Sample records for quantitative genetic variation

  1. Genetic Architectures of Quantitative Variation in RNA Editing Pathways

    PubMed Central

    Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.

    2016-01-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740

  2. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  3. Effects of functionally asexual reproduction on quantitative genetic variation in the evening primroses (Oenothera, Onagraceae).

    PubMed

    Godfrey, Ryan M; Johnson, Marc T J

    2014-11-01

    It has long been predicted that a loss of sexual reproduction leads to decreased heritable variation within populations and increased differentiation between populations. Despite an abundance of theory, there are few empirical tests of how sex affects genetic variation in phenotypic traits, especially for plants. Here we test whether repeated losses of two critical components of sex (recombination and segregation) in the evening primroses (Oenothera L., Onagraceae) affect quantitative genetic variation within and between populations. We sampled multiple genetic families from 3-5 populations from each of eight Oenothera species, which represented four independent transitions between sexual reproduction and a functionally asexual genetic system called "permanent translocation heterozygosity." We used quantitative genetics methods to partition genetic variation within and between populations for eight plant traits related to growth, leaf physiology, flowering, and resistance to herbivores. Heritability was, on average, 74% higher in sexual Oenothera populations than in functionally asexual populations, with plant growth rate, specific leaf area, and the percentage of leaf water content showing the strongest differences. By contrast, genetic differentiation among populations was 2.8× higher in functionally asexual vs. sexual Oenothera species. This difference was particularly strong for specific leaf area. Sexual populations tended to exhibit higher genetic correlations among traits, but this difference was weakly supported. These results support the prediction that sexual reproduction maintains higher genetic variation within populations, which may facilitate adaptive evolution. We also found partial support for the prediction that a loss of sex leads to greater population differentiation, which may elevate speciation rates. © 2014 Botanical Society of America, Inc.

  4. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence.

    PubMed

    Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne

    2016-05-01

    Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.

  5. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis

    PubMed Central

    Routaboul, Jean-Marc; Dubos, Christian; Beck, Gilles; Marquis, Catherine; Bidzinski, Przemyslaw; Loudet, Olivier; Lepiniec, Loïc

    2012-01-01

    Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11–64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation. PMID:22442426

  6. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    PubMed

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that

  7. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  9. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  10. EvolQG - An R package for evolutionary quantitative genetics

    PubMed Central

    Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel

    2016-01-01

    We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352

  11. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    ERIC Educational Resources Information Center

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  12. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  13. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  14. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  15. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  16. Causal Genetic Variation Underlying Metabolome Differences.

    PubMed

    Swain-Lenz, Devjanee; Nikolskiy, Igor; Cheng, Jiye; Sudarsanam, Priya; Nayler, Darcy; Staller, Max V; Cohen, Barak A

    2017-08-01

    An ongoing challenge in biology is to predict the phenotypes of individuals from their genotypes. Genetic variants that cause disease often change an individual's total metabolite profile, or metabolome. In light of our extensive knowledge of metabolic pathways, genetic variants that alter the metabolome may help predict novel phenotypes. To link genetic variants to changes in the metabolome, we studied natural variation in the yeast Saccharomyces cerevisiae We used an untargeted mass spectrometry method to identify dozens of metabolite Quantitative Trait Loci (mQTL), genomic regions containing genetic variation that control differences in metabolite levels between individuals. We mapped differences in urea cycle metabolites to genetic variation in specific genes known to regulate amino acid biosynthesis. Our functional assays reveal that genetic variation in two genes, AUA1 and ARG81 , cause the differences in the abundance of several urea cycle metabolites. Based on knowledge of the urea cycle, we predicted and then validated a new phenotype: sensitivity to a particular class of amino acid isomers. Our results are a proof-of-concept that untargeted mass spectrometry can reveal links between natural genetic variants and metabolome diversity. The interpretability of our results demonstrates the promise of using genetic variants underlying natural differences in the metabolome to predict novel phenotypes from genotype. Copyright © 2017 by the Genetics Society of America.

  17. Quantitative assessment of skin, hair, and iris variation in a diverse sample of individuals and associated genetic variation.

    PubMed

    Norton, Heather L; Edwards, Melissa; Krithika, S; Johnson, Monique; Werren, Elizabeth A; Parra, Esteban J

    2016-08-01

    The main goals of this study are to 1) quantitatively measure skin, hair, and iris pigmentation in a diverse sample of individuals, 2) describe variation within and between these samples, and 3) demonstrate how quantitative measures can facilitate genotype-phenotype association tests. We quantitatively characterize skin, hair, and iris pigmentation using the Melanin (M) Index (skin) and CIELab values (hair) in 1,450 individuals who self-identify as African American, East Asian, European, Hispanic, or South Asian. We also quantify iris pigmentation in a subset of these individuals using CIELab values from high-resolution iris photographs. We compare mean skin M index and hair and iris CIELab values among populations using ANOVA and MANOVA respectively and test for genotype-phenotype associations in the European sample. All five populations are significantly different for skin (P <2 × 10(-16) ) and hair color (P <2 × 10(-16) ). Our quantitative analysis of iris and hair pigmentation reinforces the continuous, rather than discrete, nature of these traits. We confirm the association of three loci (rs16891982, rs12203592, and rs12913832) with skin pigmentation and four loci (rs12913832, rs12203592, rs12896399, and rs16891982) with hair pigmentation. Interestingly, the derived rs12203592 T allele located within the IRF4 gene is associated with lighter skin but darker hair color. The quantitative methods used here provide a fine-scale assessment of pigmentation phenotype and facilitate genotype-phenotype associations, even with relatively small sample sizes. This represents an important expansion of current investigations into pigmentation phenotype and associated genetic variation by including non-European and admixed populations. Am J Phys Anthropol 160:570-581, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Genetical genomics of Populus leaf shape variation

    DOE PAGES

    Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...

    2015-06-30

    Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less

  19. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens.

    PubMed

    Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel

    2016-02-03

    phenotypic variation for the three traits studied. Overall, the contribution of additive genetic variance to the total genetic variance was much greater than that of dominance variance. Our results show that all genomic regions are important for the prediction of the targeted traits, and the whole-genome approach was reaffirmed as the best tool for genome-enabled prediction of quantitative traits.

  20. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    PubMed Central

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  1. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  2. Small- and Large-Effect Quantitative Trait Locus Interactions Underlie Variation in Yeast Sporulation Efficiency

    PubMed Central

    Lorenz, Kim; Cohen, Barak A.

    2012-01-01

    Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125

  3. Multiple capacitors for natural genetic variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2013-03-01

    Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation. © 2012 Blackwell Publishing Ltd.

  4. KRN4 Controls Quantitative Variation in Maize Kernel Row Number

    PubMed Central

    Liu, Lei; Du, Yanfang; Shen, Xiaomeng; Li, Manfei; Sun, Wei; Huang, Juan; Liu, Zhijie; Tao, Yongsheng; Zheng, Yonglian; Yan, Jianbing; Zhang, Zuxin

    2015-01-01

    Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize. PMID:26575831

  5. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance

    Treesearch

    Michael J. Firko; Jane Leslie Hayes

    1990-01-01

    Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...

  6. Beyond Punnett squares: Student word association and explanations of phenotypic variation through an integrative quantitative genetics unit investigating anthocyanin inheritance and expression in Brassica rapa Fast plants.

    PubMed

    Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. © 2014 J. M. Batzli et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution.

    PubMed

    Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C

    2016-08-16

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.

  8. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site.

    PubMed

    Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu

    2011-01-01

    A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.

  9. Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans

    PubMed Central

    Baker, Christi; Antonovics, Janis

    2012-01-01

    Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158

  10. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  11. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  12. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader

    PubMed Central

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Background and Aims Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Methods Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. Key Results It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (QST) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F′ST), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. Conclusions The study suggests that although genetic

  13. Joint effects of pleiotropic selection and stabilizing selection on the maintenance of quantitative genetic variation at mutation-selection balance.

    PubMed Central

    Zhang, Xu-Sheng; Hill, William G

    2002-01-01

    In quantitative genetics, there are two basic "conflicting" observations: abundant polygenic variation and strong stabilizing selection that should rapidly deplete that variation. This conflict, although having attracted much theoretical attention, still stands open. Two classes of model have been proposed: real stabilizing selection directly on the metric trait under study and apparent stabilizing selection caused solely by the deleterious pleiotropic side effects of mutations on fitness. Here these models are combined and the total stabilizing selection observed is assumed to derive simultaneously through these two different mechanisms. Mutations have effects on a metric trait and on fitness, and both effects vary continuously. The genetic variance (V(G)) and the observed strength of total stabilizing selection (V(s,t)) are analyzed with a rare-alleles model. Both kinds of selection reduce V(G) but their roles in depleting it are not independent: The magnitude of pleiotropic selection depends on real stabilizing selection and such dependence is subject to the shape of the distributions of mutational effects. The genetic variation maintained thus depends on the kurtosis as well as the variance of mutational effects: All else being equal, V(G) increases with increasing leptokurtosis of mutational effects on fitness, while for a given distribution of mutational effects on fitness, V(G) decreases with increasing leptokurtosis of mutational effects on the trait. The V(G) and V(s,t) are determined primarily by real stabilizing selection while pleiotropic effects, which can be large, have only a limited impact. This finding provides some promise that a high heritability can be explained under strong total stabilizing selection for what are regarded as typical values of mutation and selection parameters. PMID:12242254

  14. Genetic integration of molar cusp size variation in baboons

    PubMed Central

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T.; Fletcher, Zachary; Mahaney, Michael C.; Hlusko, Leslea J.

    2010-01-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the non-occluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. PMID:20034010

  15. Genetic integration of molar cusp size variation in baboons.

    PubMed

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T; Fletcher, Zachary; Mahaney, Michael C; Hlusko, Leslea J

    2010-06-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the nonoccluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. Copyright 2009 Wiley-Liss, Inc.

  16. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader.

    PubMed

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by

  17. A simple genetic architecture underlies morphological variation in dogs.

    PubMed

    Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A

    2010-08-10

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  18. A Simple Genetic Architecture Underlies Morphological Variation in Dogs

    PubMed Central

    Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.

    2010-01-01

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490

  19. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans.

    PubMed

    Green, J W M; Snoek, L B; Kammenga, J E; Harvey, S C

    2013-10-01

    In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.

  20. Genetics and variation

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  1. Genetic variation in California oaks

    Treesearch

    Constance I. Millar; Diane L. Delany; Lawrence A. Riggs

    1990-01-01

    In forestry the importance of genetic variation for successful reproduction, survival and growth has been widely documented for commercial conifers; until recently, little genetic work has been done on the California oaks. Even before the nature of genetic variation was scientifically investigated, its importance was suspected in operational forestry. Many failures of...

  2. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...

  3. Compatibility of breeding for increased wood production and longterm sustainability: the genetic variation of seed orchard seed and associated risks.

    Treesearch

    R Johnson; S. Lipow

    2002-01-01

    Because breeding imposes strong artificial selection for a narrow suite of economically important traits, genetic variation is reduced in seedlings derived from operational seed orchards. Both quantitative genetics theory and studies of allozyme variation show that seed orchards contain most of the genetic diversity found in natural populations, although low-frequency...

  4. Novel genetic capacitors and potentiators for the natural genetic variation of sensory bristles and their trait specificity in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2015-11-01

    Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist. © 2015 John Wiley & Sons Ltd.

  5. Defining the consequences of genetic variation on a proteome–wide scale

    PubMed Central

    Chick, Joel M.; Munger, Steven C.; Simecek, Petr; Huttlin, Edward L.; Choi, Kwangbom; Gatti, Daniel M.; Raghupathy, Narayanan; Svenson, Karen L.; Churchill, Gary A.; Gygi, Steven P.

    2016-01-01

    Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein–protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice. PMID:27309819

  6. Applying Quantitative Genetic Methods to Primate Social Behavior

    PubMed Central

    Brent, Lauren J. N.

    2013-01-01

    Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839

  7. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    PubMed

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  8. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).

    PubMed

    Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling

    2014-04-01

    This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.

  9. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value.

    PubMed

    Pacheco-Villalobos, David; Hardtke, Christian S

    2012-06-05

    Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.

  10. Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster

    PubMed Central

    Turner, Thomas L.; Stewart, Andrew D.; Fields, Andrew T.; Rice, William R.; Tarone, Aaron M.

    2011-01-01

    Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. PMID:21437274

  11. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    PubMed

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  12. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    PubMed

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  13. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

    PubMed Central

    Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.

    2016-01-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832

  14. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics

    PubMed Central

    Corwin, Jason A.; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J.

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes. PMID:26866607

  15. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    PubMed

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J

    2016-02-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.

  16. Genetics and child psychiatry: I Advances in quantitative and molecular genetics.

    PubMed

    Rutter, M; Silberg, J; O'Connor, T; Simonoff, E

    1999-01-01

    Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.

  17. Sex reduces genetic variation: a multidisciplinary review.

    PubMed

    Gorelick, Root; Heng, Henry H Q

    2011-04-01

    For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  18. The contribution of additive genetic variation to personality variation: heritability of personality.

    PubMed

    Dochtermann, Ned A; Schwab, Tori; Sih, Andrew

    2015-01-07

    Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  20. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE PAGES

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric; ...

    2016-10-14

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  1. Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size.

    PubMed

    Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M

    2018-02-01

    Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.

  2. High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.

    PubMed

    Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas

    2011-10-01

    Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  3. Genetics of Variation in Serum Uric Acid and Cardiovascular Risk Factors in Mexican Americans

    PubMed Central

    Voruganti, V. Saroja; Nath, Subrata D.; Cole, Shelley A.; Thameem, Farook; Jowett, Jeremy B.; Bauer, Richard; MacCluer, Jean W.; Blangero, John; Comuzzie, Anthony G.; Abboud, Hanna E.; Arar, Nedal H.

    2009-01-01

    Background: Elevated serum uric acid is associated with several cardiovascular disease (CVD) risk factors such as hypertension, inflammation, endothelial dysfunction, insulin resistance, dyslipidemia, and obesity. However, the role of uric acid as an independent risk factor for CVD is not yet clear. Objective: The aim of the study was to localize quantitative trait loci regulating variation in serum uric acid and also establish the relationship between serum uric acid and other CVD risk factors in Mexican Americans (n = 848; men = 310, women = 538) participating in the San Antonio Family Heart Study. Methods: Quantitative genetic analysis was conducted using variance components decomposition method, implemented in the software program SOLAR. Results: Mean ± sd of serum uric acid was 5.35 ± 1.38 mg/dl. Univariate genetic analysis showed serum uric acid and other CVD risk markers to be significantly heritable (P < 0.005). Bivariate analysis showed significant correlation of serum uric acid with body mass index, waist circumference, waist/hip ratio, total body fat, plasma insulin, serum triglycerides, high-density lipoprotein cholesterol, C-reactive protein, and granulocyte macrophage-colony stimulating factor (P < 0.05). A genome-wide scan for detecting quantitative trait loci regulating serum uric acid variation showed a significant logarithm of odds (LOD) score of 4.72 (empirical LOD score = 4.62; P < 0.00001) on chromosome 3p26. One LOD support interval contains 25 genes, of which an interesting candidate gene is chemokine receptor 2. Summary: There is a significant genetic component in the variation in serum uric acid and evidence of pleiotropy between serum uric acid and other cardiovascular risk factors. PMID:19001525

  4. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits.

    PubMed

    Knoll, A T; Jiang, K; Levitt, P

    2018-06-01

    Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  5. Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate.

    PubMed

    Jasinska, Anna J; Zelaya, Ivette; Service, Susan K; Peterson, Christine B; Cantor, Rita M; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A; Fears, Scott; Furterer, Allison E; Huang, Yu S; Ramensky, Vasily; Schmitt, Christopher A; Svardal, Hannes; Jorgensen, Matthew J; Kaplan, Jay R; Villar, Diego; Aken, Bronwen L; Flicek, Paul; Nag, Rishi; Wong, Emily S; Blangero, John; Dyer, Thomas D; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K; Jentsch, J David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P; Freimer, Nelson B

    2017-12-01

    By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.

  6. Quantitative genetics of circulating Hyaluronic Acid (HA) and its correlation with hand osteoarthritis and obesity-related phenotypes in a community-based sample.

    PubMed

    Prakash, Jai; Gabdulina, Gulzhan; Trofimov, Svetlana; Livshits, Gregory

    2017-09-01

    One of the potential molecular biomarkers of osteoarthritis (OA) is hyaluronic acid (HA). HA levels may be related to the severity and progression of OA. However, little is known about the contribution of major risk factors for osteoarthritis, e.g. obesity-related phenotypes and genetics to HA variation. To clarify the quantitative effect of these factors on HA. An ethnically homogeneous sample of 911 apparently healthy European-derived individuals, assessed for radiographic hand osteoarthritis (RHOA), HA, leptin, adiponectin, and several anthropometrical measures of obesity-related phenotypes was studied. Model-based quantitative genetic analysis was used to reveal genetic and shared environmental factors affecting the variation of the study's phenotypes. The HA levels significantly correlated with the age, RHOA, adiponectin, obesity-related phenotypes, and the waist-to-hip ratio. The putative genetic effects contributed significantly to the variation of HA (66.2 ± 9.3%) and they were also significant factors in the variations of all the other studied phenotypes, with the heritability estimate ranging between 0.122 ± 4.4% (WHR) and 45.7 ± 2.2% (joint space narrowing). This is the first study to report heritability estimates of HA variation and its correlation with obesity-related phenotypes, ADP and RHOA. However, the nature of genetic effects on HA and its correlation with other study phenotypes require further clarification.

  7. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    PubMed Central

    Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.

    2017-01-01

    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401

  8. Genetic variation in the USDA Chamaecrista fasciculata collection

    USDA-ARS?s Scientific Manuscript database

    Germplasm collections serve as critical repositories of genetic variation. Characterizing genetic diversity in existing collections is necessary to maximize their utility and to guide future collecting efforts. We have used AFLP markers to characterize genetic variation in the USDA germplasm collect...

  9. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  10. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study

    PubMed Central

    Gerson, Elizabeth A.; Kelsey, Rick G.; St Clair, J. Bradley

    2009-01-01

    Background and Aims Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Methods Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Key Results Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19·4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41·8 % of the variation. Conclusions Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid

  11. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study.

    PubMed

    Gerson, Elizabeth A; Kelsey, Rick G; St Clair, J Bradley

    2009-02-01

    Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19.4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41.8 % of the variation. Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid secondary metabolism in ponderosa pine. The theoretical

  12. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae)?

    PubMed

    Heyer, W Ronald; Reid, Yana R

    2003-03-01

    The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  13. Genetic variation in natural honeybee populations, Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  14. Quantitative Variation in Responses to Root Spatial Constraint within Arabidopsis thaliana[OPEN

    PubMed Central

    Joseph, Bindu; Lau, Lillian; Kliebenstein, Daniel J.

    2015-01-01

    Among the myriad of environmental stimuli that plants utilize to regulate growth and development to optimize fitness are signals obtained from various sources in the rhizosphere that give an indication of the nutrient status and volume of media available. These signals include chemical signals from other plants, nutrient signals, and thigmotropic interactions that reveal the presence of obstacles to growth. Little is known about the genetics underlying the response of plants to physical constraints present within the rhizosphere. In this study, we show that there is natural variation among Arabidopsis thaliana accessions in their growth response to physical rhizosphere constraints and competition. We mapped growth quantitative trait loci that regulate a positive response of foliar growth to short physical constraints surrounding the root. This is a highly polygenic trait and, using quantitative validation studies, we showed that natural variation in EARLY FLOWERING3 (ELF3) controls the link between root constraint and altered shoot growth. This provides an entry point to study how root and shoot growth are integrated to respond to environmental stimuli. PMID:26243313

  15. A population genetic interpretation of GWAS findings for human quantitative traits

    PubMed Central

    Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy

    2018-01-01

    Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID

  16. Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster

    PubMed Central

    Saltz, J B

    2017-01-01

    Individuals are not merely subject to their social environments; they choose and create them, through a process called social environment (or social niche) construction. When genotypes differ in social environment-constructing behaviors, different genotypes are expected to experience different social environments. As social experience often affects behavioral development, quantitative genetics and psychology theories predict that genetic variation in social environment construction should have an important role in determining phenotypic variation; however, this hypothesis has not been tested directly. I identify multiple mechanisms of social environment construction that differ among natural genotypes of Drosophila melanogaster and investigate their consequences for the development of aggressive behavior. Male genotypes differed in the group sizes that they preferred and in their aggressive behavior; both of these behaviors influenced social experience, demonstrating that these behaviors function as social environment-constructing traits. Further, the effects of social experience—as determined in part by social environment construction—carried over to affect focal male aggression at a later time and with a new opponent. These results provide manipulative experimental support for longstanding hypotheses in psychology, that genetic variation in social environment construction has a causal role in behavioral development. More broadly, these results imply that studies of the genetic basis of complex traits should be expanded to include mechanisms by which genetic variation shapes the environments that individuals experience. PMID:27848947

  17. Quantitative genetics of disease traits.

    PubMed

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.

  18. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  19. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  20. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    PubMed

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  1. Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome.

    PubMed

    Postma, Erik; Spyrou, Nicolle; Rollins, Lee Ann; Brooks, Robert C

    2011-08-01

    Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  2. Genomic Quantitative Genetics to Study Evolution in the Wild.

    PubMed

    Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin

    2017-12-01

    Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Marker-based quantitative genetics in the wild?: the heritability and genetic correlation of chemical defenses in eucalyptus.

    PubMed

    Andrew, R L; Peakall, R; Wallis, I R; Wood, J T; Knight, E J; Foley, W J

    2005-12-01

    Marker-based methods for estimating heritability and genetic correlation in the wild have attracted interest because traditional methods may be impractical or introduce bias via G x E effects, mating system variation, and sampling effects. However, they have not been widely used, especially in plants. A regression-based approach, which uses a continuous measure of genetic relatedness, promises to be particularly appropriate for use in plants with mixed-mating systems and overlapping generations. Using this method, we found significant narrow-sense heritability of foliar defense chemicals in a natural population of Eucalyptus melliodora. We also demonstrated a genetic basis for the phenotypic correlation underlying an ecological example of conditioned flavor aversion involving different biosynthetic pathways. Our results revealed that heritability estimates depend on the spatial scale of the analysis in a way that offers insight into the distribution of genetic and environmental variance. This study is the first to successfully use a marker-based method to measure quantitative genetic parameters in a tree. We suggest that this method will prove to be a useful tool in other studies and offer some recommendations for future applications of the method.

  4. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  5. Collecting genetic variation on a small island

    Treesearch

    S. Kallow; C. Trivedi

    2017-01-01

    Genetic variation is the most powerful factor in ensuring the long term success of trees and forests in times of change. In order to protect against loss of genetic variation from threats, including pests and diseases and climate change, the Royal Botanic Gardens, Kew, is developing a national tree seed collection for the United Kingdom. This paper...

  6. Quantitative Resistance: More Than Just Perception of a Pathogen.

    PubMed

    Corwin, Jason A; Kliebenstein, Daniel J

    2017-04-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  7. Quantitative Resistance: More Than Just Perception of a Pathogen

    PubMed Central

    2017-01-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. PMID:28302676

  8. Neutral mutation as the source of genetic variation in life history traits.

    PubMed

    Brcić-Kostić, Krunoslav

    2005-08-01

    The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.

  9. Genetic variation and gene expression across multiple tissues and developmental stages in a non-human primate

    PubMed Central

    Jasinska, Anna J.; Zelaya, Ivette; Service, Susan K.; Peterson, Christine B.; Cantor, Rita M.; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A.; Fears, Scott; Furterer, Allison E.; Huang, Yu S.; Ramensky, Vasily; Schmitt, Christopher A.; Svardal, Hannes; Jorgensen, Matthew J.; Kaplan, Jay R.; Villar, Diego; Aken, Bronwen L.; Flicek, Paul; Nag, Rishi; Wong, Emily S.; Blangero, John; Dyer, Thomas D.; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M.; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K.; Jentsch, J. David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P.; Freimer, Nelson B.

    2017-01-01

    By analyzing multi-tissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalogue of expression quantitative trait loci (eQTLs) in a non-human primate model. This catalogue contains more genome-wide significant eQTLs, per sample, than comparable human resources, and reveals sex and age-related expression patterns. Findings include a master regulatory locus that likely plays a role in immune function, and a locus regulating hippocampal long non-coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders. PMID:29083405

  10. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

    PubMed

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2014-01-01

    Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.

  11. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    PubMed

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability

  12. Genetics of canid skeletal variation: size and shape of the pelvis.

    PubMed

    Carrier, David R; Chase, Kevin; Lark, Karl G

    2005-12-01

    The mammalian skeleton presents an ideal system in which to study the genetic architecture of a set of related polygenic traits and the skeleton of the domestic dog (Canis familiaris) is arguably the best system in which to address the relationship between genes and anatomy. We have analyzed the genetic basis for skeletal variation in a population of >450 Portuguese Water Dogs. At this stage of this ongoing project, we have identified >40 putative quantitative trait loci (QTLs) for heritable skeletal phenotypes located on 22 different chromosomes, including the "X." A striking aspect of these is the regulation of suites of traits representing bones located in different parts of the skeleton but related by function. Here we illustrate this by describing genetic variation in postcranial morphology. Two suites of traits are involved. One regulates the size of the pelvis relative to dimensions of the limb bones. The other regulates the shape of the pelvis. Both are examples of trade-offs that may be prototypical of different breeds. For the size of the pelvis relative to limb bones, we describe four QTLs located on autosome CFA 12, 30, 31, and X. For pelvic shape we describe QTLs on autosome CFA 2, 3, 22, and 36. The relation of these polygenic systems to musculoskeletal function is discussed.

  13. Effects of Genetic Drift and Gene Flow on the Selective Maintenance of Genetic Variation

    PubMed Central

    Star, Bastiaan; Spencer, Hamish G.

    2013-01-01

    Explanations for the genetic variation ubiquitous in natural populations are often classified by the population–genetic processes they emphasize: natural selection or mutation and genetic drift. Here we investigate models that incorporate all three processes in a spatially structured population, using what we call a construction approach, simulating finite populations under selection that are bombarded with a steady stream of novel mutations. As expected, the amount of genetic variation compared to previous models that ignored the stochastic effects of drift was reduced, especially for smaller populations and when spatial structure was most profound. By contrast, however, for higher levels of gene flow and larger population sizes, the amount of genetic variation found after many generations was greater than that in simulations without drift. This increased amount of genetic variation is due to the introduction of slightly deleterious alleles by genetic drift and this process is more efficient when migration load is higher. The incorporation of genetic drift also selects for fitness sets that exhibit allele-frequency equilibria with larger domains of attraction: they are “more stable.” Moreover, the finiteness of populations strongly influences levels of local adaptation, selection strength, and the proportion of allele-frequency vectors that can be distinguished from the neutral expectation. PMID:23457235

  14. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    PubMed Central

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions. PMID:21979160

  15. Molecular Darwinism: the contingency of spontaneous genetic variation.

    PubMed

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  16. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  17. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.

    PubMed

    Roux, F; Bergelson, J

    2016-01-01

    In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. © 2016 Elsevier Inc. All rights reserved.

  18. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  19. Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Kliebenstein, Daniel J

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

  20. Genetic variation in social mammals: the marmot model.

    PubMed

    Schwartz, O A; Armitage, K B

    1980-02-08

    The social substructure and the distribution of genetic variation among colonies of yellow-bellied marmots, when analyzed as an evolutionary system, suggests that this substructure enhances the intercolony variance and retards the fixation of genetic variation. This result supports a traditional theory of gradual evolution rather than recent theories suggesting accelerated evolution in social mammals.

  1. Genetics of canid skeletal variation: Size and shape of the pelvis

    PubMed Central

    Carrier, David R.; Chase, Kevin; Lark, Karl G.

    2005-01-01

    The mammalian skeleton presents an ideal system in which to study the genetic architecture of a set of related polygenic traits and the skeleton of the domestic dog (Canis familiaris) is arguably the best system in which to address the relationship between genes and anatomy. We have analyzed the genetic basis for skeletal variation in a population of >450 Portuguese Water Dogs. At this stage of this ongoing project, we have identified >40 putative quantitative trait loci (QTLs) for heritable skeletal phenotypes located on 22 different chromosomes, including the “X.” A striking aspect of these is the regulation of suites of traits representing bones located in different parts of the skeleton but related by function. Here we illustrate this by describing genetic variation in postcranial morphology. Two suites of traits are involved. One regulates the size of the pelvis relative to dimensions of the limb bones. The other regulates the shape of the pelvis. Both are examples of trade-offs that may be prototypical of different breeds. For the size of the pelvis relative to limb bones, we describe four QTLs located on autosome CFA 12, 30, 31, and X. For pelvic shape we describe QTLs on autosome CFA 2, 3, 22, and 36. The relation of these polygenic systems to musculoskeletal function is discussed. PMID:16339381

  2. Cordova: Web-based management of genetic variation data

    PubMed Central

    Ephraim, Sean S.; Anand, Nikhil; DeLuca, Adam P.; Taylor, Kyle R.; Kolbe, Diana L.; Simpson, Allen C.; Azaiez, Hela; Sloan, Christina M.; Shearer, A. Eliot; Hallier, Andrea R.; Casavant, Thomas L.; Scheetz, Todd E.; Smith, Richard J. H.; Braun, Terry A.

    2014-01-01

    Summary: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician–scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Availability and implementation: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Contact: sean.ephraim@gmail.com or terry-braun@uiowa.edu PMID:25123904

  3. Relating Human Genetic Variation to Variation in Drug Responses

    PubMed Central

    Madian, Ashraf G.; Wheeler, Heather E.; Jones, Richard Baker; Dolan, M. Eileen

    2012-01-01

    Although sequencing a single human genome was a monumental effort a decade ago, more than one thousand genomes have now been sequenced. The task ahead lies in transforming this information into personalized treatment strategies that are tailored to the unique genetics of each individual. One important aspect of personalized medicine is patient-to-patient variation in drug response. Pharmacogenomics addresses this issue by seeking to identify genetic contributors to human variation in drug efficacy and toxicity. Here, we present a summary of the current status of this field, which has evolved from studies of single candidate genes to comprehensive genome-wide analyses. Additionally, we discuss the major challenges in translating this knowledge into a systems-level understanding of drug physiology with the ultimate goal of developing more effective personalized clinical treatment strategies. PMID:22840197

  4. Genetic regulation of the variation of circulating insulin-like growth factors and leptin in human pedigrees.

    PubMed

    Pantsulaia, Ia; Pantsulaia, I; Trofimov, Svetlana; Kobyliansky, Eugene; Livshits, Gregory

    2005-07-01

    Recent literature has shown that circulating levels of insulin-like growth factor I (IGF-I) and/or IGF binding proteins (IGF-BPs) may be of importance in the risk assessment of several chronic diseases including cancer, cardiovascular disease, diabetes mellitus and so on. The present study examined the extent of genetic and environmental influences on the populational variation of circulating IGF-I and IGF-BP-1 in apparently healthy and ethnically homogeneous white families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 563 individuals aged 18 to 80 years. Quantitative genetic analysis showed that the IGF-I variation was appreciably attributable to genetic effects (47.1% +/- 9.0%), whereas for IGF-BP-1, only 23.3% +/- 7.8% of the interindividual variation was explained by genetic determinants. Common familial environment factors contributed significantly only to IGF-BP-1 variation (23.3% +/- 7.8%). In addition, we examined the covariations between these molecules and between them and IGF-BP-3 and leptin that were previously studied in the same sample. The analysis revealed that the pleiotropic genetic effects were significant for 2 pairs of traits, namely for IGF-I and IGF-BP-3, and for IGF-BP-1 and leptin. The bivariate heritability estimates were 0.21 +/- 0.04 and 0.15 +/- 0.05. The common environmental factors were consistently a significant source of correlation between all pairs (barring IGF-I and leptin) of the studied molecules; they were the sole predictors of correlation between IGF-I and IGF-BP-1, and between IGF-BP-1 and IGF-BP-3. Our results affirm the existence of specific and common genetic pathways that in combination determine a substantial proportion of the circulating variation of these molecules.

