Sample records for quantitative inverse relationship

  1. Inverse relationship between photon flux densities and nanotesla magnetic fields over cell aggregates: Quantitative evidence for energetic conservation.

    PubMed

    Persinger, Michael A; Dotta, Blake T; Karbowski, Lukasz M; Murugan, Nirosha J

    2015-01-01

    The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 10(5)-10(6) cells was explored experimentally. The vertical component of the earth's magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10(-12) W·m(-2)) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10(-18) J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments.

  2. Quantitative analysis of SMEX'02 AIRSAR data for soil moisture inversion

    NASA Technical Reports Server (NTRS)

    Zyl, J. J. van; Njoku, E.; Jackson, T.

    2003-01-01

    This paper discusses in detail the characteristics of the AIRSAR data acquired, and provides an initial quantitative assessment of the accuracy of the radar inversion algorithms under these vegetated conditions.

  3. Inverse relationship between exercise economy and oxidative capacity in muscle.

    PubMed

    Hunter, Gary R; Bamman, Marcas M; Larson-Meyer, D Enette; Joanisse, Denis R; McCarthy, John P; Blaudeau, Tamilane E; Newcomer, Bradley R

    2005-08-01

    An inverse relationship has been shown between running and cycling exercise economy and maximum oxygen uptake (VO2max). The purposes were: 1) determine the relationship between walking economy and VO2max; and 2) determine the relationship between muscle metabolic economy and muscle oxidative capacity and fiber type. Subjects were 77 premenopausal normal weight women. Walking economy (1/VO2max) was measured at 3 mph and VO2max during graded treadmill test. Muscle oxidative phosphorylation rate (OxPhos), and muscle metabolic economy (force/ATP) were measured in calf muscle using 31P MRS during isometric plantar flexion at 70 and 100% of maximum force, (HI) and (MI) respectively. Muscle fiber type and citrate synthase activity were determined in the lateral gastrocnemius. Significant inverse relationships (r from -0.28 to -0.74) were observed between oxidative metabolism measures and exercise economy (walking and muscle). Type IIa fiber distribution was inversely related to all measures of exercise economy (r from -0.51 to -0.64) and citrate synthase activity was inversely related to muscle metabolic economy at MI (r = -0.56). In addition, Type IIa fiber distribution and citrate synthase activity were positively related to VO2max and muscle OxPhos at HI and MI (r from 0.49 to 0.70). Type I fiber distribution was not related to any measure of exercise economy or oxidative capacity. Our results support the concept that exercise economy and oxidative capacity are inversely related. We have demonstrated this inverse relationship in women both by indirect calorimetry during walking and in muscle tissue by 31P MRS.

  4. Inverse transport problems in quantitative PAT for molecular imaging

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  5. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  6. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  7. Experimental validation of a Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan

    2017-03-01

    Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.

  8. Teaching Children How to Include the Inversion Principle in Their Reasoning about Quantitative Relations

    ERIC Educational Resources Information Center

    Nunes, Terezinha; Bryant, Peter; Evans, Deborah; Bell, Daniel; Barros, Rossana

    2012-01-01

    The basis of this intervention study is a distinction between numerical calculus and relational calculus. The former refers to numerical calculations and the latter to the analysis of the quantitative relations in mathematical problems. The inverse relation between addition and subtraction is relevant to both kinds of calculus, but so far research…

  9. Quantitative Relationships Involving Additive Differences: Numerical Resilience

    ERIC Educational Resources Information Center

    Ramful, Ajay; Ho, Siew Yin

    2014-01-01

    This case study describes the ways in which problems involving additive differences with unknown starting quantities, constrain the problem solver in articulating the inherent quantitative relationship. It gives empirical evidence to show how numerical reasoning takes over as a Grade 6 student instantiates the quantitative relation by resorting to…

  10. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  11. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method.

    PubMed

    Sun, Hongfu; Ma, Yuhan; MacDonald, M Ethan; Pike, G Bruce

    2018-06-15

    A new dipole field inversion method for whole head quantitative susceptibility mapping (QSM) is proposed. Instead of performing background field removal and local field inversion sequentially, the proposed method performs dipole field inversion directly on the total field map in a single step. To aid this under-determined and ill-posed inversion process and obtain robust QSM images, Tikhonov regularization is implemented to seek the local susceptibility solution with the least-norm (LN) using the L-curve criterion. The proposed LN-QSM does not require brain edge erosion, thereby preserving the cerebral cortex in the final images. This should improve its applicability for QSM-based cortical grey matter measurement, functional imaging and venography of full brain. Furthermore, LN-QSM also enables susceptibility mapping of the entire head without the need for brain extraction, which makes QSM reconstruction more automated and less dependent on intermediate pre-processing methods and their associated parameters. It is shown that the proposed LN-QSM method reduced errors in a numerical phantom simulation, improved accuracy in a gadolinium phantom experiment, and suppressed artefacts in nine subjects, as compared to two-step and other single-step QSM methods. Measurements of deep grey matter and skull susceptibilities from LN-QSM are consistent with established reconstruction methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The Inverse Relationship between Digital Media Exposure and Childhood Flourishing.

    PubMed

    Ruest, Stephanie; Gjelsvik, Annie; Rubinstein, Max; Amanullah, Siraj

    2018-06-01

    To describe the relationship between digital media exposure (DME) and parental perception of childhood flourishing, or overall positive well-being. It is hypothesized that there is an inverse association between parent-reported measures of childhood flourishing and increasing daily DME. Parental responses for children ages 6-17 years (N = 64 464) from the 2011-2012 National Survey of Children's Health were analyzed. Average weekday DME that was not school work related was categorized in 2-hour intervals: 0 to <2, 2 to < 4, 4 to < 6, and ≥6 hours. Bivariate analyses and logistic regression models were used to examine the relationship between DME and parent-reported frequency of 5 childhood flourishing markers: completing homework, caring about academics, finishing tasks, staying calm when challenged, and showing interest in learning. Only 31% reported <2 hours of weekday DME. For the remaining children, daily DME was 2 to <4 hours (36%), 4 to <6 hours (17%), or ≥6 hours (17%). In a model adjusted for age, sex, race, poverty level, primary language spoken at home, and highest maternal education level, there was a dose-dependent decrease in the odds of demonstrating all 5 markers of flourishing as weekday DME increased (test for trend for each outcome P < .001). In stratified analyses, this relationship held true regardless of the child's age group, sex, or poverty level. This study provides evidence that, among school-aged children, increasing weekday DME has an inverse dose-dependent relationship with multiple childhood flourishing markers. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses

    PubMed Central

    Zenker, Sven; Rubin, Jonathan; Clermont, Gilles

    2007-01-01

    The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses

  14. Honey and Cancer: Sustainable Inverse Relationship Particularly for Developing Nations—A Review

    PubMed Central

    Othman, Nor Hayati

    2012-01-01

    Honey and cancer has a sustainable inverse relationship. Carcinogenesis is a multistep process and has multifactorial causes. Among these are low immune status, chronic infection, chronic inflammation, chronic non healing ulcers, obesity, and so forth. There is now a sizeable evidence that honey is a natural immune booster, natural anti-inflammatory agent, natural antimicrobial agent, natural cancer “vaccine,” and natural promoter for healing chronic ulcers and wounds. Though honey has substances of which the most predominant is a mixture of sugars, which itself is thought to be carcinogenic, it is understandable that its beneficial effect as anticancer agent raises skeptics. The positive scientific evidence for anticancer properties of honey is growing. The mechanism on how honey has anticancer effect is an area of great interest. Among the mechanisms suggested are inhibition of cell proliferation, induction of apoptosis, and cell-cycle arrest. Honey and cancer has sustainable inverse relationship in the setting of developing nations where resources for cancer prevention and treatment are limited. PMID:22761637

  15. Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection

    NASA Astrophysics Data System (ADS)

    Brunetti, Carlotta; Linde, Niklas

    2018-01-01

    Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link geophysical properties to hydrogeological properties and state variables. Coupled inversion studies are frequently based on the questionable assumption that these relationships are perfect (i.e., no scatter). Using synthetic examples and crosshole ground-penetrating radar (GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA, we investigate the impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection. Our study shows that accounting for petrophysical uncertainty in the inversion (I) decreases bias of the inferred variance of hydrogeological subsurface properties, (II) provides more realistic uncertainty assessment and (III) reduces the overconfidence in the ability of geophysical data to falsify conceptual hydrogeological models.

  16. Relationship between strong-motion array parameters and the accuracy of source inversion and physical waves

    USGS Publications Warehouse

    Iida, M.; Miyatake, T.; Shimazaki, K.

    1990-01-01

    We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors

  17. Quantitative structure activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors.

    PubMed

    Nargotra, Amit; Sharma, Sujata; Koul, Jawahir Lal; Sangwan, Pyare Lal; Khan, Inshad Ali; Kumar, Ashwani; Taneja, Subhash Chander; Koul, Surrinder

    2009-10-01

    Quantitative structure activity relationship (QSAR) analysis of piperine analogs as inhibitors of efflux pump NorA from Staphylococcus aureus has been performed in order to obtain a highly accurate model enabling prediction of inhibition of S. aureus NorA of new chemical entities from natural sources as well as synthetic ones. Algorithm based on genetic function approximation method of variable selection in Cerius2 was used to generate the model. Among several types of descriptors viz., topological, spatial, thermodynamic, information content and E-state indices that were considered in generating the QSAR model, three descriptors such as partial negative surface area of the compounds, area of the molecular shadow in the XZ plane and heat of formation of the molecules resulted in a statistically significant model with r(2)=0.962 and cross-validation parameter q(2)=0.917. The validation of the QSAR models was done by cross-validation, leave-25%-out and external test set prediction. The theoretical approach indicates that the increase in the exposed partial negative surface area increases the inhibitory activity of the compound against NorA whereas the area of the molecular shadow in the XZ plane is inversely proportional to the inhibitory activity. This model also explains the relationship of the heat of formation of the compound with the inhibitory activity. The model is not only able to predict the activity of new compounds but also explains the important regions in the molecules in quantitative manner.

