant cell-surface protein called EpCAM (epithelial cell adhesion molecule). The mutant protein is retained in the endoplasmic reticulum (ER) and could therefore alter ER function and morphology. To reveal possible ER alterations, cells were co-transfected with color-coded full-length or mutant EpCAM and a FLIPPER targeted to the ER. CLEM examination of the mixed cell population allowed color-based cell identification, followed by an unbiased quantitative analysis of the ER ultrastructure by EM. Thus, FLIPPER combines bright fluorescent proteins optimized for live imaging with high sensitivity for EM labeling, thereby representing a promising tool for CLEM.

  17. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    NASA Astrophysics Data System (ADS)

    Cremer, Christoph; Birk, Udo

    2016-04-01

    The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM) methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light), which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  18. Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain.

    PubMed

    Hezel, Marcus; Ebrahimi, Fahim; Koch, Marco; Dehghani, Faramarz

    2012-10-01

    Immunohistochemical visualization of antigens in specimen has evolved to an indispensable technique in biomedical research for investigations of cell morphology and pathology both in bright field and fluorescence microscopy. While there are couple of staining methods that reveal entire cytoarchitecture in bright field microscopy such as Nissl or hemalaun-eosin, there are still limitations in visualizations of cytoarchitecture in fluorescence microscopy. The present study reports a simple staining method that provides the required illustration of cell allocations and cellular composition in fluorescence microscopy in adult and in developing rodent central nervous system using the fluorophore propidium iodide (PI, 5μg/mL). PI is a well-accepted marker for degenerating cells when applied prior to fixation (pre-fixation PI staining). Here, PI was added to the sections after the fixation (post-fixation PI staining). This revised labeling procedure led to similar cytoarchitectural staining patterns in fluorescence microscopy as observed with hemalaun in bright field microscopy. This finding was proven in organotypic hippocampal slice cultures (OHSC) and brain sections obtained from different postnatal developmental stages. Excitotoxically lesioned OHSC subjected to pre-fixation PI staining merely showed brightly labeled condensed nuclei of degenerating neurons. In contrast, post-fixation PI staining additionally revealed extensive labeling of neuronal cell bodies and glial cells within the OHSC, thus allowing visualization of stratification of neuronal layers and cell morphology. Furthermore, post-fixation PI staining was combined with NeuN, calbindin, calretinin, glial fibrillary acidic protein or Griffonia simplicifolia isolectin B4 (IB(4)) in post natal (p1 and p9) and adult rats. In early post-natal brain sections almost all mentioned cellular markers led to an incomplete staining of the native cell organization and resulted in an inaccurate estimation of cell

  19. Dead-time correction for high-throughput fluorescence lifetime imaging microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Enderlein, Joerg; Ruhlandt, Daja; Chithik, Anna; Ebrecht, René; Wouters, Fred S.; Gregor, Ingo

    2016-02-01

    Fluorescence lifetime microscopy has become an important method of bioimaging, allowing not only to record intensity and spectral, but also lifetime information across an image. One of the most widely used methods of FLIM is based on Time-Correlated Single Photon Counting (TCSPC). In TCSPC, one determines this curve by exciting molecules with a periodic train of short laser pulses, and then measuring the time delay between the first recorded fluorescence photon after each exciting laser pulse. An important technical detail of TCSPC measurements is the fact that the delay times between excitation laser pulses and resulting fluorescence photons are always measured between a laser pulse and the first fluorescence photon which is detected after that pulse. At high count rates, this leads to so-called pile-up: ``early'' photons eclipse long-delay photons, resulting in heavily skewed TCSPC histograms. To avoid pile-up, a rule of thumb is to perform TCSPC measurements at photon count rates which are at least hundred times smaller than the laser-pulse excitation rate. The downside of this approach is that the fluorescence-photon count-rate is restricted to a value below one hundredth of the laser-pulse excitation-rate, reducing the overall speed with which a fluorescence signal can be measured. We present a new data evaluation method which provides pile-up corrected fluorescence decay estimates from TCSPC measurements at high count rates, and we demonstrate our method on FLIM of fluorescently labeled cells.

  20. In Situ Visualization of Block Copolymer Self‐Assembly in Organic Media by Super‐Resolution Fluorescence Microscopy

    PubMed Central

    Boott, Charlotte E.; Laine, Romain F.; Mahou, Pierre; Finnegan, John R.; Leitao, Erin M.

    2015-01-01

    Abstract Analytical methods that enable visualization of nanomaterials derived from solution self‐assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization‐driven block copolymer (BCP) self‐assembly in organic media at the sub‐diffraction scale. Four different dyes were successfully used for single‐colour super‐resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ. Dual‐colour SMLM imaging was used to measure and compare the rate of addition of red fluorescent BCP to the termini of green fluorescent seed micelles to generate block comicelles. Although well‐established for aqueous systems, the results highlight the potential of super‐resolution microscopy techniques for the interrogation of self‐assembly processes in organic media. PMID:26477697

  1. High-Throughput Quantification of GFP-LC3+ Dots by Automated Fluorescence Microscopy.

    PubMed

    Bravo-San Pedro, J M; Pietrocola, F; Sica, V; Izzo, V; Sauvat, A; Kepp, O; Maiuri, M C; Kroemer, G; Galluzzi, L

    2017-01-01

    Macroautophagy is a specific variant of autophagy that involves a dedicated double-membraned organelle commonly known as autophagosome. Various methods have been developed to quantify the size of the autophagosomal compartment, which is an indirect indicator of macroautophagic responses, based on the peculiar ability of microtubule-associated protein 1 light chain 3 beta (MAP1LC3B; best known as LC3) to accumulate in forming autophagosomes upon maturation. One particularly convenient method to monitor the accumulation of mature LC3 within autophagosomes relies on a green fluorescent protein (GFP)-tagged variant of this protein and fluorescence microscopy. In physiological conditions, cells transfected temporarily or stably with a GFP-LC3-encoding construct exhibit a diffuse green fluorescence over the cytoplasm and nucleus. Conversely, in response to macroautophagy-promoting stimuli, the GFP-LC3 signal becomes punctate and often (but not always) predominantly cytoplasmic. The accumulation of GFP-LC3 in cytoplasmic dots, however, also ensues the blockage of any of the steps that ensure the degradation of mature autophagosomes, calling for the implementation of strategies that accurately discriminate between an increase in autophagic flux and an arrest in autophagic degradation. Various cell lines have been engineered to stably express GFP-LC3, which-combined with the appropriate controls of flux, high-throughput imaging stations, and automated image analysis-offer a relatively straightforward tool to screen large chemical or biological libraries for inducers or inhibitors of autophagy. Here, we describe a simple and robust method for the high-throughput quantification of GFP-LC3 + dots by automated fluorescence microscopy. © 2017 Elsevier Inc. All rights reserved.

  2. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  3. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in

  4. Use of quantitative light-induced fluorescence to monitor tooth whitening

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.; Higham, Susan M.

    2001-04-01

    The changing of tooth shade by whitening agents occurs gradually. Apart from being subjective and affected by the conditions of the surroundings, visual observation cannot detect a very slight change in tooth color. An electronic method, which can communicate the color change quantitatively, would be more reliable. Quantitative Light- induced Fluorescence (QLF) was developed to detect and assess dental caries based on the phenomenon of change of autofluorescence of a tooth by demineralization. However, stains on the tooth surface exhibit the same phenomenon, and therefore QLF can be used to measure the percentage fluorescence change of stained enamel with respect to surrounding unstained enamel. The present study described a technique of assessing the effect of a tooth-whitening agent using QLF. This was demonstrated in two experiments in which either wholly or partially stained teeth were whitened by intermittent immersion in sodium hypochlorite. Following each immersion, the integrated fluorescence change due to the stain was quantified using QLF. In either situation, the value of (Delta) Q decreased linearly as the tooth regained its natural shade. It was concluded that gradual changing of the shade of discolored teeth by a whitening agent could be quantified using QLF.

  5. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines.

    PubMed

    Custer, Thomas C; Walter, Nils G

    2017-07-01

    RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling. © 2016 The Protein Society.

  6. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    PubMed

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  7. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells

    PubMed Central

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-01-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583

  8. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  9. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations.

    PubMed

    Baroux, Célia; Schubert, Veit

    2018-01-01

    In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.

  11. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  12. [Assessment of a rapid diagnostic test and portable fluorescent microscopy for malaria diagnosis in Cotonou (Bénin)].