  5. Host genetic variation impacts microbiome composition across human body sites.

    PubMed

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  6. Genetic variation in adaptability and pleiotropy in budding yeast

    PubMed Central

    Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid

    2017-01-01

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation. PMID:28826486

  7. Genetic variation in adaptability and pleiotropy in budding yeast.

    PubMed

    Jerison, Elizabeth R; Kryazhimskiy, Sergey; Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid; Desai, Michael M

    2017-08-17

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.

  8. Cordova: web-based management of genetic variation data.

    PubMed

    Ephraim, Sean S; Anand, Nikhil; DeLuca, Adam P; Taylor, Kyle R; Kolbe, Diana L; Simpson, Allen C; Azaiez, Hela; Sloan, Christina M; Shearer, A Eliot; Hallier, Andrea R; Casavant, Thomas L; Scheetz, Todd E; Smith, Richard J H; Braun, Terry A

    2014-12-01

    Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Published by Oxford University Press. This work is written by US Government employees and is in the public domain in the US.

  9. Genetic Variation within a Lotic Population of Janthinobacterium lividum

    PubMed Central

    Saeger, Jennifer L.; Hale, Alan B.

    1993-01-01

    An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (π) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested. PMID:16348995

  10. Genetic Variation within a Lotic Population of Janthinobacterium lividum.

    PubMed

    Saeger, J L; Hale, A B

    1993-07-01

    An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (pi) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested.

  11. Quantitative genetic correlation between trait and preference supports a sexually selected sperm process

    PubMed Central

    Simmons, Leigh W.; Kotiaho, Janne S.

    2007-01-01

    Sperm show patterns of rapid and divergent evolution that are characteristic of sexual selection. Sperm competition has been proposed as an important selective agent in the evolution of sperm morphology. However, several comparative analyses have revealed evolutionary associations between sperm length and female reproductive tract morphology that suggest patterns of male–female coevolution. In the dung beetle Onthophagus taurus, males with short sperm have a fertilization advantage that depends on the size of the female's sperm storage organ, the spermatheca; large spermathecae select for short sperm. Sperm length is heritable and is genetically correlated with male condition. Here we report significant additive genetic variation and heritability for spermatheca size and genetic covariance between spermatheca size and sperm length predicted by both the “good-sperm” and “sexy-sperm” models of postcopulatory female preference. Our data thus provide quantitative genetic support for the role of a sexually selected sperm process in the evolutionary divergence of sperm morphology, in much the same manner as precopulatory female preferences drive the evolutionary divergence of male secondary sexual traits. PMID:17921254

  12. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    PubMed

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  13. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  14. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  15. Genetic variation in steelhead of Oregon and northern California

    USGS Publications Warehouse

    Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W

    1992-01-01

    Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.

  16. [Research progress of molecular genetic analysis in Schistosoma variation].

    PubMed

    Zheng, Su-Yue; Li, Fei

    2014-02-01

    The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.

  17. Hidden genetic variation in the germline genome of Tetrahymena thermophila.

    PubMed

    Dimond, K L; Zufall, R A

    2016-06-01

    Genome architecture varies greatly among eukaryotes. This diversity may profoundly affect the origin and maintenance of genetic variation within a population. Ciliates are microbial eukaryotes with unusual genome features, such as the separation of germline and somatic genomes within a single cell and amitotic division. These features have previously been proposed to increase the rate of molecular evolution in these species. Here, we assessed the fitness effects of genetic variation in the two genomes of natural isolates of the ciliate Tetrahymena thermophila. We find more extensive genetic variation in fitness in the transcriptionally silent germline genome than in the expressed somatic genome. Surprisingly, this variation is not primarily deleterious, but has both beneficial and deleterious effects. We conclude that Tetrahymena genome architecture allows for the maintenance of genetic variation that would otherwise be eliminated by selection. We consider the effect of selection on the two genomes and the impacts of reproductive strategies and the mechanism of sex determination on the structure of this variation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  18. Genetic Variants Associated With Quantitative Glucose Homeostasis Traits Translate to Type 2 Diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium.

    PubMed

    Palmer, Nicholette D; Goodarzi, Mark O; Langefeld, Carl D; Wang, Nan; Guo, Xiuqing; Taylor, Kent D; Fingerlin, Tasha E; Norris, Jill M; Buchanan, Thomas A; Xiang, Anny H; Haritunians, Talin; Ziegler, Julie T; Williams, Adrienne H; Stefanovski, Darko; Cui, Jinrui; Mackay, Adrienne W; Henkin, Leora F; Bergman, Richard N; Gao, Xiaoyi; Gauderman, James; Varma, Rohit; Hanis, Craig L; Cox, Nancy J; Highland, Heather M; Below, Jennifer E; Williams, Amy L; Burtt, Noel P; Aguilar-Salinas, Carlos A; Huerta-Chagoya, Alicia; Gonzalez-Villalpando, Clicerio; Orozco, Lorena; Haiman, Christopher A; Tsai, Michael Y; Johnson, W Craig; Yao, Jie; Rasmussen-Torvik, Laura; Pankow, James; Snively, Beverly; Jackson, Rebecca D; Liu, Simin; Nadler, Jerry L; Kandeel, Fouad; Chen, Yii-Der I; Bowden, Donald W; Rich, Stephen S; Raffel, Leslie J; Rotter, Jerome I; Watanabe, Richard M; Wagenknecht, Lynne E

    2015-05-01

    Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. The capture of heritable variation for genetic quality through social competition.

    PubMed

    Wolf, Jason B; Harris, W Edwin; Royle, Nick J

    2008-09-01

    In theory, females of many species choose mates based on traits that are indicators of male genetic quality. A fundamental question in evolutionary biology is why genetic variation for such indicator traits persists despite strong persistent selection imposed by female preference, which is known as the lek paradox. One potential solution to the lek paradox suggests that the traits that are targets of mate choice should evolve condition-dependent expression and that condition should have a large genetic variance. Condition is expected to exhibit high genetic variance because it is affected by a large number of physiological processes and hence, condition-dependent traits should 'capture' variation contributed by a large number of loci. We suggest that a potentially important cause of variation in condition is competition for limited resources. Here, we discuss a pair of models to analyze the evolutionary genetics of traits affected by success in social competition for resources. We show that competition can contribute to genetic variation of 'competition-dependent' traits that have fundamentally different evolutionary properties than other sources of variation. Competition dependence can make traits honest indicators of genetic quality by revealing the relative competitive ability of males, can provide a component of heritable variation that does not contribute to trait evolution, and can help maintain heritable variation under directional selection. Here we provide a general introduction to the concept of competition dependence and briefly introduce two models to demonstrate the potential evolutionary consequences of competition-dependent trait expression.

  20. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    PubMed Central

    2012-01-01

    Background Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. Results Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. Conclusions This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different

  1. Genetic Variation Sampled in Three California Oaks

    Treesearch

    Lawrence A. Riggs; Constance I. Millar; Diane L. Delany

    1991-01-01

    As a first step in acquiring genetic information about oak species indigenous to California's hardwood rangelands we drew on experience from both forest regeneration and species conservation and applied biochemical techniques for rapidly assaying patterns of genetic variation. In a study sponsored by the California Integrated Hardwood Range Management Program we...

  2. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound.

    PubMed

    Purcell, Maureen K; Hard, Jeffrey J; Neely, Kathleen G; Park, Linda K; Winton, James R; Elliott, Diane G

    2014-03-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP ), additive genetic variation (VA ) and narrow-sense heritability (h (2)) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h (2) estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still

  3. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound

    USGS Publications Warehouse

    Purcell, Maureen K.; Hard, Jeffrey J.; Neely, Kathleen G.; Park, Linda K.; Winton, James R.; Elliott, Diane G.

    2014-01-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP), additive genetic variation (VA) and narrow-sense heritability (h2) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h2 estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still possible and

  4. When Does Frequency-Independent Selection Maintain Genetic Variation?

    PubMed

    Novak, Sebastian; Barton, Nicholas H

    2017-10-01

    Frequency-independent selection is generally considered as a force that acts to reduce the genetic variation in evolving populations, yet rigorous arguments for this idea are scarce. When selection fluctuates in time, it is unclear whether frequency-independent selection may maintain genetic polymorphism without invoking additional mechanisms. We show that constant frequency-independent selection with arbitrary epistasis on a well-mixed haploid population eliminates genetic variation if we assume linkage equilibrium between alleles. To this end, we introduce the notion of frequency-independent selection at the level of alleles, which is sufficient to prove our claim and contains the notion of frequency-independent selection on haploids. When selection and recombination are weak but of the same order, there may be strong linkage disequilibrium; numerical calculations show that stable equilibria are highly unlikely. Using the example of a diallelic two-locus model, we then demonstrate that frequency-independent selection that fluctuates in time can maintain stable polymorphism if linkage disequilibrium changes its sign periodically. We put our findings in the context of results from the existing literature and point out those scenarios in which the possible role of frequency-independent selection in maintaining genetic variation remains unclear. Copyright © 2017 by the Genetics Society of America.

  5. GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations

    PubMed Central

    Paila, Umadevi; Chapman, Brad A.; Kirchner, Rory; Quinlan, Aaron R.

    2013-01-01

    Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI's utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics. PMID:23874191

  6. Breeding and quantitative genetics advances in sunflower Sclerotinia research

    USDA-ARS?s Scientific Manuscript database

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower quantitative genetics research to find and capture Sclerotinia resistance is increasing with every year t...

  7. Aggregation of population‐based genetic variation over protein domain homologues and its potential use in genetic diagnostics

    PubMed Central

    Wiel, Laurens; Venselaar, Hanka; Veltman, Joris A.; Vriend, Gert

    2017-01-01

    Abstract Whole exomes of patients with a genetic disorder are nowadays routinely sequenced but interpretation of the identified genetic variants remains a major challenge. The increased availability of population‐based human genetic variation has given rise to measures of genetic tolerance that have been used, for example, to predict disease‐causing genes in neurodevelopmental disorders. Here, we investigated whether combining variant information from homologous protein domains can improve variant interpretation. For this purpose, we developed a framework that maps population variation and known pathogenic mutations onto 2,750 “meta‐domains.” These meta‐domains consist of 30,853 homologous Pfam protein domain instances that cover 36% of all human protein coding sequences. We find that genetic tolerance is consistent across protein domain homologues, and that patterns of genetic tolerance faithfully mimic patterns of evolutionary conservation. Furthermore, for a significant fraction (68%) of the meta‐domains high‐frequency population variation re‐occurs at the same positions across domain homologues more often than expected. In addition, we observe that the presence of pathogenic missense variants at an aligned homologous domain position is often paired with the absence of population variation and vice versa. The use of these meta‐domains can improve the interpretation of genetic variation. PMID:28815929

  8. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix

    NASA Astrophysics Data System (ADS)

    Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.

    2012-06-01

    In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.

  9. Interactions between genetic variation and cellular environment in skeletal muscle gene expression.

    PubMed

    Taylor, D Leland; Knowles, David A; Scott, Laura J; Ramirez, Andrea H; Casale, Francesco Paolo; Wolford, Brooke N; Guan, Li; Varshney, Arushi; Albanus, Ricardo D'Oliveira; Parker, Stephen C J; Narisu, Narisu; Chines, Peter S; Erdos, Michael R; Welch, Ryan P; Kinnunen, Leena; Saramies, Jouko; Sundvall, Jouko; Lakka, Timo A; Laakso, Markku; Tuomilehto, Jaakko; Koistinen, Heikki A; Stegle, Oliver; Boehnke, Michael; Birney, Ewan; Collins, Francis S

    2018-01-01

    From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.

  10. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models.

    PubMed

    Fu, Guifang; Dai, Xiaotian; Symanzik, Jürgen; Bushman, Shaun

    2017-01-01

    Leaf shape traits have long been a focus of many disciplines, but the complex genetic and environmental interactive mechanisms regulating leaf shape variation have not yet been investigated in detail. The question of the respective roles of genes and environment and how they interact to modulate leaf shape is a thorny evolutionary problem, and sophisticated methodology is needed to address it. In this study, we investigated a framework-level approach that inputs shape image photographs and genetic and environmental data, and then outputs the relative importance ranks of all variables after integrating shape feature extraction, dimension reduction, and tree-based statistical models. The power of the proposed framework was confirmed by simulation and a Populus szechuanica var. tibetica data set. This new methodology resulted in the detection of novel shape characteristics, and also confirmed some previous findings. The quantitative modeling of a combination of polygenetic, plastic, epistatic, and gene-environment interactive effects, as investigated in this study, will improve the discernment of quantitative leaf shape characteristics, and the methods are ready to be applied to other leaf morphology data sets. Unlike the majority of approaches in the quantitative leaf shape literature, this framework-level approach is data-driven, without assuming any pre-known shape attributes, landmarks, or model structures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Androgens and doping tests: genetic variation and pit-falls

    PubMed Central

    Rane, Anders; Ekström, Lena

    2012-01-01

    The large variation in disposition known for most drugs is also true for anabolic androgenic steroids. Genetic factors are probably the single most important cause of this variation. Further, there are reasons to believe that there is a corresponding variation in efficacy of doping agents. Doped individuals employ a large variety of doping strategies in respect of choice of substance, dose, dose interval, duration of treatment and use of other drugs for enforcement of effects or correction of side effects. Metabolic steps up-stream and down-stream of testosterone are genetically variable and contribute substantially to the variation in disposition of testosterone, the most common doping agent in sports and in society. Large inter- and intra-ethnic variation in testosterone glucuronidation and excretion is described as well as the pit-falls in evaluation of testosterone doping test results. The hydrolysis and bioactivation of testosterone enanthate is also genetically variable yielding a 2–3 fold variation in excretion rate and serum concentration, thereby implicating a substantial variation in ‘efficacy’ of testosterone. Given this situation it is logical to adopt the new findings in the doping control programme. The population based cut-off level for the testosterone : epitestosterone ratio should be replaced by a Bayesian interpretation of consecutive tests in the same individual. When combined with the above genetic information the sensitivity of the test is considerably improved. The combination of the three approaches should reduce the rate of falsely negative or positive results and the number of expensive follow-up tests, stipulated by the World Anti-Doping Agency. PMID:22506612

  12. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    PubMed Central

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  13. Normal Genetic Variation, Cognition, and Aging

    PubMed Central

    Greenwood, P. M.; Parasuraman, Raja

    2005-01-01

    This article reviews the modulation of cognitive function by normal genetic variation. Although the heritability of “g” is well established, the genes that modulate specific cognitive functions are largely unidentified. Application of the allelic association approach to individual differences in cognition has begun to reveal the effects of single nucleotide polymorphisms on specific and general cognitive functions. This article proposes a framework for relating genotype to cognitive phenotype by considering the effect of genetic variation on the protein product of specific genes within the context of the neural basis of particular cognitive domains. Specificity of effects is considered, from genes controlling part of one receptor type to genes controlling agents of neuronal repair, and evidence is reviewed of cognitive modulation by polymorphisms in dopaminergic and cholinergic receptor genes, dopaminergic enzyme genes, and neurotrophic genes. Although allelic variation in certain genes can be reliably linked to cognition—specifically to components of attention, working memory, and executive function in healthy adults—the specificity, generality, and replicability of the effects are not fully known. PMID:15006290

  14. Quantitative Genetic Modeling of the Parental Care Hypothesis for the Evolution of Endothermy

    PubMed Central

    Bacigalupe, Leonardo D.; Moore, Allen J.; Nespolo, Roberto F.; Rezende, Enrico L.; Bozinovic, Francisco

    2017-01-01

    There are two heuristic explanations proposed for the evolution of endothermy in vertebrates: a correlated response to selection for stable body temperatures, or as a correlated response to increased activity. Parental care has been suggested as a major driving force in this context given its impact on the parents' activity levels and energy budgets, and in the offspring's growth rates due to food provisioning and controlled incubation temperature. This results in a complex scenario involving multiple traits and transgenerational fitness benefits that can be hard to disentangle, quantify and ultimately test. Here we demonstrate how standard quantitative genetic models of maternal effects can be applied to study the evolution of endothermy, focusing on the interplay between daily energy expenditure (DEE) of the mother and growth rates of the offspring. Our model shows that maternal effects can dramatically exacerbate evolutionary responses to selection in comparison to regular univariate models (breeder's equation). This effect would emerge from indirect selection mediated by maternal effects concomitantly with a positive genetic covariance between DEE and growth rates. The multivariate nature of selection, which could favor a higher DEE, higher growth rates or both, might partly explain how high turnover rates were continuously favored in a self-reinforcing process. Overall, our quantitative genetic analysis provides support for the parental care hypothesis for the evolution of endothermy. We contend that much has to be gained from quantifying maternal and developmental effects on metabolic and thermoregulatory variation during adulthood. PMID:29311952

  15. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    PubMed Central

    Kijas, James W.; Townley, David; Dalrymple, Brian P.; Heaton, Michael P.; Maddox, Jillian F.; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G.; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V. Hutton; Nicholas, Frank W.; Raadsma, Herman

    2009-01-01

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability. PMID:19270757

  16. Most genetic risk for autism resides with common variation.

    PubMed

    Gaugler, Trent; Klei, Lambertus; Sanders, Stephan J; Bodea, Corneliu A; Goldberg, Arthur P; Lee, Ann B; Mahajan, Milind; Manaa, Dina; Pawitan, Yudi; Reichert, Jennifer; Ripke, Stephan; Sandin, Sven; Sklar, Pamela; Svantesson, Oscar; Reichenberg, Abraham; Hultman, Christina M; Devlin, Bernie; Roeder, Kathryn; Buxbaum, Joseph D

    2014-08-01

    A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (herein termed autism), the nature of the allelic spectrum is uncertain. Individual risk-associated genes have been identified from rare variation, especially de novo mutations. From this evidence, one might conclude that rare variation dominates the allelic spectrum in autism, yet recent studies show that common variation, individually of small effect, has substantial impact en masse. At issue is how much of an impact relative to rare variation this common variation has. Using a unique epidemiological sample from Sweden, new methods that distinguish total narrow-sense heritability from that due to common variation and synthesis of results from other studies, we reach several conclusions about autism's genetic architecture: its narrow-sense heritability is ∼52.4%, with most due to common variation, and rare de novo mutations contribute substantially to individual liability, yet their contribution to variance in liability, 2.6%, is modest compared to that for heritable variation.

  17. Evolutionary response when selection and genetic variation covary across environments.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.

  18. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  19. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information.

    PubMed

    Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino

    2016-09-10

    Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source

  20. Heritability and genetic basis of protein level variation in an outbred population

    PubMed Central

    Liu, Yi-Chun; Tekkedil, Manu M.; Steinmetz, Lars M.; Caudy, Amy A.; Fraser, Andrew G.

    2014-01-01

    The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population’s average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance. PMID:24823668

  1. Most genetic risk for autism resides with common variation

    PubMed Central

    Gaugler, Trent; Klei, Lambertus; Sanders, Stephan J.; Bodea, Corneliu A.; Goldberg, Arthur P.; Lee, Ann B.; Mahajan, Milind; Manaa, Dina; Pawitan, Yudi; Reichert, Jennifer; Ripke, Stephan; Sandin, Sven; Sklar, Pamela; Svantesson, Oscar; Reichenberg, Abraham; Hultman, Christina M.; Devlin, Bernie

    2014-01-01

    A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (henceforth autism) the nature of its allelic spectrum is uncertain. Individual risk genes have been identified from rare variation, especially de novo mutations1–8. From this evidence one might conclude that rare variation dominates its allelic spectrum, yet recent studies show that common variation, individually of small effect, has substantial impact en masse9,10. At issue is how much of an impact relative to rare variation. Using a unique epidemiological sample from Sweden, novel methods that distinguish total narrow-sense heritability from that due to common variation, and by synthesizing results from other studies, we reach several conclusions about autism’s genetic architecture: its narrow-sense heritability is ≈54% and most traces to common variation; rare de novo mutations contribute substantially to individuals’ liability; still their contribution to variance in liability, 2.6%, is modest compared to heritable variation. PMID:25038753

  2. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line. © 2016 John Wiley & Sons Ltd.

  3. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  4. Genetics of the dentofacial variation in human malocclusion

    PubMed Central

    Moreno Uribe, L. M.; Miller, S. F.

    2015-01-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes. PMID:25865537

  5. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans

    PubMed Central

    Saykin, Andrew J.; Shen, Li; Foroud, Tatiana M.; Potkin, Steven G.; Swaminathan, Shanker; Kim, Sungeun; Risacher, Shannon L.; Nho, Kwangsik; Huentelman, Matthew J.; Craig, David W.; Thompson, Paul M.; Stein, Jason L.; Moore, Jason H.; Farrer, Lindsay A.; Green, Robert C.; Bertram, Lars; Jack, Clifford R.; Weiner, Michael W.

    2010-01-01

    The role of the Alzheimer’s Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome-wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within Alzheimer’s Disease Neuroimaging Initiative. Genome-wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimer’s disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials. PMID:20451875

  6. A multi-perspective view of genetic variation in Cameroon.

    PubMed

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  7. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  8. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  9. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster

    PubMed Central

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.

    2015-01-01

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032

  10. Conservation genetics of bull trout: Geographic distribution of variation at microsatellite loci.

    Treesearch

    P. Spruell; A.R. Hemmingsen; P.J. Howell; N. Kanda; F.W. Allendorf

    2003-01-01

    We describe the genetic population structure of 65 bull trout (Salvelinus confluentus) populations from the northwestern United States using four microsatellite loci. The distribution of genetic variation as measured by microsatellites is consistent with previous allozyme and mitochondrial DNA analysis. There is relatively little genetic variation...

  11. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).

  12. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  13. QUANTITATIVE GENETIC ACTIVITY GRAPHICAL PROFILES FOR USE IN CHEMICAL EVALUATION

    EPA Science Inventory

    A graphic approach termed a Genetic Activity Profile (GAP) has been developed to display a matrix of data on the genetic and related effects of selected chemical agents. he profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each...

  14. [Genetic variation of geographical provenance of Pinus massoniana--review and analysis].

    PubMed

    Li, D; Peng, S

    2000-04-01

    Pinus massoniana is a significant tree species constituting the subtropical forests in China. Based on morphological, physio-ecological, chromosome, and molecular levels, the genetic variation of geographical provenance of P. massoniana and its distribution were reviewed, and the methodologies on genetic diversity and the genetic variation patterns of geographical provenance of P. massoniana were synthetically analyzed. The Key problems on molecular ecology of P. massoniana were discussed.

  15. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs.

    PubMed

    Marsden, Clare D; Ortega-Del Vecchyo, Diego; O'Brien, Dennis P; Taylor, Jeremy F; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D; Wayne, Robert K; Lohmueller, Kirk E

    2016-01-05

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.

  16. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs

    PubMed Central

    Marsden, Clare D.; Ortega-Del Vecchyo, Diego; O’Brien, Dennis P.; Taylor, Jeremy F.; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D.; Wayne, Robert K.; Lohmueller, Kirk E.

    2016-01-01

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2–3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants. PMID:26699508

  17. Genetic Variation in an Inbred Plant: Variation in Tissue Cultures of Soybean [Glycine Max (L.) Merrill

    PubMed Central

    Roth, E. J.; Frazier, B. L.; Apuya, N. R.; Lark, K. G.

    1989-01-01

    Although soybean [Glycine max (L.) Merrill] grows as an inbreeding, generally homozygous, plant, the germplasm of the species contains large amounts of genetic variation. Analysis of soybean DNA has indicated that variation of RFLP (restriction fragment length polymorphism) markers within the species usually entails only two alleles at any one locus and that mixtures of such dimorphic loci account for virtually all of the restriction fragment variation seen in soybean (G. max), and in its ancestors, G. soja and G. gracilis. We report here that tissue cultures prepared from root tissue of individual soybean plants develop RFLP allelic differences at various loci. However, these newly generated alleles are almost always the same as ones previously found and characterized in other varieties of cultivated soybean (cultivars). This repeated generation of particular alleles suggests that much of the genetic variation seen in soybean could be the consequence of specific, relatively frequently employed, recombinational events. Such a mechanism would allow inbred cultivars to generate genetic variation (in the form of alternative alleles) in a controlled manner, perhaps in response to stress. PMID:2567263

  18. Genetic variation in Toll-like receptors and disease susceptibility.

    PubMed

    Netea, Mihai G; Wijmenga, Cisca; O'Neill, Luke A J

    2012-05-18

    Toll-like receptors (TLRs) are key initiators of the innate immune response and promote adaptive immunity. Much has been learned about the role of TLRs in human immunity from studies linking TLR genetic variation with disease. First, monogenic disorders associated with complete deficiency in certain TLR pathways, such as MyD88-IRAK4 or TLR3-Unc93b-TRIF-TRAF3, have demonstrated the specific roles of these pathways in host defense against pyogenic bacteria and herpesviruses, respectively. Second, common polymorphisms in genes encoding several TLRs and associated genes have been associated with both infectious and autoimmune diseases. The study of genetic variation in TLRs in various populations combined with information on infection has demonstrated complex interaction between genetic variation in TLRs and environmental factors. This interaction explains the differences in the effect of TLR polymorphisms on susceptibility to infection and autoimmune disease in various populations.

  19. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment.

    PubMed

    White, Paul A; Johnson, George E

    2016-05-01

    Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the

  20. Genetic approaches in comparative and evolutionary physiology

    PubMed Central

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  1. AFLP analysis of Cynodon dactylon (L.) Pers. var. dactylon genetic variation.

    PubMed

    Wu, Y Q; Taliaferro, C M; Bai, G H; Anderson, M P

    2004-08-01

    Cynodon dactylon (L.) Pers. var. dactylon (common bermudagrass) is geographically widely distributed between about lat 45 degrees N and lat 45 degrees S, penetrating to about lat 53 degrees N in Europe. The extensive variation of morphological and adaptive characteristics of the taxon is substantially documented, but information is lacking on DNA molecular variation in geographically disparate forms. Accordingly, this study was conducted to assess molecular genetic variation and genetic relatedness among 28 C. dactylon var. dactylon accessions originating from 11 countries on 4 continents (Africa, Asia, Australia, and Europe). A fluorescence-labeled amplified fragment length polymorphism (AFLP) DNA profiling method was used to detect the genetic diversity and relatedness. On the basis of 443 polymorphic AFLP fragments from 8 primer combinations, the accessions were grouped into clusters and subclusters associating with their geographic origins. Genetic similarity coefficients (SC) for the 28 accessions ranged from 0.53 to 0.98. Accessions originating from Africa, Australia, Asia, and Europe formed major groupings as indicated by cluster and principal coordinate analysis. Accessions from Australia and Asia, though separately clustered, were relatively closely related and most distantly related to accessions of European origin. African accessions formed two distant clusters and had the greatest variation in genetic relatedness relative to accessions from other geographic regions. Sampling the full extent of genetic variation in C. dactylon var. dactylon would require extensive germplasm collection in the major geographic regions of its distributional range.

  2. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  3. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  4. Levels of genetic variation in trees: influence of life history characteristics

    Treesearch

    J. L Hamrick; J. B. Milton; Y. B. Linhart

    1981-01-01

    In a previous study, levels of genetic variation, as measured by isozyme analyses, were compared for 113 taxa of vascular plants. Each species was classified for 12 life history and ecological traits and three measures of genetic variation were calculated. Plants with large ranges, high fecundities, an outcrossing mode of reproduction, wind pollination, a long...

  5. Genetic variation within and between strains of outbred Swiss mice.

    PubMed

    Cui, S; Chesson, C; Hope, R

    1993-04-01

    The aim of this survey was to measure levels of genetic variation within and between 5 different strains of outbred Swiss mice. Ten to 15 animals from each strain (NIH, Q(S), ARC, IMVS and STUD) were typed, using allozyme electrophoresis, at 10 gene loci: Mod-1, Idh-1, Gpi-I, Es-1, Es-3, Hbb, Pep-3, Gr-1, Got-2 and Pgm-1. Polymorphic variation in at least one of the 5 strains was detected at all 10 loci. The proportion of polymorphic loci ranged from 0.3 (NIH) to 0.8 (IMVS) with a mean of 0.52. Average expected heterozygosities ranged from 0.08 (NIH) to 0.37 (IMVS) with a mean of 0.21. The inbred strain SWR was, as expected, homozygous at all 10 loci. The amount of allelic substitution between pairs of strains was quantified using Nei's genetic distance, and a dendrogram based on these genetic distances showed a close overall similarity in its branching pattern to the known genealogy of the strains. This survey showed that a considerable degree of genetic variation persists in the 5 strains examined, a level of variation similar to that previously detected by Rice and O'Brien (1980) in 3 other outbred Swiss strains.

  6. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior

    PubMed Central

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892

  7. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae

    PubMed Central

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515

  8. SRD5A1 Genetic Variation and Prostate Cancer Epidemiology

    DTIC Science & Technology

    2006-05-01

    DAMD17-03-1-0136 TITLE: SRD5A1 Genetic Variation and Prostate Cancer Epidemiology PRINCIPAL INVESTIGATOR: Troy Phipps...DATES COVERED (From - To) 1 May 2003 – 30 Apr 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER SRD5A1 Genetic Variation and Prostate Cancer...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The human steroid 5-alpha reductase type I ( SRD5A1 ) gene was sequenced in 101

  9. Genetic approaches in comparative and evolutionary physiology.

    PubMed

    Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore

    2015-08-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.