  18. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups.

    PubMed

    Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao

    2017-12-01

    The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  19. The Relationship between Quantitative and Qualitative Measures of Writing Skills.

    ERIC Educational Resources Information Center

    Howerton, Mary Lou P.; And Others

    The relationships of quantitative measures of writing skills to overall writing quality as measured by the E.T.S. Composition Evaluation Scale (CES) were examined. Quantitative measures included indices of language productivity, vocabulary diversity, spelling, and syntactic maturity. Power of specific indices to account for variation in overall…

  20. Adults' understanding of inversion concepts: how does performance on addition and subtraction inversion problems compare to performance on multiplication and division inversion problems?

    PubMed

    Robinson, Katherine M; Ninowski, Jerilyn E

    2003-12-01

    Problems of the form a + b - b have been used to assess conceptual understanding of the relationship between addition and subtraction. No study has investigated the same relationship between multiplication and division on problems of the form d x e / e. In both types of inversion problems, no calculation is required if the inverse relationship between the operations is understood. Adult participants solved addition/subtraction and multiplication/division inversion (e.g., 9 x 22 / 22) and standard (e.g., 2 + 27 - 28) problems. Participants started to use the inversion strategy earlier and more frequently on addition/subtraction problems. Participants took longer to solve both types of multiplication/division problems. Overall, conceptual understanding of the relationship between multiplication and division was not as strong as that between addition and subtraction. One explanation for this difference in performance is that the operation of division is more weakly represented and understood than the other operations and that this weakness affects performance on problems of the form d x e / e.

  1. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  2. Coalescent patterns for chromosomal inversions in divergent populations

    PubMed Central

    Guerrero, Rafael F.; Rousset, François; Kirkpatrick, Mark

    2012-01-01

    Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation. PMID:22201172

  3. Probabilistic Geoacoustic Inversion in Complex Environments

    DTIC Science & Technology

    2015-09-30

    Probabilistic Geoacoustic Inversion in Complex Environments Jan Dettmer School of Earth and Ocean Sciences, University of Victoria, Victoria BC...long-range inversion methods can fail to provide sufficient resolution. For proper quantitative examination of variability, parameter uncertainty must...project aims to advance probabilistic geoacoustic inversion methods for complex ocean environments for a range of geoacoustic data types. The work is

  4. Prediction of sedimentary facies of x-oilfield in northwest of China by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Ling, Ke; Tingting, He

    2017-03-01

    In the early stage of oilfield development, there are only a few wells and well spacing can reach several kilometers. for the alluvial fans and other heterogeneous reservoirs, information from wells alone is not sufficient to derive detailed reservoir information. In this paper, the method of calculating sand thickness through geostatistics inversion is studied, and quantitative relationships between each sedimentary micro-facies are analyzed by combining with single well sedimentary facies. Further, the sedimentary facies plane distribution based on seismic inversion is obtained by combining with sedimentary model, providing the geological basis for the next exploration and deployment.

  5. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  6. Mineral inversion for element capture spectroscopy logging based on optimization theory

    NASA Astrophysics Data System (ADS)

    Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning

    2017-12-01

    Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.

  7. Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder S.; Kinney, Justin B.

    2016-03-01

    A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.

  8. Cardiovascular magnetic resonance of myocardial edema using a short inversion time inversion recovery (STIR) black-blood technique: Diagnostic accuracy of visual and semi-quantitative assessment

    PubMed Central

    2012-01-01

    Background The short inversion time inversion recovery (STIR) black-blood technique has been used to visualize myocardial edema, and thus to differentiate acute from chronic myocardial lesions. However, some cardiovascular magnetic resonance (CMR) groups have reported variable image quality, and hence the diagnostic value of STIR in routine clinical practice has been put into question. The aim of our study was to analyze image quality and diagnostic performance of STIR using a set of pulse sequence parameters dedicated to edema detection, and to discuss possible factors that influence image quality. We hypothesized that STIR imaging is an accurate and robust way of detecting myocardial edema in non-selected patients with acute myocardial infarction. Methods Forty-six consecutive patients with acute myocardial infarction underwent CMR (day 4.5, +/- 1.6) including STIR for the assessment of myocardial edema and late gadolinium enhancement (LGE) for quantification of myocardial necrosis. Thirty of these patients underwent a follow-up CMR at approximately six months (195 +/- 39 days). Both STIR and LGE images were evaluated separately on a segmental basis for image quality as well as for presence and extent of myocardial hyper-intensity, with both visual and semi-quantitative (threshold-based) analysis. LGE was used as a reference standard for localization and extent of myocardial necrosis (acute) or scar (chronic). Results Image quality of STIR images was rated as diagnostic in 99.5% of cases. At the acute stage, the sensitivity and specificity of STIR to detect infarcted segments on visual assessment was 95% and 78% respectively, and on semi-quantitative assessment was 99% and 83%, respectively. STIR differentiated acutely from chronically infarcted segments with a sensitivity of 95% by both methods and with a specificity of 99% by visual assessment and 97% by semi-quantitative assessment. The extent of hyper-intense areas on acute STIR images was 85% larger than

  9. A quantitative comparison of soil moisture inversion algorithms

    NASA Technical Reports Server (NTRS)

    Zyl, J. J. van; Kim, Y.

    2001-01-01

    This paper compares the performance of four bare surface radar soil moisture inversion algorithms in the presence of measurement errors. The particular errors considered include calibration errors, system thermal noise, local topography and vegetation cover.

  10. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  11. Quantitative criticism of literary relationships

    PubMed Central

    Dexter, Joseph P.; Katz, Theodore; Tripuraneni, Nilesh; Dasgupta, Tathagata; Kannan, Ajay; Brofos, James A.; Bonilla Lopez, Jorge A.; Schroeder, Lea A.; Casarez, Adriana; Rabinovich, Maxim; Haimson Lushkov, Ayelet; Chaudhuri, Pramit

    2017-01-01

    Authors often convey meaning by referring to or imitating prior works of literature, a process that creates complex networks of literary relationships (“intertextuality”) and contributes to cultural evolution. In this paper, we use techniques from stylometry and machine learning to address subjective literary critical questions about Latin literature, a corpus marked by an extraordinary concentration of intertextuality. Our work, which we term “quantitative criticism,” focuses on case studies involving two influential Roman authors, the playwright Seneca and the historian Livy. We find that four plays related to but distinct from Seneca’s main writings are differentiated from the rest of the corpus by subtle but important stylistic features. We offer literary interpretations of the significance of these anomalies, providing quantitative data in support of hypotheses about the use of unusual formal features and the interplay between sound and meaning. The second part of the paper describes a machine-learning approach to the identification and analysis of citational material that Livy loosely appropriated from earlier sources. We extend our approach to map the stylistic topography of Latin prose, identifying the writings of Caesar and his near-contemporary Livy as an inflection point in the development of Latin prose style. In total, our results reflect the integration of computational and humanistic methods to investigate a diverse range of literary questions. PMID:28373557

  12. Quantitative criticism of literary relationships.

    PubMed

    Dexter, Joseph P; Katz, Theodore; Tripuraneni, Nilesh; Dasgupta, Tathagata; Kannan, Ajay; Brofos, James A; Bonilla Lopez, Jorge A; Schroeder, Lea A; Casarez, Adriana; Rabinovich, Maxim; Haimson Lushkov, Ayelet; Chaudhuri, Pramit

    2017-04-18

    Authors often convey meaning by referring to or imitating prior works of literature, a process that creates complex networks of literary relationships ("intertextuality") and contributes to cultural evolution. In this paper, we use techniques from stylometry and machine learning to address subjective literary critical questions about Latin literature, a corpus marked by an extraordinary concentration of intertextuality. Our work, which we term "quantitative criticism," focuses on case studies involving two influential Roman authors, the playwright Seneca and the historian Livy. We find that four plays related to but distinct from Seneca's main writings are differentiated from the rest of the corpus by subtle but important stylistic features. We offer literary interpretations of the significance of these anomalies, providing quantitative data in support of hypotheses about the use of unusual formal features and the interplay between sound and meaning. The second part of the paper describes a machine-learning approach to the identification and analysis of citational material that Livy loosely appropriated from earlier sources. We extend our approach to map the stylistic topography of Latin prose, identifying the writings of Caesar and his near-contemporary Livy as an inflection point in the development of Latin prose style. In total, our results reflect the integration of computational and humanistic methods to investigate a diverse range of literary questions.

  13. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  14. The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions

    NASA Astrophysics Data System (ADS)

    Peevey, T. R.; Gille, J. C.; Homeyer, C. R.; Manney, G. L.

    2014-09-01

    Using High Resolution Dynamic Limb Sounder observations and ERA-Interim reanalysis this study demonstrates that the warm conveyor belt (WCB) is a mechanism responsible for the relationship between the double tropopause (DT) and the tropopause inversion layer (TIL), a relationship recently suggested in the literature based on idealized model simulations of baroclinic disturbances. Using these data sets, spatial and temporal characteristics of the DT-TIL relationship are examined over a 3 year period, 2005-2008. In the extratropics, results from satellite data show that as the TIL increases in strength, so does the frequency of the DT, regardless of season or hemisphere. The inverse relationship is found in the tropics. Using only DT profiles, zonal composites of wind, relative vorticity, and temperature from reanalysis data show that as the TIL increases in strength, the upper tropospheric circulation switches from cyclonic to anticyclonic, and the upward vertical motion increases. This result suggests the WCB as a mechanism since it is on the anticyclonic side of the jet and is characterized by the movement of tropical air poleward and upward from the surface. To verify this relationship, the vertical and horizontal development of a synoptic-scale baroclinic system is analyzed over a 4 day period. Results show the equatorward extension of the polar tropopause, and thus the formation of the DT, due to the strengthening of the TIL in the region of vertical motion associated with the WCB. Moreover, this result suggests that air movement within the DT could originate from high latitudes when associated with a baroclinic disturbance.