    PubMed

    Ogouyèmi-Hounto, A; Kinde-Gazard, D; Keke, C; Gonçalves, E; Alapini, N; Adjovi, F; Adisso, L; Bossou, C; Denon, Y V; Massougbodji, A

    2013-02-01

    The aim of the study was to determine the accuracy of a rapid diagnostic test (SD Bioline Malaria Ag P.f/ Pan®) and fluorescent microscopy (CyScope®) in confirming presumptive malaria diagnosis in Cotonou. Thick blood smear was used as the reference technique for comparison. Testing was conducted on persons between the ages of 6 months and 70 years at two hospitals from June to October 2010. If malaria was suspected in the sample by the nurse based on clinical findings and sent to laboratory for confirmation, one thick smear, one rapid diagnostic test and one slide for the fluorescent microscopy were performed. All tests were read in hospital laboratories involved with the quality control of thick blood smear in the parasitology laboratory of National University Hospital of Cotonou. A total of 354 patients with clinical diagnosis of malaria were included. Malaria prevalence determined by thick smear, rapid diagnostic test and fluorescent microscopy was 22.8%, 25.4%, and 25.1% respectively. The sensitivity, specificity, positive and negative predictive values compared to the thick smears were 96.3, 95.6, 86.7, and 98.9% for rapid diagnostic test; and 97.5, 96.7, 89.8, and 99.27% for fluorescent microscopy. With these performances, these tests meet acceptability standards recommended by WHO for rapid tests (sensitivity > 95%). These two methods have advantages for the confirmation of malaria diagnosis in peripheral health structures that lack the resources to conduct diagnosis confirmation by the thick blood smear.

  13. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    PubMed

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  14. Adhesion of living cells revealed by variable-angle total internal reflection fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-02-01

    Total Internal Reflection Fluorescence Microscopy (TIRFM) is a widespread technique to study cellular process occurring near the contact region with the glass substrate. In this field, determination of the accurate distance from the surface to the plasma membrane constitutes a crucial issue to investigate the physical basis of cellular adhesion process. However, quantitative interpretation of TIRF pictures regarding the distance z between a labeled membrane and the substrate is not trivial. Indeed, the contrast of TIRF images depends on several parameters more and less well known (local concentration of dyes, absorption cross section, angular emission pattern…). The strategy to get around this problem is to exploit a series of TIRF pictures recorded at different incident angles in evanescent regime. This technique called variable-angle TIRF microscopy (vaTIRFM), allowing to map the membrane-substrate separation distance with a nanometric resolution (10-20 nm). vaTIRFM was developed by Burmeister, Truskey and Reichert in the early 1990s with a prism-based TIRF setup [Journal of Microscopy 173, 39-51 (1994)]. We propose a more convenient prismless setup, which uses only a rotatable mirror to adjust precisely the laser beam on the back focal plane of the oil immersion objective (no azimuthal scanning is needed). The series of TIRF images permit us to calculate accurately membrane-surface distances in each pixel. We demonstrate that vaTIRFM are useful to quantify the adhesion of living cells for specific and unspecific membrane-surface interactions, achieved on various functionalized substrates with polymers (BSA, poly-L-lysin) or extracellular matrix proteins (collagen and fibronectin).

  15. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    PubMed

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  16. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay

    PubMed Central

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M.

    2011-01-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin. PMID:22006542

  17. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker

    PubMed Central

    Valdés, Pablo A.; Leblond, Frederic; Kim, Anthony; Harris, Brent T.; Wilson, Brian C.; Fan, Xiaoyao; Tosteson, Tor D.; Hartov, Alex; Ji, Songbai; Erkmen, Kadir; Simmons, Nathan E.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. Methods The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board–approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. Results A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeon's visual perception were classified correctly in an analysis of all tumors. Conclusions These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of

  18. DMD-based quantitative phase microscopy and optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie

    2018-02-01

    Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.

  19. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: application to model antifouling coatings.

    PubMed

    Goodes, L R; Dennington, S P; Schuppe, H; Wharton, J A; Bakker, M; Klijnstra, J W; Stokes, K R

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu₂O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to these coatings for quantification of organic biocide and pigment distribution. Total leaching of the biocide from the novel copolymer binder was observed within 6 months of rotor immersion, compared to 35% from the pMMA coating. In pontoon immersions, 61% of the additive was lost from the pMMA coating, and 53% from the erodible binder. Profiles of FD content in the binders revealed an accelerated loss of additive from the surface of the CDP resulting from rosin degradation, compared to even depletion from pMMA. In all samples, release of the biocide was inhibited beyond the Cu₂O front, corresponding to the leached layer in samples where Cu₂O release occurred.

  20. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  1. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  2. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  3. Imaging transcription factors dynamics with advanced fluorescence microscopy methods.

    PubMed

    Verneri, Paula; Romero, Juan José; De Rossi, María Cecilia; Alvarez, Yanina; Oses, Camila; Guberman, Alejandra; Levi, Valeria

    2018-05-10

    Pluripotent stem cells (PSCs) are capable of self-renewing and producing all cell types derived from the three germ layers in response to developmental cues, constituting an important promise for regenerative medicine. Pluripotency depends on specific transcription factors (TFs) that induce genes required to preserve the undifferentiated state and repress other genes related to differentiation. The transcription machinery and regulatory components such as TFs are recruited dynamically on their target genes making it essential exploring their dynamics in living cells to understand the transcriptional output. Non-invasive and very sensitive fluorescence microscopy methods are making it possible visualizing the dynamics of TFs in living specimens, complementing the information extracted from studies in fixed specimens and bulk assays. In this work, we briefly describe the basis of these microscopy methods and review how they contributed to our knowledge of the function of TFs relevant to embryo development and cell differentiation in a variety of systems ranging from single cells to whole organisms. Copyright © 2017. Published by Elsevier B.V.

  4. An ensemble and single-molecule fluorescence microscopy investigation of phase-separated monolayer films stained with Nile Red.

    PubMed

    Lu, Yin; Porterfield, Robyn; Thunder, Terri; Paige, Matthew F

    2011-01-01

    Phase-separated Langmuir-Blodgett monolayer films prepared from mixtures of arachidic acid (C19H39COOH) and perfluorotetradecanoic acid (C13F27COOH) were stained via spin-casting with the polarity sensitive phenoxazine dye Nile Red, and characterized using a combination of ensemble and single-molecule fluorescence microscopy measurements. Ensemble fluorescence microscopy and spectromicroscopy showed that Nile Red preferentially associated with the hydrogenated domains of the phase-separated films, and was strongly fluorescent in these areas of the film. These measurements, in conjunction with single-molecule fluorescence imaging experiments, also indicated that a small sub-population of dye molecules localizes on the perfluorinated regions of the sample, but that this sub-population is spectroscopically indistinguishable from that associated with the hydrogenated domains. The relative importance of selective dye adsorption and local polarity sensitivity of Nile Red for staining applications in phase-separated LB films as well as in cellular environments is discussed in context of the experimental results. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Continuous Fluorescence Microphotolysis and Correlation Spectroscopy Using 4Pi Microscopy

    PubMed Central

    Arkhipov, Anton; Hüve, Jana; Kahms, Martin; Peters, Reiner; Schulten, Klaus

    2007-01-01

    Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved. PMID:17704168

  6. Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells

    PubMed Central

    Johnson, M. Brittany; Criss, Alison K.

    2013-01-01

    Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524

  7. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  8. Extended Field Laser Confocal Microscopy (EFLCM): combining automated Gigapixel image capture with in silico virtual microscopy.

    PubMed

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-07-16

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.

  9. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  10. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability.

    PubMed

    Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E

    2009-06-01

    Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.

  11. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  12. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    PubMed Central

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-01-01

    Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760

  13. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.

    PubMed

    Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  14. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  15. Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments.

    PubMed

    LaGraff, John R; Chu-LaGraff, Quynh

    2006-05-09

    Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.

  16. Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors.

    PubMed

    Lukeš, Tomáš; Pospíšil, Jakub; Fliegel, Karel; Lasser, Theo; Hagen, Guy M

    2018-03-01

    Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.