  10. Quantitative genetics of immunity and life history under different photoperiods.

    PubMed

    Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J

    2012-05-01

    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.

  11. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.

    PubMed

    Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E

    2016-09-01

    This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.

  12. Genetic Variation in Populations of a Tropical Mysid, Mysidium gracile

    NASA Astrophysics Data System (ADS)

    Chapina, R.; Ramos-Chavez, J.; Walsh, E.

    2016-02-01

    Genetic diversity allows organisms to adapt to environmental factors such as climate change and ocean acidification. Greater genetic diversity among organisms allows a higher probability of adaptation to changing environments. The mysid Mysidium gracile is a shrimp-like crustacean that aggregates into swarms near coral reefs. They are important in reef systems since they occupy an important intermediate level of marine food webs by transferring energy from planktonic species to reef fishes. Thus, there is concern regarding the tolerance of reef- associated organisms to climatic changes and overall coral reef health. The objective of this study is to determine the level of genetic variation within and among Caribbean M. gracile populations. Mysids from 7 islands were collected and preserved for genetic analysis. The CO1 gene was amplified and sequenced for 100 mysids representing 14 swarms. Haplotype diversity was determined using DnaSP5.0. Twenty- three haplotypes were detected with a haplotype diversity of 0.94, thus indicating a high level of haplotypic variation. Mysids from two populations shared a haplotype, implying that there is potential gene flow between these populations. Mysids from additional swarms are in process of being characterized. Overall, these results show that there is substantial genetic variation within and among mysid populations that may allow them to adapt environmental factors.

  13. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    PubMed Central

    Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira

    2015-01-01

    A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620

  14. Genetic variation, climate models and the ecological genetics of Larix occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehfeldt, G.E.

    1995-12-31

    Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance,more » need to be separated by about 500 m in elevation before genetic differentiation can be expected.« less

  15. Genetic variation in the endangered Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P < 0.0005; θ = 0.0816, 95% CI = 0.0608 to 0.1034; ΦST = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  16. Landscape location affects genetic variation of Canada lynx (Lynx canadensis)

    Treesearch

    M. K. Schwartz; L. S. Mills; Y. Ortega; L. F. Ruggiero; F. W. Allendorf

    2003-01-01

    The effect of a population's location on the landscape on genetic variation has been of interest to population genetics for more than half a century. However, most studies do not consider broadscale biogeography when interpreting genetic data. In this study, we propose an operational definition of a peripheral population, and then explore whether peripheral...

  17. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation.

    PubMed

    Babak, Tomas; Garrett-Engele, Philip; Armour, Christopher D; Raymond, Christopher K; Keller, Mark P; Chen, Ronghua; Rohl, Carol A; Johnson, Jason M; Attie, Alan D; Fraser, Hunter B; Schadt, Eric E

    2010-08-13

    Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing.

  18. Genetic variation in personality traits explains genetic overlap between borderline personality features and substance use disorders.

    PubMed

    Few, Lauren R; Grant, Julia D; Trull, Timothy J; Statham, Dixie J; Martin, Nicholas G; Lynskey, Michael T; Agrawal, Arpana

    2014-12-01

    To examine the genetic overlap between borderline personality features (BPF) and substance use disorders (SUDs) and the extent to which variation in personality traits contributes to this covariance. Genetic structural equation modelling was used to partition the variance in and covariance between personality traits, BPF and SUDs into additive genetic, shared and individual-specific environmental factors. All participants were registered with the Australian Twin Registry. A total of 3127 Australian adult twins participated in the study. Diagnoses of DSM-IV alcohol and cannabis abuse/dependence (AAD; CAD) and nicotine dependence (ND) were derived via computer-assisted telephone interview. BPF and five-factor model personality traits were derived via self-report questionnaires. Personality traits, BPF and substance use disorders were partially influenced by genetic factors with heritability estimates ranging from 0.38 (neuroticism; 95% confidence interval: 0.30-0.45) to 0.78 (CAD; 95% confidence interval: 0.67-0.86). Genetic and individual-specific environmental correlations between BPF and SUDs ranged from 0.33 to 0.56 (95% CI = 0.19-0.74) and 0.19-0.32 (95% CI = 0.06-0.43), respectively. Overall, there was substantial support for genetic influences that were specific to AAD, ND and CAD (30.76-68.60%). Finally, genetic variation in personality traits was responsible for 11.46% (extraversion for CAD) to 59.30% (neuroticism for AAD) of the correlation between BPF and SUDs. Both genetic and individual-specific environmental factors contribute to comorbidity between borderline personality features and substance use disorders. A substantial proportion of this comorbidity can be attributed to variation in normal personality traits, particularly neuroticism. © 2014 Society for the Study of Addiction.

  19. The Evolution of Human Genetic and Phenotypic Variation in Africa

    PubMed Central

    Campbell, Michael C.

    2010-01-01

    Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations. PMID:20178763

  20. Phenotypic and Genetic Variations in Obligate Parthenogenetic Populations of Eriosoma lanigerum Hausmann (Hemiptera: Aphididae).

    PubMed

    Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S

    2015-12-01

    The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e =  .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology.

  1. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.

    PubMed

    Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu

    2018-04-24

    We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.

  2. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach.

    PubMed

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R; Peterson, Kenneth R; Philipsen, Sjaak; Maglott, Donna; Singleton, Belinda K; Anstee, David J; Basak, A Nazli; Clark, Barnaby; Costa, Flavia C; Faustino, Paula; Fedosyuk, Halyna; Felice, Alex E; Francina, Alain; Galanello, Renzo; Gallivan, Monica V E; Georgitsi, Marianthi; Gibbons, Richard J; Giordano, Piero C; Harteveld, Cornelis L; Hoyer, James D; Jarvis, Martin; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N; Papadopoulos, Petros; Pavlovic, Sonja; Perseu, Lucia; Radmilovic, Milena; Riemer, Cathy; Satta, Stefania; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John S; Wiemann, Claudia; Zukic, Branka; Chui, David H K; Wajcman, Henri; Hardison, Ross C; Patrinos, George P

    2011-03-20

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.

  3. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  4. Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence

    PubMed Central

    Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.

    2006-01-01

    Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935

  5. The effect of epistasis on sexually antagonistic genetic variation

    PubMed Central

    Arnqvist, Göran; Vellnow, Nikolas; Rowe, Locke

    2014-01-01

    There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence. PMID:24870040

  6. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  7. Genetic variation in personality traits explains genetic overlap between borderline personality features and substance use disorders

    PubMed Central

    Few, Lauren R.; Grant, Julia D; Trull, Timothy J.; Statham, Dixie J.; Martin, Nicholas G.; Lynskey, Michael T.; Agrawal, Arpana

    2014-01-01

    Aims To examine the genetic overlap between borderline personality features (BPF) and substance use disorders (SUDs) and the extent to which variation in personality traits contributes to this covariance. Design Genetic structural equation modelling was used to partition the variance in and covariance between personality traits, BPF, and SUDs into additive genetic, shared, and individual-specific environmental factors. Setting All participants were registered with the Australian Twin Registry. Participants A total of 3,127 Australian adult twins participated in the study. Measurements Diagnoses of DSM-IV alcohol and cannabis abuse/dependence (AAD; CAD), and nicotine dependence (ND) were derived via computer-assisted telephone interview. BPF and five-factor model personality traits were derived via self-report questionnaires. Findings Genetic factors were responsible for 49% (95%CI: 42%–55%) of the variance in BPF, 38–42% (95%CI range: 32%–49%) for personality traits and 47% (95%CI: 17%–77%), 54% (95%CI: 43%–64%), and 78% (67%–86%) for ND, AAD and CAD, respectively. Genetic and individual-specific environmental correlations between BPF and SUDs ranged from .33–.56 (95%CI range: .19–.74) and .19–.32 (95%CI range: .06–.43), respectively. Overall, there was substantial support for genetic influences that were specific to AAD, ND and CAD (31%–69%). Finally, genetic variation in personality traits was responsible for 11% (Extraversion for CAD) to 59% (Neuroticism for AAD) of the correlation between BPF and SUDs. Conclusions Both genetic and individual-specific environmental factors contribute to comorbidity between borderline personality features and substance use disorders. A substantial proportion of this comorbidity can be attributed to variation in normal personality traits, particularly Neuroticism. PMID:25041562

  8. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    PubMed

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  9. Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.

    PubMed

    Goodson-Gregg, Nathan; De Stasio, Elizabeth A

    2009-01-01

    While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.

  10. The Grandest Genetic Experiment Ever Performed on Man? - A Y-Chromosomal Perspective on Genetic Variation in India.

    PubMed

    Carvalho-Silva, Denise R; Tyler-Smith, Chris

    2008-05-01

    We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.

  11. A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna.

    PubMed

    Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter

    2016-10-13

    Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.

  12. Genetic and Epigenetic Variations Induced by Wheat-Rye 2R and 5R Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Background Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. Methodology/Principal Findings In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. Conclusions/Significance The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat. PMID:23342073

  13. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    PubMed

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  14. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  15. Quantitative genetic analysis of the body composition and blood pressure association in two ethnically diverse populations.

    PubMed

    Ghosh, Sudipta; Dosaev, Tasbulat; Prakash, Jai; Livshits, Gregory

    2017-04-01

    The major aim of this study was to conduct comparative quantitative-genetic analysis of the body composition (BCP) and somatotype (STP) variation, as well as their correlations with blood pressure (BP) in two ethnically, culturally and geographically different populations: Santhal, indigenous ethnic group from India and Chuvash, indigenous population from Russia. Correspondently two pedigree-based samples were collected from 1,262 Santhal and1,558 Chuvash individuals, respectively. At the first stage of the study, descriptive statistics and a series of univariate regression analyses were calculated. Finally, multiple and multivariate regression (MMR) analyses, with BP measurements as dependent variables and age, sex, BCP and STP as independent variables were carried out in each sample separately. The significant and independent covariates of BP were identified and used for re-examination in pedigree-based variance decomposition analysis. Despite clear and significant differences between the populations in BCP/STP, both Santhal and Chuvash were found to be predominantly mesomorphic irrespective of their sex. According to MMR analyses variation of BP significantly depended on age and mesomorphic component in both samples, and in addition on sex, ectomorphy and fat mass index in Santhal and on fat free mass index in Chuvash samples, respectively. Additive genetic component contributes to a substantial proportion of blood pressure and body composition variance. Variance component analysis in addition to above mentioned results suggests that additive genetic factors influence BP and BCP/STP associations significantly. © 2017 Wiley Periodicals, Inc.

  16. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors.

    PubMed

    Schradin, Carsten

    2013-05-19

    Previously, it was widely believed that each species has a specific social organization, but we know now that many species show intraspecific variation in their social organization. Four different processes can lead to intraspecific variation in social organization: (i) genetic variation between individuals owing to local adaptation (between populations) or evolutionarily stable strategies within populations; (ii) developmental plasticity evolved in long-term (more than one generation) unpredictable and short-term (one generation) predictable environments, which is mediated by organizational physiological effects during early ontogeny; (iii) social flexibility evolved in highly unpredictable environments, which is mediated by activational physiological effects in adults; (iv) entirely extrinsic factors such as the death of a dominant breeder. Variation in social behaviour occurs between individuals in the case of genetic variation and developmental plasticity, but within individuals in the case of social flexibility. It is important to study intraspecific variation in social organization to understand the social systems of species because it reveals the mechanisms by which species can adapt to changing environments, offers a useful tool to study the ultimate and proximate causes of sociality, and is an interesting phenomenon by itself that needs scientific explanation.

  17. Maintenance of genetic variation in sexual ornaments: a review of the mechanisms.

    PubMed

    Radwan, Jacek

    2008-09-01

    Female preferences for elaborate male sexual traits have been documented in a number of species in which males contribute only genes to the next generation. In such systems, mate choice has been hypothesised to benefit females genetically. For the genetic benefits to be possible there must be additive genetic variation (V A) for sexual ornaments, such that highly ornamented males can pass fitter genes on to the progeny of choosy females. Here, I review the mechanisms that can contribute to the maintenance of this variation. The variation may be limited to sexual ornaments, resulting in Fisherian benefits in terms of the increased reproductive success of male progeny produced by choosy females. Alternatively, ornaments may capture V A in other life-history traits. In the latter case, "good genes" benefits may apply in terms of improved performance of the progeny of either sex. Some mechanisms, however, such as negative pleiotropy, sexually antagonistic variation or overdominance, can maintain V A in ornaments and other life-history traits with little variation in total fitness, leaving little room for any genetic benefits of mate choice. Distinguishing between these mechanisms has consequences not only for the theory of sexual selection, but also for evolution of sex and for biological conservation. I discuss how the traditional ways of testing for genetic benefits can usefully be supplemented by tests detecting benefits resulting from specific mechanisms maintaining V A in sexual ornaments.

  18. Population-genetic properties of differentiated copy number variations in cattle.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  19. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation

    PubMed Central

    2010-01-01

    Background Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Results Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Conclusion Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing. PMID:20707912

  20. Comparison of the levels of intra-specific genetic variation within Giardia muris and Giardia intestinalis.

    PubMed

    Andrews, R H; Monis, P T; Ey, P L; Mayrhofer, G

    1998-08-01

    The extent of intra-specific genetic variation between isolates of Giardia muris was assessed by allozyme electrophoresis. Additionally, the levels of allozymic variation detected within G. muris were compared with those observed between members of the two major assemblages of the morphologically distinct species Giardia intestinalis. Four isolates of G. muris were analysed. Three (Ad-120, -150, -151) were isolated from mice in Australia, while the fourth (R-T) was isolated from a golden hamster in North America. The 11 isolates of G. intestinalis (Ad-1, -12, -2, -62, representing genetic Groups I and II of Assemblage A and BAH-12, BRIS/87/HEPU/694, Ad-19, -22, -28, -45, -52, representing genetic Groups III and IV of Assemblage B) were from humans in Australia. Intra-specific genetic variation was detected between G. muris isolates at four of the 23 enzyme loci examined. Similar levels of variation were found within the genetic groups that comprise Assemblages A and B of G. intestinalis. These levels of intra-specific variation are similar to those observed within other morphologically-distinct species of protozoan parasites. We suggest that the magnitude of the genetic differences detected within G. muris provides an indication of the range of genetic variation within other species of Giardia and that this can be used as a model to delineate morphologically similar but genetically distinct (cryptic) species within this genus.

  1. Population-level genetic variation and climate change in a biodiversity hotspot

    PubMed Central

    2017-01-01

    Introduction Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. Factors influencing the distribution of genetic variation Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant–insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. Regional priorities and examples A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. Conclusions, Solutions and Recommendations The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California’s plant taxa will enable us to predict

  2. Host genetic variation influences gene expression response to rhinovirus infection.

    PubMed

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  3. Advances in Genetical Genomics of Plants

    PubMed Central

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2009-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research. PMID:20514216

  4. Dissecting genetic architecture of startle response in Drosophila melanogaster using multi-omics information.

    PubMed

    Xue, Angli; Wang, Hongcheng; Zhu, Jun

    2017-09-28

    Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.

  5. Hsp90 and environmental stress transform the adaptive value of natural genetic variation.

    PubMed

    Jarosz, Daniel F; Lindquist, Susan

    2010-12-24

    How can species remain unaltered for long periods yet also undergo rapid diversification? By linking genetic variation to phenotypic variation via environmental stress, the Hsp90 protein-folding reservoir might promote both stasis and change. However, the nature and adaptive value of Hsp90-contingent traits remain uncertain. In ecologically and genetically diverse yeasts, we find such traits to be both common and frequently adaptive. Most are based on preexisting variation, with causative polymorphisms occurring in coding and regulatory sequences alike. A common temperature stress alters phenotypes similarly. Both selective inhibition of Hsp90 and temperature stress increase correlations between genotype and phenotype. This system broadly determines the adaptive value of standing genetic variation and, in so doing, has influenced the evolution of current genomes.

  6. Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster.

    PubMed

    Griffin, R M; Le Gall, D; Schielzeth, H; Friberg, U

    2015-11-01

    The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species' Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  7. Genetic Mapping of Quantitative Trait Loci Controlling Growth and Wood Quality Traits in Eucalyptus Grandis Using a Maternal Half-Sib Family and Rapd Markers

    PubMed Central

    Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.

    1996-01-01

    Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761

  8. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  9. Genetic variations in taste perception modify alcohol drinking behavior in Koreans.

    PubMed

    Choi, Jeong-Hwa; Lee, Jeonghee; Yang, Sarah; Kim, Jeongseon

    2017-06-01

    The sensory components of alcohol affect the onset of individual's drinking. Therefore, variations in taste receptor genes may lead to differential sensitivity for alcohol taste, which may modify an individual's drinking behavior. This study examined the influence of genetic variants in the taste-sensing mechanism on alcohol drinking behavior and the choice of alcoholic beverages. A total of 1829 Koreans were analyzed for their alcohol drinking status (drinker/non-drinker), total alcohol consumption (g/day), heavy drinking (≥30 g/day) and type of regularly consumed alcoholic beverages. Twenty-one genetic variations in bitterness, sweetness, umami and fatty acid sensing were also genotyped. Our findings suggested that multiple genetic variants modified individuals' alcohol drinking behavior. Genetic variations in the T2R bitterness receptor family were associated with overall drinking behavior. Subjects with the TAS2R38 AVI haplotype were less likely to be a drinker [odds ratio (OR): 0.75, 95% confidence interval (CI): 0.59-0.95], and TAS2R5 rs2227264 predicted the level of total alcohol consumption (p = 0.01). In contrast, the T1R sweet and umami receptor family was associated with heavy drinking. TAS1R3 rs307355 CT carriers were more likely to be heavy drinkers (OR: 1.53, 95% CI: 1.06-2.19). The genetic variants were also associated with the choice of alcoholic beverages. The homo-recessive type of TAS2R4 rs2233998 (OR: 1.62, 95% CI: 1.11-2.37) and TAS2R5 rs2227264 (OR: 1.72, 95% CI: 1.14-2.58) were associated with consumption of rice wine. However, TAS1R2 rs35874116 was associated with wine drinking (OR: 0.65, 95% CI: 0.43-0.98) and the consumption level (p = 0.04). These findings suggest that multiple genetic variations in taste receptors influence drinking behavior in Koreans. Genetic variations are also responsible for the preference of particular alcoholic beverages, which may contribute to an individual's alcohol drinking behavior. Copyright © 2017

  10. Conservation Genetics of the Philippine Tarsier: Cryptic Genetic Variation Restructures Conservation Priorities for an Island Archipelago Primate

    PubMed Central

    Brown, Rafe M.; Weghorst, Jennifer A.; Olson, Karen V.; Duya, Mariano R. M.; Barley, Anthony J.; Duya, Melizar V.; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A.; Dominy, Nathaniel J.; Ong, Perry S.; Moritz, Gillian L.; Luczon, Adrian; Diesmos, Mae Lowe L.; Diesmos, Arvin C.; Siler, Cameron D.

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier. PMID:25136854

  11. Standing Genetic Variation and the Evolution of Drug Resistance in HIV

    PubMed Central

    Pennings, Pleuni Simone

    2012-01-01

    Drug resistance remains a major problem for the treatment of HIV. Resistance can occur due to mutations that were present before treatment starts or due to mutations that occur during treatment. The relative importance of these two sources is unknown. Resistance can also be transmitted between patients, but this process is not considered in the current study. We study three different situations in which HIV drug resistance may evolve: starting triple-drug therapy, treatment with a single dose of nevirapine and interruption of treatment. For each of these three cases good data are available from literature, which allows us to estimate the probability that resistance evolves from standing genetic variation. Depending on the treatment we find probabilities of the evolution of drug resistance due to standing genetic variation between and . For patients who start triple-drug combination therapy, we find that drug resistance evolves from standing genetic variation in approximately 6% of the patients. We use a population-dynamic and population-genetic model to understand the observations and to estimate important evolutionary parameters under the assumption that treatment failure is caused by the fixation of a single drug resistance mutation. We find that both the effective population size of the virus before treatment, and the fitness of the resistant mutant during treatment, are key-parameters which determine the probability that resistance evolves from standing genetic variation. Importantly, clinical data indicate that both of these parameters can be manipulated by the kind of treatment that is used. PMID:22685388

  12. Climatic suitability, isolation by distance and river resistance explain genetic variation in a Brazilian whiptail lizard.

    PubMed

    Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa

    2018-03-01

    Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.

  13. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome.

    PubMed

    Igartua, Catherine; Davenport, Emily R; Gilad, Yoav; Nicolae, Dan L; Pinto, Jayant; Ober, Carole

    2017-02-01

    The degree to which host genetic variation can modulate microbial communities in humans remains an open question. Here, we performed a genetic mapping study of the microbiome in two accessible upper airway sites, the nasopharynx and the nasal vestibule, during two seasons in 144 adult members of a founder population of European decent. We estimated the relative abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and examined associations with 148,653 genetic variants (linkage disequilibrium [LD] r 2  < 0.5) selected from among all common variants discovered in genome sequences in this population. We identified 37 microbiome quantitative trait loci (mbQTLs) that showed evidence of association with the RAs of 22 genera (q < 0.05) and were enriched for genes in mucosal immunity pathways. The most significant association was between the RA of Dermacoccus (phylum Actinobacteria) and a variant 8 kb upstream of TINCR (rs117042385; p = 1.61 × 10 -8 ; q = 0.002), a long non-coding RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a known antimicrobial protein. A second association was between a missense variant in PGLYRP4 (rs3006458) and the RA of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) (p = 5.10 × 10 -7 ; q = 0.032). Our findings provide evidence of host genetic influences on upper airway microbial composition in humans and implicate mucosal immunity genes in this relationship.

  14. A unifying theory for genetic epidemiological analysis of binary disease data

    PubMed Central

    2014-01-01

    Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative

  15. A unifying theory for genetic epidemiological analysis of binary disease data.

    PubMed

    Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B

    2014-02-19

    Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary

  16. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    PubMed Central

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  17. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L.

    PubMed

    Lewis, Caleb; Lennon, Adrian M; Eudoxie, Gaius; Umaharan, Pathmanathan

    2018-06-02

    Cadmium (Cd) is a non-essential heavy metal that is toxic to both plants and animals and chocolates have been identified as a contributor to the human dietary Cd intake. One hundred accessions representing the various genetic groups and hybrid populations in Theobroma cacao L. held at the International Cocoa Genebank, Trinidad were evaluated for leaf and bean cadmium levels with three tree replications. Representative samples of soil from the drip zone around each tree were evaluated for bioavailable cadmium. Although there were significant differences (P ≤ 0.05) among genetic groups for leaf and bean Cd much of the variation was between accessions. There was a 13-fold variation in bean Cd and a 7-fold variation in leaf Cd between accessions despite the bioavailable Cd in the soil being uniform. There were differences in the level of partitioning into beans evident by significant variation (P ≤ 0.05) in bean Cd as a percentage of the cumulative leaf and bean Cd concentration (15-52%) between accessions. Although in general there was a higher concentration of cadmium in the testa than the cotyledon of the cocoa bean there was considerable genetic variation. These results point to the potential of using a genetic strategy to mitigate cadmium within cocoa beans either through breeding or through the use of low cadmium uptake rootstocks in grafting. The results will fuel further work into the understanding of mechanisms and genetics of cadmium uptake and partitioning in cocoa. Copyright © 2018. Published by Elsevier B.V.

  18. Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    PubMed

    Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok

    2016-01-01

    Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.

  19. Patterns of molecular genetic variation among cat breeds.

    PubMed

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  20. Molar intercuspal dimensions: genetic input to phenotypic variation.

    PubMed

    Townsend, G; Richards, L; Hughes, T

    2003-05-01

    Molecular studies indicate that epigenetic events are important in determining how the internal enamel epithelium folds during odontogenesis. Since this process of folding leads to the subsequent arrangement of cusps on molar teeth, we hypothesized that intercuspal distances of human molar teeth would display greater phenotypic variation but lower heritabilities than overall crown diameters. Intercuspal distances and maximum crown diameters were recorded from digitized images of dental casts in 100 monozygotic and 74 dizygotic twin pairs. Intercuspal distances displayed less sexual dimorphism in mean values but greater relative variability and fluctuating asymmetry than overall crown measures. Correlations between intercuspal distances and overall crown measures were low. Models incorporating only environmental effects accounted for observed variation in several intercuspal measures. For those intercuspal variables displaying significant additive genetic variance, estimates of heritability ranged from 43 to 79%, whereas those for overall crown size were higher generally, ranging from 60 to 82%. Our finding of high phenotypic variation in intercuspal distances with only moderate genetic contribution is consistent with substantial epigenetic influence on the progressive folding of the internal enamel epithelium, following formation of the primary and secondary enamel knots.

  1. Quantitative Imaging in Cancer Evolution and Ecology

    PubMed Central

    Grove, Olya; Gillies, Robert J.

    2013-01-01

    Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral

  2. The IQ Quantitative Trait Loci Project: A Critique.

    ERIC Educational Resources Information Center

    King, David

    1998-01-01

    Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)

  3. Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae).

    PubMed

    Pisa, Sergio; Werner, Olaf; Vanderpoorten, Alain; Magdy, Mahmoud; Ros, Rosa M

    2013-10-01

    The Baas Becking tenet posits that 'everything is everywhere, but the environment selects' to explain cosmopolitan distributions in highly vagile taxa. Bryophyte species show wider distributions than vascular plants and include examples of truly cosmopolitan ranges, which have been interpreted as a result of high dispersal capacities and ecological plasticity. In the current study, we documented patterns of genetic structure and diversity in the cosmopolitan moss Bryum argenteum along an elevational gradient to determine if genetic diversity and structure is homogenized by intense migrations in the lack of ecological differentiation. • 60 specimens were collected in the Sierra Nevada Mountains (Spain) between 100 and 2870 m and sequenced for ITS and rps4. Comparative analyses, genetic diversity estimators, and Mantel's tests were employed to determine the relationship between genetic variation, elevation, and geographic distance and to look for signs of demographic shifts. • Genetic diversity peaked above 1900 m and no signs of demographic shifts were detected at any elevation. There was a strong phylogenetic component in elevational variation. Genetic variation was significantly correlated with elevation, but not with geographic distance. • The results point to the long-term persistence of Bryum argenteum in a range that was glaciated during the Late Pleistocene. Evidence for an environmentally driven pattern of genetic differentiation suggests adaptive divergence. This supports the Baas Becking tenet and indicates that ecological specialization might play a key role in explaining patterns of genetic structure in cosmopolitan mosses.

  4. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.

    PubMed

    Zhou, Shanshan; Morozova, Tatiana V; Hussain, Yasmeen N; Luoma, Sarah E; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H

    2016-07-01

    Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health

  5. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Morozova, Tatiana V.; Hussain, Yasmeen N.; Luoma, Sarah E.; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F.C.; Anholt, Robert R.H.

    2016-01-01

    Background: Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Objectives: Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. Methods: To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. Results: We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Conclusions: Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Citation: Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in

  6. Variation in recombination rate may bias human genetic disease mapping studies.

    PubMed

    Boyle, A Susannah; Noor, Mohamed A F

    2004-11-01

    The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.

  7. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways

    PubMed Central

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  8. The devil is in the details: genetic variation in introduced populations and its contributions to invasion.

    PubMed

    Dlugosch, Katrina M; Anderson, Samantha R; Braasch, Joseph; Cang, F Alice; Gillette, Heather D

    2015-05-01

    The influence of genetic variation on invasion success has captivated researchers since the start of the field of invasion genetics 50 years ago. We review the history of work on this question and conclude that genetic variation-as surveyed with molecular markers-appears to shape invasion rarely. Instead, there is a significant disconnect between marker assays and ecologically relevant genetic variation in introductions. We argue that the potential for adaptation to facilitate invasion will be shaped by the details of genotypes affecting phenotypes, and we highlight three areas in which we see opportunities to make powerful new insights. (i) The genetic architecture of adaptive variation. Traits shaped by large-effect alleles may be strongly impacted by founder events yet more likely to respond to selection when genetic drift is strong. Large-effect loci may be especially relevant for traits involved in biotic interactions. (ii) Cryptic genetic variation exposed during invasion. Introductions have strong potential to uncover masked variation due to alterations in genetic and ecological environments. (iii) Genetic interactions during admixture of multiple source populations. As divergence among sources increases, positive followed by increasingly negative effects of admixture should be expected. Although generally hypothesized to be beneficial during invasion, admixture is most often reported among sources of intermediate divergence, supporting the possibility that incompatibilities among divergent source populations might be limiting their introgression. Finally, we note that these details of invasion genetics can be coupled with comparative demographic analyses to link genetic changes to the evolution of invasiveness itself. © 2015 John Wiley & Sons Ltd.

  9. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    USGS Publications Warehouse

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already

  10. Refining Intervention Targets in Family-Based Research: Lessons From Quantitative Behavioral Genetics

    PubMed Central

    Leve, Leslie D.; Harold, Gordon T.; Ge, Xiaojia; Neiderhiser, Jenae M.; Patterson, Gerald

    2010-01-01

    The results from a large body of family-based research studies indicate that modifying the environment (specifically dimensions of the social environment) through intervention is an effective mechanism for achieving positive outcomes. Parallel to this work is a growing body of evidence from genetically informed studies indicating that social environmental factors are central to enhancing or offsetting genetic influences. Increased precision in the understanding of the role of the social environment in offsetting genetic risk might provide new information about environmental mechanisms that could be applied to prevention science. However, at present, the multifaceted conceptualization of the environment in prevention science is mismatched with the more limited measurement of the environment in many genetically informed studies. A framework for translating quantitative behavioral genetic research to inform the development of preventive interventions is presented in this article. The measurement of environmental indices amenable to modification is discussed within the context of quantitative behavioral genetic studies. In particular, emphasis is placed on the necessary elements that lead to benefits in prevention science, specifically the development of evidence-based interventions. An example from an ongoing prospective adoption study is provided to illustrate the potential of this translational process to inform the selection of preventive intervention targets. PMID:21188273

  11. Genetic variation and genetic structure of the endangered species Sinowilsonia henryi Hemsi. (Hamamelidaceae) revealed by amplified fragment length polymorphism (AFLP) markers.

    PubMed

    Zhang, H; Ji, W L; Li, M; Zhou, L Y

    2015-10-14

    Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.

  12. Heredity vs. Environment: The Effects of Genetic Variation with Age

    ERIC Educational Resources Information Center

    Gourlay, N.

    1978-01-01

    Major problems in the field are presented through a brief review of Burt's work and a critical account of the Hawaiian and British schools of biometrical genetics. The merits and demerits of Christopher Jencks' study are also discussed. There follows an account of the principle of genetic variation with age, a new concept to the…

  13. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations.