  15. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer

    PubMed Central

    Dai, Donghai; Meng, Xiangbing; Thiel, Kristina W.; Leslie, Kimberly K.; Yang, Shujie

    2016-01-01

    previously unanticipated inverse relationship between the tumor suppressor PR and the oncogene Myc in endometrial cancer. PMID:26859414

  16. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  17. Inverse relationship between changes of maximal aerobic capacity and changes in walking economy after weight loss.

    PubMed

    Borges, Juliano H; Carter, Stephen J; Singh, Harshvardhan; Hunter, Gary R

    2018-05-16

    The aims of this study were to: (1) determine the relationships between maximum oxygen uptake ([Formula: see text]O 2max ) and walking economy during non-graded and graded walking among overweight women and (2) examine potential differences in [Formula: see text]O 2max and walking economy before and after weight loss. One-hundred and twenty-four premenopausal women with a body mass index (BMI) between 27 and 30 kg/m 2 were randomly assigned to one of three groups: (a) diet only; (b) diet and aerobic exercise training; and (c) diet and resistance exercise training. All were furnished with standard, very-low calorie diet to reduce BMI to < 25 kg/m 2 . [Formula: see text]O 2max was measured using a modified-Bruce protocol while walking economy (1-net [Formula: see text]O 2 ) was obtained during fixed-speed (4.8 k·h -1 ), steady-state treadmill walking at 0% grade and 2.5% grade. Assessments were conducted before and after achieving target BMI. Prior to weight loss, [Formula: see text]O 2max was inversely related (P < 0.05) with non-graded and graded walking economy (r = - 0.28 to - 0.35). Similar results were also observed following weight loss (r = - 0.22 to - 0.28). Additionally, we also detected a significant inverse relationship (P < 0.05) between the changes (∆, after weight loss) in ∆[Formula: see text]O 2max , adjusted for fat-free mass, with non-graded and graded ∆walking economy (r = - 0.37 to - 0.41). Our results demonstrate [Formula: see text]O 2max and walking economy are inversely related (cross-sectional) before and after weight loss. Importantly though, ∆[Formula: see text]O 2max and ∆walking economy were also found to be inversely related, suggesting a strong synchrony between maximal aerobic capacity and metabolic cost of exercise.

  18. The relationship between quantitative measures of disc height and disc signal intensity with Pfirrmann score of disc degeneration.

    PubMed

    Salamat, Sara; Hutchings, John; Kwong, Clemens; Magnussen, John; Hancock, Mark J

    2016-01-01

    To assess the relationship between quantitative measures of disc height and signal intensity with the Pfirrmann disc degeneration scoring system and to test the inter-rater reliability of the quantitative measures. Participants were 76 people who had recently recovered from their last episode of acute low back pain and underwent MRI scan on a single 3T machine. At all 380 lumbar discs, quantitative measures of disc height and signal intensity were made by 2 independent raters and compared to Pfirrmann scores from a single radiologist. For quantitative measures of disc height and signal intensity a "raw" score and 2 adjusted ratios were calculated and the relationship with Pfirrmann scores was assessed. The inter-tester reliability of quantitative measures was also investigated. There was a strong linear relationship between quantitative disc signal intensity and Pfirrmann scores for grades 1-4, but not for grades 4 and 5. For disc height only, Pfirrmann grade 5 had significantly reduced disc height compared to all other grades. Results were similar regardless of whether raw or adjusted scores were used. Inter-rater reliability for the quantitative measures was excellent (ICC > 0.97). Quantitative measures of disc signal intensity were strongly related to Pfirrmann scores from grade 1 to 4; however disc height only differentiated between grade 4 and 5 Pfirrmann scores. Using adjusted ratios for quantitative measures of disc height or signal intensity did not significantly alter the relationship with Pfirrmann scores.

  19. Misconceived Relationships between Logical Positivism and Quantitative Research: An Analysis in the Framework of Ian Hacking.

    ERIC Educational Resources Information Center

    Yu, Chong Ho

    Although quantitative research methodology is widely applied by psychological researchers, there is a common misconception that quantitative research is based on logical positivism. This paper examines the relationship between quantitative research and eight major notions of logical positivism: (1) verification; (2) pro-observation; (3)…

  20. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  1. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    PubMed

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P < 0.01) while the pH-dependent exchange rate followed a dominantly base-catalyzed exchange relationship (P < 0.01). In summary, our study verified that a simplified qCEST analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Modular theory of inverse systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.

  3. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  4. Inversion in Mathematical Thinking and Learning

    ERIC Educational Resources Information Center

    Greer, Brian

    2012-01-01

    Inversion is a fundamental relational building block both within mathematics as the study of structures and within people's physical and social experience, linked to many other key elements such as equilibrium, invariance, reversal, compensation, symmetry, and balance. Within purely formal arithmetic, the inverse relationships between addition and…

  5. Symbolic inversion of control relationships in model-based expert systems

    NASA Technical Reports Server (NTRS)

    Thomas, Stan

    1988-01-01

    Symbolic inversion is examined from several perspectives. First, a number of symbolic algebra and mathematical tool packages were studied in order to evaluate their capabilities and methods, specifically with respect to symbolic inversion. Second, the KATE system (without hardware interface) was ported to a Zenith Z-248 microcomputer running Golden Common Lisp. The interesting thing about the port is that it allows the user to have measurements vary and components fail in a non-deterministic manner based upon random value from probability distributions. Third, INVERT was studied as currently implemented in KATE, its operation documented, some of its weaknesses identified, and corrections made to it. The corrections and enhancements are primarily in the way that logical conditions involving AND's and OR's and inequalities are processed. In addition, the capability to handle equalities was also added. Suggestions were also made regarding the handling of ranges in INVERT. Last, other approaches to the inversion process were studied and recommendations were made as to how future versions of KATE should perform symbolic inversion.

  6. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  7. Quantitative structure-activity relationship and molecular docking of artemisinin derivatives to vascular endothelial growth factor receptor 1.

    PubMed

    Saeed, Mohamed E M; Kadioglu, Onat; Seo, Ean-Jeong; Greten, Henry Johannes; Brenk, Ruth; Efferth, Thomas

    2015-04-01

    The antimalarial drug artemisinin has been shown to exert anticancer activity through anti-angiogenic effects. For further drug development, it may be useful to have derivatives with improved anti-angiogenic properties. We performed molecular docking of 52 artemisinin derivatives to vascular endothelial growth factor receptors (VEGFR1, VEGFR2), and VEGFA ligand using Autodock4 and AutodockTools-1.5.7.rc1 using the Lamarckian genetic algorithm. Quantitative structure-activity relationship (QSAR) analyses of the compounds prepared by Corina Molecular Networks were performed using the Molecular Operating Environment MOE 2012.10. A statistically significant inverse relationship was obtained between in silico binding energies to VEGFR1 and anti-angiogenic activity in vivo of a test-set of artemisinin derivatives (R=-0.843; p=0.035). This served as a control experiment to validate molecular docking predicting anti-angiogenc effects. Furthermore, 52 artemisinin derivatives were docked to VEGFR1 and in selected examples also to VEGFR2 and VEGFA. Higher binding affinities were calculated for receptors than for the ligand. The best binding affinities to VEGFR1 were found for an artemisinin dimer, 10-dihydroartemisinyl-2-propylpentanoate, and dihydroartemisinin α-hemisuccinate sodium salt. QSAR analyses revealed significant relationships between VEGFR1 binding energies and defined molecular descriptors of 35 artemisinins assigned to the training set (R=0.0848, p<0.0001) and 17 derivatives assigned to the test set (R=0.761, p<0.001). Molecular docking and QSAR calculations can be used to identify novel artemisinin derivatives with anti-angiogenic effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Inverse Porosity-Hydraulic Conductivity Relationship in Sand-and-Gravel Aquifers Determined From Analysis of Geophysical Well Logs: Implications for Transport Processes

    NASA Astrophysics Data System (ADS)

    Morin, R. H.

    2004-05-01

    It is intuitive to think of hydraulic conductivity K as varying directly and monotonically with porosity P in porous media. However, laboratory studies and field observations have documented a possible inverse relationship between these two parameters in unconsolidated deposits under certain grain-size distributions and packing arrangements. This was confirmed at two sites in sand-and-gravel aquifers on Cape Cod, Massachusetts, where sets of geophysical well logs were used to examine the interdependence of several aquifer properties. Along with K and P, the resistivity R and the natural-gamma activity G of the surrounding sediments were measured as a function of depth. Qualitative examination of field results from the first site was useful in locating a contaminant plume and inferred an inverse relation between K and P; this was substantiated by a rigorous multivariate analysis of log data collected from the second site where K and P were determined to respond in a bipolar manner among the four independent variables. Along with this result come some implications regarding our conceptual understanding of contaminant transport processes in the shallow subsurface. According to Darcy's law, the interstitial fluid velocity V is proportional to the ratio K/P and, consequently, a general inverse K-P relationship implies that values of V can extend over a much wider range than conventionally assumed. This situation introduces a pronounced flow stratification within these granular deposits that can result in large values of longitudinal dispersivity; faster velocities occur in already fast zones and slower velocities in already slow zones. An inverse K-P relationship presents a new perspective on the physical processes associated with groundwater flow and transport. Although the results of this study apply strictly to the Cape Cod aquifers, they may merit a re-evaluation of modeling approaches undertaken at other locations having similar geologic environments.

  9. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    PubMed

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, p<0.0001). Unstable ankles exhibited significantly lower viscosity (p<0.005) and more severe functional ankle instability (p<0.0001) than stable ankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (p<0.0001). There was a moderate relationship between ankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Inverse relationship between sleep duration and myopia.