  17. Confocal Microscopy for the Histological Fluorescence Pattern of a Recurrent Atypical Meningioma: Case Report

    PubMed Central

    Whitson, Wesley J.; Valdes, Pablo A.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2013-01-01

    Background and Importance Fluorescence-guided resection with 5-aminolevulinic acid (5-ALA), which has shown promising results in the resection of malignant gliomas, has been used for meningioma resection in an attempt to more clearly delineate the tumor margin. However, no article has investigated the fluorescence pattern of meningiomas on a histological level. Understanding the microscopic pattern of fluorescence could help assess the precision and utility of using 5-ALA for these tumors. We present the case of a recurrent atypical meningioma operated on with 5-ALA fluorescence-guided resection for delineation of tumor tissue from surrounding uninvolved dura. Clinical Presentation A 53-year-old woman presented with recurrent atypical meningioma of the falx. Prior treatment included surgical resection 6 years earlier with subsequent fractionated radiation therapy and radiosurgery for tumor progression. The patient was given 5-ALA 20 mg/kg body weight dissolved in 100 mL water 3 hours before induction of anesthesia. Intraoperative fluorescence was coregistered with preoperative imaging. Neuropathological analysis of the resected falx with confocal microscopy enabled correlation of fluorescence with the extent of tumor on a histological level. Conclusion Fluorescence guidance allowed clear intraoperative delineation of tumor tissue from adjacent, uninvolved dura. On a microscopic level, there was a very close correlation of fluorescence with tumor, but some tumor cells did not fluoresce. PMID:21389893

  18. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  19. Imaging of surgical margin in pancreatic metastasis using two-photon excited fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hong, Zhipeng; Chen, Hong; Chen, Youting; Xu, Yahao; Zhu, Xiaoqin; Zhuo, Shuangmu; Shi, Zheng; Chen, Jianxin

    2014-09-01

    Two-photon excited fluorescence (TPEF) microscopy, has become a powerful tool for imaging unstained tissue samples at subcellular level in biomedical research. The purpose of this study was to determine whether TPEF imaging of histological sections without H-E staining can be used to identify the boundary between normal pancreas and pancreatic metastasis from renal cell carcinoma (RCC). The typical features such as the significant increase of cancerous nests, the absence of pancreatic ductal, the appearance of cancer cells were observed to present the boundary between normal pancreas and pancreatic metastasis from RCC. These results correlated well with the corresponding histological outcomes. With the advent of clinically miniaturized TPEF microscopy and integrative endoscopy, TPEF microscopy has the potential application on surgical location of pancreatic metastasis from RCC in the near future.

  20. Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Mohsen; Bernstein, Paul S.; Gellermann, Werner

    2006-10-01

    We have developed a CCD-camera-based nonmydriatic instrument that detects fluorescence from retinal lipofuscin chromophores ("autofluorescence") as a means to indirectly quantify and spatially image the distribution of macular pigment (MP). The lipofuscin fluorescence intensity is reduced at all retinal locations containing MP, since MP has a competing absorption in the blue-green wavelength region. Projecting a large diameter, 488 nm excitation spot onto the retina, centered on the fovea, but extending into the macular periphery, and comparing lipofuscin fluorescence intensities outside and inside the foveal area, it is possible to spatially map out the distribution of MP. Spectrally selective detection of the lipofuscin fluorescence reveals an important wavelength dependence of the obtainable image contrast and deduced MP optical density levels, showing that it is important to block out interfering fluorescence contributions in the detection setup originating from ocular media such as the lens. Measuring 70 healthy human volunteer subjects with no ocular pathologies, we find widely varying spatial extent of MP, distinctly differing distribution patterns of MP, and strongly differing absolute MP levels among individuals. Our population study suggests that MP imaging based on lipofuscin fluorescence is useful as a relatively simple, objective, and quantitative noninvasive optical technique suitable to rapidly screen MP levels and distributions in healthy humans with undilated pupils.

  1. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing

    PubMed Central

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev

    2013-01-01

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491

  2. Topography of Cells Revealed by Variable-Angle Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Cardoso Dos Santos, Marcelina; Déturche, Régis; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-09-20

    We propose an improved version of variable-angle total internal reflection fluorescence microscopy (vaTIRFM) adapted to modern TIRF setup. This technique involves the recording of a stack of TIRF images, by gradually increasing the incident angle of the light beam on the sample. A comprehensive theory was developed to extract the membrane/substrate separation distance from fluorescently labeled cell membranes. A straightforward image processing was then established to compute the topography of cells with a nanometric axial resolution, typically 10-20 nm. To highlight the new opportunities offered by vaTIRFM to quantify adhesion process of motile cells, adhesion of MDA-MB-231 cancer cells on glass substrate coated with fibronectin was examined. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.

    PubMed

    Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M

    2017-12-01

    Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dual-wavelength excitation to reduce background fluorescence for fluorescence spectroscopic quantitation of erythrocyte zinc protoporphyrin-IX and protoporphyrin-IX from whole blood and oral mucosa

    NASA Astrophysics Data System (ADS)

    Hennig, Georg; Vogeser, Michael; Holdt, Lesca M.; Homann, Christian; Großmann, Michael; Stepp, Herbert; Gruber, Christian; Erdogan, Ilknur; Hasmüller, Stephan; Hasbargen, Uwe; Brittenham, Gary M.

    2014-02-01

    Erythrocyte zinc protoporphyrin-IX (ZnPP) and protoporphyrin-IX (PPIX) accumulate in a variety of disorders that restrict or disrupt the biosynthesis of heme, including iron deficiency and various porphyrias. We describe a reagent-free spectroscopic method based on dual-wavelength excitation that can measure simultaneously both ZnPP and PPIX fluorescence from unwashed whole blood while virtually eliminating background fluorescence. We further aim to quantify ZnPP and PPIX non-invasively from the intact oral mucosa using dual-wavelength excitation to reduce the strong tissue background fluorescence while retaining the faint porphyrin fluorescence signal originating from erythrocytes. Fluorescence spectroscopic measurements were made on 35 diluted EDTA blood samples using a custom front-face fluorometer. The difference spectrum between fluorescence at 425 nm and 407 nm excitation effectively eliminated background autofluorescence while retaining the characteristic porphyrin peaks. These peaks were evaluated quantitatively and the results compared to a reference HPLC-kit method. A modified instrument using a single 1000 μm fiber for light delivery and detection was used to record fluorescence spectra from oral mucosa. For blood measurements, the ZnPP and PPIX fluorescence intensities from the difference spectra correlated well with the reference method (ZnPP: Spearman's rho rs = 0.943, p < 0.0001; PPIX: rs = 0.959, p < 0.0001). In difference spectra from oral mucosa, background fluorescence was reduced significantly, while porphyrin signals remained observable. The dual-wavelength excitation method evaluates quantitatively the ZnPP/heme and PPIX/heme ratios from unwashed whole blood, simplifying clinical laboratory measurements. The difference technique reduces the background fluorescence from measurements on oral mucosa, allowing for future non-invasive quantitation of erythrocyte ZnPP and PPIX.

  5. Automated quantitative cytological analysis using portable microfluidic microscopy.

    PubMed

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  7. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    PubMed

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  8. HDL particles incorporate into lipid bilayers - a combined AFM and single molecule fluorescence microscopy study.

    PubMed

    Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J

    2017-11-21

    The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.

  9. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are

  10. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy.

    PubMed

    Crossman, David J; Ruygrok, Peter N; Hou, Yu Feng; Soeller, Christian

    2015-03-01

    Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

  11. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.

  12. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands.

    PubMed

    Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R

    2014-01-01

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.

  13. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands

    PubMed Central

    Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R

    2014-01-01

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies. PMID:25495506

  14. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  15. Noninvasive multi–photon fluorescence microscopy resolves retinol and retinal–condensation products in mouse eyes

    PubMed Central

    Palczewska, Grazyna; Maeda, Tadao; Imanishi, Yoshikazu; Sun, Wenyu; Chen, Yu; Williams, David R.; Piston, David; Maeda, Akiko; Palczewski, Krzysztof

    2010-01-01

    Multi–photon excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in sub–cellular structures called retinosomes mediate regeneration of the visual chromophore, 11–cis–retinal, by the visual cycle. But harmful fluorescent condensation products were also identified previously. We report that in wild type mice, excitation with λ ~730 nm identified retinosomes in the retinal pigment epithelium, whereas excitation with λ ~910 nm revealed at least one additional retinal fluorophore. The latter fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but accentuated in eyes of older WT mice and mice with defective clearance of all–trans–retinal, an intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential to detect early molecular changes due to age–related macular degeneration and other defects in retinoid metabolism. PMID:21076393

  16. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.

    PubMed

    Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A

    2016-04-26

    A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered.

  17. Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens.

    PubMed

    Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng

    2018-02-06

    Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.

  18. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    DOE PAGES

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; ...

    2016-11-23

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements,more » such as chlorine, potassium and zinc.« less

  19. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2017-04-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Systems microscopy: an emerging strategy for the life sciences.

    PubMed

    Lock, John G; Strömblad, Staffan

    2010-05-01

    Dynamic cellular processes occurring in time and space are fundamental to all physiology and disease. To understand complex and dynamic cellular processes therefore demands the capacity to record and integrate quantitative multiparametric data from the four spatiotemporal dimensions within which living cells self-organize, and to subsequently use these data for the mathematical modeling of cellular systems. To this end, a raft of complementary developments in automated fluorescence microscopy, cell microarray platforms, quantitative image analysis and data mining, combined with multivariate statistics and computational modeling, now coalesce to produce a new research strategy, "systems microscopy", which facilitates systems biology analyses of living cells. Systems microscopy provides the crucial capacities to simultaneously extract and interrogate multiparametric quantitative data at resolution levels ranging from the molecular to the cellular, thereby elucidating a more comprehensive and richly integrated understanding of complex and dynamic cellular systems. The unique capacities of systems microscopy suggest that it will become a vital cornerstone of systems biology, and here we describe the current status and future prospects of this emerging field, as well as outlining some of the key challenges that remain to be overcome. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Fluorescent-Antibody Measurement Of Cancer-Cell Urokinase

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1993-01-01

    Combination of laboratory techniques provides measurements of amounts of urokinase in and between normal and cancer cells. Includes use of fluorescent antibodies specific against different forms of urokinase-type plasminogen activator, (uPA), fluorescence microscopy, quantitative analysis of images of sections of tumor tissue, and flow cytometry of different uPA's and deoxyribonucleic acid (DNA) found in suspended-tumor-cell preparations. Measurements provide statistical method for indicating or predicting metastatic potentials of some invasive tumors. Assessments of metastatic potentials based on such measurements used in determining appropriate follow-up procedures after surgical removal of tumors.