    PubMed

    Tabachnick, W J; Wallis, G P; Aitken, T H; Miller, B R; Amato, G D; Lorenz, L; Powell, J R; Beaty, B J

    1985-11-01

    Twenty-eight populations representing a worldwide distribution of Aedes aegypti were tested for their ability to become orally infected with yellow fever virus (YFV). Populations had been analyzed for genetic variations at 11 isozyme loci and assigned to one of 8 genetic geographic groups of Ae. aegypti. Infection rates suggest that populations showing isozyme genetic relatedness also demonstrate similarity to oral infection rates with YFV. The findings support the hypothesis that genetic variation exists for oral susceptibility to YFV in Ae. aegypti.

  14. Additive genetic variation and evolvability of a multivariate trait can be increased by epistatic gene action.

    PubMed

    Griswold, Cortland K

    2015-12-21

    Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations

    PubMed Central

    Candille, Sophie I.; Absher, Devin M.; Beleza, Sandra; Bauchet, Marc; McEvoy, Brian; Garrison, Nanibaa’ A.; Li, Jun Z.; Myers, Richard M.; Barsh, Gregory S.; Tang, Hua; Shriver, Mark D.

    2012-01-01

    Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world. PMID:23118974

  16. A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes

    PubMed Central

    Bergström, Anders; Simpson, Jared T.; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N.; Moses, Alan M.; Louis, Edward J.; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-01-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies. PMID:24425782

  17. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    PubMed

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  18. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  19. Oxytocin Receptor Genetic Variation Promotes Human Trust Behavior

    PubMed Central

    Krueger, Frank; Parasuraman, Raja; Iyengar, Vijeth; Thornburg, Matthew; Weel, Jaap; Lin, Mingkuan; Clarke, Ellen; McCabe, Kevin; Lipsky, Robert H.

    2012-01-01

    Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR) gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A)/guanine (G) transition (rs53576) has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students (n = 108) with the administration of a trust game experiment. Our results show that a common occurring genetic variation (rs53576) in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG) showed higher trust behavior than individuals with A allele carriers (AA/AG). Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors. PMID:22347177

  20. Quantitative microbiome profiling links gut community variation to microbial load.

    PubMed

    Vandeputte, Doris; Kathagen, Gunter; D'hoe, Kevin; Vieira-Silva, Sara; Valles-Colomer, Mireia; Sabino, João; Wang, Jun; Tito, Raul Y; De Commer, Lindsey; Darzi, Youssef; Vermeire, Séverine; Falony, Gwen; Raes, Jeroen

    2017-11-23

    Current sequencing-based analyses of faecal microbiota quantify microbial taxa and metabolic pathways as fractions of the sample sequence library generated by each analysis. Although these relative approaches permit detection of disease-associated microbiome variation, they are limited in their ability to reveal the interplay between microbiota and host health. Comparative analyses of relative microbiome data cannot provide information about the extent or directionality of changes in taxa abundance or metabolic potential. If microbial load varies substantially between samples, relative profiling will hamper attempts to link microbiome features to quantitative data such as physiological parameters or metabolite concentrations. Saliently, relative approaches ignore the possibility that altered overall microbiota abundance itself could be a key identifier of a disease-associated ecosystem configuration. To enable genuine characterization of host-microbiota interactions, microbiome research must exchange ratios for counts. Here we build a workflow for the quantitative microbiome profiling of faecal material, through parallelization of amplicon sequencing and flow cytometric enumeration of microbial cells. We observe up to tenfold differences in the microbial loads of healthy individuals and relate this variation to enterotype differentiation. We show how microbial abundances underpin both microbiota variation between individuals and covariation with host phenotype. Quantitative profiling bypasses compositionality effects in the reconstruction of gut microbiota interaction networks and reveals that the taxonomic trade-off between Bacteroides and Prevotella is an artefact of relative microbiome analyses. Finally, we identify microbial load as a key driver of observed microbiota alterations in a cohort of patients with Crohn's disease, here associated with a low-cell-count Bacteroides enterotype (as defined through relative profiling).

  1. Quantitative genetic-interaction mapping in mammalian cells

    PubMed Central

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  2. Genetic and Environmental Influences on Behavior: Capturing All the Interplay

    ERIC Educational Resources Information Center

    Johnson, Wendy

    2007-01-01

    Basic quantitative genetic models of human behavioral variation have made clear that individual differences in behavior cannot be understood without acknowledging the importance of genetic influences. Yet these basic models estimate average, population-level genetic and environmental influences, obscuring differences that might exist within the…

  3. Genetic Variation and Structure in Contrasting Geographic Distributions: Widespread Versus Restricted Black-Tailed Prairie Dogs (Subgenus Cynomys).

    PubMed

    Castellanos-Morales, Gabriela; Ortega, Jorge; Castillo-Gámez, Reyna A; Sackett, Loren C; Eguiarte, Luis E

    2015-01-01

    Species of restricted distribution are considered more vulnerable to extinction because of low levels of genetic variation relative to widespread taxa. Species of the subgenus Cynomys are an excellent system to compare genetic variation and degree of genetic structure in contrasting geographic distributions. We assessed levels of genetic variation, genetic structure, and genetic differentiation in widespread Cynomys ludovicianus and restricted C. mexicanus using 1997bp from the cytochrome b and control region (n = 223 C. ludovicianus; 77 C. mexicanus), and 10 nuclear microsatellite loci (n = 207 and 78, respectively). Genetic variation for both species was high, and genetic structure in the widespread species was higher than in the restricted species. C. mexicanus showed values of genetic variation, genetic structure, and genetic differentiation similar to C. ludovicianus at smaller geographic scales. Results suggest the presence of at least 2 historical refuges for C. ludovicianus and that the Sierra Madre Occidental represents a barrier to gene flow. Chihuahua and New Mexico possess high levels of genetic diversity and should be protected, while Sonora should be treated as an independent management unit. For C. mexicanus, connectivity among colonies is very important and habitat fragmentation and habitat loss should be mitigated to maintain gene flow. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans.

    PubMed

    Voruganti, V Saroja; Lopez-Alvarenga, Juan C; Nath, Subrata D; Rainwater, David L; Bauer, Richard; Cole, Shelley A; Maccluer, Jean W; Blangero, John; Comuzzie, Anthony G

    2008-03-01

    Insulin resistance is a major biochemical defect underlying the pathogenesis of cardiovascular disease (CVD). Mexican-Americans are known to have an unfavorable cardiovascular profile. Thus, the aim of this study was to investigate the genetic effect on variation in HOMA-IR and to evaluate its genetic correlations with other phenotypes related to risk of CVD in Mexican-Americans. The homeostatic model assessment method (HOMA-IR) is one of several approaches that are used to measure insulin resistance and was used here to generate a quantitative phenotype for genetic analysis. For 644 adults who had participated in the San Antonio Family Heart Study (SAFHS), estimates of genetic contribution were computed using a variance components method implemented in SOLAR. Traits that exhibited significant heritabilities were body mass index (BMI) (h (2) = 0.43), waist circumference (h (2) = 0.48), systolic blood pressure (h (2) = 0.30), diastolic blood pressure (h (2) = 0.21), pulse pressure (h (2) = 0.32), triglycerides (h (2) = 0.51), LDL cholesterol (h (2) = 0.31), HDL cholesterol (h (2) = 0.24), C-reactive protein (h (2) = 0.17), and HOMA-IR (h (2) = 0.33). A genome-wide scan for HOMA-IR revealed significant evidence of linkage on chromosome 12q24 (close to PAH (phenylalanine hydroxylase), LOD = 3.01, p < 0.001). Bivariate analyses demonstrated significant genetic correlations (p < 0.05) of HOMA-IR with BMI (rho (G) = 0.36), waist circumference (rho (G) = 0.47), pulse pressure (rho (G) = 0.39), and HDL cholesterol (rho (G) = -0.18). Identification of significant linkage for HOMA-IR on chromosome 12q replicates previous family-based studies reporting linkage of phenotypes associated with type 2 diabetes in the same chromosomal region. Significant genetic correlations between HOMA-IR and phenotypes related to CVD risk factors suggest that a common set of gene(s) influence the regulation of these phenotypes.

  5. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née.

    PubMed

    Gugger, Paul F; Ikegami, Makihiko; Sork, Victoria L

    2013-07-01

    Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate-based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large-scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28-1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11-18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion-contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions. © 2013 John Wiley & Sons Ltd.

  6. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    PubMed Central

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  7. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence.

    PubMed

    Bou Sleiman, Maroun S; Osman, Dani; Massouras, Andreas; Hoffmann, Ary A; Lemaitre, Bruno; Deplancke, Bart

    2015-07-27

    Gut immunocompetence involves immune, stress and regenerative processes. To investigate the determinants underlying inter-individual variation in gut immunocompetence, we perform enteric infection of 140 Drosophila lines with the entomopathogenic bacterium Pseudomonas entomophila and observe extensive variation in survival. Using genome-wide association analysis, we identify several novel immune modulators. Transcriptional profiling further shows that the intestinal molecular state differs between resistant and susceptible lines, already before infection, with one transcriptional module involving genes linked to reactive oxygen species (ROS) metabolism contributing to this difference. This genetic and molecular variation is physiologically manifested in lower ROS activity, lower susceptibility to ROS-inducing agent, faster pathogen clearance and higher stem cell activity in resistant versus susceptible lines. This study provides novel insights into the determinants underlying population-level variability in gut immunocompetence, revealing how relatively minor, but systematic genetic and transcriptional variation can mediate overt physiological differences that determine enteric infection susceptibility.

  8. Population genetic analysis and bioclimatic modeling in Agave striata in the Chihuahuan Desert indicate higher genetic variation and lower differentiation in drier and more variable environments.

    PubMed

    Trejo, Laura; Alvarado-Cárdenas, Leonardo O; Scheinvar, Enrique; Eguiarte, Luis E

    2016-06-01

    Is there an association between bioclimatic variables and genetic variation within species? This question can be approached by a detailed analysis of population genetics parameters along environmental gradients in recently originated species (so genetic drift does not further obscure the patterns). The genus Agave, with more than 200 recent species encompassing a diversity of morphologies and distributional patterns, is an adequate system for such analyses. We studied Agave striata, a widely distributed species from the Chihuahuan Desert, with a distinctive iteroparous reproductive ecology and two recognized subspecies with clear morphological differences. We used population genetic analyses along with bioclimatic studies to understand the effect of environment on the genetic variation and differentiation of this species. We analyzed six populations of the subspecies A. striata subsp. striata, with a southern distribution, and six populations of A. striata subsp. falcata, with a northern distribution, using 48 ISSR loci and a total of 541 individuals (averaging 45 individuals per population). We assessed correlations between population genetics parameters (the levels of genetic variation and differentiation) and the bioclimatic variables of each population. We modeled each subspecies distribution and used linear correlations and multifactorial analysis of variance. Genetic variation (measured as expected heterozygosity) increased at higher latitudes. Higher levels of genetic variation in populations were associated with a higher variation in environmental temperature and lower precipitation. Stronger population differentiation was associated with wetter and more variable precipitation in the southern distribution of the species. The two subspecies have genetic differences, which coincide with their climatic differences and potential distributions. Differences in genetic variation among populations and the genetic differentiation between A. striata subsp. striata

  9. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana

    PubMed Central

    Veltsos, P; Gregson, E; Morrissey, B; Slate, J; Hoikkala, A; Butlin, R K; Ritchie, M G

    2015-01-01

    We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power. PMID:26198076

  10. Genetic and epigenetic variation in the lineage specification of regulatory T cells

    PubMed Central

    Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y

    2015-01-01

    Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014

  11. Quantitative genetic analysis of the bTB diagnostic single intradermal comparative cervical test (SICCT).

    PubMed

    Tsairidou, Smaragda; Brotherstone, Susan; Coffey, Mike; Bishop, Stephen C; Woolliams, John A

    2016-11-24

    Bovine tuberculosis (bTB) is a disease of significant economic importance and is a persistent animal health problem with implications for public health worldwide. Control of bTB in the UK has relied on diagnosis through the single intradermal comparative cervical test (SICCT). However, limitations in the sensitivity of this test hinder successful eradication and the control of bTB remains a major challenge. Genetic selection for cattle that are more resistant to bTB infection can assist in bTB control. The aim of this study was to conduct a quantitative genetic analysis of SICCT measurements collected during bTB herd testing. Genetic selection for bTB resistance will be partially informed by SICCT-based diagnosis; therefore it is important to know whether, in addition to increasing bTB resistance, this might also alter genetically the epidemiological characteristics of SICCT. Our main findings are that: (1) the SICCT test is robust at the genetic level, since its hierarchy and comparative nature provide substantial protection against random genetic changes that arise from genetic drift and from correlated responses among its components due to either natural or artificial selection; (2) the comparative nature of SICCT provides effective control for initial skin thickness and age-dependent differences; and (3) continuous variation in SICCT is only lowly heritable and has a weak correlation with SICCT positivity among healthy animals which was not significantly different from zero (P > 0.05). These emerging results demonstrate that genetic selection for bTB resistance is unlikely to change the probability of correctly identifying non-infected animals, i.e. the test's specificity, while reducing the overall number of cases. This study cannot exclude all theoretical risks from selection on resistance to bTB infection but the role of SICCT in disease control is unlikely to be rapidly undermined, with any adverse correlated responses expected to be weak and slow, which

  12. Genetic variation of Taenia pisiformis collected from Sichuan, China, based on the mitochondrial cytochrome B gene.

    PubMed

    Yang, Deying; Ren, Yongjun; Fu, Yan; Xie, Yue; Nie, Huaming; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2013-08-01

    Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. FST and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

  13. Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill.

    PubMed

    Robertson, Marta; Schrey, Aaron; Shayter, Ashley; Moss, Christina J; Richards, Christina

    2017-09-01

    Catastrophic events offer unique opportunities to study rapid population response to stress in natural settings. In concert with genetic variation, epigenetic mechanisms may allow populations to persist through severe environmental challenges. In 2010, the Deepwater Horizon oil spill devastated large portions of the coastline along the Gulf of Mexico. However, the foundational salt marsh grass, Spartina alterniflora , showed high resilience to this strong environmental disturbance. Following the spill, we simultaneously examined the genetic and epigenetic structure of recovering populations of S. alterniflora to oil exposure. We quantified genetic and DNA methylation variation using amplified fragment length polymorphism and methylation sensitive fragment length polymorphism (MS-AFLP) to test the hypothesis that response to oil exposure in S. alterniflora resulted in genetically and epigenetically based population differentiation. We found high genetic and epigenetic variation within and among sites and found significant genetic differentiation between contaminated and uncontaminated sites, which may reflect nonrandom mortality in response to oil exposure. Additionally, despite a lack of genomewide patterns in DNA methylation between contaminated and uncontaminated sites, we found five MS-AFLP loci (12% of polymorphic MS-AFLP loci) that were correlated with oil exposure. Overall, our findings support genetically based differentiation correlated with exposure to the oil spill in this system, but also suggest a potential role for epigenetic mechanisms in population differentiation.

  14. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    PubMed

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  15. Deleterious Mutations, Apparent Stabilizing Selection and the Maintenance of Quantitative Variation

    PubMed Central

    Kondrashov, A. S.; Turelli, M.

    1992-01-01

    Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply

  16. [Genetic ecological monitoring in human populations: heterozygosity, mtDNA haplotype variation, and genetic load].

    PubMed

    Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V

    2011-11-01

    Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.

  17. Origin of genetic variation: regulation of genetic recombination in the higher organisms - a theory.

    PubMed

    Pandey, K K

    1972-01-01

    Recent studies in the fungi, particularly Neurospora and Schizophyllum, have revealed a number of genetic features which, viewed in conjunction with earlier observations on other organisms, form a pattern, or model, which appears to be basic to the control of recombination in all eukaryotes, including higher organisms. It is assumed that the control is exercised on mechanisms that produce new alleles through recombination, as understood in broad terms and including such a likely phenomenon as gene conversion, which may or may not involve crossing-over, as well as equal and unequal crossing-over. The recombination may thus occur between alleles in either the homozygous or heterozygous condition. In the model, regulatory genes and breeding behaviour are integrated into one self-regulatory system controlling the production of new genetic variation.The model is based on the following five general features, largely substantiated by the results in Neurospora and Schizophyllum: 1) The frequency of recombination in a particular chromosomal region is controlled by specific regulatory genes (rec). 2) There may be a number of such specific, regulatory genes responsible for recombination in a given region. 3) A rec. locus may influence recombination in more than one region. 4) The regulatory genes have no specific physical relationship with the region(s) they control, and are usually located at random in the genome. 5) Of the allelic forms of the regulatory genes it is always the dominant gene which suppresses recombination and the recessive gene which increases recombination. The rec system is epistatic to other genetic elements jointly involved in the overall control of recombination in a specific region. It is suggested that usually the control of recombination in a given region is exercised, cumulatively, by the balance of the dominant and recessive genes of the specific rec loci in the organism. Outbreeding, with the associated high heterozygosity of the regulatory rec

  18. Quantitative Trait Loci Differentiating the Outbreeding Mimulus Guttatus from the Inbreeding M. Platycalyx

    PubMed Central

    Lin, J. Z.; Ritland, K.

    1997-01-01

    Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912

  19. Genes Contributing to Genetic Variation of Muscling in Sheep

    PubMed Central

    Tellam, Ross L.; Cockett, Noelle E.; Vuocolo, Tony; Bidwell, Christopher A.

    2012-01-01

    Selective breeding programs aiming to increase the productivity and profitability of the sheep meat industry use elite, progeny tested sires. The broad genetic traits of primary interest in the progeny of these sires include skeletal muscle yield, fat content, eating quality, and reproductive efficiency. Natural mutations in sheep that enhance muscling have been identified, while a number of genome scans have identified and confirmed quantitative trait loci (QTL) for skeletal muscle traits. The detailed phenotypic characteristics of sheep carrying these mutations or QTL affecting skeletal muscle show a number of common biological themes, particularly changes in developmental growth trajectories, alterations of whole animal morphology, and a shift toward fast twitch glycolytic fibers. The genetic, developmental, and biochemical mechanisms underpinning the actions of some of these genetic variants are described. This review critically assesses this research area, identifies gaps in knowledge, and highlights mechanistic linkages between genetic polymorphisms and skeletal muscle phenotypic changes. This knowledge may aid the discovery of new causal genetic variants and in some cases lead to the development of biochemical and immunological strategies aimed at enhancing skeletal muscle. PMID:22952470

  20. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  1. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    PubMed

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  2. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  3. Genetic dissection of the maize (Zea mays L.) MAMP response.

    PubMed

    Zhang, Xinye; Valdés-López, Oswaldo; Arellano, Consuelo; Stacey, Gary; Balint-Kurti, Peter

    2017-06-01

    Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified. Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.

  4. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  5. Genetic and environmental factors affecting cryptic variations in gene regulatory networks

    PubMed Central

    2013-01-01

    Background Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Results Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Conclusions Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity. PMID:23622056

  6. Genetic and environmental factors affecting cryptic variations in gene regulatory networks.

    PubMed

    Iwasaki, Watal M; Tsuda, Masaki E; Kawata, Masakado

    2013-04-26

    Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity.

  7. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  8. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    USGS Publications Warehouse

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  9. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  10. Obesity, hypertension and genetic variation in the TIGER Study

    USDA-ARS?s Scientific Manuscript database

    Obesity and hypertension are multifactoral conditions in which the onset and severity of the conditions are influenced by the interplay of genetic and environmental factors. We hypothesize that multiple genes and environmental factors account for a significant amount of variation in BMI and blood pr...

  11. GENETIC VARIATION IN BABOON CRANIOFACIAL SEXUAL DIMORPHISM

    PubMed Central

    Willmore, Katherine E.; Roseman, Charles C.; Rogers, Jeffrey; Richtsmeier, Joan T.; Cheverud, James M.

    2010-01-01

    Sexual dimorphism is a widespread phenomenon and contributes greatly to intraspecies variation. Despite a long history of active research, the genetic basis of dimorphism for complex traits remains unknown. Understanding the sex-specific differences in genetic architecture for cranial traits in a highly dimorphic species could identify possible mechanisms through which selection acts to produce dimorphism. Using distances calculated from three-dimensional landmark data from CT scans of 402 baboon skulls from a known genealogy, we estimated genetic variance parameters in both sexes to determine the presence of gene-by-sex (G × S) interactions and X-linked heritability. We hypothesize that traits exhibiting the greatest degree of sexual dimorphism (facial traits in baboons) will demonstrate either stronger G × S interactions or X-linked effects. We found G × S interactions and X-linked effects for a few measures that span the areas connecting the face to the neurocranium but for no traits restricted to the face. This finding suggests that facial traits will have a limited response to selection for further evolution of dimorphism in this population. We discuss the implications of our results with respect to the origins of cranial sexual dimorphism in this baboon sample, and how the genetic architecture of these traits affects their potential for future evolution. PMID:19210535

  12. Moderate Multiple Parentage and Low Genetic Variation Reduces the Potential for Genetic Incompatibility Avoidance Despite High Risk of Inbreeding

    PubMed Central

    Tuni, Cristina; Goodacre, Sara; Bechsgaard, Jesper; Bilde, Trine

    2012-01-01

    Background Polyandry is widespread throughout the animal kingdom. In the absence of direct benefits of mating with different males, the underlying basis for polyandry is enigmatic because it can carry considerable costs such as elevated exposure to sexual diseases, physical injury or other direct fitness costs. Such costs may be balanced by indirect genetic benefits to the offspring of polyandrous females. We investigated polyandry and patterns of parentage in the spider Stegodyphus lineatus. This species experiences relatively high levels of inbreeding as a result of its spatial population structure, philopatry and limited male mating dispersal. Polyandry may provide an opportunity for post mating inbreeding avoidance that reduces the risk of genetic incompatibilities arising from incestuous matings. However, multiple mating carries direct fitness costs to females suggesting that genetic benefits must be substantial to counter direct costs. Methodology/Principal Findings Genetic parentage analyses in two populations from Israel and a Greek island, showed mixed-brood parentage in approximately 50% of the broods. The number of fathers ranged from 1–2 indicating low levels of multiple parentage and there was no evidence for paternity bias in mixed-broods from both populations. Microsatellite loci variation suggested limited genetic variation within populations, especially in the Greek island population. Relatedness estimates among females in the maternal generation and potentially interacting individuals were substantial indicating full-sib and half-sib relationships. Conclusions/Significance Three lines of evidence indicate limited potential to obtain substantial genetic benefits in the form of reduced inbreeding. The relatively low frequency of multiple parentage together with low genetic variation among potential mates and the elevated risk of mating among related individuals as corroborated by our genetic data suggest that there are limited actual outbreeding

  13. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.

    PubMed

    Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2016-06-01

    To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.

  14. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.

  15. Quantitative genetic analysis of injury liability in infants and toddlers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K.; Matheny, A.P. Jr.

    1995-02-27

    A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries.more » Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.« less

  16. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  17. The African Genome Variation Project shapes medical genetics in Africa

    NASA Astrophysics Data System (ADS)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  18. The African Genome Variation Project shapes medical genetics in Africa.

    PubMed

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  19. Host-parasite coevolution: genetic variation in a virus population and the interaction with a host gene.

    PubMed

    Wilfert, L; Jiggins, F M

    2010-07-01

    Host-parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host-specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major-effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission-blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.

  20. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli

    PubMed Central

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-01-01

    Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680

  1. Both qualitative and quantitative genetic variation of MHC class II molecules may influence susceptibility to autoimmune diseases: the case of endemic pemphigus foliaceus.

    PubMed

    Piovezan, Bruno Zagonel; Petzl-Erler, Maria Luiza

    2013-09-01

    The MHC class II transactivator (CIITA) is a key regulator in expression of the HLA class II genes. It is well known that HLA-DRB1 genotypes have a strong influence on the risk of multifactorial autoimmune diseases, but the effect of CIITA genotypes remains controversial. We tested in a case-control study whether CIITA polymorphisms influence the risk of developing endemic pemphigus foliaceus (EPF) and whether CIITA and HLA-DRB1 interact as regards susceptibility to the disease. The rs4774 SNP is not associated to EPF, while rs3087456 in the CIITA gene promoter is associated with susceptibility [odds ratio (OR) = 2.6, p < 0.001 and OR = 2.0 p = 0.003 for genotypes G/G and G/A, respectively]. We suggest that the associations result from the effect of genetically controlled levels of CIITA on expression of the susceptible and protective HLA class II molecules. Remarkably, the interaction between CIITA and HLA-DRB1 genotypes is strong and additive. The OR for individuals having two susceptible HLA-DRB1 alleles is 14.1 in presence of the susceptible CIITA G/G or G/A genotypes and much lower (2.2) in presence of the protective CIITA A/A genotype. We conclude that quantitative as well as qualitative variation of HLA class II molecules have an effect on the risk of an individual developing EPF. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. Hubby and Lewontin on Protein Variation in Natural Populations: When Molecular Genetics Came to the Rescue of Population Genetics.

    PubMed

    Charlesworth, Brian; Charlesworth, Deborah; Coyne, Jerry A; Langley, Charles H

    2016-08-01

    The 1966 GENETICS papers by John Hubby and Richard Lewontin were a landmark in the study of genome-wide levels of variability. They used the technique of gel electrophoresis of enzymes and proteins to study variation in natural populations of Drosophila pseudoobscura, at a set of loci that had been chosen purely for technical convenience, without prior knowledge of their levels of variability. Together with the independent study of human populations by Harry Harris, this seminal study provided the first relatively unbiased picture of the extent of genetic variability in protein sequences within populations, revealing that many genes had surprisingly high levels of diversity. These papers stimulated a large research program that found similarly high electrophoretic variability in many different species and led to statistical tools for interpreting the data in terms of population genetics processes such as genetic drift, balancing and purifying selection, and the effects of selection on linked variants. The current use of whole-genome sequences in studies of variation is the direct descendant of this pioneering work. Copyright © 2016 by the Genetics Society of America.

  3. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour.

    PubMed

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E; Kayser, Manfred

    2017-02-27

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.

  4. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    PubMed Central

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H.; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R.; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E.; Kayser, Manfred

    2017-01-01

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing. PMID:28240252

  5. Cryptic genetic variation, evolution's hidden substrate

    PubMed Central

    Paaby, Annalise B.; Rockman, Matthew V.

    2016-01-01

    Cryptic genetic variation is invisible under normal conditions but fuel for evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles in need of constant suppression. CGV emerges from both neutral and selective processes and it may inform how human populations respond to change. In experimental settings, CGV facilitates adaptation, but does it play an important role in the real world? We review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. PMID:24614309

  6. Patterns of genetic variation across inversions: geographic variation in the In(2L)t inversion in populations of Drosophila melanogaster from eastern Australia.

    PubMed

    Kennington, W Jason; Hoffmann, Ary A

    2013-05-20

    Chromosomal inversions are increasingly being recognized as important in adaptive shifts and are expected to influence patterns of genetic variation, but few studies have examined genetic patterns in inversion polymorphisms across and within populations. Here, we examine genetic variation at 20 microsatellite loci and the alcohol dehydrogenase gene (Adh) located within and near the In(2L)t inversion of Drosophila melanogaster at three different sites along a latitudinal cline on the east coast of Australia. We found significant genetic differentiation between the standard and inverted chromosomal arrangements at each site as well as significant, but smaller differences among sites in the same arrangement. Genetic differentiation between pairs of sites was higher for inverted chromosomes than standard chromosomes, while inverted chromosomes had lower levels of genetic variation even well away from inversion breakpoints. Bayesian clustering analysis provided evidence of genetic exchange between chromosomal arrangements at each site. The strong differentiation between arrangements and reduced variation in the inverted chromosomes are likely to reflect ongoing selection at multiple loci within the inverted region. They may also reflect lower effective population sizes of In(2L)t chromosomes and colonization of Australia, although there was no consistent evidence of a recent bottleneck and simulations suggest that differences between arrangements would not persist unless rates of gene exchange between them were low. Genetic patterns therefore support the notion of selection and linkage disequilibrium contributing to inversion polymorphisms, although more work is needed to determine whether there are spatially varying targets of selection within this inversion. They also support the idea that the allelic content within an inversion can vary between geographic locations.

  7. The distribution of nuclear genetic variation and historical demography of sea otters

    USGS Publications Warehouse

    Aguilar, A.; Jessup, David A.; Estes, J.; Garza, J.C.

    2008-01-01

    The amount and distribution of population genetic variation is crucial information for the design of effective conservation strategies for endangered species and can also be used to provide inference about demographic processes and patterns of migration. Here, we describe variation at a large number of nuclear genes in sea otters Enhydra lutris ssp. We surveyed 14 variable microsatellite loci and two genes of the major histocompatibility complex (MHC) in up to 350 California sea otters Enhydra lutris nereis, which represents ∼10% of the subspecies' population, and 46 otters from two Alaskan sites. We utilized methods for detecting past reductions in effective population size to examine the effects of near extinction from the fur trade. Summary statistic tests largely failed to find a signal of a recent population size reduction (within the past 200 years), but a Bayesian method found a signal of a strong reduction over a longer time scale (up to 500 years ago). These results indicate that the reduction in size began long enough ago that much genetic variation was lost before the 19th century fur trade. A comparison of geographic distance and pairwise relatedness for individual otters found no evidence of kin-based spatial clustering for either gender. This indicates that there is no population structure, due to extended family groups, within the California population. A survey of population genetic variation found that two of the MHC genes, DQB and DRB, had two alleles present and one of the genes, DRA, was monomorphic in otters. This contrasts with other mammals, where they are often the most variable coding genes known. Genetic variation in the sea otter is among the lowest observed for a mammal and raises concerns about the long-term viability of the species, particularly in the face of future environmental changes.

  8. GENETIC STRUCTURE OF NORWAY SPRUCE (PICEA ABIES): CONCORDANCE OF MORPHOLOGICAL AND ALLOZYMIC VARIATION.

    PubMed

    Lagercrantz, Ulf; Ryman, Nils

    1990-02-01

    This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (G ST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is "explained" by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters. © 1990 The Society for the Study of Evolution.

  9. Genetic variation, multiple paternity, and measures of reproductive success in the critically endangered hawksbill turtle (Eretmochelys imbricata).

    PubMed

    González-Garza, Blanca Idalia; Stow, Adam; Sánchez-Teyer, Lorenzo Felipe; Zapata-Pérez, Omar

    2015-12-01

    The Yucatán Peninsula in Mexico contains some of the largest breeding groups of the globally distributed and critically endangered hawksbill turtle (Eretmochelys imbricata). An improved understanding of the breeding system of this species and how its genetic variation is structured among nesting areas is required before the threats to its survival can be properly evaluated. Here, we genotype 1195 hatchlings and 41 nesting females at 12 microsatellite loci to assess levels of multiple paternity, genetic variation and whether individual levels of homozygosity are associated with reproductive success. Of the 50 clutches analyzed, only 6% have multiple paternity. The distribution of pairwise relatedness among nesting localities (rookeries) was not random with elevated within-rookery relatedness, and declining relatedness with geographic distance indicating some natal philopatry. Although there was no strong evidence that particular rookeries had lost allelic variation via drift, younger turtles had significantly lower levels of genetic variation than older turtles, suggesting some loss of genetic variation. At present there is no indication that levels of genetic variation are associated with measures of reproductive success such as clutch size, hatching success, and frequency of infertile eggs.