    PubMed

    Jee, Donghyun; Morgan, Ian G; Kim, Eun Chul

    2016-05-01

    To investigate the association between sleep duration and myopia. This population-based, cross-sectional study using a nationwide, systemic, stratified, multistage, clustered sampling method included a total of 3625 subjects aged 12-19 years who participated in the Korean National Health and Nutrition Examination Survey 2008-2012. All participants underwent ophthalmic examination and a standardized interview including average sleep duration (hr/day), education, physical activity and economic status (annual household income). Refractive error was measured by autorefraction without cycloplegia. Myopia and high myopia were defined as ≤-0.50 dioptres (D) and ≤-6.0 D, respectively. Sleep durations were classified into 5 categories: <5, 6, 7, 8 and >9 hr. The overall prevalence of myopia and high myopia were 77.8% and 9.4%, respectively, and the overall sleep duration was 7.1 hr/day. The refractive error increased by 0.10 D per 1 hr increase in sleep after adjusting for potential confounders including sex, age, height, education level, economic status and physical activity. The adjusted odds ratio (OR) for refractive error was 0.90 (95% confidence interval [CI], 0.83-0.97) per 1 hr increase in sleep. The adjusted OR for myopia was decreased in those with >9 hr of sleep (OR, 0.59; 95% CI, 0.38-0.93; p for trend = 0.006) than in those with <5 hr of sleep. However, high myopia was not associated with sleep duration. This study provides the population-based, epidemiologic evidence for an inverse relationship between sleep duration and myopia in a representative population of Korean adolescents. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.

    PubMed

    Cejnar, M; Kobler, H; Hunyor, S N

    1993-03-01

    Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.

  12. Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships

    PubMed Central

    2015-01-01

    Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Results This work focuses on the detection of both inverse and positive regulatory relationships from a paired miRNA and mRNA expression data set of HCV patients through a 'change-to-change' method which can derive connected discriminatory rules. Our study uncovered many novel miRNA-mRNA regulatory modules. In particular, it was revealed that GFRA2 is positively regulated by miR-557, miR-765 and miR-17-3p that probably bind at different locations of the 5' UTR of this mRNA. The expression relationship between GFRA2 and any of these three miRNAs has not been studied before, although separate research for this gene and these miRNAs have all drawn conclusions linked to hepatocellular carcinoma. This suggests that the binding of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or their combinations, is worthy of further investigation by experimentation. We also report another mRNA QKI which has a strong inverse expression relationship with miR-129 and miR-493-3p which may bind at the 3' UTR of QKI with a perfect sequence match. Furthermore, the interaction between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI is supported with CLIP-Seq data from starBase. Our method can be easily extended for the expression data analysis of other diseases. Conclusion Our rule discovery method is useful for integrating binding information and expression profile for identifying HCV miRNA-mRNA regulatory modules and can be applied to the study of the expression profiles of other complex human diseases

  13. Individual Differences in Children's Understanding of Inversion and Arithmetical Skill

    ERIC Educational Resources Information Center

    Gilmore, Camilla K.; Bryant, Peter

    2006-01-01

    Background and aims: In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between…

  14. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  15. Self-compassion moderates body comparison and appearance self-worth's inverse relationships with body appreciation.

    PubMed

    Homan, Kristin J; Tylka, Tracy L

    2015-09-01

    Although research on positive body image has increased, little research has explored which variables protect body appreciation during body-related threats. Self-compassion may be one such variable. Individuals high in self-compassion are mindful, kind, and nurturing toward themselves during situations that threaten their adequacy, while recognizing that being imperfect is part of "being human." In this study, we investigated whether two body-related threats (i.e., body comparison and appearance contingent self-worth) were more weakly related to body appreciation when self-compassion was high among an online sample of 263 women (Mage=35.26, SD=12.42). Results indicated that self-compassion moderated the inverse relationships between body related threats and body appreciation. Specifically, when self-compassion was very high, body comparison and appearance contingent self-worth were unrelated to body appreciation. However, when self-compassion was low, these relationships were strong. Self-compassion, then, may help preserve women's body appreciation during body-related threats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.

    PubMed

    Can, Alper

    2014-11-04

    Organophosphate insecticides are the most commonly used pesticides in the world. In this study, quantitative structure-toxicity relationship (QSTR) models were derived for estimating the acute oral toxicity of organophosphate insecticides to male rats. The 20 chemicals of the training set and the seven compounds of the external testing set were described by means of using descriptors. Descriptors for lipophilicity, polarity and molecular geometry, as well as quantum chemical descriptors for energy were calculated. Model development to predict toxicity of organophosphate insecticides in different matrices was carried out using multiple linear regression. The model was validated internally and externally. In the present study, QSTR model was used for the first time to understand the inherent relationships between the organophosphate insecticide molecules and their toxicity behavior. Such studies provide mechanistic insight about structure-toxicity relationship and help in the design of less toxic insecticides. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Inverse relationship between body mass index and coronary artery calcification in patients with clinically significant coronary lesions.

    PubMed

    Kovacic, Jason C; Lee, Paul; Baber, Usman; Karajgikar, Rucha; Evrard, Solene M; Moreno, Pedro; Mehran, Roxana; Fuster, Valentin; Dangas, George; Sharma, Samin K; Kini, Annapoorna S

    2012-03-01

    Mounting data support a 'calcification paradox', whereby reduced bone mineral density is associated with increased vascular calcification. Furthermore, reduced bone mineral density is prevalent in older persons with lower body mass index (BMI). Therefore, although BMI and coronary artery calcification (CAC) exhibit a positive relationship in younger persons, it is predicted that in older persons and/or those at risk for osteoporosis, an inverse relationship between BMI and CAC may apply. We sought to explore this hypothesis in a large group of patients with coronary artery disease undergoing percutaneous coronary intervention (PCI). We accessed our single-center registry for 07/01/1999 to 06/30/2009, extracting data on all patients that underwent PCI. To minimize bias we excluded those at the extremes of age or BMI and non-Black/Hispanic/Caucasians, leaving 9993 study subjects (age 66.6±9.9 years). Index lesion calcification (ILC) was analyzed with respect to BMI. Comparing index lesions with no angiographic calcification to those with the most severe, mean BMI decreased by 1.11 kgm(-2); a reduction of 3.9% (P<0.0001). By multivariable modeling, BMI was an independent inverse predictor of moderate-severe ILC (m-sILC; odds ratio [OR] 0.967, 95% CI 0.953-0.980, P<0.0001). Additional fully adjusted models identified that, compared to those with normal BMI, obese patients had an OR of 0.702 for m-sILC (95% CI 0.596-0.827, P<0.0001). In a large group of PCI patients, we identified an inverse correlation between BMI and index lesion calcification. These associations are consistent with established paradigms and suggest a complex interrelationship between BMI, body size and vascular calcification. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Inverse relationship between physical activity and arterial stiffness in adults with hypertension.

    PubMed

    O'Donovan, Cuisle; Lithander, Fiona E; Raftery, Tara; Gormley, John; Mahmud, Azra; Hussey, Juliette

    2014-02-01

    Physical activity has beneficial effects on arterial stiffness among healthy adults. There is a lack of data on this relationship in adults with hypertension. The majority of studies which have examined physical activity and arterial stiffness have used subjective measures of activity. The aim of this study was to investigate the relationship between objectively measured habitual physical activity and arterial stiffness in individuals with newly diagnosed essential hypertension. Adults attending an outpatient hypertension clinic were recruited into this cross sectional study. Physical activity was measured using a triaxial accelerometer. Pulse wave velocity (PWV) and augmentation index (AIx) were measured using applanation tonometry. Participant's full lipid profile and glucose were determined through the collection of a fasting blood sample. Fifty-three adults [51(14) years, 26 male] participated, 16 of whom had the metabolic syndrome. Inactivity was positively correlated with PWV (r = .53, P < .001) and AIx (r = .48, P < .001). There were significant inverse associations between habitual physical activity of all intensities and both AIx and PWV. In stepwise regression, after adjusting for potential confounders, physical activity was a significant predictor of AIx and PWV. Habitual physical activity of all intensities is associated with reduced arterial stiffness among adults with hypertension.

  19. Quantitative Causal-Comparative Relationship between Interactive Whiteboard Instruction and Student Science Proficiency

    ERIC Educational Resources Information Center

    Danelczyk, Ewa Krystyna

    2013-01-01

    The purpose of this quantitative causal-comparative study was to investigate the relationship between the instructional effects of the interactive whiteboard and students' proficiency levels in eighth-grade science as evidenced by the state FCAT scores. A total of 46 eighth-grade science teachers in a South Florida public school district completed…

  20. Inverse relationship between Alzheimer's disease and cancer, and other factors contributing to Alzheimer's disease: a systematic review.

    PubMed

    Shafi, Ovais

    2016-11-22

    The AD etiology is yet not properly known. Interactions among environmental factors, multiple susceptibility genes and aging, contribute to AD. This study investigates the factors that play role in causing AD and how changes in cellular pathways contribute to AD. PUBMED database, MEDLINE database and Google Scholar were searched with no date restrictions for published articles involving cellular pathways with roles in cancers, cell survival, growth, proliferation, development, aging, and also contributing to Alzheimer's disease. This research explores inverse relationship between AD and cancer, also investigates other factors behind AD using several already published research literature to find the etiology of AD. Cancer and Alzheimer's disease have inverse relationship in many aspects such as P53, estrogen, neurotrophins and growth factors, growth and proliferation, cAMP, EGFR, Bcl-2, apoptosis pathways, IGF-1, HSV, TDP-43, APOE variants, notch signals and presenilins, NCAM, TNF alpha, PI3K/AKT/MTOR pathway, telomerase, ROS, ACE levels. AD occurs when brain neurons have weakened growth, cell survival responses, maintenance mechanisms, weakened anti-stress responses such as Vimentin, Carbonic anhydrases, HSPs, SAPK. In cancer, these responses are upregulated and maintained. Evolutionarily conserved responses and maintenance mechanisms such as FOXO are impaired in AD. Countermeasures or compensatory mechanisms by AD affected neurons such as Tau, Beta Amyloid, S100, are last attempts for survival which may be protective for certain time, or can speed up AD in Alzheimer's microenvironment via C-ABL activation, GSK3, neuro-inflammation. Alzheimer's disease and Cancer have inverse relationship; many factors that are upregulated in any cancer to sustain growth and survival are downregulated in Alzheimer's disease contributing to neuro-degeneration. When aged neurons or genetically susceptible neurons have weakened growth, cell survival and anti-stress responses, age

  1. Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea.