  2. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  3. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy

    PubMed Central

    Shimura, Mari; Shindou, Hideo; Szyrwiel, Lukasz; Tokuoka, Suzumi M.; Hamano, Fumie; Matsuyama, Satoshi; Okamoto, Mayumi; Matsunaga, Akihiro; Kita, Yoshihiro; Ishizaka, Yukihito; Yamauchi, Kazuto; Kohmura, Yoshiki; Lobinski, Ryszard; Shimizu, Isao; Shimizu, Takao

    2016-01-01

    Fatty acids are taken up by cells and incorporated into complex lipids such as neutral lipids and glycerophospholipids. Glycerophospholipids are major constituents of cellular membranes. More than 1000 molecular species of glycerophospholipids differ in their polar head groups and fatty acid compositions. They are related to cellular functions and diseases and have been well analyzed by mass spectrometry. However, intracellular imaging of fatty acids and glycerophospholipids has not been successful due to insufficient resolution using conventional methods. Here, we developed a method for labeling fatty acids with bromine (Br) and applied scanning X-ray fluorescence microscopy (SXFM) to obtain intracellular Br mapping data with submicrometer resolution. Mass spectrometry showed that cells took up Br-labeled fatty acids and metabolized them mainly into glycerophospholipids in CHO cells. Most Br signals observed by SXFM were in the perinuclear region. Higher resolution revealed a spot-like distribution of Br in the cytoplasm. The current method enabled successful visualization of intracellular Br-labeled fatty acids. Single-element labeling combined with SXFM technology facilitates the intracellular imaging of fatty acids, which provides a new tool to determine dynamic changes in fatty acids and their derivatives at the single-cell level.—Shimura, M., Shindou, H., Szyrwiel, L., Tokuoka, S. M., Hamano, F., Matsuyama, S., Okamoto, M., Matsunaga, A., Kita, Y., Ishizaka, Y., Yamauchi, K., Kohmura, Y., Lobinski, R., Shimizu, I., Shimizu, T. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy. PMID:27601443

  4. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging.

    PubMed

    Simmert, Steve; Abdosamadi, Mohammad Kazem; Hermsdorf, Gero; Schäffer, Erik

    2018-05-28

    Optical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be imaged with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-contrast 3D microscopy.

  5. Total internal reflection holographic microscopy (TIRHM) for quantitative phase characterization of cell-substrate adhesion

    NASA Astrophysics Data System (ADS)

    Ash, William Mason, III

    Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.

  6. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  7. Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples

    NASA Astrophysics Data System (ADS)

    Peters, Sven; Hammer, Martin; Schweitzer, Dietrich

    2011-07-01

    Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).

  8. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue.

    PubMed

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  9. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.

    PubMed

    Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  10. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  11. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Label-free imaging of the dynamics of cell-to-cell string-like structure bridging in the free-space by low-coherent quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2013-03-01

    We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.

  13. Development of new photon-counting detectors for single-molecule fluorescence microscopy.

    PubMed

    Michalet, X; Colyer, R A; Scalia, G; Ingargiola, A; Lin, R; Millaud, J E; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Cheng, A; Levi, M; Aharoni, D; Arisaka, K; Villa, F; Guerrieri, F; Panzeri, F; Rech, I; Gulinatti, A; Zappa, F; Ghioni, M; Cova, S

    2013-02-05

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.

  14. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  15. [Investigation of quantitative detection of water quality using spectral fluorescence signature].

    PubMed

    He, Jun-hua; Cheng, Yong-jin; Han, Yan-ling; Zhang, Hao; Yang, Tao

    2008-08-01

    A method of spectral analysis, which can simultaneously detect dissolved organic matter (DOM) and chlorophyll a (Chl-a) in natural water, was developed in the present paper with the intention of monitoring water quality fast and quantitatively. Firstly, the total luminescence spectra (TLS) of water sample from East Lake in Wuhan city were measured by the use of laser (532 nm) induced fluorescence (LIF). There were obvious peaks of relative intensity at the wavelength value of 580, 651 and 687 nm in the TLS of the sample, which correspond respectively to spectra of DOM, and the Raman scattering of water and Chl-a in the water. Then the spectral fluorescence signature (SFS) technique was adopted to analyze and distinguish spectral characteristics of DOM and Chl-a in natural water. The calibration curves and function expressions, which indicate the relation between the normalized fluorescence intensities of DOM and Chl-a in water and their concentrations, were obtained respectively under the condition of low concentration(< 40 mg x L(-1))by using normalization of Raman scattering spectrum of water. The curves have a high linearity. When the concentration of the solution with humic acid is large (> 40 mg x L(-1)), the Raman scattering signal is totally absorbed by the molecules of humic acid being on the ground state, so the normalization technique can not be adopted. However the function expression between the concentration of the solution with humic acid and its relative fluorescence peak intensity can be acquired directly with the aid of experiment of fluorescence spectrum. It is concluded that although the expression is non-linearity as a whole, there is a excellent linear relation between the fluorescence intensity and concentration of DOM when the concentration is less than 200 mg x L(-1). The method of measurement based on spectral fluorescence signature technique and the calibration curves gained will have prospects of broad application. It can recognize fast

  16. Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking.

    PubMed

    Lanzini, Manuela; Curcio, Claudia; Spoerl, Eberhard; Calienno, Roberta; Mastropasqua, Alessandra; Colasante, Martina; Mastropasqua, Rodolfo; Nubile, Mario; Mastropasqua, Leonardo

    2017-02-01

    The aim of this study is to determine modifications in stromal fluorescence intensity after different corneal cross-linking (CXL) procedures and to correlate stromal fluorescence to corneal biomechanical resistance. For confocal microscopy study, 15 human cadaver corneas were examined. Three served as control (group 1), three were just soaked with iontophoresis procedure (group 2), three were treated with standard epi-off technique (group 3), and six underwent iontophoresis imbibition. Three of later six were irradiated for 30 min with 3 mW/cm 2 UVA (group 4) and three for 9 min at 10 mW/cm 2 UVA (group 5). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea at different stromal depths. For biomechanical study, 30 human cadaver corneas were randomly divided into five groups and treated as previously described. Static stress-strain measurements of the corneas were performed. Iontophoresis imbibition followed by 10mW/cm 2 irradiation proved to increase stromal fluorescence into the corneal stroma and significant differences were revealed between group 3 and 5 both at 100 (p = 0.0171) and 250 µm (p = 0.0024), respectively. Biomechanical analysis showed an improvement of corneal resistance in group 5. Iontophoresis imbibition followed by accelerated irradiation increased the stromal fluorescence and is related to an improvement of biomechanical resistance. This approach may represent a new strategy to achieve greater concentrations of riboflavin without removing corneal epithelium and improve clinical results while reducing the side effects of CXL.

  17. Development of a quantitative diagnostic method of estrogen receptor expression levels by immunohistochemistry using organic fluorescent material-assembled nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonda, Kohsuke, E-mail: gonda@med.tohoku.ac.jp; Miyashita, Minoru; Watanabe, Mika

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Organic fluorescent material-assembled nanoparticles for IHC were prepared. Black-Right-Pointing-Pointer New nanoparticle fluorescent intensity was 10.2-fold greater than Qdot655. Black-Right-Pointing-Pointer Nanoparticle staining analyzed a wide range of ER expression levels in tissue. Black-Right-Pointing-Pointer Nanoparticle staining enhanced the quantitative sensitivity for ER diagnosis. -- Abstract: The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3 Prime -diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature andmore » substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues

  18. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  19. "Sizing" the oligomers of Azami Green fluorescent protein with FCS and antibunching

    NASA Astrophysics Data System (ADS)

    Temirov, Jamshid; Werner, James H.; Goodwin, Peter M.; Bradbury, Andrew R. M.