  10. Quantitative genetics of secondary hip joint osteoarthritis in a Labrador Retriever-Greyhound pedigree.

    PubMed

    Hays, Laurel; Zhang, Zhiwu; Mateescu, Raluca G; Lust, George; Burton-Wurster, Nancy I; Todhunter, Rory J

    2007-01-01

    To evaluate the quantitative inheritance of secondary hip joint osteoarthritis in a canine pedigree. 137 Labrador Retrievers, Greyhounds, and mixed-breed dogs. Necropsy scores ranging from 0 to 4 were obtained for each hip joint. Seven unaffected Greyhounds with normal hip joint conformation were also used for genetic modeling, but were not euthanized. Sixty-six male and 71 female dogs were allocated to 2 groups (< or = 12 months of age and > 12 months of age). Statistical models were developed to establish the inheritance pattern of hip joint osteoarthritis that developed secondary to hip dysplasia. 62 dogs had evidence of osteoarthritis in a hip joint, and 75 had no evidence of osteoarthritis. After sex was adjusted for, the necropsy score was found to be inherited additively but without dominance. Each Labrador Retriever allele increased the necropsy score by 0.7 to 0.9 points, compared with the Greyhound allele, and male sex increased the necropsy score 0.74 over female sex. Approximately 10% of the variation in necropsy score was attributable to the litter of puppies' origin. Because secondary hip joint osteoarthritis is inherited additively, selection pressure could be applied to reduce its incidence. Similar statistical models can be used in linkage and association mapping to detect the genes in the underlying quantitative trait loci that contribute to hip joint osteoarthritis.

  11. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia

    PubMed Central

    Schrey, A.; Ragsdale, A.; Griffith, S. C.

    2018-01-01

    Invasive populations are often associated with low levels of genetic diversity owing to population bottlenecks at the initial stages of invasion. Despite this, the ability of invasive species to adapt rapidly in response to novel environments is well documented. Epigenetic mechanisms have recently been proposed to facilitate the success of invasive species by compensating for reduced levels of genetic variation. Here, we use methylation sensitive-amplification fragment length polymorphism and microsatellite analyses to compare levels of epigenetic and genetic diversity and differentiation across 15 sites in the introduced Australian house sparrow population. We find patterns of epigenetic and genetic differentiation that are consistent with historical descriptions of three distinct, introductions events. However unlike genetic differentiation, epigenetic differentiation was higher among sample sites than among invasion clusters, suggesting that patterns of epigenetic variation are more strongly influenced by local environmental stimuli or sequential founder events than the initial diversity in the introduction population. Interestingly, we fail to detect correlations between pairwise site comparisons of epigenetic and genetic differentiation, suggesting that some of the observed epigenetic variation has arisen independently of genetic variation. We also fail to detect the potentially compensatory relationship between epigenetic and genetic diversity that has been detected in a more recent house sparrow invasion in Africa. We discuss the potential for this relationship to be obscured by recovered genetic diversity in more established populations, and highlight the importance of incorporating introduction history into population-wide epigenetic analyses. PMID:29765671

  12. A comparison of worldwide phonemic and genetic variation in human populations

    PubMed Central

    Creanza, Nicole; Ruhlen, Merritt; Pemberton, Trevor J.; Rosenberg, Noah A.; Feldman, Marcus W.; Ramachandran, Sohini

    2015-01-01

    Worldwide patterns of genetic variation are driven by human demographic history. Here, we test whether this demographic history has left similar signatures on phonemes—sound units that distinguish meaning between words in languages—to those it has left on genes. We analyze, jointly and in parallel, phoneme inventories from 2,082 worldwide languages and microsatellite polymorphisms from 246 worldwide populations. On a global scale, both genetic distance and phonemic distance between populations are significantly correlated with geographic distance. Geographically close language pairs share significantly more phonemes than distant language pairs, whether or not the languages are closely related. The regional geographic axes of greatest phonemic differentiation correspond to axes of genetic differentiation, suggesting that there is a relationship between human dispersal and linguistic variation. However, the geographic distribution of phoneme inventory sizes does not follow the predictions of a serial founder effect during human expansion out of Africa. Furthermore, although geographically isolated populations lose genetic diversity via genetic drift, phonemes are not subject to drift in the same way: within a given geographic radius, languages that are relatively isolated exhibit more variance in number of phonemes than languages with many neighbors. This finding suggests that relatively isolated languages are more susceptible to phonemic change than languages with many neighbors. Within a language family, phoneme evolution along genetic, geographic, or cognate-based linguistic trees predicts similar ancestral phoneme states to those predicted from ancient sources. More genetic sampling could further elucidate the relative roles of vertical and horizontal transmission in phoneme evolution. PMID:25605893

  13. MetaRanker 2.0: a web server for prioritization of genetic variation data.

    PubMed

    Pers, Tune H; Dworzyński, Piotr; Thomas, Cecilia Engel; Lage, Kasper; Brunak, Søren

    2013-07-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein-protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0.

  14. Genetic variation affecting host-parasite interactions: different genes affect different aspects of sigma virus replication and transmission in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Kim, Kang-Wook; Webster, Claire L; Jiggins, Francis M

    2008-04-01

    In natural populations, genetic variation affects resistance to disease. Knowing how much variation exists, and understanding the genetic architecture of this variation, is important for medicine, for agriculture, and for understanding evolutionary processes. To investigate the extent and nature of genetic variation affecting resistance to pathogens, we are studying a tractable model system: Drosophila melanogaster and its natural pathogen the vertically transmitted sigma virus. We show that considerable genetic variation affects transmission of the virus from parent to offspring. However, maternal and paternal transmission of the virus is affected by different genes. Maternal transmission is a simple Mendelian trait: most of the genetic variation is explained by a polymorphism in ref(2)P, a gene already well known to affect resistance to sigma. In contrast, there is considerable genetic variation in paternal transmission that cannot be explained by ref(2)P and is caused by other loci on chromosome 2. Furthermore, we found no genetic correlation between paternal transmission of the virus and resistance to infection by the sigma virus following injection. This suggests that different loci affect viral replication and paternal transmission.

  15. Is variation in susceptibility to Phytophthora ramorum correlated with population genetic structure in coast live oak (Quercus agrifolia)?

    PubMed

    Dodd, Richard S; Hüberli, Daniel; Douhovnikoff, Vlad; Harnik, Tamar Y; Afzal-Rafii, Zara; Garbelotto, Matteo

    2005-01-01

    California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.

  16. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  17. Genetics of Inflammatory Bowel Diseases

    PubMed Central

    McGovern, Dermot; Kugathasan, Subra; Cho, Judy H.

    2015-01-01

    In this Review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and non-coding genetic variation. In the small minority of loci where major association signals correspond to non-synonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve non-coding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that expression of the large majority of human genes is regulated by non-coding genetic variation. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (i.e. odds ratios markedly deviating from one) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in very-early onset, more severe cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility, through emerging precision medicine initiatives. We discuss the rapidly evolving area of direct to consumer genetic testing, as well as the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect of partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research

  18. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait

    PubMed Central

    Hernández-Serrano, Ana; Verdú, Miguel; Santos-del-Blanco, Luís; Climent, José; González-Martínez, Santiago C.; Pausas, Juli G.

    2014-01-01

    Background and Aims Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QST–FST comparison). Methods A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance. Key Results Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites. Conclusions Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels

  19. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    PubMed

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  20. Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in Caenorhabditis elegans

    PubMed Central

    Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.

    2016-01-01

    Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268

  1. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    USGS Publications Warehouse

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  2. Genetic Variation in Complement Component 2 of the Classical Complement Pathway is Associated with Increased Mortality and Infection: A Study of 627 Trauma Patients

    PubMed Central

    Morris, John A.; Francois, Cedric; Olson, Paul K.; Cotton, Bryan A.; Summar, Marshall; Jenkins, Judith M.; Norris, Patrick R.; Moore, Jason H.; Williams, Anna E.; McNew, Brent S.; Canter, Jeffrey A.

    2009-01-01

    Trauma is a disease of inflammation. Complement Component 2 (C2) is a protease involved in activation of complement through the classical pathway and has been implicated in a variety of chronic inflammatory diseases. We hypothesized that genetic variation in C2 (E318D) identifies a high-risk subgroup of trauma patients reflecting increased mortality and infection (Ventilator associated pneumonia: VAP). Consequently, genetic variation in C2 may stratify patient risk and illuminate underlying mechanisms for therapeutic intervention. Methods DNA samples from 702 trauma patients were genotyped for C2 E318D and linked with covariates (age: mean 42.8 years, gender: 74% male, ethnicity: 80% Caucasian, mechanism: 84% blunt, ISS: mean 25.0, admission lactate: mean 3.13 mEq/L) and outcomes: mortality 9.9% and VAP: 18.5%. VAP was defined by quantitative bronchoalveolar lavage (>104). Multivariate regression determined the relationship of genotype and covariates to risk of death and VAP. However, patients with ISS ≥ 45 were excluded from the multivariate analysis, as magnitude of injury overwhelms genetics and covariates in determining outcome. Results 52 patients (8.3%) had the high-risk heterozygous genotype, associated with a significant increase in mortality and VAP. Conclusion In 702 trauma patients, 8.3% had a high-risk genetic variation in C2 associated with increased mortality (OR=2.65) and infection (OR=2.00). This variation: 1) Identifies a previously unknown high risk group for infection and mortality; 2) Can be determined on admission; 3) May provide opportunity for early therapeutic intervention; and 4) Requires validation in a distinct cohort of patients. PMID:19430225

  3. Genetic variation in Southern USA rice genotypes for seedling salinity tolerance

    PubMed Central

    De Leon, Teresa B.; Linscombe, Steven; Gregorio, Glenn; Subudhi, Prasanta K.

    2015-01-01

    The success of a rice breeding program in developing salt tolerant varieties depends on genetic variation and the salt stress response of adapted and donor rice germplasm. In this study, we used a combination of morphological and physiological traits in multivariate analyses to elucidate the phenotypic and genetic variation in salinity tolerance of 30 Southern USA rice genotypes, along with 19 donor genotypes with varying degree of tolerance. Significant genotypic variation and correlations were found among the salt injury score (SIS), ion leakage, chlorophyll reduction, shoot length reduction, shoot K+ concentration, and shoot Na+/K+ ratio. Using these parameters, the combined methods of cluster analysis and discriminant analysis validated the salinity response of known genotypes and classified most of the USA varieties into sensitive groups, except for three and seven varieties placed in the tolerant and moderately tolerant groups, respectively. Discriminant function and MANOVA delineated the differences in tolerance and suggested no differences between sensitive and highly sensitive (HS) groups. DNA profiling using simple sequence repeat markers showed narrow genetic diversity among USA genotypes. However, the overall genetic clustering was mostly due to subspecies and grain type differentiation and not by varietal grouping based on salinity tolerance. Among the donor genotypes, Nona Bokra, Pokkali, and its derived breeding lines remained the donors of choice for improving salinity tolerance during the seedling stage. However, due to undesirable agronomic attributes and photosensitivity of these donors, alternative genotypes such as TCCP266, Geumgangbyeo, and R609 are recommended as useful and novel sources of salinity tolerance for USA rice breeding programs. PMID:26074937

  4. MetaRanker 2.0: a web server for prioritization of genetic variation data

    PubMed Central

    Pers, Tune H.; Dworzyński, Piotr; Thomas, Cecilia Engel; Lage, Kasper; Brunak, Søren

    2013-01-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein–protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0. PMID:23703204

  5. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  6. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  7. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae): effects of reproductive strategy.

    PubMed

    Wang, Ting; Su, Yingjuan; Li, Yuan

    2012-01-01

    Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  8. Morphological Variation and Inter-Relationships of Quantitative Traits in Enset (Ensete ventricosum (welw.) Cheesman) Germplasm from South and South-Western Ethiopia

    PubMed Central

    Yemataw, Zerihun; Chala, Alemayehu; Grant, Murray R.

    2017-01-01

    Enset (Ensete ventricosum (Welw.) Cheesman) is Ethiopia’s most important root crop. A total of 387 accessions collected from nine different regions of Ethiopia were evaluated for 15 quantitative traits at Areka Agricultural Research Centre to determine the extent and pattern of distribution of morphological variation. The variations among the accessions and regions were significant (p ≤ 0.01) for all the 15 traits studied. Mean for plant height, central shoot weight before grating, and fermented squeezed kocho yield per hectare per year showed regional variation along an altitude gradient and across cultural differences related to the origin of the collection. Furthermore, there were significant correlations among most of the characters. This included the correlation among agronomic characteristics of primary interest in enset breeding such as plant height, pseudostem height, and fermented squeezed kocho yield per hectare per year. Altitude of the collection sites also significantly impacted the various characteristics studied. These results reveal the existence of significant phenotypic variations among the 387 accessions as a whole. Regional differentiations were also evident among the accessions. The implication of the current results for plant breeding, germplasm collection, and in situ and ex situ genetic resource conservation are discussed. PMID:29210979

  9. Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation

    PubMed Central

    Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.

    2015-01-01

    We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173

  10. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application.

    PubMed

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru; Langridge, Peter

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat.

  11. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    PubMed Central

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  12. Cryptic genetic variation: evolution's hidden substrate.

    PubMed

    Paaby, Annalise B; Rockman, Matthew V

    2014-04-01

    Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.

  13. Laboratory evolution of the migratory polymorphism in the sand cricket: combining physiology with quantitative genetics.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2007-01-01

    Predicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs. We also predict increased fecundity and reduced functionality and weight of the major flight muscles in long-winged females but little change in short-winged (flightless) females. Based on quantitative genetic theory, we predict that the regression equation describing the trade-off between ovary weight and weight of the major flight muscles will show a change in its intercept but not in its slope. Comparisons across generations verify all of these predictions. Further, using values of genetic parameters estimated from previous studies, we show that a quantitative genetic simulation model can account for not only the qualitative changes but also the evolutionary trajectory. These results demonstrate the power of combining quantitative genetic and physiological approaches for understanding the evolution of complex traits.

  14. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    USGS Publications Warehouse

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  15. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies.

    PubMed

    Wolff, J N; Pichaud, N; Camus, M F; Côté, G; Blier, P U; Dowling, D K

    2016-04-01

    The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. Population-genetic properties of differentiated copy number variations in cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a...

  17. Genetic variation and relationship among and within Withania species as revealed by AFLP markers.

    PubMed

    Negi, M S; Singh, A; Lakshmikumaran, M

    2000-12-01

    Withania somnifera is an important medicinal plant, and its anticancerous properties have been attributed to various classes of withanolide compounds. The objective of the present study was to investigate the inter- and intraspecific genetic variation present in 35 individuals of W. somnifera and 5 individuals of W. coagulans using AFLP (amplified fragment length polymorphism) marker technique. The information about genetic variation determined from AFLP data for 40 individuals was employed to estimate similarity matrix value based on Jaccard's coefficient. The similarity values were further used to construct a phenetic dendrogram revealing the genetic relationships. The dendrogram generated by UPGMA (unweighted pair group method of arithmetic averages) distinguished W. somnifera from W. coagulans and formed two major clusters. These two main clusters shared a similarity coefficient of 0.3, correlating with the high level of polymorphism detected. The dendrogram further separated W. somnifera into three subclasses corresponding to Kashmiri and Nagori groups and an intermediate type. The AFLP profile of Kashmiri individuals was distinct from that of the Nagori group of plants. The intermediate genotype was distinct as it shared bands with both the Kashmiri and Nagori individuals, even though it was identified as a Kashmiri morphotype. Furthermore, the intermediate type shared a similarity coefficient of 0.8 with the Kashmiri individuals. The present work revealed low levels of variation within a population though high levels of polymorphism were detected between Nagori and Kashmiri populations. The ability of AFLP markers for efficient and rapid detection of genetic variations at the species as well as intraspecific level qualifies it as an efficient tool for estimating genetic similarity in plant species and effective management of genetic resources.

  18. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  19. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  20. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    PubMed

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  1. Genetic association of ubiquilin with Alzheimer's disease and related quantitative measures.

    PubMed

    Kamboh, M I; Minster, R L; Feingold, E; DeKosky, S T

    2006-03-01

    The gene coding for ubiquilin 1 (UBQLN1) is located near a linkage peak on chromosome 9q22.2 and it also impacts the function of presenilin proteins involved in early-onset Alzheimer's disease (AD). Recently, genetic variation in UBQLN1 has been shown to affect the risk of AD in two independent family-based samples. The purpose of this study was to confirm the reported association in a large case-control sample and to also examine the association of UBQLN1 SNPs with quantitative measures of AD progression, namely age-at-onset (AAO), disease duration and Mini-Mental State Examination (MMSE) score. We examined the associations of three SNPs in the UBQLN1 gene (intron 6/A>C, intron 8/T>C and intron 9/A>G) in up to 978 LOAD cases and 808 controls. All SNPs were in significant linkage disequilibrium (P<0.0001). While modest significant associations were observed in the single-site regression analysis, 3-site haplotype analysis revealed significant associations (P<0.0001 for overall haplotype analysis). One common haplotype (H4) defined by intron 6/A-intron 8/C-intron 9/G alleles was associated with AD risk and one less common haplotype (H5) defined by intron 6/C-intron 8/C-intron 9/A alleles was associated with protection. The adjusted odds ratios with potentially one and two copies of risk haplotype H4 were 1.5 (95% CI: 0.99-2.26; P=0.054) and 3.66 (95% CI: 1.43-9.39; P=0.007), respectively, and odds ratio for haplotype H5 carriers was 0.31 (95% CI: 0.10-0.95; P=0.0398). In addition to disease risk, the homozygosity of the risk haplotype was also associated with older AAO, longer disease duration and lower MMSE score. In summary, our data from a large case-control cohort indicate that genetic variation in the UBQLN1 gene has a modest effect on risk, AAO and disease duration of AD. Our haplotype data suggest the presence of additional putative functional variants either in the UBQLN1 gene or nearby genes and provide strong justification for additional work in this

  2. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  3. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  4. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  5. Race, common genetic variation, and therapeutic response disparities in heart failure.

    PubMed

    Taylor, Mathew R; Sun, Albert Y; Davis, Gordon; Fiuzat, Mona; Liggett, Stephen B; Bristow, Michael R

    2014-12-01

    Because of its comparatively recent evolution, Homo sapiens exhibit relatively little within-species genomic diversity. However, because of genome size, a proportionately small amount of variation creates ample opportunities for both rare mutations that may cause disease as well as more common genetic variations that may be important in disease modification or pharmacogenetics. Primarily because of the East African origin of modern humans, individuals of African ancestry (AA) exhibit greater degrees of genetic diversity than more recently established populations, such as those of European ancestry (EA) or Asian ancestry. Those population effects extend to differences in frequency of common gene variants that may be important in heart failure natural history or therapy. For cell-signaling mechanisms important in heart failure, we review and present new data for genetic variation between AA and EA populations. Data indicate that: 1) neurohormonal signaling mechanisms frequently (16 of the 19 investigated polymorphisms) exhibit racial differences in the allele frequencies of variants comprising key constituents; 2) some of these differences in allele frequency may differentially affect the natural history of heart failure in AA compared with EA individuals; and 3) in many cases, these differences likely play a role in observed racial differences in drug or device response. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Public Willingness to Participate in and Public Opinions About Genetic Variation Research: A Review of the Literature

    PubMed Central

    Sterling, Rene; Henderson, Gail E.; Corbie-Smith, Giselle

    2006-01-01

    Scientists are turning to genetic variation research in hopes of addressing persistent racial/ethnic disparities in health. Despite ongoing controversy, the advancement of genetic variation research is likely to produce new knowledge and technologies that will substantially change the ways in which we understand and value health. They also may affect the ways in which individuals and groups organize socially, politically, and economically. Addressing concerns that may exist in different communities is vital to the scientific and ethical advancement of genetic variation research. We review empirical studies of public willingness to participate in and opinions about genetic research with particular attention to differences in consent and opinion by racial/ethnic group membership. PMID:17018829

  7. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants.

    PubMed

    Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J

    2010-06-01

    *Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. *For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. *Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. *Statistical analysis confirmed this rather counterintuitive finding that leaves of 'late regenerants' exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.

  8. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian.

    PubMed

    Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob

    2017-08-14

    Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.

  9. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem

    PubMed Central

    Rudman, Seth M.; Rodriguez-Cabal, Mariano A.; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W.; Crutsinger, Gregory M.

    2015-01-01

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004

  10. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.

    PubMed

    Rudman, Seth M; Rodriguez-Cabal, Mariano A; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W; Crutsinger, Gregory M

    2015-08-07

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. © 2015 The Author(s).

  11. Comparative RNA sequencing reveals substantial genetic variation in endangered primates

    PubMed Central

    Perry, George H.; Melsted, Páll; Marioni, John C.; Wang, Ying; Bainer, Russell; Pickrell, Joseph K.; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success. PMID:22207615

  12. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation

    PubMed Central

    Steenwyk, Jacob L.; Rokas, Antonis

    2018-01-01

    In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond. PMID:29520259

  13. Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing.

    PubMed

    Giudicessi, John R; Roden, Dan M; Wilde, Arthur A M; Ackerman, Michael J

    2018-02-06

    The acquired and congenital forms of long QT syndrome represent 2 distinct but clinically and genetically intertwined disorders of cardiac repolarization characterized by the shared final common pathway of QT interval prolongation and risk of potentially life-threatening arrhythmias. Over the past 2 decades, our understanding of the spectrum of genetic variation that (1) perturbs the function of cardiac ion channel macromolecular complexes and intracellular calcium-handling proteins, (2) underlies acquired/congenital long QT syndrome susceptibility, and (3) serves as a determinant of QT interval duration in the general population has grown exponentially. In turn, these molecular insights led to the development and increased utilization of clinically impactful genetic testing for congenital long QT syndrome. However, the widespread adoption and potential misinterpretation of the 2015 American College of Medical Genetics and Genomics variant classification and reporting guidelines may have contributed unintentionally to the reduced reporting of common genetic variants, with compelling epidemiological and functional evidence to support a potentially proarrhythmic role in patients with congenital and acquired long QT syndrome. As a result, some genetic testing reports may fail to convey the full extent of a patient's genetic susceptibility for a potentially life-threatening arrhythmia to the ordering healthcare professional. In this white paper, we examine the current classification and reporting (or lack thereof) of potentially proarrhythmic common genetic variants and investigate potential mechanisms to facilitate the reporting of these genetic variants without increasing the risk of diagnostic miscues. © 2018 American Heart Association, Inc.

  14. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Rooney, William L.; Mullet, John E.

    2015-01-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. PMID:26323882

  15. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism?

    PubMed

    Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas

    2014-01-01

    The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens.

  16. Population-level genetic variation and climate change in a biodiversity hotspot.

    PubMed

    Schierenbeck, Kristina A

    2017-01-01

    Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant-insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California's plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species.

  17. Allozyme variation of Port-Orford-Cedar (Chamaecyparis lawsoniana): implications for genetic conservation

    Treesearch

    Constance I. Millar; Kimberly A. Marshall

    1991-01-01

    Variation at 32 allozyme loci in nine disjunct populations of Part-Orford-cedar (POC) from the California floristic region was measured to estimate the amount and pattern of genetic variability in natural stands. Variation in electrophoretically detectable loci was moderately high, with mean number of alleles per locus = 1.9, 64.9% polymorphic loci, and observed...

  18. Foliar Nitrogen and Potassium Variation in Cottonwood as Affected by Genetic and Site Factors

    Treesearch

    James B. Baker; W. K. Randall

    1975-01-01

    Genetic and soil factors accounted for 49 percent of the variation in foliar N and 60 percent of the variation in foliar K among four good and four poor cottonwood clones grown on productive and unproductive soils in Mississippi. Variation in foliar N was associated primarily with the clone X soil interaction; variation in foliar K was related chiefly to clonal...

  19. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure

    PubMed Central

    Luoma, Sarah E.; St. Armour, Genevieve E.; Thakkar, Esha

    2017-01-01

    The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs) associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system. PMID:28732062

  20. Variation and evolution of male sex combs in Drosophila: nature of selection response and theories of genetic variation for sexual traits.

    PubMed

    Ahuja, Abha; Singh, Rama S

    2008-05-01

    We investigated the genetic architecture of variation in male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila. Twenty-four generations of divergent artificial selection for sex comb bristle number in a heterogeneous population of Drosophila melanogaster resulted in a significant response that was more pronounced in the direction of low bristle numbers. We observed a strong positive correlated response to selection in the corresponding female transverse bristle row. The correlated response in male abdominal and sternopleural bristle numbers, on the other hand, did not follow the same pattern as sex comb bristle number differences between selection lines. Relaxation-of-selection experiments along with mate choice and fecundity assays using the selection lines developed demonstrated the action of stabilizing selection on sex comb bristle number. Our results show (1) substantial genetic variation underlying sex comb bristle number variation; (2) a weak relationship between the sex comb and developmentally related, non-sex bristle systems; and (3) that sexual selection may be a driving force in sex comb evolution, indicating the potential of sex combs to diversify rapidly during population differentiation and speciation. We discuss the implications of these results for theories of genetic variation in display and nondisplay male sex traits.

  1. Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy.

    PubMed

    Heinig, Matthias; Adriaens, Michiel E; Schafer, Sebastian; van Deutekom, Hanneke W M; Lodder, Elisabeth M; Ware, James S; Schneider, Valentin; Felkin, Leanne E; Creemers, Esther E; Meder, Benjamin; Katus, Hugo A; Rühle, Frank; Stoll, Monika; Cambien, François; Villard, Eric; Charron, Philippe; Varro, Andras; Bishopric, Nanette H; George, Alfred L; Dos Remedios, Cristobal; Moreno-Moral, Aida; Pesce, Francesco; Bauerfeind, Anja; Rüschendorf, Franz; Rintisch, Carola; Petretto, Enrico; Barton, Paul J; Cook, Stuart A; Pinto, Yigal M; Bezzina, Connie R; Hubner, Norbert

    2017-09-14

    Genetic variation is an important determinant of RNA transcription and splicing, which in turn contributes to variation in human traits, including cardiovascular diseases. Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97 patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for dilated cardiomyopathy genome-wide association signals in two independent cohorts. RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the field of cardiovascular genetics.

  2. Genetic variation in domestic reindeer and wild caribou in Alaska

    USGS Publications Warehouse

    Cronin, M.; Renecker, L.; Pierson, Barbara J.; Patton, J.C.

    1995-01-01

    Reindeer were introduced into Alaska 100 years ago and have been maintained as semidomestic livestock. They have had contact with wild caribou herds, including deliberate cross-breeding and mixing in the wild. Reindeer have considerable potential as a domestic animal for meat or velvet antler production, and wild caribou are important to subsistence and sport hunters. Our objective was to quantify the genetic relationships of reindeer and caribou in Alaska. We identified allelic variation among five herds of wild caribou and three herds of reindeer with DNA sequencing and restriction enzymes for three loci: a DQA locus of the major histocompatibility complex (Rata-DQA1), k-casein and the D-loop of mitochondrial DNA. These loci are of interest because of their potential influence on domestic animal performance and the fitness of wild populations. There is considerable genetic variation in reindeer and caribou for all three loci, including five, three and six alleles for DQA, k-casein and D-loop respectively. Most alleles occur in both reindeer and caribou, which may be the result of recent common ancestry or genetic introgression in either direction. However, allele frequencies differ considerably between reindeer and caribou, which suggests that gene flow has been limited.

  3. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden.

    PubMed

    Rainey-Smith, Stephanie R; Mazzucchelli, Gavin N; Villemagne, Victor L; Brown, Belinda M; Porter, Tenielle; Weinborn, Michael; Bucks, Romola S; Milicic, Lidija; Sohrabi, Hamid R; Taddei, Kevin; Ames, David; Maruff, Paul; Masters, Colin L; Rowe, Christopher C; Salvado, Olivier; Martins, Ralph N; Laws, Simon M

    2018-02-26

    The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4 plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4 genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776, was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148, rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should be considered when interpreting sleep-Aβ relationships.

  4. The African Genome Variation Project shapes medical genetics in Africa

    PubMed Central

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  5. Common genetic variation drives molecular heterogeneity in human iPSCs.

    PubMed

    Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J

    2017-06-15

    Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.

  6. Common genetic variation drives molecular heterogeneity in human iPSCs

    PubMed Central

    Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard

    2017-01-01

    Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815

  7. Global and disease-associated genetic variation in the human Fanconi anemia gene family

    PubMed Central

    Rogers, Kai J.; Fu, Wenqing; Akey, Joshua M.; Monnat, Raymond J.

    2014-01-01

    Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57 240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. PMID:25104853

  8. Conservation genetics and geographic patterns of genetic variation of the endangered officinal herb Fritillaria pallidiflora

    Treesearch

    Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaolong Jiang; Mingli Zhang

    2015-01-01

    Fritillaria pallidiflora is an endangered officinal herb distributed in the Tianshan Mountains of northwestern China. We examined its phylogeography to study evolutionary processes and suggest implications for conservation. Six haplotypes were detected based on three chloroplast non-coding spacers (psbA-trnH, rps16, and trnS-trnG); genetic variation mainly occurred...

  9. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  10. Allozyme and RAPD Analysis of the Genetic Diversity and Geographic Variation in Wild Populations of the American Chestnut (Fagaceae)

    Treesearch

    Hongwen Huang; Fenny Dane; Thomas L. Kubisiak

    1998-01-01

    Genetic variation among 12 populations of the American chestnut (Custanea dentata) was investigated. Population genetic parameters estimated from allozyme variation suggest that C. dentata at both the population and species level has narrow genetic diversity as compared to other species in the genus. Average expected heterozygosity...

  11. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  12. Molecular identification and genetic variation of varieties of Styphnolobium japonicum (Fabaceae) using SRAP markers.