    PubMed

    Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G

    2007-06-27

    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent.

  2. [Quantitative relationship between gas chromatographic retention time and structural parameters of alkylphenols].

    PubMed

    Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao

    2007-03-01

    Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.

  3. Inverse grading and hydraulic equivalence in grain-flow deposits

    USGS Publications Warehouse

    Sallenger, A. H.

    1979-01-01

    Inversely graded grain-flow deposits are characterized by a hydraulic equivalence that differs from that based on settling velocities or entrainment. Dispersive equivalence, derived from the dispersive pressure hypothesis on how inverse grading develops, was found to agree reasonably well with observed relationships between grain sizes and densities in grain-flow deposits. Furthermore, observed relationships in deposits formed in subaerial and subaqueous environments were found to be independent of fluid density as is required by dispersive equivalence. The results suggest that dispersive pressure controls the development of the inverse grading common to beach foreshore laminations, slip-face foreset strata, the basal parts of some coarse-grained turbidites, and other diverse deposits.

  4. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  5. The Earthquake‐Source Inversion Validation (SIV) Project

    USGS Publications Warehouse

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

  6. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes

    PubMed Central

    Bonilha, Leonardo

    2015-01-01

    Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome. PMID:25853080

  8. Lattice enumeration for inverse molecular design using the signature descriptor.

    PubMed

    Martin, Shawn

    2012-07-23

    We describe an inverse quantitative structure-activity relationship (QSAR) framework developed for the design of molecular structures with desired properties. This framework uses chemical fragments encoded with a molecular descriptor known as a signature. It solves a system of linear constrained Diophantine equations to reorganize the fragments into novel molecular structures. The method has been previously applied to problems in drug and materials design but has inherent computational limitations due to the necessity of solving the Diophantine constraints. We propose a new approach to overcome these limitations using the Fincke-Pohst algorithm for lattice enumeration. We benchmark the new approach against previous results on LFA-1/ICAM-1 inhibitory peptides, linear homopolymers, and hydrofluoroether foam blowing agents. Software implementing the new approach is available at www.cs.otago.ac.nz/homepages/smartin.

  9. Molecular inversion probe assay for allelic quantitation

    PubMed Central

    Ji, Hanlee; Welch, Katrina

    2010-01-01

    Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872

  10. 3D-quantitative structure-activity relationship study for the design of novel enterovirus A71 3C protease inhibitors.

    PubMed

    Nie, Quandeng; Xu, Xiaoyi; Zhang, Qi; Ma, Yuying; Yin, Zheng; Shang, Luqing

    2018-06-07

    A three-dimensional quantitative structure-activity relationships model of enterovirus A71 3C protease inhibitors was constructed in this study. The protein-ligand interaction fingerprint was analyzed to generate a pharmacophore model. A predictive and reliable three-dimensional quantitative structure-activity relationships model was built based on the Flexible Alignment of AutoGPA. Moreover, three novel compounds (I-III) were designed and evaluated for their biochemical activity against 3C protease and anti-enterovirus A71 activity in vitro. III exhibited excellent inhibitory activity (IC 50 =0.031 ± 0.005 μM, EC 50 =0.036 ± 0.007 μM). Thus, this study provides a useful quantitative structure-activity relationships model to develop potent inhibitors for enterovirus A71 3C protease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Young inversion with multiple linked QTLs under selection in a hybrid zone.

    PubMed

    Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius P; Mandáková, Terezie; Prasad, Kasavajhala V S K; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Kathryn; Schranz, M Eric; Wing, Rod; Lysak, Martin A; Schmutz, Jeremy; Rokhsar, Daniel S; Mitchell-Olds, Thomas

    2017-04-03

    Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.

  13. Dependence of paracentric inversion rate on tract length.

    PubMed

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-04-03

    We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted.

  14. Dependence of paracentric inversion rate on tract length

    PubMed Central

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-01-01

    Background We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. Results We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. Conclusion The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted. PMID:17407601

  15. A Quantitative Exploration of the Relationship between Patient Health and Electronic Personal Health Records

    ERIC Educational Resources Information Center

    Hines, Denise Williams

    2009-01-01

    The use of electronic personal health records is becoming increasingly more popular as healthcare providers, healthcare and government leaders, and patients are seeking ways to improve healthcare quality and to decrease costs (Abrahamsen, 2007). This quantitative, descriptive correlational study examined the relationship between the degree of…

  16. A Quantitative review of relationships between Ecosystem services

    NASA Astrophysics Data System (ADS)

    Lee, H.; Lautenbach, S.

    2014-12-01

    Each decision in natural resources management can generate trade-offs with respect to the provisioning of ecosystem services (ES). If the increase of one ES happens directly or indirectly at the cost of another ES, an attempt to maximize the provision of a single ES will lead to suboptimal results. However, decisions in natural resources management are often made without considering such trade-offs, despite their crucial role toward supporting better decision-making. The research on trade-offs between ES has gained some attention in the scientific community. However, a synthesis on existing knowledge and knowledge gaps is missing so far. We aim at closing that gap by a quantitative review of recent literature on trade-offs of ES. We looked at the pairs of ES that have been studied in ~100 case studies that report on trade-offs between ES. If a case study analyzed more than one ES pair, we looked at all pairwise combinations. We categorized relationships between these pairs of ES into the categories "trade-off", "synergy" or "no-effect". Most pairs of ES had a clear association with one category: the majority of case studies that studied a specific pair of ES identified the same category of relationship between the two ES. Pairs of regulating services were typically synergetic in relationship, whereas provisioning services and regulating services typically showed a trade-off. However, for several pairs of ES we were not able to identify a dominate category of relationship. Our hypothesis is that this relates to either the scale of the analysis, the land system where the analysis took place or the method used to quantify the relationship. The number of case studies for each pair of ES was spread unevenly. This hinders the support for a conclusive statement drawn for the pairs. Our results showed further that the method used to identify the relationship between services had a strong effect on the direction of the effect. This suggests that researchers should consider

  17. Young inversion with multiple linked QTLs under selection in a hybrid zone

    PubMed Central

    Lee, Cheng-Ruei; Wang, Baosheng; Mojica, Julius; Mandáková, Terezie; Prasad, Kasavajhala V. S. K.; Goicoechea, Jose Luis; Perera, Nadeesha; Hellsten, Uffe; Hundley, Hope N.; Johnson, Jenifer; Grimwood, Jane; Barry, Kerrie; Fairclough, Stephen; Jenkins, Jerry W.; Yu, Yeisoo; Kudrna, Dave; Zhang, Jianwei; Talag, Jayson; Golser, Wolfgang; Ghattas, Katherine; Schranz, M. Eric; Wing, Rod; Lysak, Martin A.; Schmutz, Jeremy; Rokhsar, Daniel S.; Mitchell-Olds, Thomas

    2017-01-01

    Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favored alleles at multiple loci. However, it is unknown whether favored mutations slowly accumulate on older inversions or if young inversions spread because they capture preexisting adaptive Quantitative Trait Loci (QTLs). By genetic mapping, chromosome painting and genome sequencing we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation. PMID:28812690

  18. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: Investigating dose-volume relationships and role for inverse planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tho, Lye Mun; Glegg, Martin; Paterson, Jennifer

    2006-10-01

    Purpose: The relationship between volume of irradiated small bowel (VSB) and acute toxicity in rectal cancer radiotherapy is poorly quantified, particularly in patients receiving concurrent preoperative chemoradiotherapy. Using treatment planning data, we studied a series of such patients. Methods and Materials: Details of 41 patients with locally advanced rectal cancer were reviewed. All received 45 Gy in 25 fractions over 5 weeks, 3-4 fields three-dimensional conformal radiotherapy with daily 5-fluorouracil and folinic acid during Weeks 1 and 5. Toxicity was assessed prospectively in a weekly clinic. Using computed tomography planning software, the VSB was determined at 5 Gy dose intervalsmore » (V{sub 5}, V{sub 1}, etc.). Eight patients with maximal VSB had dosimetry and radiobiological modeling outcomes compared between inverse and conformal three-dimensional planning. Results: VSB correlated strongly with diarrheal severity at every dose level (p < 0.03), with strongest correlation at lowest doses. Median VSB differed significantly between patients experiencing Grade 0-1 and Grade 2-4 diarrhea (p {<=} 0.05). No correlation was found with anorexia, nausea, vomiting, abdominal cramps, age, body mass index, sex, tumor position, or number of fields. Analysis of 8 patients showed that inverse planning reduced median dose to small bowel by 5.1 Gy (p = 0.008) and calculated late normal tissue complication probability (NTCP) by 67% (p = 0.016). We constructed a model using mathematical analysis to predict for acute diarrhea occurring at V{sub 5} and V{sub 15}. Conclusions: A strong dose-volume relationship exists between VSB and acute diarrhea at all dose levels during preoperative chemoradiotherapy. Our constructed model may be useful in predicting toxicity, and this has been derived without the confounding influence of surgical excision on bowel function. Inverse planning can reduce calculated dose to small bowel and late NTCP, and its clinical role warrants

  19. Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Schwede, R. L.; Li, W.

    2012-12-01

    Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography

  20. Full-waveform inversion of GPR data for civil engineering applications

    NASA Astrophysics Data System (ADS)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride

  1. Proliferation inhibitory effect of human alpha interferon on primary explants of Burkitt lymphoma: inverse relationship to patient survival.

    PubMed

    Ernberg, I; Einhorn, S; Strander, H; Klein, G

    1981-11-01

    Eleven biopsies from 9 patients with Burkitt's lymphoma were tested for their sensitivity to the cell multiplication inhibitory activity of interferon. Three were resistant to interferon while 8 were sensitive to various degrees. Different biopsies from the same patient did not differ in interferon sensitivity. These results indicate that Burkitt's lymphoma cells might be resistant to interferon already in vivo as previously shown for some derived cell lines tested in vitro. The results imply an inverse relationship between patient survival and interferon sensitivity of the tumor cells.