    2012-02-01

    Fluorescent proteins are invaluable molecules in fluorescence microscopy and spectroscopy. The size and brightness of fluorescent proteins often dictates the application they may be used for. While a monomeric protein may be the least perturbative structure for labeling a protein in a cell, often oligomers (dimers and tetramers) of fluorescent proteins can be more stable. However, from a quantitative microscopy standpoint, it is important to realize the photophysical properties of monomers do not necessarily multiply by their number when they form oligomers. In this work we studied oligomerization states of the Azami Green (AG) protein with fluorescence correlation spectroscopy (FCS) and photon antibunching or photon pair correlation spectroscopy (PPCS). FCS was used to measure the hydrodynamic size of the oligomers, whereas antibunching was used to count the number of fluorescent emitters in the oligomers. The results exhibited that the dimers of AG were single emitters and the tetramers were dual-emitters, indicative of dipole-dipole interactions and energy transfer between the monomeric units. We also used these methods to estimate the number of fluorescent proteins displayed on T7 phage molecules.

  20. Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2012-05-01

    Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.

  1. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  2. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    PubMed

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo.

    PubMed

    Valdes, Pablo A; Bekelis, Kimon; Harris, Brent T; Wilson, Brian C; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E; Erkmen, Kadir; Paulsen, Keith D; Roberts, David W

    2014-03-01

    The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intraoperative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (cPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher cPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature.

  4. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  5. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.

  6. Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments

    PubMed Central

    Angiolini, Juan; Plachta, Nicolas; Mocskos, Esteban; Levi, Valeria

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments. PMID:26039162

  7. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography.

    PubMed

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C; Gulsen, Gultekin

    2015-09-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40  mm×W:100  mm) is recovered as an elongated object in the conventional FT (x=4.5  mm; y=10.4  mm), while TM-FT recovers it successfully in both directions (x=3.8  mm; y=4.6  mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.

  8. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography

    PubMed Central

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C.; Gulsen, Gultekin

    2016-01-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed “temperature-modulated fluorescence tomography” (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40 mm × W :100 mm) is recovered as an elongated object in the conventional FT (x = 4.5 mm; y = 10.4 mm), while TM-FT recovers it successfully in both directions (x = 3.8 mm; y = 4.6 mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT. PMID:26368884

  9. Microvascular perfusion during focal vasogenic brain edema: a scanning laser fluorescence microscopy study.

    PubMed

    Lindsberg, P J; Sirén, A L; Hallenbeck, J M

    1997-01-01

    Controversy exists about the effect of tissue edema on cerebral microcirculation. High spatial resolution is required for observation of extravasation and microcirculation during focal vasogenic edema formation. To study the relationship between tissue edema and perfusion, we developed a technique for simultaneous visualization of extravasation and microvessel perfusion in rats. Focal intracortical microvascular injury was generated with a 1-sec Nd-YAG laser pulse. Evans blue albumin (EBA) was infused 30 min before decapitation to study extravasation and FITC-dextran was injected 30 sec prior to decapitation to examine microvessel perfusion. Computerized scanning laser-excited fluorescence microscopy followed by high resolution image analysis permitted quantitative assessment of both parameters on single fresh-frozen brain sections. Studied at 30 min (3.66 +/- 0.15 mm), 2 hr (4.14 +/- 0.08 mm, P < .05), and 8 hr (4.69 +/- 0.18 mm, P < .01) after injury, the diameter of the circular, sharply demarcated zone of EBA-extravasation increased progressively. At 30 min, microvessels at a zone surrounding the area of EBA-extravasation contained 69 +/- 14% (P < .05) more fluorescent FITC-filling than in the control hemisphere, but the density of perfused microvessels was unchanged. At 2 hr, secondary tissue changes had already occurred in a zone surrounding the initial laser lesion. While severe reduction in the density (-76 +/- 13%, P < .05) of perfused microvessels was observed within 400 to 240 microm inside the border of EBA extravasation, perfusion indexes were normal despite the presence of extravasated plasma constituents within 0-80 microm from the border. In a narrow zone (80 microm) outside the border of extravasation, individual microvessels contained 34 +/- 9% (P < .01) less FITC-fluorescence than those in a homologous area of the uninjured contralateral hemisphere. This report demonstrates the feasibility of simultaneous measurement and high-resolution mapping

  10. Effects of chronic kidney disease on liver transport: quantitative intravital microscopy of fluorescein transport in the rat liver.

    PubMed

    Ryan, Jennifer C; Dunn, Kenneth W; Decker, Brian S

    2014-12-15

    Clinical studies indicate that hepatic drug transport may be altered in chronic kidney disease (CKD). Uremic solutes associated with CKD have been found to alter the expression and/or activity of hepatocyte transporters in experimental animals and in cultured cells. However, given the complexity and adaptability of hepatic transport, it is not clear whether these changes translate into significant alterations in hepatic transport in vivo. To directly measure the effect of CKD on hepatocyte transport in vivo, we conducted quantitative intravital microscopy of transport of the fluorescent organic anion fluorescein in the livers of rats following 5/6th nephrectomy, an established model of CKD. Our quantitative analysis of fluorescein transport showed that the rate of hepatocyte uptake was reduced by ∼20% in 5/6th nephrectomized rats, consistent with previous observations of Oatp downregulation. However, the overall rate of transport into bile canaliculi was unaffected, suggesting compensatory changes in Mrp2-mediated secretion. Our study suggests that uremia resulting from 5/6th nephrectomy does not significantly impact the overall hepatic clearance of an Oatp substrate. Copyright © 2014 the American Physiological Society.

  11. Characterization of aeroallergen of Texas panhandle using scanning and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Whiteside, Mandy; Ridner, Chris; Celik, Yasemin; Saadeh, C.; Bennert, Jeff

    2010-06-01

    Aeroallergens cause serious allergic and asthmatic reactions. Characterizing the aeroallergen provides information regarding the onset, duration, and severity of the pollen season that clinicians use to guide allergen selection for skin testing and treatment. Fluorescence Microscopy has useful approaches to understand the structure and function of the microscopic objects. Prepared slides from the pollen were observed under an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, an Olympus DP-70 digital camera connected to the computer with Image Pro 6.0 software. Aeroallergens were viewed, recorded and analyzed with DP Manager using the Image Pro 6.0 software. Photographs were taken at bright field, the fluorescein-isothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. The FITC filter reveals the green fluorescent proteins (GFP and EGFP), and the TRITC filter for red fluorescent proteins (DsRed). SEM proved to be useful for observing ultra-structural details like pores, colpi, sulci and ornamentations on the pollen surface. Samples were examined with an SEM (TM-1000) after gold coating and Critical Point Drying. Pollen grains were measured using the TM-1000 imaging software that revealed the specific information on the size of colpi or sulci and the distance between the micro-structures. This information can be used for classification and circumscription in Angiosperm taxonomy. Data were correlated clinical studies established at Allergy A.R.T.S. Clinical Research Laboratory.

  12. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  13. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  14. Comparison of Fluorescence Microscopy and Different Growth Media Culture Methods for Acanthamoeba Keratitis Diagnosis.

    PubMed

    Peretz, Avi; Geffen, Yuval; Socea, Soergiu D; Pastukh, Nina; Graffi, Shmuel

    2015-08-01

    Acanthamoeba keratitis (AK), a potentially blinding infection of the cornea, is caused by a free-living protozoan. Culture and microscopic examination of corneal scraping tissue material is the conventional method for identifying Acanthamoeba. In this article, we compared several methods for AK diagnosis of 32 patients: microscopic examination using fluorescent dye, specific culture on growth media-non-nutrient agar (NNA), culture on liquid growth media-peptone yeast glucose (PYG), and TYI-S-33. AK was found in 14 patients. Thirteen of the specimens were found AK positive by fluorescence microscopic examination, 11 specimens were found AK positive on PYG growth media, and 9 specimens were found AK positive on TYI-S-33 growth media. Only five specimens were found AK positive on NNA growth media. Therefore, we recommend using fluorescence microscopy technique and culture method, especially PYG liquid media. © The American Society of Tropical Medicine and Hygiene.

  15. Comparison of pre-processing techniques for fluorescence microscopy images of cells labeled for actin.

    PubMed

    Muralidhar, Gautam S; Channappayya, Sumohana S; Slater, John H; Blinka, Ellen M; Bovik, Alan C; Frey, Wolfgang; Markey, Mia K

    2008-11-06

    Automated analysis of fluorescence microscopy images of endothelial cells labeled for actin is important for quantifying changes in the actin cytoskeleton. The current manual approach is laborious and inefficient. The goal of our work is to develop automated image analysis methods, thereby increasing cell analysis throughput. In this study, we present preliminary results on comparing different algorithms for cell segmentation and image denoising.

  16. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  17. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    PubMed Central

    McQuilken, Molly; Jentzsch, Maximilian S.; Verma, Amitabh; Mehta, Shalin B.; Oldenbourg, Rudolf; Gladfelter, Amy S.

    2017-01-01

    Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis. PMID:28516085

  18. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Dalnoki-Veress, Kari; Stöver, Harald D H

    2013-10-01

    Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core. © 2013.