    PubMed

    Sun, R X; Zhang, C H; Zheng, Y Q; Zong, Y C; Yu, X D; Huang, P

    2016-05-06

    Thirty-four Styphnolobium japonicum varieties were analyzed using sequence-related amplified polymorphism (SRAP) markers, to investigate genetic variation and test the effectiveness of SRAP markers in DNA fingerprint establishment. Twelve primer pairs were selected from 120 primer combinations for their reproducibility and high polymorphism. We found a total of 430 amplified fragments, of which 415 fragments were considered polymorphic with an average of 34.58 polymorphic fragments for each primer combination. The percentage of polymorphic fragments was 96.60%, and four primer pairs showed 100% polymorphism. Moreover, simple matched coefficients ranged between 0.68 and 0.89, with an average of 0.785, indicating that the genetic variation among varieties was relatively low. This could be because of the narrow genetic basis of the selected breeding material. Based on the similarity coefficient value of 0.76, the varieties were divided into four major groups. In addition, abundant and clear SRAP fingerprints were obtained and could be used to establish DNA fingerprints. In the DNA fingerprints, each variety had its unique pattern that could be easily distinguished from others. The results demonstrated that 34 varieties of S. japonicum had a relatively narrow genetic variation. Hence, a broadening of the genetic basis of breeding material is necessary. We conclude that establishment of DNA fingerprint is feasible by means of SRAP markers.

  13. Evolving Landscapes: the Effect of Genetic Variation on Salt Marsh Erosion

    NASA Astrophysics Data System (ADS)

    Bernik, B. M.; Blum, M. J.

    2014-12-01

    Ecogeomorphic studies have demonstrated that biota can exert influence over geomorphic processes, such as sediment transport, which in turn have biotic consequences and generate complex feedbacks. However, little attention has been paid to the potential for feedback to arise from evolutionary processes as population genetic composition changes in response to changing physical landscapes. In coastal ecosystems experiencing land loss, for example, shoreline erosion entails reduced plant survival and reproduction, and thereby represents a geomorphic response with inherent consequences for evolutionary fitness. To get at this topic, we examined the effect of genetic variation in the saltmarsh grass Spartina alterniflora, a renowned ecosystem engineer, on rates of shoreline erosion. Field transplantation studies and controlled greenhouse experiments were conducted to compare different genotypes from both wild and cultivated populations. Plant traits, soil properties, accretion/subsidence, and rates of land loss were measured. We found significant differences in rates of erosion between field plots occupied by different genotypes. Differences in erosion corresponded to variation in soil properties including critical shear stress and subsidence. Plant traits that differed across genotypes included belowground biomass, root tensile strength, and C:N ratios. Our results demonstrate the importance of genetic variation to salt marsh functioning, elucidating the relationship between evolutionary processes and ecogeomorphic dynamics in these systems. Because evolutionary processes can occur on ecological timescales, the direction and strength of ecogeomorphic feedbacks may be more dynamic than previously accounted for.

  14. Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

    PubMed

    Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve

    2008-04-15

    Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait

  15. MAINTENANCE OF ECOLOGICALLY SIGNIFICANT GENETIC VARIATION IN THE TIGER SWALLOWTAIL BUTTERFLY THROUGH DIFFERENTIAL SELECTION AND GENE FLOW.

    PubMed

    Bossart, J L; Scriber, J M

    1995-12-01

    Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.

  16. Representation matters: quantitative behavioral variation in wild worm strains

    NASA Astrophysics Data System (ADS)

    Brown, Andre

    Natural genetic variation in populations is the basis of genome-wide association studies, an approach that has been applied in large studies of humans to study the genetic architecture of complex traits including disease risk. Of course, the traits you choose to measure determine which associated genes you discover (or miss). In large-scale human studies, the measured traits are usually taken as a given during the association step because they are expensive to collect and standardize. Working with the nematode worm C. elegans, we do not have the same constraints. In this talk I will describe how large-scale imaging of worm behavior allows us to develop alternative representations of behavior that vary differently across wild populations. The alternative representations yield novel traits that can be used for genome-wide association studies and may reveal basic properties of the genotype-phenotype map that are obscured if only a small set of fixed traits are used.

  17. Uncovering the genetic signature of quantitative trait evolution with replicated time series data.

    PubMed

    Franssen, S U; Kofler, R; Schlötterer, C

    2017-01-01

    The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.

  18. Natural genetic variation in social environment choice: context-dependent gene-environment correlation in Drosophila melanogaster.

    PubMed

    Saltz, Julia B

    2011-08-01

    Gene-environment correlation (rGE) occurs when an individual's genotype determines its choice of environment, generating a correlation between environment and genotype frequency. In particular, social rGE, caused by genetic variation in social environment choice, can critically determine both individual development and the course of social selection. Despite its foundational role in social evolution and developmental psychology theory, natural genetic variation in social environment choice has scarcely been examined empirically. Drosophila melanogaster provides an ideal system for investigating social rGE. Flies live socially in nature and have many opportunities to make social decisions; and natural, heterozygous genotypes may be replicated, enabling comparisons between genotypes across environments. Using this approach, I show that all aspects of social environment choice vary among natural genotypes, demonstrating pervasive social rGE. Surprisingly, genetic variation in group-size preference was density dependent, indicating that the behavioral and evolutionary consequences of rGE may depend on the context in which social decisions are made. These results provide the first detailed investigation of social rGE, and illustrate that that genetic variation may influence organismal performance by specifying the environment in which traits are expressed. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  19. Genetic variation associated with cardiovascular risk in autoimmune diseases

    PubMed Central

    Perrotti, Pedro P.; Aterido, Adrià; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P.; Domènech, Eugeni; Fernández-Gutiérrez, Benjamín; Gomollón, Fernando; García-Planella, Esther; Fernández, Emilia; Sanmartí, Raimon; Gratacós, Jordi; Martínez-Taboada, Víctor Manuel; Rodríguez-Rodríguez, Luís; Palau, Núria; Tortosa, Raül; Corbeto, Mireia L.; Lasanta, María L.; Marsal, Sara; Julià, Antonio

    2017-01-01

    Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNFα and IFNγ cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity. PMID:28982122

  20. Genetic Variation in the Vesicular Monoamine Transporter: Preliminary associations with Cognitive Outcomes after Severe Traumatic Brain Injury

    PubMed Central

    Markos, Steven; Failla, Michelle D.; Ritter, Anne C; Dixon, C. Edward; Conley, Yvette P.; Ricker, Joseph H; Arenth, Patricia M.; Juengst, Shannon B.; Wagner, Amy K.

    2015-01-01

    Introduction Traumatic brain injury (TBI) frequently results in impaired cognition, a function that can be modulated by monoaminergic signaling. Genetic variation among monoaminergic genes may affect post-TBI cognitive performance. The vesicular monoamine transporter 2 (VMAT2) gene may be a novel source of genetic variation important for cognitive outcomes post-TBI given VMAT2’s role in monoaminergic neurotransmission. Objective Evaluate associations between VMAT2 variability and cognitive outcomes post-TBI. Methods We evaluated 136 white adults with severe TBI for variation in VMAT2 using a tagging single nucleotide polymorphism (tSNP) approach (rs363223, rs363226, rs363251, and rs363341). We show genetic variation interacts with assessed cognitive impairment [cognitive composite T-scores (Comp-Cog)] to influence functional cognition [Functional Independence Measure Cognitive subscale (FIM-Cog)] 6 and 12 months post-injury. Results Multivariate analyses at 6-months post-injury showed rs363226 genotype was associated with Comp-Cog (p=0.040) and interacted with Comp-Cog to influence functional cognition (p<0.001). G-homozygotes had the largest cognitive impairment, and their cognitive impairment had the greatest adverse effect on functional cognition. Discussion We provide the first evidence that genetic variation within VMAT2 is associated with cognitive outcomes following TBI. Further work is needed to validate this finding and elucidate mechanisms by which genetic variation affects monoaminergic signaling, mediating differences in cognitive outcomes. PMID:26828714

  1. Genetic Variation in the Acorn Barnacle from Allozymes to Population Genomics

    PubMed Central

    Flight, Patrick A.; Rand, David M.

    2012-01-01

    Understanding the patterns of genetic variation within and among populations is a central problem in population and evolutionary genetics. We examine this question in the acorn barnacle, Semibalanus balanoides, in which the allozyme loci Mpi and Gpi have been implicated in balancing selection due to varying selective pressures at different spatial scales. We review the patterns of genetic variation at the Mpi locus, compare this to levels of population differentiation at mtDNA and microsatellites, and place these data in the context of genome-wide variation from high-throughput sequencing of population samples spanning the North Atlantic. Despite considerable geographic variation in the patterns of selection at the Mpi allozyme, this locus shows rather low levels of population differentiation at ecological and trans-oceanic scales (FST ∼ 5%). Pooled population sequencing was performed on samples from Rhode Island (RI), Maine (ME), and Southwold, England (UK). Analysis of more than 650 million reads identified approximately 335,000 high-quality SNPs in 19 million base pairs of the S. balanoides genome. Much variation is shared across the Atlantic, but there are significant examples of strong population differentiation among samples from RI, ME, and UK. An FST outlier screen of more than 22,000 contigs provided a genome-wide context for interpretation of earlier studies on allozymes, mtDNA, and microsatellites. FST values for allozymes, mtDNA and microsatellites are close to the genome-wide average for random SNPs, with the exception of the trans-Atlantic FST for mtDNA. The majority of FST outliers were unique between individual pairs of populations, but some genes show shared patterns of excess differentiation. These data indicate that gene flow is high, that selection is strong on a subset of genes, and that a variety of genes are experiencing diversifying selection at large spatial scales. This survey of polymorphism in S. balanoides provides a number of

  2. Statistical genetics and evolution of quantitative traits

    NASA Astrophysics Data System (ADS)

    Neher, Richard A.; Shraiman, Boris I.

    2011-10-01

    The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.

  3. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection.

    PubMed

    Brooks, R; Endler, J A

    2001-08-01

    Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.

  4. Genetic Architecture of the Variation in Male-Specific Ossified Processes on the Anal Fins of Japanese Medaka.

    PubMed

    Kawajiri, Maiko; Fujimoto, Shingo; Yoshida, Kohta; Yamahira, Kazunori; Kitano, Jun

    2015-10-28

    Traits involved in reproduction evolve rapidly and show great diversity among closely related species. However, the genetic mechanisms that underlie the diversification of courtship traits are mostly unknown. Japanese medaka fishes (Oryzias latipes) use anal fins to attract females and to grasp females during courtship; the males have longer anal fins with male-specific ossified papillary processes on the fin rays. However, anal fin morphology varies between populations: the southern populations tend to have longer anal fins and more processes than the northern populations. In the present study, we conducted quantitative trait locus (QTL) mapping to investigate the genetic architecture underlying the variation in the number of papillary processes of Japanese medaka fish and compared the QTL with previously identified QTL controlling anal fin length. First, we found that only a few QTL were shared between anal fin length and papillary process number. Second, we found that the numbers of papillary processes on different fin rays often were controlled by different QTL. Finally, we produced another independent cross and found that some QTL were repeatable between the two crosses, whereas others were specific to only one cross. These results suggest that variation in the number of papillary processes is polygenic and controlled by QTL that are distinct from those controlling anal fin length. Thus, different courtship traits in Japanese medaka share a small number of QTL and have the potential for independent evolution. Copyright © 2015 Kawajiri et al.

  5. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses

    PubMed Central

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-01-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population. PMID:28722705

  6. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses.

    PubMed

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-10-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.

  7. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  8. Global and disease-associated genetic variation in the human Fanconi anemia gene family.

    PubMed

    Rogers, Kai J; Fu, Wenqing; Akey, Joshua M; Monnat, Raymond J

    2014-12-20

    Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome

    PubMed Central

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O’Connor, Timothy D.; Abecasis, Gonçalo R.; Wojcik, Genevieve L; Gignoux, Christopher R.; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E.; Bustamante, Carlos; Beaty, Terri H.; Mathias, Rasika A.; Barnes, Kathleen C.; Qin, Zhaohui S.; Preethi Boorgula, Meher; Campbell, Monica; Chavan, Sameer; Ford, Jean G.; Foster, Cassandra; Gao, Li; Hansel, Nadia N.; Horowitz, Edward; Huang, Lili; Ortiz, Romina; Potee, Joseph; Rafaels, Nicholas; Ruczinski, Ingo; Scott, Alan F.; Taub, Margaret A.; Vergara, Candelaria; Levin, Albert M.; Padhukasahasram, Badri; Williams, L. Keoki; Dunston, Georgia M.; Faruque, Mezbah U.; Gietzen, Kimberly; Deshpande, Aniket; Grus, Wendy E.; Locke, Devin P.; Foreman, Marilyn G.; Avila, Pedro C.; Grammer, Leslie; Kim, Kwang-Youn A.; Kumar, Rajesh; Schleimer, Robert; De La Vega, Francisco M.; Shringarpure, Suyash S.; Musharoff, Shaila; Burchard, Esteban G.; Eng, Celeste; Hernandez, Ryan D.; Pino-Yanes, Maria; Torgerson, Dara G.; Szpiech, Zachary A.; Torres, Raul; Nicolae, Dan L.; Ober, Carole; Olopade, Christopher O; Olopade, Olufunmilayo; Oluwole, Oluwafemi; Arinola, Ganiyu; Song, Wei; Correa, Adolfo; Musani, Solomon; Wilson, James G.; Lange, Leslie A.; Akey, Joshua; Bamshad, Michael; Chong, Jessica; Fu, Wenqing; Nickerson, Deborah; Reiner, Alexander; Hartert, Tina; Ware, Lorraine B.; Bleecker, Eugene; Meyers, Deborah; Ortega, Victor E.; Maul, Pissamai; Maul, Trevor; Watson, Harold; Ilma Araujo, Maria; Riccio Oliveira, Ricardo; Caraballo, Luis; Marrugo, Javier; Martinez, Beatriz; Meza, Catherine; Ayestas, Gerardo; Francisco Herrera-Paz, Edwin; Landaverde-Torres, Pamela; Erazo, Said Omar Leiva; Martinez, Rosella; Mayorga, Alvaro; Mayorga, Luis F.; Mejia-Mejia, Delmy-Aracely; Ramos, Hector; Saenz, Allan; Varela, Gloria; Marina Vasquez, Olga; Ferguson, Trevor; Knight-Madden, Jennifer; Samms-Vaughan, Maureen; Wilks, Rainford J.; Adegnika, Akim; Ateba-Ngoa, Ulysse; Yazdanbakhsh, Maria

    2017-01-01

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an ‘African Diaspora Power Chip’ (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry. PMID:28429804

  10. Genetic variation among interconnected populations of Catostomus occidentalis: Implications for distinguishing impacts of contaminants from biogeographical structuring

    USGS Publications Warehouse

    Whitehead, A.; Anderson, S.L.; Kuivila, K.M.; Roach, J.L.; May, B.

    2003-01-01

    Exposure to contaminants can affect survivorship, recruitment, reproductive success, mutation rates and migration, and may play a significant role in the partitioning of genetic variation among exposed and nonexposed populations. However, the application of molecular population genetic data to evaluate such influences has been uncommon and often flawed. We tested whether patterns of genetic variation among native fish populations (Sacramento sucker, Catostomus occidentalis) in the Central Valley of California were consistent with long-term pesticide exposure history, or primarily with expectations based on biogeography. Field sampling was designed to rigorously test for both geographical and contamination influences. Fine-scale structure of these interconnected populations was detected with both amplified fragment length polymorphisms (AFLP) and microsatellite markers, and patterns of variation elucidated by the two marker systems were highly concordant. Analyses indicated that biogeographical hypotheses described the data set better than hypotheses relating to common historical pesticide exposure. Downstream populations had higher genetic diversity than upstream populations, regardless of exposure history, and genetic distances showed that populations from the same river system tended to cluster together. Relatedness among populations reflected primarily directions of gene flow, rather than convergence among contaminant-exposed populations. Watershed geography accounted for significant partitioning of genetic variation among populations, whereas contaminant exposure history did not. Genetic patterns indicating contaminant-induced selection, increased mutation rates or recent bottlenecks were weak or absent. We stress the importance of testing contaminant-induced genetic change hypotheses within a biogeographical context. Strategic application of molecular markers for analysis of fine-scale structure, and for evaluating contaminant impacts on gene pools, is

  11. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm.

    PubMed

    Pironon, Samuel; Papuga, Guillaume; Villellas, Jesús; Angert, Amy L; García, María B; Thompson, John D

    2017-11-01

    The 'centre-periphery hypothesis' (CPH) is a long-standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20-30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates

  12. Maternal genetic effects on adaptive divergence between anadromous and resident brook charr during early life history.

    PubMed

    Perry, G M L; Audet, C; Bernatchez, L

    2005-09-01

    The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic

  13. Increased genetic variation and evolutionary potential drive the success of an invasive grass

    PubMed Central

    Lavergne, Sébastien; Molofsky, Jane

    2007-01-01

    Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination. PMID:17360447

  14. Increased genetic variation and evolutionary potential drive the success of an invasive grass.

    PubMed

    Lavergne, Sébastien; Molofsky, Jane

    2007-03-06

    Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination.

  15. Incorporating latitudinal and central–marginal trends in assessing genetic variation across species ranges

    Treesearch

    Qinfeng Guo

    2012-01-01

    The genetic variation across a species’ range is an important factor in speciation and conservation, yet searching for general patterns and underlying causes remains challenging. While the majority of comparisons between central and marginal populations have revealed a general central–marginal (C-M) decline in genetic diversity, others show no clear pattern. Similarly...

  16. Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism

    PubMed Central

    Matsuda, Fumio; Nakabayashi, Ryo; Yang, Zhigang; Okazaki, Yozo; Yonemaru, Jun-ichi; Ebana, Kaworu; Yano, Masahiro; Saito, Kazuki

    2015-01-01

    Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome-wide association studies (GWAS) were conducted to investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucleotide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabolites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association may be a mechanism generating strains with distinct metabolic composition through the crossing of two different strains. The results indicate that one plant species produces more diverse phytochemicals than previously expected, and plants still contain many useful compounds for human applications. PMID:25267402

  17. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    PubMed

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  18. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  19. Quantitative genetics of plumage color: lifetime effects of early nest environment on a colorful sexual signal

    PubMed Central

    Hubbard, Joanna K; Jenkins, Brittany R; Safran, Rebecca J

    2015-01-01

    Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full-sib/half-sib design as well as within-individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin-based plumage color – a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster) – is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin-based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought. PMID:26380676

  20. Striking Phenotypic Variation yet Low Genetic Differentiation in Sympatric Lake Trout (Salvelinus namaycush)

    PubMed Central

    Coon, Andrew; Carson, Robert; Debes, Paul V.

    2016-01-01

    The study of population differentiation in the context of ecological speciation is commonly assessed using populations with obvious discreteness. Fewer studies have examined diversifying populations with occasional adaptive variation and minor reproductive isolation, so factors impeding or facilitating the progress of early stage differentiation are less understood. We detected non-random genetic structuring in lake trout (Salvelinus namaycush) inhabiting a large, pristine, postglacial lake (Mistassini Lake, Canada), with up to five discernible genetic clusters having distinctions in body shape, size, colouration and head shape. However, genetic differentiation was low (FST = 0.017) and genetic clustering was largely incongruent between several population- and individual-based clustering approaches. Genotype- and phenotype-environment associations with spatial habitat, depth and fish community structure (competitors and prey) were either inconsistent or weak. Striking morphological variation was often more continuous within than among defined genetic clusters. Low genetic differentiation was a consequence of relatively high contemporary gene flow despite large effective population sizes, not migration-drift disequilibrium. Our results suggest a highly plastic propensity for occupying multiple habitat niches in lake trout and a low cost of morphological plasticity, which may constrain the speed and extent of adaptive divergence. We discuss how factors relating to niche conservatism in this species may also influence how plasticity affects adaptive divergence, even where ample ecological opportunity apparently exists. PMID:27680019

  1. Indirect Genetic Effects and the Spread of Infectious Disease: Are We Capturing the Full Heritable Variation Underlying Disease Prevalence?

    PubMed Central

    Lipschutz-Powell, Debby; Woolliams, John A.; Bijma, Piter; Doeschl-Wilson, Andrea B.

    2012-01-01

    Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease

  2. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles.

    PubMed

    Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G

    2015-01-22

    Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.

  3. Genetic variation in bison (bison bison) subspecies and cattle (Bos taurus) breeds and subspecies

    USDA-ARS?s Scientific Manuscript database

    Genetic variation was quantified at 29 polymorphic microsatellite DNA loci in nine herds of plains bison (Bison bison bison), three herds of wood bison (B.b. athabascae), fourteen breeds of taurine cattle (Bos Taurus Taurus), and two breeds of indicine cattle (Bos Taurus indicus). Genetic distances,...

  4. Genetic variation patterns of American chestnut populations at EST-SSRs

    Treesearch

    Oliver Gailing; C. Dana Nelson

    2017-01-01

    The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...

  5. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  6. Integrating common and rare genetic variation in diverse human populations.

    PubMed

    Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E

    2010-09-02

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.

  7. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Éric; Christophe, Angélique; Doligez, Agnès; Cabrera-Bosquet, Llorenç; Péchier, Philippe; Hamard, Philippe; This, Patrice; Simonneau, Thierry

    2014-01-01

    In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration. PMID:25381432

  8. Low Genetic Variation of Red-Crowned Cranes on Hokkaido Island, Japan, Over the Hundred Years.

    PubMed

    Akiyama, Takuya; Momose, Kunikazu; Onuma, Manabu; Matsumoto, Fumio; Masuda, Ryuichi

    2017-06-01

    The red-crowned crane (Grus japonensis) is recognized internationally as an endangered species. Migratory populations breed in eastern Russia and northeastern China, whereas the resident population inhabits the island of Hokkaido, Japan. Although the population inhabiting Hokkaido had experienced a severe bottleneck by the end of the 19th century, the population size has recovered to about 1500 and continues to increase now thanks to conservation efforts. A previous study reported that no marked genetic differences were seen in the island population, and that the genetic variation of the whole population on Hokkaido was lower than that of the continental population. However, the precise genetic structure of the island population in the past or near present remains unclear. To better understand the spatiotemporal changes in the genetic structure of the island population, we performed mitochondrial DNA (mtDNA) analyses using stuffed specimens (years 1878-2001) and tissue or blood samples (years 1970-2014). We found three haplotypes in the island population, one of which was a novel mtDNA haplotype in 1997 and 2007 samples. In addition, there was no clear difference in the haplotype frequency through the time span. These results suggest that the low genetic variation of the island population persisted for the last hundred years. It is thus nearly impossible for the island population to recover its genetic variation in isolation. Conservation plans for this species should therefore include the promotion of genetic exchanges between the continental and island populations, such as through artificial introduction to Hokkaido.

  9. Inter Individual Variations of the Fish Skin Microbiota: Host Genetics Basis of Mutualism?

    PubMed Central

    Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas

    2014-01-01

    The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens. PMID:25068850

  10. Modelling the co-evolution of indirect genetic effects and inherited variability.

    PubMed

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of

  11. Genetic variation in caribou and reindeer (Rangifer tarandus).

    PubMed

    Cronin, M A; Patton, J C; Balmysheva, N; MacNeil, M D

    2003-02-01

    Genetic variation at seven microsatellite DNA loci was quantified in 19 herds of wild caribou and domestic reindeer (Rangifer tarandus) from North America, Scandinavia and Russia. There is an average of 2.0-6.6 alleles per locus and observed individual heterozygosity of 0.33-0.50 in most herds. A herd on Svalbard Island, Scandinavia, is an exception, with relatively few alleles and low heterozygosity. The Central Arctic, Western Arctic and Porcupine River caribou herds in Alaska have similar allele frequencies and comprise one breeding population. Domestic reindeer in Alaska originated from transplants from Siberia, Russia, more than 100 years ago. Reindeer in Alaska and Siberia have different allele frequencies at several loci, but a relatively low level of genetic differentiation. Wild caribou and domestic reindeer in Alaska have significantly different allele frequencies at the seven loci, indicating that gene flow between reindeer and caribou in Alaska has been limited.

  12. Evaluation of an ensemble of genetic models for prediction of a quantitative trait.

    PubMed

    Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola

    2014-01-01

    Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.

  13. Genetic variation and differentiation in parent-descendant cattle and bison populations

    USDA-ARS?s Scientific Manuscript database

    Genetic variation and differentiation at 32 microsatellite DNA loci is quantified for parent-descendant cattle populations and parent-descendant bison (Bison bison) populations. Heterozygosity (Ho) and numbers of alleles/locus (AR) are less in the Line 1 Hereford inbred cattle population than in t...

  14. Conservation genetics and geographic patterns of genetic variation of the vulnerable officinal herb Fritillaria walujewii (Liliaceae)

    Treesearch

    Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaojun Shi; Xiaolong Jiang

    2015-01-01

    The Chinese herb Fritillaria walujewii Regel is an important officinal species that is vulnerable because of over-harvesting. Here, we examined the geographic pattern of genetic variation across the species entire range, to study its evolution process and give implication needed for the conservation. Nine haplotypes were detected on the basis of three chloroplast...

  15. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors.

    PubMed

    Patin, Etienne; Hasan, Milena; Bergstedt, Jacob; Rouilly, Vincent; Libri, Valentina; Urrutia, Alejandra; Alanio, Cécile; Scepanovic, Petar; Hammer, Christian; Jönsson, Friederike; Beitz, Benoît; Quach, Hélène; Lim, Yoong Wearn; Hunkapiller, Julie; Zepeda, Magge; Green, Cherie; Piasecka, Barbara; Leloup, Claire; Rogge, Lars; Huetz, François; Peguillet, Isabelle; Lantz, Olivier; Fontes, Magnus; Di Santo, James P; Thomas, Stéphanie; Fellay, Jacques; Duffy, Darragh; Quintana-Murci, Lluís; Albert, Matthew L

    2018-03-01

    The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.

  16. Short communication: Genetic variation in choice consistency for cows accessing automatic milking units.

    PubMed

    Løvendahl, Peter; Sørensen, Lars Peter; Bjerring, Martin; Lassen, Jan

    2016-12-01

    Dairy cows milked in automatic milking systems (AMS) with more than 1 milking box may, as individuals, have a preference for specific milking boxes if allowed free choice. Estimates of quantitative genetic variation in behavioral traits of farmed animals have previously been reported, with estimates of heritability ranging widely. However, for the consistency of choice in dairy cows, almost no published estimates of heritability exist. The hypothesis for this study was that choice consistency is partly under additive genetic control and partly controlled by permanent environmental (animal) effects. The aims of this study were to obtain estimates of genetic and phenotypic parameters for choice consistency in dairy cows milked in AMS herds. Data were obtained from 5 commercial Danish herds (I-V) with 2 AMS milking boxes (A, B). Milking data were only from milkings where both the present and the previous milkings were coded as completed. This filter was used to fulfill a criterion of free-choice situation (713,772 milkings, 1,231 cows). The lactation was divided into 20 segments covering 15d each, from 5 to 305d in milk. Choice consistency scores were obtained as the fraction of milkings without change of box [i.e., 1.0 - µ(box change)] for each segment. Data were analyzed for one part of lactation at a time using a linear mixed model for first-parity cows alone and for all parities jointly. Choice consistency was found to be only weakly heritable (heritability=0.02 to 0.14) in first as well as in later parities, and having intermediate repeatability (repeatability coefficients=0.27 to 0.56). Heritability was especially low at early and late lactation states. These results indicate that consistency, which is itself an indication of repeated similar choices, is also repeatable as a trait observed over longer time periods. However, the genetic background seems to play a smaller role compared with that of the permanent animal effects, indicating that consistency could

  17. Geologic events coupled with Pleistocene climatic oscillations drove genetic variation of Omei treefrog (Rhacophorus omeimontis) in southern China.

    PubMed

    Li, Jun; Zhao, Mian; Wei, Shichao; Luo, Zhenhua; Wu, Hua

    2015-12-21

    Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. However, the relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. To investigate patterns of genetic variation and to test the hypotheses about the factors that shaped the distribution of this genetic variation in species of southern China, mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and nine microsatellite loci of the Omei tree frog (Rhacophorus omeimontis) were amplified in this study. The genetic diversity in the populations of R. omeimontis was high. The phylogenetic trees reconstructed from the mitochondrial DNA (mtDNA) haplotypes and the Bayesian genetic clustering analysis based on microsatellite data both revealed that all populations were divided into three lineages (SC, HG and YN). The two most recent splitting events among the lineages coincided with recent geological events (including the intense uplift of the Qinghai-Tibet Plateau, QTP and the subsequent movements of the Yun-Gui Plateau, YGP) and the Pleistocene glaciations. Significant expansion signals were not detected in mismatch analyses or neutrality tests. And the effective population size of each lineage was stable during the Pleistocene. Based on the results of this study, complex geological events (the recent dramatic uplift of the QTP and the subsequent movements of the YGP) and the Pleistocene glaciations were apparent drivers of the rapid divergence of the R. omeimontis lineages. Each diverged lineages survived in situ with limited gene exchanges, and the stable demographics of lineages indicate that the Pleistocene climatic oscillations were inconsequential for this species. The analysis of genetic variation in populations of R. omeimontis

  18. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    PubMed

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  19. Response of Predatory Mites to a Herbivore-Induced Plant Volatile: Genetic Variation for Context-Dependent Behaviour

    PubMed Central

    Sabelis, Maurice W.; Egas, Martijn

    2010-01-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators’ responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles. PMID:20574785

  20. An initial investigation of associations between dopamine-linked genetic variation and smoking motives in African Americans.

    PubMed

    Bidwell, L C; McGeary, J E; Gray, J C; Palmer, R H C; Knopik, V S; MacKillop, J

    2015-11-01

    Nicotine dependence (ND) is a heterogeneous phenotype with complex genetic influences that may vary across ethnicities. The use of intermediate phenotypes may clarify genetic influences and reveal specific etiological pathways. Prior work in European Americans has found that the four Primary Dependence Motives (PDM) subscales (Automaticity, Craving, Loss of Control, and Tolerance) of the Wisconsin Inventory of Smoking Motives represent core features of nicotine dependence and are promising intermediate phenotypes for understanding genetic pathways to ND. However, no studies have examined PDM as an intermediate phenotype in African American smokers, an ethnic population that displays unique patterns of smoking and genetic variation. In the current study, 268 African American daily smokers completed a phenotypic assessment and provided a sample of DNA. Associations among haplotypes in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, a dopamine-related gene region associated with ND, PDM intermediate phenotypes, and ND were examined. Dopamine-related genetic variation in the DBH and COMT genes was also considered on an exploratory basis. Mediational analysis was used to test the indirect pathway from genetic variation to smoking motives to nicotine dependence. NCAM1-TTC12-ANKK1-DRD2 region variation was significantly associated with the Automaticity subscale and, further, Automaticity significantly mediated associations among NCAM1-TTC12-ANKK1-DRD2 cluster variants and ND. DBH was also significantly associated with Automaticity, Craving, and Tolerance; Automaticity and Tolerance also served as mediators of the DBH-ND relationship. These results suggest that PDM, Automaticity in particular, may be a viable intermediate phenotype for understanding dopamine-related genetic influences on ND in African American smokers. Findings support a model in which putatively dopaminergic variants exert influence on ND through an effect on patterns of automatic routinized smoking. Copyright

  1. Genetic Variations of Physiological Responses Following Heat Stress in Laying Hens

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS), also known as hyperthermia, is a major problem experienced by poultry during high-temperature conditions. The ability to manage the detrimental effects of HS can be attributed to many factors, including genetics. The objective of the present study was to determine the variation of ...