  2. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    PubMed

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  3. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  4. Genome-wide association tests of inversions with application to psoriasis

    PubMed Central

    Ma, Jianzhong; Xiong, Momiao; You, Ming; Lozano, Guillermina; Amos, Christopher I.

    2014-01-01

    Although inversions have occasionally been found to be associated with disease susceptibility through interrupting a gene or its regulatory region, or by increasing the risk for deleterious secondary rearrangements, no association study has been specifically conducted for risks associated with inversions, mainly because existing approaches to detecting and genotyping inversions do not readily scale to a large number of samples. Based on our recently proposed approach to identifying and genotyping inversions using principal components analysis (PCA), we herein develop a method of detecting association between inversions and disease in a genome-wide fashion. Our method uses genotype data for single nucleotide polymorphisms (SNPs), and is thus cost-efficient and computationally fast. For an inversion polymorphism, local PCA around the inversion region is performed to infer the inversion genotypes of all samples. For many inversions, we found that some of the SNPs inside an inversion region are fixed in the two lineages of different orientations and thus can serve as surrogate markers. Our method can be applied to case-control and quantitative trait association studies to identify inversions that may interrupt a gene or the connection between a gene and its regulatory agents. Our method also offers a new venue to identify inversions that are responsible for disease-causing secondary rearrangements. We illustrated our proposed approach to case-control data for psoriasis and identified novel associations with a few inversion polymorphisms. PMID:24623382

  5. The development and potential of inverse simulation for the quantitative assessment of helicopter handling qualities

    NASA Technical Reports Server (NTRS)

    Bradley, Roy; Thomson, Douglas G.

    1993-01-01

    In this paper it is proposed that inverse simulation can make a positive contribution to the study of handling qualities. It is shown that mathematical descriptions of the MTEs (Mission Task Elements) defined in ADS-33C may be used to drive an inverse simulation thereby generating, from an appropriate mathematical model, the controls and states of a subject helicopter flying it. By presenting the results of such simulations it is shown that, in the context of inverse simulation, the attitude quickness parameters given in ADS-33C are independent of vehicle configuration. An alternative quickness parameter, associated with the control displacements required to fly the MTE is proposed, and some preliminary results are presented.

  6. Preparing Tomorrow's Administrators: A Quantitative Correlation Study of the Relationship between Emotional Intelligence and Effective Leadership Practices

    ERIC Educational Resources Information Center

    May-Vollmar, Kelly

    2017-01-01

    Purpose: The purpose of this quantitative correlation study was to identify whether there is a relationship between emotional intelligence and effective leadership practices, specifically with school administrators in Southern California K-12 public schools. Methods: This study was conducted using a quantitative descriptive design, correlation…

  7. Quantitative structure-property relationship (QSPR) modeling of drug-loaded polymeric micelles via genetic function approximation.

    PubMed

    Wu, Wensheng; Zhang, Canyang; Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.

  8. Inversion Monophyly in African Anopheline Malaria Vectors

    PubMed Central

    Garcia, B. A.; Caccone, A.; Mathiopoulos, K. D.; Powell, J. R.

    1996-01-01

    The African Anopheles gambiae complex of six sibling species has many polymorphic and fixed paracentric inversions detectable in polytene chromosomes. These have been used to infer phylogenetic relationships as classically done with Drosophila. Two species, A. gambiae and A. merus, were thought to be sister taxa based on a shared X inversion designated X(ag). Recent DNA data have conflicted with this phylogenetic inference as they have supported a sister taxa relationship of A. gambiae and A. arabiensis. A possible explanation is that the X(ag) is not monophyletic. Here we present data from a gene (soluble guanylate cyclase) within the X(ag) that strongly supports the monophyly of the X(ag). We conjecture that introgression may be occurring between the widely sympatric species A. gambiae and A. arabiensis and that the previous DNA phylogenies have been detecting the introgression. Evidently, introgression is not uniform across the genome, and species-specific regions, like the X-chromosome inversions, do not introgress probably due to selective elimination in hybrids and backcrosses. PMID:8807303

  9. Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe

  10. Inverse Symmetry in Complete Genomes and Whole-Genome Inverse Duplication

    PubMed Central

    Kong, Sing-Guan; Fan, Wen-Lang; Chen, Hong-Da; Hsu, Zi-Ting; Zhou, Nengji; Zheng, Bo; Lee, Hoong-Chien

    2009-01-01

    The cause of symmetry is usually subtle, and its study often leads to a deeper understanding of the bearer of the symmetry. To gain insight into the dynamics driving the growth and evolution of genomes, we conducted a comprehensive study of textual symmetries in 786 complete chromosomes. We focused on symmetry based on our belief that, in spite of their extreme diversity, genomes must share common dynamical principles and mechanisms that drive their growth and evolution, and that the most robust footprints of such dynamics are symmetry related. We found that while complement and reverse symmetries are essentially absent in genomic sequences, inverse–complement plus reverse–symmetry is prevalent in complex patterns in most chromosomes, a vast majority of which have near maximum global inverse symmetry. We also discovered relations that can quantitatively account for the long observed but unexplained phenomenon of -mer skews in genomes. Our results suggest segmental and whole-genome inverse duplications are important mechanisms in genome growth and evolution, probably because they are efficient means by which the genome can exploit its double-stranded structure to enrich its code-inventory. PMID:19898631

  11. Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Li, Yaoguo

    2017-02-01

    Joint inversion that simultaneously inverts multiple geophysical data sets to recover a common Earth model is increasingly being applied to exploration problems. Petrophysical data can serve as an effective constraint to link different physical property models in such inversions. There are two challenges, among others, associated with the petrophysical approach to joint inversion. One is related to the multimodality of petrophysical data because there often exist more than one relationship between different physical properties in a region of study. The other challenge arises from the fact that petrophysical relationships have different characteristics and can exhibit point, linear, quadratic, or exponential forms in a crossplot. The fuzzy c-means (FCM) clustering technique is effective in tackling the first challenge and has been applied successfully. We focus on the second challenge in this paper and develop a joint inversion method based on variations of the FCM clustering technique. To account for the specific shapes of petrophysical relationships, we introduce several different fuzzy clustering algorithms that are capable of handling different shapes of petrophysical relationships. We present two synthetic and one field data examples and demonstrate that, by choosing appropriate distance measures for the clustering component in the joint inversion algorithm, the proposed joint inversion method provides an effective means of handling common petrophysical situations we encounter in practice. The jointly inverted models have both enhanced structural similarity and increased petrophysical correlation, and better represent the subsurface in the spatial domain and the parameter domain of physical properties.

  12. Inverse relationship between moderate alcohol intake and rectal cancer: analysis of the North Carolina Colon Cancer Study.

    PubMed

    Crockett, Seth D; Long, Millie D; Dellon, Evan S; Martin, Christopher F; Galanko, Joseph A; Sandler, Robert S

    2011-07-01

    The relationship between alcohol intake and rectal cancer is uncertain. We sought to evaluate whether alcohol consumption is associated with distal colorectal cancer and rectal cancer specifically. Data on alcohol intake were examined from the North Carolina Colon Cancer Study, a population-based case-control study of distal colorectal cancer. This study encompassed 33 counties in the central and eastern part of North Carolina. Cases had adenocarcinoma of the rectum, rectosigmoid, and sigmoid colon. Controls were frequency-matched on age, race, and sex. Demographic and dietary intake data were collected with use of a validated questionnaire. Logistic regression was used to estimate odds ratios for the relationship between alcohol consumption and distal colorectal cancer. Included in the study were 1033 cases and 1011 controls. The odds ratio for rectal cancer comparing any vs no alcohol intake was 0.73 (95% CI 0.60, 0.90), adjusted for age, sex, race, smoking status, obesity, education, red meat intake, use of nonsteroidal anti-inflammatory medications, and family history of colorectal cancer. The odds ratio for moderate alcohol (≤14 g/day) was 0.66 (95% CI 0.53, 0.82), whereas the odds ratio for heavy alcohol (>14 g/day) was 0.93 (95% CI 0.70, 1.23). Moderate beer and wine intakes were also inversely associated with distal colorectal cancer: odds ratios 0.76 (95% CI 0.60, 0.96) and 0.69 (95% CI 0.56, 0.86). This was a retrospective, observational study. Residual confounding is possible. In this study, moderate alcohol intake (especially wine) was inversely associated with distal colorectal cancer.

  13. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  14. Inverse Relationship between Tumor Proliferation Markers and Connexin Expression in a Malignant Cardiac Tumor Originating from Mesenchymal Stem Cell Engineered Tissue in a Rat in vivo Model

    PubMed Central

    Spath, Cathleen; Schlegel, Franziska; Leontyev, Sergey; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2013-01-01

    Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET) from mesenchymal stem cells. Interestingly, we observed a malignant tumor invading the heart with an inverse relationship between proliferation markers and connexin expression. Methods: Commercial CD54+/CD90+/CD34−/CD45− bone marrow derived mesenchymal rat stem cells (cBM-MSC), characterized were used for production of mesenchymal stem-cell-ET (MSC-ET) by suspending them in a collagen I, matrigel-mixture and cultivating for 14 days with electrical stimulation. Three MSC-ET were implanted around the beating heart of adult rats for days. Another three MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC). Results: Three weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumor originating from the cMSC-ET (cBM-MSC), classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin expression (Cx43, Cx40, or Cx45) and increased Ki-67 expression (Cx43: p < 0.0001, Cx45: p < 0.03, Cx40: p < 0.014). At the tumor-heart border there were significantly more Ki-67 positive cells (p = 0.001), and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p < 0.0001). Conclusion and Hypothesis: These observations strongly suggest the hypothesis, that invasive tumor growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumor and normal tissue is reduced or absent, which could mean that growth and differentiation

  15. Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation

    PubMed Central

    Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923

  16. Model based inversion of ultrasound data in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of ultrasound interaction with defects in composites, to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of defect properties from analysis of measured ultrasound signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, in laminates displaying irregular surface geometry (roughness), as well as internal elastic heterogeneity (varying fiber density, porosity). Inversion of ultrasound data is demonstrated showing the quantitative extraction of delamination geometry and surface transmissivity. Additionally, data inversion is demonstrated for determination of surface roughness and internal heterogeneity, and the influence of these features on delamination characterization is examined. Estimation of porosity volume fraction is demonstrated when internal heterogeneity is attributed to porosity.