  19. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application.

    PubMed

    Girgis, Adel S; Basta, Altaf H; El-Saied, Houssni; Mohamed, Mohamed A; Bedair, Ahmad H; Salim, Ahmad S

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12 . Some of the synthesized compounds provided promising fluorescence properties with quantum yield ( Φ ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines ( 13 , 15 , 18 , 19 and 23 ) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23 , provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  20. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application

    NASA Astrophysics Data System (ADS)

    Girgis, Adel S.; Basta, Altaf H.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  1. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dong-Shan; Zhou, Guo-Hua; Luo, Ming; Ji, Xing-Hu; He, Zhi-Ke

    2012-08-21

    We have developed a dual color fluorescence quantitative detection method for specific single-stranded DNA with molecular beacons (MBs) and nucleic acid dye SYBR Green I by synchronous scanning fluorescence spectrometry. It is demonstrated by a reverse-transcription oligonucleotide sequence (target DNA, 33 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of target DNA, the MBs are in the stem-closed state, the fluorescence of 5-carboxy-X-rhodamine (ROX) is quenched by black hole quencher-2 (BHQ-2), and the interaction between SYBR Green I and the MBs is very weak. At this time the fluorescence signals of ROX and SYBR Green I are all very weak. In the presence of target DNA, MBs hybridize with target DNA and form a double-strand structure, the fluorophore ROX is separated from the quencher BHQ-2, and the fluorescence of ROX recovers. At the same time, SYBR Green I binds to hybridized dsDNA, whose fluorescence intensity is significantly enhanced. Thus, dual color fluorescence quantitative detection for the target DNA can be realized by synchronous scanning fluorescence spectrometry. In this strategy, the fluorescence signal of SYBR Green I is far larger than that of ROX, so the quantitative analysis of target DNA with the fluorescence intensity of SYBR Green I can significantly improve the detection sensitivity. In addition, the false-positive signals of MBs do not affect the fluorescence signals of nucleic acid dye SYBR Green I. Thereby, in the analysis of complex samples, quantitative analysis of target DNA with SYBR Green I can avoid the false-positive signals of MBs and improve the detection accuracy.

  2. Reversible optical control of cyanine fluorescence in fixed and living cells: optical lock-in detection immunofluorescence imaging microscopy

    PubMed Central

    Yan, Yuling; Petchprayoon, Chutima; Mao, Shu; Marriott, Gerard

    2013-01-01

    Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell culture. In particular, a highly fluorescent cyanine probe (Cy or Cy3) is directly or indirectly linked to naphthoxazine (NISO), a highly efficient optical switch that undergoes robust, 405/532 nm-driven transitions between a colourless spiro (SP) state and a colourful merocyanine (MC) state. The intensity of Cy fluorescence in these Cy/Cy3-NISO probes is reversibly modulated between a low and high value in SP and MC states, respectively, as a result of Förster resonance energy transfer. Cy/Cy3-NISO probes are targeted to specific proteins in living cells where defined waveforms of Cy3 fluorescence are generated by optical switching of the SP and MC states. Finally, we introduce a new imaging technique (called OLID-immunofluorescence microscopy) that combines optical modulation of Cy3 fluorescence from Cy3/NISO co-labelled antibodies within fixed cells and OLID analysis to significantly improve image contrast in samples having high background or rare antigens. PMID:23267183

  3. Quantitative evaluation of morphological changes in activated platelets in vitro using digital holographic microscopy.

    PubMed

    Kitamura, Yutaka; Isobe, Kazushige; Kawabata, Hideo; Tsujino, Tetsuhiro; Watanabe, Taisuke; Nakamura, Masayuki; Toyoda, Toshihisa; Okudera, Hajime; Okuda, Kazuhiro; Nakata, Koh; Kawase, Tomoyuki

    2018-06-18

    Platelet activation and aggregation have been conventionally evaluated using an aggregometer. However, this method is suitable for short-term but not long-term quantitative evaluation of platelet aggregation, morphological changes, and/or adhesion to specific materials. The recently developed digital holographic microscopy (DHM) has enabled the quantitative evaluation of cell size and morphology without labeling or destruction. Thus, we aim to validate its applicability in quantitatively evaluating changes in cell morphology, especially in the aggregation and spreading of activated platelets, thus modifying typical image analysis procedures to suit aggregated platelets. Freshly prepared platelet-rich plasma was washed with phosphate-buffered saline and treated with 0.1% CaCl 2 . Platelets were then fixed and subjected to DHM, scanning electron microscopy (SEM), atomic force microscopy, optical microscopy, and flow cytometry (FCM). Tightly aggregated platelets were identified as single cells. Data obtained from time-course experiments were plotted two-dimensionally according to the average optical thickness versus attachment area and divided into four regions. The majority of the control platelets, which supposedly contained small and round platelets, were distributed in the lower left region. As activation time increased, however, this population dispersed toward the upper right region. The distribution shift demonstrated by DHM was essentially consistent with data obtained from SEM and FCM. Therefore, DHM was validated as a promising device for testing platelet function given that it allows for the quantitative evaluation of activation-dependent morphological changes in platelets. DHM technology will be applicable to the quality assurance of platelet concentrates, as well as diagnosis and drug discovery related to platelet functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Daria S.; Dudenkova, Varvara V.; Rodimova, Svetlana A.; Bobrov, Nikolai V.; Zagainov, Vladimir E.; Zagaynova, Elena V.

    2018-02-01

    A cholestatic liver disease presents one of the most common liver diseases and can potentially progress to cirrhosis or even cholangiocarcinoma. Conventional techniques are insufficient to precisely describe the complex internal structure, heterogeneous cell populations and the dynamics of biological processes of the liver. Currently, the methods of multiphoton and fluorescence lifetime imaging microscopy are actively introducing to biomedical research. Those methods are extremely informative and non-destructive that allows studying of a large number of processes occurring inside cells and tissues, analyzing molecular cellular composition, as well as evaluating the state of connective tissue fibers due to their ability to generate a second optical harmonic. Multiphoton and FLIM microscopy do not need additional staining of samples or the incorporation of any markers to study metabolism, lipid composition, microstructure analysis, evaluation of fibrous structures. These parameters have pronounced changes in hepatocytes of liver with common pathological diseases. Thereby in this study we investigated metabolic changes in the healthy and cholestatic liver based on the fluorescence of the metabolic co-factors NAD(P)H and FAD by multiphoton microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH was presented. The data can be used to develop new criteria for the identification of hepatic pathology at the level of hepatocyte changes directed to personalized medicine in the future.

  5. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  6. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  7. Estimating background-subtracted fluorescence transients in calcium imaging experiments: a quantitative approach.

    PubMed

    Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe

    2013-08-01

    Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Segmentation and detection of fluorescent 3D spots.

    PubMed

    Ram, Sundaresh; Rodríguez, Jeffrey J; Bosco, Giovanni

    2012-03-01

    The 3D spatial organization of genes and other genetic elements within the nucleus is important for regulating gene expression. Understanding how this spatial organization is established and maintained throughout the life of a cell is key to elucidating the many layers of gene regulation. Quantitative methods for studying nuclear organization will lead to insights into the molecular mechanisms that maintain gene organization as well as serve as diagnostic tools for pathologies caused by loss of nuclear structure. However, biologists currently lack automated and high throughput methods for quantitative and qualitative global analysis of 3D gene organization. In this study, we use confocal microscopy and fluorescence in-situ hybridization (FISH) as a cytogenetic technique to detect and localize the presence of specific DNA sequences in 3D. FISH uses probes that bind to specific targeted locations on the chromosomes, appearing as fluorescent spots in 3D images obtained using fluorescence microscopy. In this article, we propose an automated algorithm for segmentation and detection of 3D FISH spots. The algorithm is divided into two stages: spot segmentation and spot detection. Spot segmentation consists of 3D anisotropic smoothing to reduce the effect of noise, top-hat filtering, and intensity thresholding, followed by 3D region-growing. Spot detection uses a Bayesian classifier with spot features such as volume, average intensity, texture, and contrast to detect and classify the segmented spots as either true or false spots. Quantitative assessment of the proposed algorithm demonstrates improved segmentation and detection accuracy compared to other techniques. Copyright © 2012 International Society for Advancement of Cytometry.

  9. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study.

    PubMed

    Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M

    2014-04-21

    Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.