  2. Global Genetic Variations Predict Brain Response to Faces

    PubMed Central

    Dickie, Erin W.; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N.; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  3. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment.

    PubMed

    Sheng, Zheya; Pettersson, Mats E; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan

    2015-10-01

    Artificial selection provides a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions where allele-frequencies have diverged during selection. To avoid false positive signatures of selection, it is necessary to show that a sweep affects a selected trait before it can be considered adaptive. Here, we confirm candidate, genome-wide distributed selective sweeps originating from the standing genetic variation in a long-term selection experiment on high and low body weight of chickens. Using an intercross between the two divergent chicken lines, 16 adaptive selective sweeps were confirmed based on their association with the body weight at 56 days of age. Although individual additive effects were small, the fixation for alternative alleles across the loci contributed at least 40 % of the phenotypic difference for the selected trait between these lines. The sweeps contributed about half of the additive genetic variance present within and between the lines after 40 generations of selection, corresponding to a considerable portion of the additive genetic variance of the base population. Long-term, single-trait, bi-directional selection in the Virginia chicken lines has resulted in a gradual response to selection for extreme phenotypes without a drastic reduction in the genetic variation. We find that fixation of several standing genetic variants across a highly polygenic genetic architecture made a considerable contribution to long-term selection response. This provides new fundamental insights into the dynamics of standing genetic variation during long-term selection and adaptation.

  4. Classification of cassava genotypes based on qualitative and quantitative data.

    PubMed

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  5. RAPD variation and population genetic structure of Physalaemus cuvieri (Anura: Leptodactylidae) in Central Brazil.

    PubMed

    Telles, Mariana Pires de Campos; Bastos, Rogério Pereira; Soares, Thannya Nascimento; Resende, Lucileide Vilela; Diniz-Filho, José Alexandre Felizola

    2006-01-01

    Studies about the organization of the genetic variability and population structure in natural populations are used either to understand microevolutionary processes or the effects of isolation by human-inducted landscape modifications. In this paper, we analyzed patterns of genetic population structure using 126 RAPD loci scored for 214 individuals of Physalaemus cuvieri, sampled from 18 local populations. Around 97% of these loci were polymorphic. The among-population variation component (Phi(ST)) obtained by AMOVA was equal to 0.101 and theta B obtained using a Bayesian approach for dominant markers was 0.103. Genetic divergence, analyzed by Mantel spatial correlogram, revealed only a short-distance significant correlation between genetic and geographic distances. This is expected if low levels of population differentiation, due to high abundance buffering the effect of stochastic processes, are combined with low spatially restricted gene flow. Although this may be consistent with the current knowledge of species' biology, the spatial distribution of local populations observed in this study also suggest that, at least in part, recent human occupation and habitat fragmentation may also explain part of the interpopulational component of the genetic variation.

  6. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytcha) within a Snake River watershed

    Treesearch

    Helen Neville; Daniel Isaak; Russell Thurow; Jason Dunham; Bruce Rieman

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate...

  7. HSP90 Shapes the Consequences of Human Genetic Variation.

    PubMed

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum).

    PubMed

    Popovsky-Sarid, Sigal; Borovsky, Yelena; Faigenboim, Adi; Parsons, Eugene P; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Fallik, Elazar; Jenks, Matthew A; Paran, Ilan

    2017-02-01

    Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.

  9. Genetic variation for pseudo-self-compatibility in self-incompatible populations of Leavenworthia alabamica (Brassicaceae).

    PubMed

    Baldwin, Sarah J; Schoen, Daniel J

    2017-01-01

    Self-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations. We studied genetic variation for PSI segregating in four SI populations of Leavenworthia alabamica by measurement of the heritability of pollen tube number after self-pollination. We tested for the role of the S-locus in this variation by sequencing seven S-alleles from plants with high pseudo-SC (PSC) and testing for the co-segregation of these alleles with PSC. We found a continuous distribution of PSC in all populations and 90% of plants exhibited PSC. The heritability ranged from 0.39 to 0.57. All seven S-alleles from plants with high PSC exhibited trans-specific polymorphism, and no stop codons were observed within the c. 600-bp region sequenced. One of these S-alleles was directly associated with the inheritance of PSC. We conclude that heritable variation in PSC is largely a result of genetic variation in the signaling cascade downstream of the S-locus reaction, together with the presence of one leaky S-allele. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Churchman, Michelle L; Qian, Maoxiang; Te Kronnie, Geertruy; Zhang, Ranran; Yang, Wenjian; Zhang, Hui; Lana, Tobia; Tedrick, Paige; Baskin, Rebekah; Verbist, Katherine; Peters, Jennifer L; Devidas, Meenakshi; Larsen, Eric; Moore, Ian M; Gu, Zhaohui; Qu, Chunxu; Yoshihara, Hiroki; Porter, Shaina N; Pruett-Miller, Shondra M; Wu, Gang; Raetz, Elizabeth; Martin, Paul L; Bowman, W Paul; Winick, Naomi; Mardis, Elaine; Fulton, Robert; Stanulla, Martin; Evans, William E; Relling, Mary V; Pui, Ching-Hon; Hunger, Stephen P; Loh, Mignon L; Handgretinger, Rupert; Nichols, Kim E; Yang, Jun J; Mullighan, Charles G

    2018-05-14

    Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.9% of presumed sporadic B-ALL, identifying 28 unique variants in 45 children. The majority of variants adversely affected IKZF1 function and drug responsiveness of leukemic cells. These results identify IKZF1 as a leukemia predisposition gene, and emphasize the importance of germline genetic variation in the development of both familial and sporadic ALL. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease.

    PubMed

    Imm, Jennifer; Kerrigan, Talitha L; Jeffries, Aaron; Lunnon, Katie

    2017-11-01

    It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.

  12. Molecular and genetic analyses of geographic variation in isolates of Phoma macrostoma used for biological weed control.

    PubMed

    Zhou, Lecong; Bailey, K L; Chen, C Y; Keri, Mario

    2005-01-01

    Molecular and genetic approaches were used to evaluate the genetic relatedness among isolates of the fungus Phoma macrostoma Montagne originating from Canada and Europe and to other species in the genus Phoma. Distinct differences were observed in genetic variation among nine species of the genus Phoma. Randomly amplified polymorphic DNA (RAPD) revealed the presence of intraspecific genetic variation among the isolates of P. macrostoma, with the isolates being used for biological weed control being distributed in a distinct phylogenetic cluster. Additional variation within the biocontrol isolate cluster in P. macrostoma was revealed by pulsed field gel electrophoresis (PFGE), which showed that biocontrol isolates generated two different chromosomal profiles, however the profiles did not relate to their Canadian ecozone origin. Mating studies showed that biocontrol isolates of P. macrostoma from Canada did not produce sexual reproductive structures and were incapable of crossing. These studies also confirmed that no obvious differentiation exists among the biocontrol isolates of P. macrostoma from Canadian Ecozones 3 and 4.

  13. Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii.

    PubMed

    Tonetti, Nicolas; Voordouw, Maarten J; Durand, Jonas; Monnier, Séverine; Gern, Lise

    2015-04-01

    The vector-to-host and host-to-vector transmission steps are the two critical events that define the life cycle of any vector-borne pathogen. We expect negative genetic correlations between these two transmission phenotypes, if parasite genotypes specialized at invading the vector are less effective at infecting the vertebrate host and vice versa. We used the tick-borne bacterium Borrelia afzelii, a causative agent of Lyme borreliosis in Europe, to test whether genetic trade-offs exist between tick-to-host, systemic (host-to-tick), and a third mode of co-feeding (tick-to-tick) transmission. We worked with six strains of B. afzelii that were differentiated according to their ospC gene. We compared the three components of transmission among the B. afzelii strains using laboratory rodents as the vertebrate host and a laboratory colony of Ixodes ricinus as the tick vector. We used next generation matrix models to combine these transmission components into a single estimate of the reproductive number (R0) for each B. afzelii strain. We also tested whether these strain-specific estimates of R0 were correlated with the strain-specific frequencies in the field. We found significant genetic variation in the three transmission components among the B. afzelii strains. This is the first study to document genetic variation in co-feeding transmission for any tick-borne pathogen. We found no evidence of trade-offs as the three pairwise correlations of the transmission rates were all positive. The R0 values from our laboratory study explained 45% of the variation in the frequencies of the B. afzelii ospC strains in the field. Our study suggests that laboratory estimates of pathogen fitness can predict the distribution of pathogen strains in nature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep.

    PubMed

    Tolone, Marco; Larrondo, Cristian; Yáñez, José M; Newman, Scott; Sardina, Maria Teresa; Portolano, Baldassare

    2016-07-28

    Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.

  15. Genetic diversity and variation of mitochondrial DNA in native and introduced bighead carp

    USGS Publications Warehouse

    Li, Si-Fa; Yang, Qin-Ling; Xu, Jia-Wei; Wang, Cheng-Hui; Chapman, Duane C.; Lu, Guoping

    2010-01-01

    The bighead carp Hypophthalmichthys nobilis is native to China but has been introduced to over 70 countries and is established in many large river systems. Genetic diversity and variation in introduced bighead carp have not previously been evaluated, and a systematic comparison among fish from different river systems was unavailable. In this study, 190 bighead carp specimens were sampled from five river systems in three countries (Yangtze, Pearl, and Amur rivers, China; Danube River, Hungary; Mississippi River basin, USA) and their mitochondrial 16S ribosomal RNA gene and D-loop region were sequenced (around 1,345 base pairs). Moderate genetic diversity was found in bighead carp, ranging from 0.0014 to 0.0043 for nucleotide diversity and from 0.6879 to 0.9333 for haplotype diversity. Haplotype analysis provided evidence that (1) multiple haplotype groups might be present among bighead carp, (2) bighead carp probably originated from the Yangtze River, and (3) bighead carp in the Mississippi River basin may have some genetic ancestry in the Danube River. The analysis of molecular variance showed significant genetic differentiation among these five populations but also revealed limited differentiation between the Yangtze and Amur River bighead carp. This large-scale study of bighead carp genetic diversity and variation provides the first global perspective of bighead carp in the context of biodiversity conservation as well as invasive species control and management.

  16. DENSITY-DEPENDENT SELECTION ON CONTINUOUS CHARACTERS: A QUANTITATIVE GENETIC MODEL.

    PubMed

    Tanaka, Yoshinari

    1996-10-01

    A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection. © 1996 The Society for the Study of Evolution.

  17. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  18. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus.

    PubMed

    Gosney, Benjamin; O'Reilly-Wapstra, Julianne; Forster, Lynne; Whiteley, Carmen; Potts, Brad

    2017-05-01

    Genetic variation in foundation trees can influence dependent communities, but little is known about the mechanisms driving these extended genetic effects. We studied the potential chemical drivers of genetic variation in the dependent foliar community of the focal tree Eucalyptus globulus. We focus on the role of cuticular waxes and compare the effects to that of the terpenes, a well-studied group of secondary compounds known to be bioactive in eucalypts. The canopy community was quantified based on the abundance of thirty-nine distinctive arthropod and fungal symptoms on foliar samples collected from canopies of 246 progeny from 13 E. globulus sub-races grown in a common garden trial. Cuticular waxes and foliar terpenes were quantified using gas chromatography - mass spectrometry (GC-MC). A total of 4 of the 13 quantified waxes and 7 of the 16 quantified terpenes were significantly associated with the dependent foliar community. Variation in waxes explained 22.9% of the community variation among sub-races, which was equivalent to that explained by terpenes. In combination, waxes and terpenes explained 35% of the genetic variation among sub-races. Only a small proportion of wax and terpene compounds showing statistically significant differences among sub-races were implicated in community level effects. The few significant waxes have previously shown evidence of divergent selection in E. globulus, which signals that adaptive variation in phenotypic traits may have extended effects. While highlighting the role of the understudied cuticular waxes, this study demonstrates the complexity of factors likely to lead to community genetic effects in foundation trees.

  19. Natural variation and genetic make-up of leaf blade area in spring barley.

    PubMed

    Alqudah, Ahmad M; Youssef, Helmy M; Graner, Andreas; Schnurbusch, Thorsten

    2018-04-01

    GWAS analysis for leaf blade area (LA) revealed intriguing genomic regions associated with putatively novel QTL and known plant stature-related phytohormone and sugar-related genes. Despite long-standing studies in the morpho-physiological characters of leaf blade area (LA) in cereal crops, advanced genetic studies to explore its natural variation are lacking. The importance of modifying LA in improving cereal grain yield and the genes controlling leaf traits have been well studied in rice but not in temperate cereals. To better understand the natural genetic variation of LA at four developmental stages, main culm LA was measured from 215 worldwide spring barleys including 92 photoperiod-sensitive accessions [PHOTOPERIOD RESPONSE LOCUS 1 (Ppd-H1)] and 123 accessions with reduced photoperiod sensitivity (ppd-H1) locus under controlled greenhouse conditions (long-day; 16/8 h; ~ 20/~ 16 °C day/night). The LA of Ppd-H1-carrying accessions was always smaller than in ppd-H1-carrying accessions. We found that nine SNPs from the Ppd-H1 gene were present in the collection of which marker 9 (M9; G/T in the CCT-domain) showed the most significant and consistent effect on LA at all studied developmental stages. Genome-wide association scans (GWAS) showed that the accessions carrying the ppd-H1 allele T/M9 (late heading) possessed more genetic variation in LA than the Ppd-H1 group carrying G/M9 (early heading). Several QTL with major effects on LA variation were found close to plant stature-related heading time, phytohormone- and sugar-related genes. The results provide evidence that natural variation of LA is an important source for improving grain yield, adaptation and canopy architecture of temperate cereals.

  20. Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.

    PubMed

    Kronholm, Ilkka; Picó, F Xavier; Alonso-Blanco, Carlos; Goudet, Jérôme; de Meaux, Juliette

    2012-07-01

    Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation. © 2012 The Author(s).

  1. An introduction to genetic quality in the context of sexual selection.

    PubMed

    Pitcher, Trevor E; Mays, Herman L

    2008-09-01

    This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.

  2. Evidence that Magnetic Navigation and Geomagnetic Imprinting Shape Spatial Genetic Variation in Sea Turtles.

    PubMed

    Brothers, J Roger; Lohmann, Kenneth J

    2018-04-23

    The canonical drivers of population genetic structure, or spatial genetic variation, are isolation by distance and isolation by environment. Isolation by distance predicts that neighboring populations will be genetically similar and geographically distant populations will be genetically distinct [1]. Numerous examples also exist of isolation by environment, a phenomenon in which populations that inhabit similar environments (e.g., same elevation, temperature, or vegetation) are genetically similar even if they are distant, whereas populations that inhabit different environments are genetically distinct even when geographically close [2-4]. These dual models provide a widely accepted conceptual framework for understanding population structure [5-8]. Here, we present evidence for an additional, novel process that we call isolation by navigation, in which the navigational mechanism used by a long-distance migrant influences population structure independently of isolation by either distance or environment. Specifically, we investigated the population structure of loggerhead sea turtles (Caretta caretta) [9], which return to nest on their natal beaches by seeking out unique magnetic signatures along the coast-a behavior known as geomagnetic imprinting [10-12]. Results reveal that spatial variation in Earth's magnetic field strongly predicts genetic differentiation between nesting beaches, even when environmental similarities and geographic proximity are taken into account. The findings provide genetic corroboration of geomagnetic imprinting [10, 13]. Moreover, they provide strong evidence that geomagnetic imprinting and magnetic navigation help shape the population structure of sea turtles and perhaps numerous other long-distance migrants that return to their natal areas to reproduce [13-17]. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae)

    Treesearch

    K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender

    2007-01-01

    The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...

  4. Human Facial Shape and Size Heritability and Genetic Correlations.

    PubMed

    Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A

    2017-02-01

    The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.

  5. Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae).

    PubMed

    Barrett, Luke G; He, Tianhua; Lamont, Byron B; Krauss, Siegfried L

    2005-11-01

    The pattern of accumulation of genetic variation over time in seed banks is poorly understood. We examined the genetic structure of the aerial seed bank of Banksia hookeriana within a single 15-year-old population in fire-prone southwestern Australia, and compared genetic variation between adults and each year of a 9-year-old seed bank using amplified fragment length polymorphism (AFLP). B. hookeriana is well suited to the study of seed bank dynamics due to the canopy storage of its seeds, and because each annual crop can be identified. A total of 304 seeds from nine crop years and five maternal plants were genotyped, along with 113 plants from the adult population. Genetic variation, as assessed by the proportion of polymorphic markers (P(p)) and Shannon's index (I), increased slightly within the seed bank over time, while gene diversity (H(j)), did not change. P(p), I, and H(j) all indicated that genetic variation within the seed bank quickly approached the maximal level detected. Analysis of molecular variance revealed that less than 4% of variation could be accounted for by variation among seeds produced in different years, whereas there was greater differentiation among maternal plants (12.7%), and among individual seeds produced by different maternal plants (83.4%). With increasing population age, offspring generated each year were slightly more outbred, as indicated by an increase in the mean number of nonmaternal markers per offspring. There were no significant differences for H(j) or I between adults and the seed bank. Viability of seeds decreased with age, such that the viability of 9-year-old seeds was half that of 2-year-old seeds. These results suggest that variable fire frequencies have only limited potential to influence the amount of genetic variation stored within the seed bank of B. hookeriana.

  6. Identification of species and genetic variation in Taenia isolates from human and swine of North India.

    PubMed

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Chauhan, Ranjeet S; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Pati, Binod K

    2016-10-01

    Taenia solium is the major cause of taeniasis and cysticercosis/neurocysticercosis (NCC) in the developing countries including India, but the existence of other Taenia species and genetic variation have not been studied in India. So, we studied the existence of different Taenia species, and sequence variation in Taenia isolates from human (proglottids and cysticerci) and swine (cysticerci) in North India. Amplification of cytochrome c oxidase subunit 1 gene (cox1) was done by polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis. We identified two species of Taenia i.e. T. solium and Taenia asiatica in our isolates. T. solium isolates showed similarity with Asian genotype and nucleotide variations from 0.25 to 1.01 %, whereas T. asiatica displayed nucleotide variations ranged from 0.25 to 0.5 %. These findings displayed the minimal genetic variations in North Indian isolates of T. solium and T. asiatica.

  7. "Genetically Engineered" Nanoelectronics

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  8. Unique genetic variation at a species' rear edge is under threat from global climate change

    PubMed Central

    Provan, Jim; Maggs, Christine A.

    2012-01-01

    Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming. PMID:21593035

  9. The genetic basis of female multiple mating in a polyandrous livebearing fish

    PubMed Central

    Evans, Jonathan P; Gasparini, Clelia

    2013-01-01

    The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy-sperm” (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. PMID:23403856

  10. Genetic variation in glia-neuron signalling modulates ageing rate.

    PubMed

    Yin, Jiang-An; Gao, Ge; Liu, Xi-Juan; Hao, Zi-Qian; Li, Kai; Kang, Xin-Lei; Li, Hong; Shan, Yuan-Hong; Hu, Wen-Li; Li, Hai-Peng; Cai, Shi-Qing

    2017-11-08

    The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.

  11. Patterns of Genetic Variation across Altitude in Three Plant Species of Semi-Dry Grasslands

    PubMed Central

    Hahn, Thomas; Kettle, Chris J.; Ghazoul, Jaboury; Frei, Esther R.; Matter, Philippe; Pluess, Andrea R.

    2012-01-01

    Background Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes. Methodology/Principal Findings In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes. Conclusions/Significance Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for

  12. Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding

    PubMed Central

    Verweij, Karin J.H.; Yang, Jian; Lahti, Jari; Veijola, Juha; Hintsanen, Mirka; Pulkki-Råback, Laura; Heinonen, Kati; Pouta, Anneli; Pesonen, Anu-Katriina; Widen, Elisabeth; Taanila, Anja; Isohanni, Matti; Miettunen, Jouko; Palotie, Aarno; Penke, Lars; Service, Susan K.; Heath, Andrew C.; Montgomery, Grant W.; Raitakari, Olli; Kähönen, Mika; Viikari, Jorma; Räikkönen, Katri; Eriksson, Johan G; Keltikangas-Järvinen, Liisa; Lehtimäki, Terho; Martin, Nicholas G.; Järvelin, Marjo-Riitta; Visscher, Peter M.; Keller, Matthew C.; Zietsch, Brendan P.

    2012-01-01

    Personality traits are basic dimensions of behavioural variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly-growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide SNP data from >8,000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially-desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance. PMID:23025612

  13. Genetic variation in tree structure and its relation to size in Douglas-fir: II. crown form, branch characters, and foliage characters.

    Treesearch

    J.B. St. Clair

    1994-01-01

    Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found for relative crown width; stem increment per crown projection area; leaf...

  14. Genetic variation in steelhead (Salmo gairdneri) from the north coast of Washington

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1989-01-01

    Steelhead (Salmo gairdneri) collected from various sites in nine drainages in northwestern Washington were genetically characterized at 65 protein-coding loci by starch-gel electrophoresis. Genetic differentiation within and among drainages was not significant, and genetic variation among drainages was much less than that reported in British Columbia; these results may be the consequence of gene flow from hatchery stocks that have been released in Washington since the 1940's. Allele frequencies varied significantly among year-classes (hence, genetic characterization studies must include data from several year-classes), and also between hatchery fish (including a stock developed with local wild fish) and wild fish, indicating that few wild fish have been successfully and routinely included in hatchery brood stocks. Conservation of genetic diversity along the north coast of Washington should be facilitated by reducing the numbers of hatchery fish that spawn in streams and by including wild fish in hatchery brood stocks.

  15. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    PubMed

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  16. Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis.

    PubMed

    Maver, Ales; Lavtar, Polona; Ristić, Smiljana; Stopinšek, Sanja; Simčič, Saša; Hočevar, Keli; Sepčić, Juraj; Drulović, Jelena; Pekmezović, Tatjana; Novaković, Ivana; Alenka, Hodžić; Rudolf, Gorazd; Šega, Saša; Starčević-Čizmarević, Nada; Palandačić, Anja; Zamolo, Gordana; Kapović, Miljenko; Likar, Tina; Peterlin, Borut

    2017-06-16

    The genetic etiology and the contribution of rare genetic variation in multiple sclerosis (MS) has not yet been elucidated. Although familial forms of MS have been described, no convincing rare and penetrant variants have been reported to date. We aimed to characterize the contribution of rare genetic variation in familial and sporadic MS and have identified a family with two sibs affected by concomitant MS and malignant melanoma (MM). We performed whole exome sequencing in this primary family and 38 multiplex MS families and 44 sporadic MS cases and performed transcriptional and immunologic assessment of the identified variants. We identified a potentially causative homozygous missense variant in NLRP1 gene (Gly587Ser) in the primary family. Further possibly pathogenic NLRP1 variants were identified in the expanded cohort of patients. Stimulation of peripheral blood mononuclear cells from MS patients with putatively pathogenic NLRP1 variants showed an increase in IL-1B gene expression and active cytokine IL-1β production, as well as global activation of NLRP1-driven immunologic pathways. We report a novel familial association of MS and MM, and propose a possible underlying genetic basis in NLRP1 gene. Furthermore, we provide initial evidence of the broader implications of NLRP1-related pathway dysfunction in MS.

  17. Making quantitative morphological variation from basic developmental processes: where are we? The case of the Drosophila wing

    PubMed Central

    Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle

    2015-01-01

    One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644

  18. Genetically Regulated Temporal Variation of Novel Courtship Elements in the Hawaiian Cricket Genus Laupala

    PubMed Central

    deCarvalho, Tagide N.; Shaw, Kerry L.

    2011-01-01

    The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226

  19. Genetic Variation Linked to Lung Cancer Survival in White Smokers | Center for Cancer Research

    Cancer.gov

    CCR investigators have discovered evidence that links lung cancer survival with genetic variations (called single nucleotide polymorphisms) in the MBL2 gene, a key player in innate immunity. The variations in the gene, which codes for a protein called the mannose-binding lectin, occur in its promoter region, where the RNA polymerase molecule binds to start transcription, and

  20. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    PubMed

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  1. Genetic variation at microsatellite loci in the tropical herb Aphelandra aurantiaca (Acanthaceae).

    PubMed

    Suárez-Montes, Pilar; Tapia-López, Rosalinda; Núñez-Farfán, Juan

    2015-11-01

    To assess the effect of forest fragmentation on genetic variation and population structure of Aphelandra aurantiaca (Acanthaceae), a tropical and ornamental herbaceous perennial plant, we developed the first microsatellite primers for the species. Fourteen microsatellite markers were isolated and characterized from A. aurantiaca genomic libraries enriched for di-, tri-, and tetranucleotide repeat motifs. Polymorphism was evaluated in 107 individuals from four natural populations. Twelve out of 14 genetic markers were polymorphic. The number of alleles per locus ranged from two to 12, and the observed and expected heterozygosities ranged from 0.22 to 0.96 and from 0.20 to 0.87, respectively. Fixation indices ranged from -0.41 to 0.44. These newly developed microsatellite markers for A. aurantiaca will be useful for future population genetic studies, specifically to detect the possible loss of genetic diversity due to habitat fragmentation.

  2. Filling the knowledge gap: Integrating quantitative genetics and genomics in graduate education and outreach

    USDA-ARS?s Scientific Manuscript database

    The genomics revolution provides vital tools to address global food security. Yet to be incorporated into livestock breeding, molecular techniques need to be integrated into a quantitative genetics framework. Within the U.S., with shrinking faculty numbers with the requisite skills, the capacity to ...

  3. Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes.

    PubMed

    Burghardt, Liana T; Metcalf, C Jessica E; Wilczek, Amity M; Schmitt, Johanna; Donohue, Kathleen

    2015-02-01

    Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.

  4. Genetic variation within and among populations of Rhodiola alsia (Crassulaceae) native to the Tibetan Plateau as detected by ISSR markers.

    PubMed

    Xia, Tao; Chen, Shilong; Chen, Shengyun; Ge, Xuejun

    2005-04-01

    Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai-Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai-Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.

  5. [Genetic variation analysis of canine parvovirus VP2 gene in China].

    PubMed

    Yi, Li; Cheng, Shi-Peng; Yan, Xi-Jun; Wang, Jian-Ke; Luo, Bin

    2009-11-01

    To recognize the molecular biology character, phylogenetic relationship and the state quo prevalent of Canine parvovirus (CPV), Faecal samnples from pet dogs with acute enteritis in the cities of Beijing, Wuhan, and Nanjing were collected and tested for CPV by PCR and other assay between 2006 and 2008. There was no CPV to FPV (MEV) variation by PCR-RFLP analysis in all samples. The complete ORFs of VP2 genes were obtained by PCR from 15 clinical CPVs and 2 CPV vaccine strains. All amplicons were cloned and sequenced. Analysis of the VP2 sequences showed that clinical CPVs both belong to CPV-2a subtype, and could be classified into a new cluster by amino acids contrasting which contains Tyr-->Ile (324) mutation. Besides the 2 CPV vaccine strains belong to CPV-2 subtype, and both of them have scattered variation in amino acids residues of VP2 protein. Construction of the phylogenetic tree based on CPV VP2 sequence showed these 15 CPV clinical strains were in close relationship with Korea strain K001 than CPV-2a isolates in other countries at early time, It is indicated that the canine parvovirus genetic variation was associated with location and time in some degree. The survey of CPV capsid protein VP2 gene provided the useful information for the identification of CPV types and understanding of their genetic relationship.

  6. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  7. Quantitative genetic models of sexual conflict based on interacting phenotypes.

    PubMed

    Moore, Allen J; Pizzari, Tommaso

    2005-05-01

    Evolutionary conflict arises between reproductive partners when alternative reproductive opportunities are available. Sexual conflict can generate sexually antagonistic selection, which mediates sexual selection and intersexual coevolution. However, despite intense interest, the evolutionary implications of sexual conflict remain unresolved. We propose a novel theoretical approach to study the evolution of sexually antagonistic phenotypes based on quantitative genetics and the measure of social selection arising from male-female interactions. We consider the phenotype of one sex as both a genetically influenced evolving trait as well as the (evolving) social environment in which the phenotype of the opposite sex evolves. Several important points emerge from our analysis, including the relationship between direct selection on one sex and indirect effects through selection on the opposite sex. We suggest that the proposed approach may be a valuable tool to complement other theoretical approaches currently used to study sexual conflict. Most importantly, our approach highlights areas where additional empirical data can help clarify the role of sexual conflict in the evolutionary process.

  8. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  9. Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species.

    PubMed

    Rodríguez-Quilón, Isabel; Santos-Del-Blanco, Luis; Serra-Varela, María Jesús; Koskela, Jarkko; González-Martínez, Santiago C; Alía, Ricardo

    2016-10-01

    Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available. © 2016 by the Ecological Society of America.

  10. Genetic variations of the SLCO1B1 gene in the Chinese, Malay and Indian populations of Singapore.

    PubMed

    Ho, Woon Fei; Koo, Seok Hwee; Yee, Jie Yin; Lee, Edmund Jon Deoon

    2008-01-01

    OATP1B1 is a liver-specific transporter that mediates the uptake of various endogenous and exogenous compounds including many clinically used drugs from blood into hepatocytes. This study aims to identify genetic variations of SLCO1B1 gene in three distinct ethnic groups of the Singaporean population (n=288). The coding region of the gene encoding the transporter protein was screened for genetic variations in the study population by denaturing high-performance liquid chromatography and DNA sequencing. Twenty-five genetic variations of SLCO1B1, including 10 novel ones, were found: 13 in the coding exons (9 nonsynonymous and 4 synonymous variations), 6 in the introns, and 6 in the 3' untranslated region. Four novel nonsynonymous variations: 633A>G (Ile211Met), 875C>T (Ala292Val), 1837T>C (Cys613Arg), and 1877T>A (Leu626Stop) were detected as heterozygotes. Among the novel nonsynonymous variations, 633A>G, 1837T>C, and 1877T>A were predicted to be functionally significant. These data would provide fundamental and useful information for pharmacogenetic studies on drugs that are substrates of OATP1B1 in Asians.

  11. Pulmonary phenotypes associated with genetic variation in telomere-related genes.

    PubMed

    Hoffman, Thijs W; van Moorsel, Coline H M; Borie, Raphael; Crestani, Bruno

    2018-05-01

    Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.

  12. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  13. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster ( Crassostrea gigas) in China

    NASA Astrophysics Data System (ADS)

    Wang, Xubo; Li, Qi; Yu, Hong; Kong, Lingfeng

    2016-12-01

    Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding programs in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a relatively large number of broodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided important information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.