  17. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  18. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.

    PubMed

    Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I

    2017-01-01

    This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.

  19. The relationship between international trade and non-nutritional health outcomes: A systematic review of quantitative studies.

    PubMed

    Burns, Darren K; Jones, Andrew P; Suhrcke, Marc

    2016-03-01

    Markets throughout the world have been reducing barriers to international trade and investment in recent years. The resulting increases in levels of international trade and investment have subsequently generated research interest into the potential population health impact. We present a systematic review of quantitative studies investigating the relationship between international trade, foreign direct investment and non-nutritional health outcomes. Articles were systematically collected from the SCOPUS, PubMed, EconLit and Web of Science databases. Due to the heterogeneous nature of the evidence considered, the 16 included articles were subdivided into individual level data analyses, selected country analyses and international panel analyses. Articles were then quality assessed using a tool developed as part of the project. Nine of the studies were assessed to be high quality, six as medium quality, and one as low quality. The evidence from the quantitative literature suggests that overall, there appears to be a beneficial association between international trade and population health. There was also evidence of the importance of foreign direct investment, yet a lack of research considering the direction of causality. Taken together, quantitative research into the relationship between trade and non-nutritional health indicates trade to be beneficial, yet this body of research is still in its infancy. Future quantitative studies based on this foundation will provide a stronger basis on which to inform relevant national and international institutions about the health consequences of trade policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Relationship between Technology Use of Administrators and Technology Use of Teachers: A Quantitative Study

    ERIC Educational Resources Information Center

    Szafranski, Sandra L.

    2009-01-01

    The purpose of this quantitative correlational study was to assess the relationship between the level of technology use of administrators and the level of technology use of their teachers. The target sample was principals and teachers in nine schools in three school districts in south central Wisconsin. Participants were from one elementary…

  1. Forward and inverse functional variations in rotationally inelastic scattering

    NASA Astrophysics Data System (ADS)

    Guzman, Robert; Rabitz, Herschel

    1986-09-01

    This paper considers the response of various rotational energy transfer processes to functional variations about an assumed model intermolecular potential. Attention is focused on the scattering of an atom and a linear rigid rotor. The collision dynamics are approximated by employing both the infinite order sudden (IOS) and exponential distorted wave (EDW) methods to describe Ar-N2 and He-H2, respectively. The following cross sections are considered: state-to-state differential and integral, final state summed differential and integral, and effective diffusion and viscosity cross sections. Attention is first given to the forward sensitivity densities δ0/δV(R,r) where 0 denotes any of the aforementioned cross sections, R is the intermolecular distance, and r is the internal coordinates. These forward sensitivity densities (functional derivatives) offer a quantitative measure of the importance of different regions of the potential surface to a chosen cross section. Via knowledge of the forward sensitivities and a particular variation δV(R,r) the concomitant response δ0 is generated. It was found that locally a variation in the potential can give rise to a large response in the cross sections as measured by these forward densities. In contrast, a unit percent change in the overall potential produced a 1%-10% change in the cross sections studied indicating that the large + and - responses to local variations tend to cancel. In addition, inverse sensitivity densities δV(R,r)/δ0 are obtained. These inverse densities are of interest since they are the exact solution to the infinitesimal inverse scattering problem. Although the inverse sensitivity densities do not in themselves form an inversion algorithm, they do offer a quantitative measure of the importance of performing particular measurements for the ultimate purpose of inversion. Using a set of state-to-state integral cross sections we found that the resultant responses from the infinitesimal inversion were

  2. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  3. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Nonparametric regression applied to quantitative structure-activity relationships

    PubMed

    Constans; Hirst

    2000-03-01

    Several nonparametric regressors have been applied to modeling quantitative structure-activity relationship (QSAR) data. The simplest regressor, the Nadaraya-Watson, was assessed in a genuine multivariate setting. Other regressors, the local linear and the shifted Nadaraya-Watson, were implemented within additive models--a computationally more expedient approach, better suited for low-density designs. Performances were benchmarked against the nonlinear method of smoothing splines. A linear reference point was provided by multilinear regression (MLR). Variable selection was explored using systematic combinations of different variables and combinations of principal components. For the data set examined, 47 inhibitors of dopamine beta-hydroxylase, the additive nonparametric regressors have greater predictive accuracy (as measured by the mean absolute error of the predictions or the Pearson correlation in cross-validation trails) than MLR. The use of principal components did not improve the performance of the nonparametric regressors over use of the original descriptors, since the original descriptors are not strongly correlated. It remains to be seen if the nonparametric regressors can be successfully coupled with better variable selection and dimensionality reduction in the context of high-dimensional QSARs.

  5. Social Stigma and Sexual Minorities’ Romantic Relationship Functioning: A Meta-Analytic Review

    PubMed Central

    Doyle, David Matthew; Molix, Lisa

    2015-01-01

    To bolster knowledge of determinants of relationship functioning among sexual minorities, the current meta-analysis aimed to quantitatively review evidence for the association between social stigma and relationship functioning as well as examine potential moderators. Thirty-five studies were identified, including 130 effect sizes (39 independent; N = 10,745). Across studies, evidence was found for a small but significant inverse association between social stigma and relationship functioning. Furthermore, this association was moderated by stigma type (with more deleterious associations for internalized relative to perceived stigma) and dimension of relationship functioning (with more deleterious associations for affective relative to cognitive and negative relative to positive). Evidence for demographic moderators (region, sex, race, age) was generally mixed although important limitations related to unique characteristics of study samples are discussed. We conclude by highlighting the importance of social stigma for relationship functioning and point toward directions for future research and policy action. PMID:26199218

  6. Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation with Brain Iron in Normal Aging

    PubMed Central

    Poynton, Clare; Jenkinson, Mark; Adalsteinsson, Elfar; Sullivan, Edith V.; Pfefferbaum, Adolf; Wells, William

    2015-01-01

    There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or ‘QSIP’. The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase (FDRI), and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in-vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. PMID:25248179

  7. An evolutive real-time source inversion based on a linear inverse formulation

    NASA Astrophysics Data System (ADS)

    Sanchez Reyes, H. S.; Tago, J.; Cruz-Atienza, V. M.; Metivier, L.; Contreras Zazueta, M. A.; Virieux, J.

    2016-12-01

    Finite source inversion is a steppingstone to unveil earthquake rupture. It is used on ground motion predictions and its results shed light on seismic cycle for better tectonic understanding. It is not yet used for quasi-real-time analysis. Nowadays, significant progress has been made on approaches regarding earthquake imaging, thanks to new data acquisition and methodological advances. However, most of these techniques are posterior procedures once seismograms are available. Incorporating source parameters estimation into early warning systems would require to update the source build-up while recording data. In order to go toward this dynamic estimation, we developed a kinematic source inversion formulated in the time-domain, for which seismograms are linearly related to the slip distribution on the fault through convolutions with Green's functions previously estimated and stored (Perton et al., 2016). These convolutions are performed in the time-domain as we progressively increase the time window of records at each station specifically. Selected unknowns are the spatio-temporal slip-rate distribution to keep the linearity of the forward problem with respect to unknowns, as promoted by Fan and Shearer (2014). Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate when adding new data by assuming rupture causality. This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse problem is non-unique and, in most cases, underdetermined. While standard regularization terms are used for stabilizing the inversion, we avoid strategies based on parameter reduction leading to an unwanted non-linear relationship between parameters and seismograms for our progressive build-up. Rise time, rupture velocity and other quantities can be extracted later on as attributs from the slip-rate inversion we perform. Satisfactory results are obtained on a synthetic example (FIgure 1) proposed by the Source

  8. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Treesearch

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  9. A Quantitative Study of the Relationship between Leadership Practice and Strategic Intentions to Use Cloud Computing

    ERIC Educational Resources Information Center

    Castillo, Alan F.

    2014-01-01

    The purpose of this quantitative correlational cross-sectional research study was to examine a theoretical model consisting of leadership practice, attitudes of business process outsourcing, and strategic intentions of leaders to use cloud computing and to examine the relationships between each of the variables respectively. This study…

  10. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  11. Inverse association of natural mentoring relationship with distress mental health in children orphaned by AIDS.

    PubMed

    Onuoha, Francis N; Munakata, Tsunetsugu

    2010-01-16

    The magnitude of the AIDS-orphaned children crisis in sub-Saharan Africa has so overstretched the resource of most families that the collapse of fostering in the sub-region seems imminent (UNICEF, 2003), fueling the need for a complementary/alternative care. This paper examines the probability of the natural mentoring care to ameliorate distress mental health in children orphaned by AIDS. 952 children, mean age about 14 years, from local community schools and child-care centers in Kampala (Uganda) and Mafikeng/Klerksdorp (South Africa) towns participated in the study. The design has AIDS-orphaned group (n = 373) and two control groups: Other-causes orphaned (n = 287) and non-orphaned (n = 290) children. We use measures of child abuse, depression, social discrimination, anxiety, parental/foster care, self-esteem, and social support to estimate mental health. Natural mentoring care is measured with the Ragins and McFarlin (1990) Mentor Role Instrument as adapted. AIDS-orphaned children having a natural mentor showed significant decreased distress mental health factors. Similar evidence was not observed in the control groups. Also being in a natural mentoring relationship inversely related to distress mental health factors in the AIDS-orphaned group, in particular. AIDS-orphaned children who scored high mentoring relationship showed significant lowest distress mental health factors that did those who scored moderate and low mentoring relationship. Natural mentoring care seems more beneficial to ameliorate distress mental health in AIDS-orphaned children (many of whom are double-orphans, having no biological parents) than in children in the control groups.