  10. Plates-formes de microscopie et fluorescence par resonance de plasmons de surface appliquees a l'imagerie cellulaire

    NASA Astrophysics Data System (ADS)

    Chabot, Vincent

    L'elaboration de nouveaux medicaments repose sur les etudes pharmacologiques, dont le role est d'identifier de nouveaux composes actifs ou de nouvelles cibles pharmacologiques agissant entre autres au niveau cellulaire. Recemment, la detection basee sur la resonance des plasmons de surface (SPR) a ete appliquee a l'etude de reponses cellulaires. Cette methode de detection, permettant d'observer des variations d'indice de refraction associes a de faibles changements de masse a la surface d'un metal, a l'avantage de permettre l'etude d'une population de cellules vivantes en temps reel, sans necessiter l'introduction d'agents de marquage. Pour effectuer la detection au niveau de cellules individuelles, on peut employer la microscopie SPR, qui consiste a localiser spatialement la detection par un systeme d'imagerie. Cependant, la detection basee sur la SPR est une mesure sans marquage et les signaux mesures sont attribues a une reponse moyennee des differentes sources cellulaires. Afin de mieux comprendre et identifier les composantes cellulaires generant le signal mesure en SPR, il est pertinent de combiner la microscopie SPR avec une modalite complementaire, soit l'imagerie de fluorescence. C'est dans cette problematique que s'insere ce projet de these, consistant a concevoir deux plates-formes distinctes de microscopie SPR et de fluorescence optimisees pour l'etude cellulaire, de sorte a evaluer les possibilites d'integration de ces deux modalites en un seul systeme. Des substrats adaptes pour chaque plate-forme ont ete concus et realises. Ces substrats employaient une couche d'argent passivee par l'ajout d'une mince couche d'or. La stabilite et la biocompatibilite des substrats ont ete validees pour l'etude cellulaire. Deux configurations permettant d'ameliorer la sensibilite en sondant les cellules plus profondement ont ete evaluees, soit l'emploi de plasmons de surface a longue portee et de guides d'onde a gaine metallique. La sensibilite accrue de ces

  11. Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy

    PubMed Central

    Gulati, Srishti; Cao, Vania Y.; Otte, Stephani

    2017-01-01

    In vivo circuit and cellular level functional imaging is a critical tool for understanding the brain in action. High resolution imaging of mouse cortical neurons with two-photon microscopy has provided unique insights into cortical structure, function and plasticity. However, these studies are limited to head fixed animals, greatly reducing the behavioral complexity available for study. In this paper, we describe a procedure for performing chronic fluorescence microscopy with cellular-resolution across multiple cortical layers in freely behaving mice. We used an integrated miniaturized fluorescence microscope paired with an implanted prism probe to simultaneously visualize and record the calcium dynamics of hundreds of neurons across multiple layers of the somatosensory cortex as the mouse engaged in a novel object exploration task, over several days. This technique can be adapted to other brain regions in different animal species for other behavioral paradigms. PMID:28654056

  12. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  13. Multi-scale spectrally resolved quantitative fluorescence imaging system: towards neurosurgical guidance in glioma resection

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Thom, Maria; Miserocchi, Anna; McEvoy, Andrew W.; Desjardins, Adrien; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    In glioma resection surgery, the detection of tumour is often guided by using intraoperative fluorescence imaging notably with 5-ALA-PpIX, providing fluorescent contrast between normal brain tissue and the gliomas tissue to achieve improved tumour delineation and prolonged patient survival compared with the conventional white-light guided resection. However, the commercially available fluorescence imaging system relies on surgeon's eyes to visualise and distinguish the fluorescence signals, which unfortunately makes the resection subjective. In this study, we developed a novel multi-scale spectrally-resolved fluorescence imaging system and a computational model for quantification of PpIX concentration. The system consisted of a wide-field spectrally-resolved quantitative imaging device and a fluorescence endomicroscopic imaging system enabling optical biopsy. Ex vivo animal tissue experiments as well as human tumour sample studies demonstrated that the system was capable of specifically detecting the PpIX fluorescent signal and estimate the true concentration of PpIX in brain specimen.

  14. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.

    PubMed Central

    Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E

    2000-01-01

    We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979

  15. Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application

    PubMed Central

    Girgis, Adel S.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-01-01

    A variety of fluorescence-active fluorinated pyrazolines 13–33 was synthesized in good yields through cyclocondensation reaction of propenones 1–9 with aryl hydrazines 10–12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure–property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents. PMID:29657796

  16. Evaluation of resin infiltration using quantitative light-induced fluorescence technology.

    PubMed

    Min, Ji-Hyun; Inaba, Daisuke; Kim, Baek-Il

    2016-09-01

    To determine whether quantitative light-induced fluorescence (QLF) technology can be used to classify the colour of teeth specimens before and after resin infiltration (RI) treatment, and calculate the correlation between the ΔF value and colour difference (ΔE) in fluorescence images of the specimens obtained using a QLF-digital (QLF-D) device. Sixty sound bovine permanent teeth specimens were immersed in demineralized solution. Two exposed windows were formed in each specimen, and RI treatment was applied to one of them. The ΔE values were obtained for the differences between a sound tooth surface (SS), an early dental caries surface (ECS) and an ECS treated with RI (RS) in white-light and fluorescence images obtained using QLF-D, respectively. The ΔF value was obtained from fluorescence images using dedicated software for QLF-D. The mean differences between the ΔE values obtained from the white-light and fluorescence images were analyzed by paired t-test. Pearson correlation analysis and Bland-Altman plots were applied to the differences between the ΔF value for ECS (ΔFSS-ECS) and the ΔE value between SS and ECS (ΔESS-ECS), and between the ΔF value for RS (ΔFSS-RS) and the ΔE value between SS and RS (ΔESS-RS) in fluorescence images. The ΔE values obtained from fluorescence images were three times higher than the ΔE values obtained from white-light images (p<0.001). Significant correlations were confirmed between ΔESS-ECS and ΔFSS-ECS (r=-0.492, p<0.001) and between ΔESS-RS and ΔFSS-RS (r=-0.661, p<0.001). QLF technology can be used to confirm the presence of RI in teeth. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells

    PubMed Central

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2016-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021

  18. Microscopy techniques in flavivirus research.

    PubMed

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.

    PubMed

    Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl

    2015-01-01

    The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Optical coherent tomography and fluorescent microscopy for the study of meningeal lymphatic systems

    NASA Astrophysics Data System (ADS)

    Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Namykin, A.; Fedosov, I.; Pavlov, A.; Karavaev, A.; Sindeeva, O.; Shirokov, A.; Ulanova, M.; Shushunova, N.; Khorovodov, A.; Agranovich, I.; Bodrova, A.; Sagatova, M.; Shareef, Ali Esmat; Saranceva, E.; Dvoryatkina, M.; Tuchin, V.

    2018-04-01

    The development of novel technologies for the imaging of meningeal lymphatic vessels is one of the amazing trends of biophotonics thanks to discovery of brain lymphatics over several years ago. However, there is the limited technologies exist for the study of lymphatics in vivo because lymphatic vessels are transparent with a low speed flow of lymph. Here we demonstrate the successful application of fluorescent microscopy for the imaging of lymphatic system in the mouse brain in vivo.

  1. A novel fluorescence microscopy approach to estimate quality loss of stored fruit fillings as a result of browning.

    PubMed

    Cropotova, Janna; Tylewicz, Urszula; Cocci, Emiliano; Romani, Santina; Dalla Rosa, Marco

    2016-03-01

    The aim of the present study was to estimate the quality deterioration of apple fillings during storage. Moreover, a potentiality of novel time-saving and non-invasive method based on fluorescence microscopy for prompt ascertainment of non-enzymatic browning initiation in fruit fillings was investigated. Apple filling samples were obtained by mixing different quantities of fruit and stabilizing agents (inulin, pectin and gellan gum), thermally processed and stored for 6-month. The preservation of antioxidant capacity (determined by DPPH method) in apple fillings was indirectly correlated with decrease in total polyphenols content that varied from 34±22 to 56±17% and concomitant accumulation of 5-hydroxymethylfurfural (HMF), ranging from 3.4±0.1 to 8±1mg/kg in comparison to initial apple puree values. The mean intensity of the fluorescence emission spectra of apple filling samples and initial apple puree was highly correlated (R(2)>0.95) with the HMF content, showing a good potentiality of fluorescence microscopy method to estimate non-enzymatic browning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    PubMed

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  3. Dynamic nuclear protein interactions investigated using fluorescence lifetime and fluorescence fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2012-03-01

    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for Förster resonance energy transfer (FRET) microscopy and fluorescence fluctuation spectroscopy (FFS) provide important tools for monitoring dynamic protein interactions inside living cells. Fluorescence lifetime imaging microscopy (FLIM) quantitatively maps changes in the spatial distribution of donor FP lifetimes that result from FRET with acceptor FPs. FFS probes dynamic protein associations through its capacity to monitor localized protein diffusion. Here, we use FRET-FLIM combined with FFS in living cells to investigate changes in protein mobility due to protein-protein interactions involving transcription factors and chromatin modifying proteins that function in anterior pituitary gene regulation. The heterochromatin protein 1 alpha (HP1α) plays a key role in the establishment and maintenance of heterochromatin through its interactions with histone methyltransferases. Recent studies, however, also highlight the importance of HP1α as a positive regulator of active transcription in euchromatin. Intriguingly, we observed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) interacts with HP1α in regions of pericentromeric heterochromatin in mouse pituitary cells. These observations prompted us to investigate the relationship between HP1α dynamic interactions in pituitary specific gene regulation.