  14. Quantitative genetics of ultrasonic advertisement signalling in the lesser waxmoth Achroia grisella (Lepidoptera: pyralidae).

    PubMed

    Collins, R D; Jang, Y; Reinhold, K; Greenfield, M D

    1999-12-01

    Males of the lesser waxmoth Achroia grisella (Lepidoptera: Pyralidae) produce ultrasonic advertisement signals attractive to females within several metres. Previous studies showed that females prefer male signals that are louder, delivered at a faster rate, and have a greater asynchrony between pulses produced by the right and left wings. These three signal characters vary considerably within populations but are repeatable within individuals. Breeding experiments employing half-sib designs were conducted on both collectively and individually reared moths to determine genetic variance within and covariance among these signal characters. Heritabilities of all signal characters were significant among collectively reared moths. Heritabilities for signal rate and right-left wing asynchrony interval were not significant, however, among individually reared moths, suggesting the presence of significant nonadditive genetic variance or common environmental variation. Development time was also significantly heritable, but only under individual rearing. The only significant genetic correlation was between signal rate and length of the right-left wing asynchrony and this was negative. Our findings on heritability of signal characters are consistent with a coevolutionary sexual selection mechanism, but the absence of signal x development genetic correlation fails to support specifically a good-genes mechanism. The variation in heritability among conditions suggests that environmental variance may be high, and may render selection on signal characters by female choice ineffective. Thus, additive genetic variance for these characters may be maintained in the presence of directional female choice.

  15. Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse.

    PubMed

    Dai, Jiajuan; Wang, Xusheng; Chen, Ying; Wang, Xiaodong; Zhu, Jun; Lu, Lu

    2009-11-01

    Previous studies have revealed that the subunit alpha 2 (Gabra2) of the gamma-aminobutyric acid receptor plays a critical role in the stress response. However, little is known about the gentetic regulatory network for Gabra2 and the stress response. We combined gene expression microarray analysis and quantitative trait loci (QTL) mapping to characterize the genetic regulatory network for Gabra2 expression in the hippocampus of BXD recombinant inbred (RI) mice. Our analysis found that the expression level of Gabra2 exhibited much variation in the hippocampus across the BXD RI strains and between the parental strains, C57BL/6J, and DBA/2J. Expression QTL (eQTL) mapping showed three microarray probe sets of Gabra2 to have highly significant linkage likelihood ratio statistic (LRS) scores. Gene co-regulatory network analysis showed that 10 genes, including Gria3, Chka, Drd3, Homer1, Grik2, Odz4, Prkag2, Grm5, Gabrb1, and Nlgn1 are directly or indirectly associated with stress responses. Eleven genes were implicated as Gabra2 downstream genes through mapping joint modulation. The genetical genomics approach demonstrates the importance and the potential power of the eQTL studies in identifying genetic regulatory networks that contribute to complex traits, such as stress responses.

  16. Heritable Variation for Sex Ratio under Environmental Sex Determination in the Common Snapping Turtle (Chelydra Serpentina)

    PubMed Central

    Janzen, F. J.

    1992-01-01

    The magnitude of quantitative genetic variation for primary sex ratio was measured in families extracted from a natural population of the common snapping turtle (Chelydra serpentina), which possesses temperature-dependent sex determination (TSD). Eggs were incubated at three temperatures that produced mixed sex ratios. This experimental design provided estimates of the heritability of sex ratio in multiple environments and a test of the hypothesis that genotype X environment (G X E) interactions may be maintaining genetic variation for sex ratio in this population of C. serpentina. Substantial quantitative genetic variation for primary sex ratio was detected in all experimental treatments. These results in conjunction with the occurrence of TSD in this species provide support for three critical assumptions of Fisher's theory for the microevolution of sex ratio. There were statistically significant effects of family and incubation temperature on sex ratio, but no significant interaction was observed. Estimates of the genetic correlations of sex ratio across environments were highly positive and essentially indistinguishable from +1. These latter two findings suggest that G X E interaction is not the mechanism maintaining genetic variation for sex ratio in this system. Finally, although substantial heritable variation exists for primary sex ratio of C. serpentina under constant temperatures, estimates of the effective heritability of primary sex ratio in nature are approximately an order of magnitude smaller. Small effective heritability and a long generation time in C. serpentina imply that evolution of sex ratios would be slow even in response to strong selection by, among other potential agents, any rapid and/or substantial shifts in local temperatures, including those produced by changes in the global climate. PMID:1592234

  17. Genetic variation in tree structure and its relation to size in Douglas-fir: I. Biomass partitioning, foliage efficiency, stem form, and wood density.

    Treesearch

    J.B. St. Clair

    1994-01-01

    Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found in size, biomass partitioning, and wood density, and genetic gains may be...

  18. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    PubMed Central

    Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056

  19. Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests

    USDA-ARS?s Scientific Manuscript database

    An increasingly relevant question in evaluating commercial DNA tests is "What proportion of the additive genetic variation in the target trait is accounted for by the test?" Therefore, several estimators of this quantity were evaluated by simulation of a population of 1000 animals with 100 sires, ea...

  20. Genetic variation in laboratory and field populations of the vector of bluetongue virus, Culicoides variipennis (Diptera: Ceratopogonidae).

    PubMed

    Tabachnick, W J

    1990-01-01

    Laboratory colonies and several natural populations of the biting midge Culicoides variipennis (Coquillett) were analyzed for genetic variation at 21 electrophoretic loci. The laboratory colonies maintained high levels of genetic variation measured by average expected heterozygosities (He = 0.142 +/- 0.008), although levels were lower than those observed in field collections (He = 0.198 +/- 0.009). A field population from Colorado, analyzed five times over a 1-yr period, showed a consistent trend in the change in gene frequencies at two loci. Genetic comparisons between natural populations were consistent with the existence of two subspecies. C. variipennis variipennis and C. variipennis sonorensis Wirth & Jones.

  1. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  2. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

    PubMed

    Edwards, Christine E; Ewers, Brent E; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2012-05-01

    Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  3. Genetic variation among wild lake trout populations: the 'wanted' and the 'unwanted'

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Kallemeyn, Larry W.; Bronte, Charles R.; Greswell, Robert E.; Dwyer, Pat; Hamre, R.H.

    1997-01-01

    In this study we examine genetic variation within and among self-sustaining lake trout populations from the Great Lakes basin, the Rainy Lake basin, and Yellowstone Lake. We used RFLP analysis and direct sequencing to examine DNA sequence variation among several mitochondrial and nuclear genes, including highly conserved loci (e.g. cytochrome b, nuclear exon regions) and highly variable loci (e.g. mitochondrial d-loop and nuclear intron regions). Native Lake Superior lake trout populations show high levels of genetic diversity, while populations from the Rainy Lake basin show little or none. The lake trout population sampled from Yellowstone Lake shows moderate genetic diversity, possibly representative of a relatively large source population closely related to lake trout from Lewis Lake, Wyoming. There has been significant social and management controversy involving these lake trout populations, particularly those that are located in National Parks. In the Great Lakes and Rainy Lake basins, the controversy involves the degree to which hatchery supplementation can contribute to or negatively impact self-sustaining populations which are highly desired by recreational and commercial fisheries. In Yellowstone Lake, the lake trout are viewed as an undesirable intruder that may interfere with resident populations of highly prized native cutthroat trout.

  4. Acoustic, genetic and morphological variations within the katydid Gampsocleis sedakovii (Orthoptera, Tettigonioidea)

    PubMed Central

    Zhang, Xue; Wen, Ming; Li, Junjian; Zhu, Hui; Wang, Yinliang; Ren, Bingzhong

    2015-01-01

    Abstract In an attempt to explain the variation within this species and clarify the subspecies classification, an analysis of the genetic, calling songs, and morphological variations within the species Gampsocleis sedakovii is presented from Inner Mongolia, China. Recordings were compared of the male calling songs and analysis performed of selected acoustic variables. This analysis is combined with sequencing of mtDNA - COI and examination of morphological traits to perform cluster analyses. The trees constructed from different datasets were structurally similar, bisecting the six geographical populations studied. Based on two large branches in the analysis, the species Gampsocleis sedakovii was partitioned into two subspecies, Gampsocleis sedakovii sedakovii (Fischer von Waldheim, 1846) and Gampsocleis sedakovii obscura (Walker, 1869). Comparing all the traits, the individual of Elunchun (ELC) was the intermediate type in this species according to the acoustic, genetic, and morphological characteristics. This study provides evidence for insect acoustic signal divergence and the process of subspeciation. PMID:26692795

  5. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes.

    PubMed

    Bernatchez, L

    2016-12-01

    The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some

  6. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

    PubMed

    Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah; Pasaniuc, Bogdan

    2017-11-02

    Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. The majority of genetic variation in orangutan personality and subjective well-being is nonadditive.

    PubMed

    Adams, Mark James; King, James E; Weiss, Alexander

    2012-07-01

    The heritability of human personality is well-established. Recent research indicates that nonadditive genetic effects, such as dominance and epistasis, play a large role in personality variation. One possible explanation for the latter finding is that there has been recent selection on human personality. To test this possibility, we estimated additive and nonadditive genetic variance in personality and subjective well-being of zoo-housed orangutans. More than half of the genetic variance in these traits could be attributed to nonadditive genetic effects, modeled as dominance. Subjective well-being had genetic overlap with personality, though less so than has been found in humans or chimpanzees. Since a large portion of nonadditive genetic variance in personality is not unique to humans, the nonadditivity of human personality is not sufficient evidence for recent selection of personality in humans. Nonadditive genetic variance may be a general feature of the genetic structure of personality in primates and other animals.

  8. Geographical genetic structuring and phenotypic variation in the Vellozia hirsuta (Velloziaceae) ochlospecies complex.

    PubMed

    Barbosa, Ariane R; Fiorini, Cecília F; Silva-Pereira, Viviane; Mello-Silva, Renato; Borba, Eduardo L

    2012-09-01

    Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Φ(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.

  9. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).

    PubMed

    Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K

    2012-03-01

    Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e)  < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.

  10. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  11. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker.

    PubMed

    He, Dan; Xie, Xiao; Yang, Fan; Zhang, Heng; Su, Haomiao; Ge, Yun; Song, Haiping; Chen, Peng R

    2017-11-13

    A genetically encoded, multifunctional photocrosslinker was developed for quantitative and comparative proteomics. By bearing a bioorthogonal handle and a releasable linker in addition to its photoaffinity warhead, this probe enables the enrichment of transient and low-abundance prey proteins after intracellular photocrosslinking and prey-bait separation, which can be subject to stable isotope dimethyl labeling and mass spectrometry analysis. This quantitative strategy (termed isoCAPP) allowed a comparative proteomic approach to be adopted to identify the proteolytic substrates of an E. coli protease-chaperone dual machinery DegP. Two newly identified substrates were subsequently confirmed by proteolysis experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantitative genetic analysis of anxiety trait in bipolar disorder.

    PubMed

    Contreras, J; Hare, E; Chavarría, G; Raventós, H

    2018-01-01

    Bipolar disorder type I (BPI) affects approximately 1% of the world population. Although genetic influences on bipolar disorder are well established, identification of genes that predispose to the illness has been difficult. Most genetic studies are based on categorical diagnosis. One strategy to overcome this obstacle is the use of quantitative endophenotypes, as has been done for other medical disorders. We studied 619 individuals, 568 participants from 61 extended families and 51 unrelated healthy controls. The sample was 55% female and had a mean age of 43.25 (SD 13.90; range 18-78). Heritability and genetic correlation of the trait scale from the Anxiety State and Trait Inventory (STAI) was computed by using the general linear model (SOLAR package software). we observed that anxiety trait meets the following criteria for an endophenotype of bipolar disorder type I (BPI): 1) association with BPI (individuals with BPI showed the highest trait score (F = 15.20 [5,24], p = 0.009), 2) state-independence confirmed after conducting a test-retest in 321 subjects, 3) co-segregation within families 4) heritability of 0.70 (SE: 0.060), p = 2.33 × 10 -14 and 5) genetic correlation with BPI was 0.20, (SE = 0.17, p = 3.12 × 10 -5 ). Confounding factors such as comorbid disorders and pharmacological treatment could affect the clinical relationship between BPI and anxiety trait. Further research is needed to evaluate if anxiety traits are specially related to BPI in comparison with other traits such as anger, attention or response inhibition deficit, pathological impulsivity or low self-directedness. Anxiety trait is a heritable phenotype that follows a normal distribution when measured not only in subjects with BPI but also in unrelated healthy controls. It could be used as an endophenotype in BPI for the identification of genomic regions with susceptibility genes for this disorder. Published by Elsevier B.V.

  13. Recommendations for genetic variation data capture in developing countries to ensure a comprehensive worldwide data collection.

    PubMed

    Patrinos, George P; Al Aama, Jumana; Al Aqeel, Aida; Al-Mulla, Fahd; Borg, Joseph; Devereux, Andrew; Felice, Alex E; Macrae, Finlay; Marafie, Makia J; Petersen, Michael B; Qi, Ming; Ramesar, Rajkumar S; Zlotogora, Joel; Cotton, Richard G H

    2011-01-01

    Developing countries have significantly contributed to the elucidation of the genetic basis of both common and rare disorders, providing an invaluable resource of cases due to large family sizes, consanguinity, and potential founder effects. Moreover, the recognized depth of genomic variation in indigenous African populations, reflecting the ancient origins of humanity on the African continent, and the effect of selection pressures on the genome, will be valuable in understanding the range of both pathological and nonpathological variations. The involvement of these populations in accurately documenting the extant genetic heterogeneity is more than essential. Developing nations are regarded as key contributors to the Human Variome Project (HVP; http://www.humanvariomeproject.org), a major effort to systematically collect mutations that contribute to or cause human disease and create a cyber infrastructure to tie databases together. However, biomedical research has not been the primary focus in these countries even though such activities are likely to produce economic and health benefits for all. Here, we propose several recommendations and guidelines to facilitate participation of developing countries in genetic variation data documentation, ensuring an accurate and comprehensive worldwide data collection. We also summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects.

  14. Assessment of genetic and epigenetic variation during long-term Taxus cell culture.

    PubMed

    Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang

    2012-07-01

    Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.

  15. Strain Variation in an Emerging Iridovirus of Warm-Water Fishes

    PubMed Central

    Goldberg, Tony L.; Coleman, David A.; Grant, Emily C.; Inendino, Kate R.; Philipp, David P.

    2003-01-01

    Although iridoviruses vary widely within and among genera with respect to their host range and virulence, variation within iridovirus species has been less extensively characterized. This study explores the nature and extent of intraspecific variation within an emerging iridovirus of North American warm-water fishes, largemouth bass virus (LMBV). Three LMBV isolates recovered from three distinct sources differed genetically and phenotypically. Genetically, the isolates differed in the banding patterns generated from amplified fragment length polymorphism analysis but not in their DNA sequences at two loci of different degrees of evolutionary stability. In vitro, the isolates replicated at identical rates in cell culture, as determined by real-time quantitative PCR of viral particles released into suspension. In vivo, the isolates varied over fivefold in virulence, as measured by the rate at which they induced mortality in juvenile largemouth bass. This variation was reflected in the viral loads of exposed fish, measured using real-time quantitative PCR; the most virulent viral strain also replicated to the highest level in fish. Together, these results justify the designation of these isolates as different strains of LMBV. Strain variation in iridoviruses could help explain why animal populations naturally infected with iridovirus pathogens vary so extensively in their clinical responses to infection. The results of this study are especially relevant to emerging iridoviruses of aquaculture systems and wildlife. PMID:12885900

  16. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  17. Genetic variation of the endangered Gentiana lutea L. var. aurantiaca (Gentianaceae) in populations from the Northwest Iberian Peninsula.

    PubMed

    González-López, Oscar; Polanco, Carlos; György, Zsuzsanna; Pedryc, Andrzej; Casquero, Pedro A

    2014-06-05

    Gentiana lutea L. (G. lutea L.) is an endangered plant, patchily distributed along the mountains of Central and Southern Europe. In this study, inter-simple sequence repeat (ISSR) markers were used to investigate the genetic variation in this species within and among populations of G. lutea L. var. aurantiaca of the Cantabrian Mountains (Northwest Iberian Peninsula). Samples of G. lutea L. collected at different locations of the Pyrenees and samples of G. lutea L. subsp. vardjanii of the Dolomites Alps were also analyzed for comparison. Using nine ISSR primers, 106 bands were generated, and 89.6% of those were polymorphic. The populations from the Northwest Iberian Peninsula were clustered in three different groups, with a significant correlation between genetic and geographic distances. Gentiana lutea L. var. aurantiaca showed 19.8% private loci and demonstrated a remarkable level of genetic variation, both among populations and within populations; those populations with the highest level of isolation show the lowest genetic variation within populations. The low number of individuals, as well as the observed genetic structure of the analyzed populations makes it necessary to protect them to ensure their survival before they are too small to persist naturally.

  18. Genetic Variation of the Endangered Gentiana lutea L. var. aurantiaca (Gentianaceae) in Populations from the Northwest Iberian Peninsula

    PubMed Central

    González-López, Oscar; Polanco, Carlos; György, Zsuzsanna; Pedryc, Andrzej; Casquero, Pedro A.

    2014-01-01

    Gentiana lutea L. (G. lutea L.) is an endangered plant, patchily distributed along the mountains of Central and Southern Europe. In this study, inter-simple sequence repeat (ISSR) markers were used to investigate the genetic variation in this species within and among populations of G. lutea L. var. aurantiaca of the Cantabrian Mountains (Northwest Iberian Peninsula). Samples of G. lutea L. collected at different locations of the Pyrenees and samples of G. lutea L. subsp. vardjanii of the Dolomites Alps were also analyzed for comparison. Using nine ISSR primers, 106 bands were generated, and 89.6% of those were polymorphic. The populations from the Northwest Iberian Peninsula were clustered in three different groups, with a significant correlation between genetic and geographic distances. Gentiana lutea L. var. aurantiaca showed 19.8% private loci and demonstrated a remarkable level of genetic variation, both among populations and within populations; those populations with the highest level of isolation show the lowest genetic variation within populations. The low number of individuals, as well as the observed genetic structure of the analyzed populations makes it necessary to protect them to ensure their survival before they are too small to persist naturally. PMID:24905405

  19. Genetic Variation and Geographic Differentiation Among Populations of the Nonmigratory Agricultural Pest Oedaleus infernalis (Orthoptera: Acridoidea) in China

    PubMed Central

    Sun, Wei; Dong, Hui; Gao, Yue-Bo; Su, Qian-Fu; Qian, Hai-Tao; Bai, Hong-Yan; Zhang, Zhu-Ting; Cong, Bin

    2015-01-01

    The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θII, and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations. PMID:26496789

  20. RAPD analysis of genetic variation in the Australian fan flower, Scaevola.

    PubMed

    Swoboda, I; Bhalla, P L

    1997-10-01

    The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.

  1. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Growth-Related Traits in Litopenaeus vannamei for Selective Breeding Applications

    PubMed Central

    Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao

    2013-01-01

    Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei , based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L . vannamei and Penaeus japonicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L . vannamei . PMID:24086466

  2. Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies

    USDA-ARS?s Scientific Manuscript database

    Genetic variation was quantified at 29 polymorphic microsatellite DNA loci in nine herds of plains bison (Bison bison bison), three herds of wood bison (B. b. athabascae), fourteen breeds of taurine cattle (Bos taurus taurus), and two breeds of indicine cattle (Bos taurus indicus). Genetic distances...

  3. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  4. PNPLA3 genetic variation in alcoholic steatosis and liver disease progression

    PubMed Central

    Hampe, Jochen; Trépo, Eric; Datz, Christian; Romeo, Stefano

    2015-01-01

    Alcoholic liver disease (ALD) accounts for the majority of chronic liver diseases in Western countries, and alcoholic cirrhosis is among the premier causes of liver failure, hepatocellular carcinoma (HCC) and liver-related mortality causes. Studies in different genders and ethnic groups, as well as in twins provide strong evidence for a significant contribution of host genetic factors to liver disease development in drinkers. The intense quest for genetic modifiers of alcohol-induced fibrosis progression have identified and repeatedly confirmed a genetic polymorphism in the gene coding for patatin-like phospholipase domain-containing 3 (PNPLA3; adiponutrin; rs738409 C/G, M148I) as a risk factor for alcoholic cirrhosis and its related complication, HCC, in different populations. Although carriership of one or both mutated PNPLA3 alleles does not explain the entire liver phenotypic variability in drinkers, it clearly represents one of the strongest single genetic modulators in a complex trait such as ALD. As more genetic data supporting its important role aggregates, novel insight as to PNPLA3’s function and that of its genetic variation in liver injury is unveiled pointing to an important novel pathway in alcohol-mediated hepatic lipid turnover with strong implications on inflammation, extra cellular matrix remodelling, and hepatocarcinogenesis. Future study shall decipher whether the gathered knowledge can be translated into therapeutic benefits of patients. PMID:26151055

  5. Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans.

    PubMed

    Snoek, Basten L; Sterken, Mark G; Bevers, Roel P J; Volkers, Rita J M; Van't Hof, Arjen; Brenchley, Rachel; Riksen, Joost A G; Cossins, Andrew; Kammenga, Jan E

    2017-06-29

    Cryptic genetic variation (CGV) is the hidden genetic variation that can be unlocked by perturbing normal conditions. CGV can drive the emergence of novel complex phenotypes through changes in gene expression. Although our theoretical understanding of CGV has thoroughly increased over the past decade, insight into polymorphic gene expression regulation underlying CGV is scarce. Here we investigated the transcriptional architecture of CGV in response to rapid temperature changes in the nematode Caenorhabditis elegans. We analyzed regulatory variation in gene expression (and mapped eQTL) across the course of a heat stress and recovery response in a recombinant inbred population. We measured gene expression over three temperature treatments: i) control, ii) heat stress, and iii) recovery from heat stress. Compared to control, exposure to heat stress affected the transcription of 3305 genes, whereas 942 were affected in recovering animals. These affected genes were mainly involved in metabolism and reproduction. The gene expression pattern in recovering animals resembled both the control and the heat-stress treatment. We mapped eQTL using the genetic variation of the recombinant inbred population and detected 2626 genes with an eQTL in the heat-stress treatment, 1797 in the control, and 1880 in the recovery. The cis-eQTL were highly shared across treatments. A considerable fraction of the trans-eQTL (40-57%) mapped to 19 treatment specific trans-bands. In contrast to cis-eQTL, trans-eQTL were highly environment specific and thus cryptic. Approximately 67% of the trans-eQTL were only induced in a single treatment, with heat-stress showing the most unique trans-eQTL. These results illustrate the highly dynamic pattern of CGV across three different environmental conditions that can be evoked by a stress response over a relatively short time-span (2 h) and that CGV is mainly determined by response related trans regulatory eQTL.

  6. Common genetic variation and novel loci associated with volumetric mammographic density.

    PubMed

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P < 5 × 10 - 8 ): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  7. Genetic Variation of North American Triatomines (Insecta: Hemiptera: Reduviidae): Initial Divergence between Species and Populations of Chagas Disease Vector

    PubMed Central

    Espinoza, Bertha; Martínez-Ibarra, Jose Alejandro; Villalobos, Guiehdani; De La Torre, Patricia; Laclette, Juan Pedro; Martínez-Hernández, Fernando

    2013-01-01

    The triatomines vectors of Trypanosoma cruzi are principal factors in acquiring Chagas disease. For this reason, increased knowledge of domestic transmission of T. cruzi and control of its insect vectors is necessary. To contribute to genetic knowledge of North America Triatominae species, we studied genetic variations and conducted phylogenetic analysis of different triatomines species of epidemiologic importance. Our analysis showed high genetic variations between different geographic populations of Triatoma mexicana, Meccus longipennis, M. mazzottii, M. picturatus, and T. dimidiata species, suggested initial divergence, hybridation, or classifications problems. In contrast, T. gerstaeckeri, T. bolivari, and M. pallidipennis populations showed few genetics variations. Analysis using cytochrome B and internal transcribed spacer 2 gene sequences indicated that T. bolivari is closely related to the Rubrofasciata complex and not to T. dimidiata. Triatoma brailovskyi and T. gerstaeckeri showed a close relationship with Dimidiata and Phyllosoma complexes. PMID:23249692

  8. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  9. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  10. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery.

    PubMed

    Scott, Eric M; Halees, Anason; Itan, Yuval; Spencer, Emily G; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G; Alkuraya, Fowzan S; Casanova, Jean-Laurent; Gleeson, Joseph G

    2016-09-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia, has resulted in an elevated burden of recessive disease. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.

  11. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery

    PubMed Central

    Scott, Eric M.; Halees, Anason; Itan, Yuval; Spencer, Emily G.; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B.; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G.; Alkuraya, Fowzan S.; Casanova, Jean-Laurent; Gleeson, Joseph G.

    2016-01-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Gulf region, North Africa, and Central Asia 1–3, has resulted in an elevated burden of recessive disease4. Here we generated a whole exome GME variome from 1,111 unrelated subjects. We detected substantial diversity from sub-geographies, continental and subregional admixture, several ancient founder populations with little evidence of bottlenecks. Measured consanguinity was an order-of-magnitude above that of other sampled populations, and included an increased burden of runs of homozygosity (ROH), but no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved GME recessive conditions reduced the number of potential disease-causing variants by 4–7-fold. These results reveal the variegated GME genetic architecture and support future human genetic discoveries in Mendelian and population genetics. PMID:27428751

  12. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. Genetic constraints on wing pattern variation in Lycaeides butterflies: A case study on mapping complex, multifaceted traits in structured populations.

    PubMed

    Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah

    2018-03-13

    Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.

  14. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Genetic variations in the Dravidian population of South West coast of India: Implications in designing case-control studies.

    PubMed

    D'Cunha, Anitha; Pandit, Lekha; Malli, Chaithra

    2017-06-01

    Indian data have been largely missing from genome-wide databases that provide information on genetic variations in different populations. This hinders association studies for complex disorders in India. This study was aimed to determine whether the complex genetic structure and endogamy among Indians could potentially influence the design of case-control studies for autoimmune disorders in the south Indian population. A total of 12 single nucleotide variations (SNVs) related to genes associated with autoimmune disorders were genotyped in 370 healthy individuals belonging to six different caste groups in southern India. Allele frequencies were estimated; genetic divergence and phylogenetic relationship within the various caste groups and other HapMap populations were ascertained. Allele frequencies for all genotyped SNVs did not vary significantly among the different groups studied. Wright's FSTwas 0.001 per cent among study population and 0.38 per cent when compared with Gujarati in Houston (GIH) population on HapMap data. The analysis of molecular variance results showed a 97 per cent variation attributable to differences within the study population and <1 per cent variation due to differences between castes. Phylogenetic analysis showed a separation of Dravidian population from other HapMap populations and particularly from GIH population. Despite the complex genetic origins of the Indian population, our study indicated a low level of genetic differentiation among Dravidian language-speaking people of south India. Case-control studies of association among Dravidians of south India may not require stratification based on language and caste.

  16. Large variations in ocular dimensions in a multiethnic population with similar genetic background.

    PubMed

    Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei

    2016-03-07

    We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P < 0.001), deeper ACDs (P < 0.001) but shallower VCDs (P < 0.001) compared with the other two ethnic groups. There were no ethnic variations in LTs. Diabetes was associated with shallower ACDs and this association was stronger in Bai Chinese compared with Yi or Han Chinese (P for interaction = 0.02). Thicker lenses were associated with younger age (P = 0.04), male gender (P < 0.001), smoking history (P = 0.01), alcohol intake (P = 0.03), the presence of cataract (P < 0.001), and the presence of diabetes (P < 0.001). There were significant differences in ocular dimensions among different ethnic groups with small differences in genetics but large variations in cultures and lifestyles.

  17. Human metabolic profiles are stably controlled by genetic and environmental variation

    PubMed Central

    Nicholson, George; Rantalainen, Mattias; Maher, Anthony D; Li, Jia V; Malmodin, Daniel; Ahmadi, Kourosh R; Faber, Johan H; Hallgrímsdóttir, Ingileif B; Barrett, Amy; Toft, Henrik; Krestyaninova, Maria; Viksna, Juris; Neogi, Sudeshna Guha; Dumas, Marc-Emmanuel; Sarkans, Ugis; The MolPAGE Consortium; Silverman, Bernard W; Donnelly, Peter; Nicholson, Jeremy K; Allen, Maxine; Zondervan, Krina T; Lindon, John C; Spector, Tim D; McCarthy, Mark I; Holmes, Elaine; Baunsgaard, Dorrit; Holmes, Chris C

    2011-01-01

    1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non-identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common-environmental), individual-environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual-environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR-detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker-discovery studies. We provide a power-calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR-based biomarkers quantifying predisposition to disease. PMID:21878913

  18. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    USGS Publications Warehouse

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  19. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel

    PubMed Central

    Wang, Jonathan B.

    2017-01-01

    Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP). In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species. PMID:28257468

  20. The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory.

    PubMed

    O'Reilly-Wapstra, Julianne M; Iason, Glenn R; Thoss, Vera

    2007-05-01

    This study investigated the genetic and chemical basis of resistance of Pinus sylvestris seedlings to herbivory by a generalist mollusc, Arion ater. Using feeding trials with captive animals, we examined selective herbivory by A. ater of young P. sylvestris seedlings of different genotypes and correlated preferences with seedling monoterpene levels. We also investigated the feeding responses of A. ater to artificial diets laced with two monoterpenes, Delta(3)-carene and alpha-pinene. Logistic regression indicated that two factors were the best predictors of whether seedlings in the trial would be consumed. Individual slug variation (replicates) was the most significant factor in the model; however, alpha-pinene concentration (also representing beta-pinene, Delta(3)-carene and total monoterpenes due to multicollinearity) of needles was also a significant factor. While A. ater did not select seedlings on the basis of family, seedlings not eaten were significantly higher in levels of alpha-pinene compared to seedlings that were consumed. We also demonstrated significant genetic variation in alpha-pinene concentration of seedlings between different families of P. sylvestris. Nitrogen and three morphological seedling characteristics (stem length, needle length and stem diameter) also showed significant genetic variation between P. sylvestris families. Artificial diets laced with high (5 mg g(-1) dry matter) quantities of either Delta(3)-carene or alpha-pinene, were eaten significantly less than control diets with no added monoterpenes, supporting the results of the seedling feeding trial. This study demonstrates that A. ater selectively feed on P. sylvestris seedlings and that this selection is based, in part, on the monoterpene concentration of seedlings. These results, coupled with significant genetic variation in alpha-pinene concentration of seedlings and evidence that slug herbivory is detrimental to P. sylvestris fitness, are discussed as possible evidence for A