  4. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.

    PubMed

    Scrimgeour, Jan; Curtis, Jennifer E

    2012-06-18

    We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.

  5. Development of a magnetic bead fluorescence microscopy immunoassay to detect and quantify Leptospira in environmental water samples.

    PubMed

    Schreier, Stefan; Doungchawee, Galayanee; Triampo, Darapond; Wangroongsarb, Piyada; Hartskeerl, Rudi A; Triampo, Wannapong

    2012-04-01

    Climate change, world population growth, and poverty have led to an increase in the incidence of leptospirosis. Leptospirosis is caused by pathogenic spirochaete bacteria that belong to the genus Leptospira. The bacteria are maintained in the renal tubules of the reservoir hosts (typically a rodent), then shed into the environment via the urine. Water is key for environmental survival and transmission, as leptospires can survive for several weeks in a moist environment. Therefore, environmental epidemiological studies are needed to study the contamination of environmental water sources. However, few such studies have been performed using cultivation of the isolates and PCR assays. But, leptospira cultivation can be easily contaminated by other organisms and takes usually several weeks. Moreover, PCR is a complex and costly analysis for the underdeveloped countries that have the highest incidence of leptospirosis. In this study, we describe two modifications of a fluorescence microscopy assay based on immuno-magnetic separation (IMS) to detect leptospires in environmental water samples that mainly differ in fluorescent dye staining. The first type uses acridine orange fluorescent dye staining combined with multiplexed IMS for sample screening. The detection limit ranged from 10(2) to 10(3) organisms per mL and largely depended on the capture efficiency (CE) of the immuno-magnetic particles. The second type uses serogroup-specific immuno-particles and direct fluorescence antibody staining (DFA) to detect leptospires; the detection limit of this second assay was approximately 10(1) cells per mL. Both assay types were applied to natural and experimentally infected water samples, which were also analysed with DFM and real-time PCR. Our data show that the fluorescent microscopy immunoassay successfully identified experimental leptospire contamination and was as sensitive as PCR. This modified immune-fluorescence assay may therefore enable epidemiological studies of

  6. Pinhole shifting lifetime imaging microscopy

    PubMed Central

    Ramshesh, Venkat K.; Lemasters, John J.

    2009-01-01

    Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu3+), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu3+ microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 μs was estimated for the Eu3+ microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648

  7. Microscopy and Image Analysis.

    PubMed

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Investigating portable fluorescent microscopy (CyScope) as an alternative rapid diagnostic test for malaria in children and women of child-bearing age.

    PubMed

    Sousa-Figueiredo, José Carlos; Oguttu, David; Adriko, Moses; Besigye, Fred; Nankasi, Andrina; Arinaitwe, Moses; Namukuta, Annet; Betson, Martha; Kabatereine, Narcis B; Stothard, J Russell

    2010-08-27

    Prompt and correct diagnosis of malaria is crucial for accurate epidemiological assessment and better case management, and while the gold standard of light microscopy is often available, it requires both expertise and time. Portable fluorescent microscopy using the CyScope offers a potentially quicker, easier and more field-applicable alternative. This article reports on the strengths, limitations of this methodology and its diagnostic performance in cross-sectional surveys on young children and women of child-bearing age. 552 adults (99% women of child-bearing age) and 980 children (99% ≤ 5 years of age) from rural and peri-urban regions of Ugandan were examined for malaria using light microscopy (Giemsa-stain), a lateral-flow test (Paracheck-Pf) and the CyScope. Results from the surveys were used to calculate diagnostic performance (sensitivity and specificity) as well as to perform a receiver operating characteristics (ROC) analyses, using light microscopy as the gold-standard. Fluorescent microscopy (qualitative reads) showed reduced specificity (<40%), resulting in higher community prevalence levels than those reported by light microscopy, particularly in adults (+180% in adults and +20% in children). Diagnostic sensitivity was 92.1% in adults and 86.7% in children, with an area under the ROC curve of 0.63. Importantly, optimum performance was achieved for higher parasitaemia (>400 parasites/μL blood): sensitivity of 64.2% and specificity of 86.0%. Overall, the diagnostic performance of the CyScope was found inferior to that of Paracheck-Pf. Fluorescent microscopy using the CyScope is certainly a field-applicable and relatively affordable solution for malaria diagnoses especially in areas where electrical supplies may be lacking. While it is unlikely to miss higher parasitaemia, its application in cross-sectional community-based studies leads to many false positives (i.e. small fluorescent bodies of presently unknown origin mistaken as malaria parasites

  9. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.

    PubMed

    Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George S

    2015-06-01

    Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells. © 2015 International Society for Advancement of Cytometry.

  10. Quantitative fluorescence using 5-aminolevulinic acid–induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery

    PubMed Central

    Valdés, Pablo A.; Jacobs, Valerie; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Paulsen, Keith D.; Roberts, David W.

    2015-01-01

    OBJECT Previous studies in high-grade gliomas (HGGs) have indicated that protoporphyrin IX (PpIX) accumulates in higher concentrations in tumor tissue, and, when used to guide surgery, it has enabled improved resection leading to increased progression-free survival. Despite the benefits of complete resection and the advances in fluorescence-guided surgery, few studies have investigated the use of PpIX in low-grade gliomas (LGGs). Here, the authors describe their initial experience with 5-aminolevulinic acid (ALA)–induced PpIX fluorescence in a series of patients with LGG. METHODS Twelve patients with presumed LGGs underwent resection of their tumors after receiving 20 μg/kg of ALA approximately 3 hours prior to surgery under an institutional review board–approved protocol. Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology. RESULTS Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1, area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [CPpIX] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of CPpIX that were

  11. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    PubMed Central

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  12. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma.

    PubMed

    Rodenacker, K; Aubele, M; Hutzler, P; Adiga, P S

    1997-01-01

    In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH). The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA) can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI) to a software package for display, inspection, count and (semi-)automatic analysis of 3-D images for pathologists is outlined including the underlying methods of 3-D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer-aided analysis of large 3-D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3-D data is not in sight. A semi-automatic segmentation method is thus presented here.

  14. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    PubMed

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  15. Automated microscopy for high-content RNAi screening

    PubMed Central

    2010-01-01

    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920

  16. Reconstitution radicicol containing apolipoprotein B lipoparticle and tracing its cell uptake process by super resolution fluorescent microscopy.

    NASA Astrophysics Data System (ADS)

    Lin, Chung Ching; Lin, Po-Yen; Chang, Chia-Ching

    Apolipoprotein B (apoB) is the only protein of LDL. LDL delivers cholesterol, triacylglycerides and lipids to the target cells. Reconstitute apoB lipoparticle (rABL) will be an idea drug delivery vehicle for hydrophobic and amphiphilic materials delivery. It is challenged to renature ApoB into its functional state from denatured state. By using modified bile salt and radicicol (Rad) added over-critical refolding process, apoB can be restored into its native like state. The intrinsic fluorescence of apoB increased during the refolding process. Moreover, radicicol (Rad) molecules have been encapsulated into reconstitute rABL (Rad@rABL). To investigate the cell uptake mechanism of Rad@rABL, a super resolution ground state depletion (GSD) microscopy is used in this research. Fluorescence labeled Rad@rABL can be traced within the tumor cell. Key words: LDL, radicicol, protein refolding, super resolution microscopy.

  17. Orientation and Rotational Motions of Single Molecules by Polarized Total Internal Reflection Fluorescence Microscopy (polTIRFM)

    PubMed Central

    Beausang, John F.; Sun, Yujie; Quinlan, Margot E.; Forkey, Joseph N.; Goldman, Yale E.

    2013-01-01

    In this article, we describe methods to detect the spatial orientation and rotational dynamics of single molecules using polarized total internal reflection fluorescence microscopy (polTIRFM). polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. We discuss single-molecule versus ensemble measurements, as well as single-molecule techniques for orientation and rotation, and fluorescent probes for orientation studies. Using calmodulin (CaM) as an example of a target protein, we describe a method for labeling CaM with bifunctional rhodamine (BR). We also describe the physical principles and experimental setup of polTIRFM. We conclude with a brief introduction to assays using polTIRFM to assess the interaction of actin and myosin. PMID:22550303

  18. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy

    PubMed Central

    Young, Jonathan W; Locke, James C W; Altinok, Alphan; Rosenfeld, Nitzan; Bacarian, Tigran; Swain, Peter S; Mjolsness, Eric; Elowitz, Michael B

    2014-01-01

    Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure. PMID:22179594

  19. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  20. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    PubMed

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the