  12. Inverse association of natural mentoring relationship with distress mental health in children orphaned by AIDS

    PubMed Central

    2010-01-01

    Background The magnitude of the AIDS-orphaned children crisis in sub-Saharan Africa has so overstretched the resource of most families that the collapse of fostering in the sub-region seems imminent (UNICEF, 2003), fueling the need for a complementary/alternative care. This paper examines the probability of the natural mentoring care to ameliorate distress mental health in children orphaned by AIDS. Methods 952 children, mean age about 14 years, from local community schools and child-care centers in Kampala (Uganda) and Mafikeng/Klerksdorp (South Africa) towns participated in the study. The design has AIDS-orphaned group (n = 373) and two control groups: Other-causes orphaned (n = 287) and non-orphaned (n = 290) children. We use measures of child abuse, depression, social discrimination, anxiety, parental/foster care, self-esteem, and social support to estimate mental health. Natural mentoring care is measured with the Ragins and McFarlin (1990) Mentor Role Instrument as adapted. Results AIDS-orphaned children having a natural mentor showed significant decreased distress mental health factors. Similar evidence was not observed in the control groups. Also being in a natural mentoring relationship inversely related to distress mental health factors in the AIDS-orphaned group, in particular. AIDS-orphaned children who scored high mentoring relationship showed significant lowest distress mental health factors that did those who scored moderate and low mentoring relationship. Conclusions Natural mentoring care seems more beneficial to ameliorate distress mental health in AIDS-orphaned children (many of whom are double-orphans, having no biological parents) than in children in the control groups. PMID:20078888

  13. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  14. Characterization of six human disease-associated inversion polymorphisms.

    PubMed

    Antonacci, Francesca; Kidd, Jeffrey M; Marques-Bonet, Tomas; Ventura, Mario; Siswara, Priscillia; Jiang, Zhaoshi; Eichler, Evan E

    2009-07-15

    The human genome is a highly dynamic structure that shows a wide range of genetic polymorphic variation. Unlike other types of structural variation, little is known about inversion variants within normal individuals because such events are typically balanced and are difficult to detect and analyze by standard molecular approaches. Using sequence-based, cytogenetic and genotyping approaches, we characterized six large inversion polymorphisms that map to regions associated with genomic disorders with complex segmental duplications mapping at the breakpoints. We developed a metaphase FISH-based assay to genotype inversions and analyzed the chromosomes of 27 individuals from three HapMap populations. In this subset, we find that these inversions are less frequent or absent in Asians when compared with European and Yoruban populations. Analyzing multiple individuals from outgroup species of great apes, we show that most of these large inversion polymorphisms are specific to the human lineage with two exceptions, 17q21.31 and 8p23 inversions, which are found to be similarly polymorphic in other great ape species and where the inverted allele represents the ancestral state. Investigating linkage disequilibrium relationships with genotyped SNPs, we provide evidence that most of these inversions appear to have arisen on at least two different haplotype backgrounds. In these cases, discovery and genotyping methods based on SNPs may be confounded and molecular cytogenetics remains the only method to genotype these inversions.

  15. Seismic stochastic inversion identify river channel sand body

    NASA Astrophysics Data System (ADS)

    He, Z.

    2015-12-01

    The technology of seismic inversion is regarded as one of the most important part of geophysics. By using the technology of seismic inversion and the theory of stochastic simulation, the concept of seismic stochastic inversion is proposed.Seismic stochastic inversion can play an significant role in the identifying river channel sand body. Accurate sand body description is a crucial parameter to measure oilfield development and oilfield stimulation during the middle and later periods. Besides, rational well spacing density is an essential condition for efficient production. Based on the geological knowledge of a certain oilfield, in line with the use of seismic stochastic inversion, the river channel sand body in the work area is identified. In this paper, firstly, the single river channel body from the composite river channel body is subdivided. Secondly, the distribution of river channel body is ascertained in order to ascertain the direction of rivers. Morever, the superimposed relationship among the sand body is analyzed, especially among the inter-well sand body. The last but not at the least, via the analysis of inversion results of first vacuating the wells and continuous infilling later, it is meeted the most needs well spacing density that can obtain the optimal inversion result. It would serve effective guidance for oilfield stimulation.

  16. Quantitative imaging technique using the layer-stripping algorithm

    NASA Astrophysics Data System (ADS)

    Beilina, L.

    2017-07-01

    We present the layer-stripping algorithm for the solution of the hyperbolic coefficient inverse problem (CIP). Our numerical examples show quantitative reconstruction of small tumor-like inclusions in two-dimensions.

  17. Quantitative structure-property relationship modeling of Grätzel solar cell dyes.

    PubMed

    Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre

    2014-01-30

    With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials. Copyright © 2013 Wiley Periodicals, Inc.

  18. Implementing Response to Intervention in Title I Elementary Schools: A Quantitative Study of Teacher Response Relationships

    ERIC Educational Resources Information Center

    Webster, Katina F.

    2012-01-01

    General educators and special educators in Title I elementary schools perceive the relationships between principles of RTI and their state RTI framework, the implementation of RTI, and professional development received in RTI differently. A quantitative survey-based research methodology was employed including the use of Cronbach's alpha to…

  19. Acoustic and elastic waveform inversion best practices

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast

  20. Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Choi, Jun-Young; Jin, Fei-Fei; Watanabe, Masahiro

    2018-01-01

    Future changes in rainfall have serious impacts on human adaptation to climate change, but quantification of these changes is subject to large uncertainties in climate model projections. To narrow these uncertainties, significant efforts have been made to understand the intermodel differences in future rainfall changes. Here, we show a strong inverse relationship between present-day precipitation and its future change to possibly calibrate future precipitation change by removing the present-day bias in climate models. The results of the models with less tropical (40° S-40° N) present-day precipitation are closely linked to the dryness over the equatorial central-eastern Pacific, and project weaker regional precipitation increase due to the anthropogenic greenhouse forcing1-6 with stronger zonal Walker circulation. This induces Indo-western Pacific warming through Bjerknes feedback, which reduces relative humidity by the enhanced atmospheric boundary-layer mixing in the future projection. This increases the air-sea humidity difference to enhance tropical evaporation and the resultant precipitation. Our estimation of the sensitivity of the tropical precipitation per 1 K warming, after removing a common bias in the present-day simulation, is about 50% greater than the original future multi-model projection.

  1. LANDSCAPE STRUCTURE AND ESTUARINE CONDITION IN THE MID-ATLANTIC REGION OF THE UNITED STATES: I. DEVELOPING QUANTITATIVE RELATIONSHIPS

    EPA Science Inventory

    In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. Nonparametric statistical analysis (rank transformation) was used to develop an empirical relation...

  2. Social Stigma and Sexual Minorities' Romantic Relationship Functioning: A Meta-Analytic Review.

    PubMed

    Doyle, David Matthew; Molix, Lisa

    2015-10-01

    To bolster knowledge of determinants of relationship functioning among sexual minorities, the current meta-analysis aimed to quantitatively review evidence for the association between social stigma and relationship functioning as well as examine potential moderators. Thirty-five studies were identified, including 130 effect sizes (39 independent; N = 10,745). Across studies, evidence was found for a small but significant inverse association between social stigma and relationship functioning. Furthermore, this association was moderated by stigma type (with more deleterious associations for internalized relative to perceived stigma) and dimension of relationship functioning (with more deleterious associations for affective relative to cognitive and negative relative to positive). Evidence for demographic moderators (region, sex, race, age) was generally mixed although important limitations related to unique characteristics of study samples are discussed. We conclude by highlighting the importance of social stigma for relationship functioning and point toward directions for future research and policy action. © 2015 by the Society for Personality and Social Psychology, Inc.

  3. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  4. Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2008-03-01

    This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.

  5. Relationships between lower tropospheric stability, low cloud cover, and water vapor isotopic composition in the subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2017-12-01

    Understanding the processes that govern the relationships between lower tropospheric stability and low-cloud cover is crucial for improved constraints on low-cloud feedbacks and for improving the parameterizations of low-cloud cover used in climate models. The stable isotopic composition of atmospheric water vapor is a sensitive recorder of the balance of moistening and drying processes that set the humidity of the lower troposphere and may thus provide a useful framework for improving our understanding low-cloud processes. In-situ measurements of water vapor isotopic composition collected at the NOAA Mauna Loa Observatory in Hawaii, along with twice-daily soundings from Hilo and remote sensing of cloud cover, show a clear inverse relationship between the estimated inversion strength (EIS) and the mixing ratios and water vapor δ -values, and a positive relationship between EIS, deuterium excess, and Δ δ D, defined as the difference between an observation and a reference Rayleigh distillation curve. These relationships are consistent with reduced moistening and an enhanced upper-tropospheric contribution above the trade inversion under high EIS conditions and stronger moistening under weaker EIS conditions. The cloud fraction, cloud liquid water path, and cloud-top pressure were all found to be higher under low EIS conditions. Inverse modeling of the isotopic data for the highest and lowest terciles of EIS conditions provide quantitative constraints on the cold-point temperatures and mixing fractions that govern the humidity above the trade inversion. The modeling shows the moistening fraction between moist boundary layer air and dry middle tropospheric air 24±1.5% under low EIS conditions is and 6±1.5% under high EIS conditions. A cold-point (last-saturation) temperature of -30C can match the observations for both low and high EIS conditions. The isotopic composition of the moistening source as derived from the inversion (-114±10‰ ) requires moderate

  6. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    PubMed

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  7. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  8. A comprehensive inversion approach for feedforward compensation of piezoactuator system at high frequency

    NASA Astrophysics Data System (ADS)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2016-09-01

    Motion control of the piezoactuator system over broadband frequencies is limited due to its inherent hysteresis and system dynamics. One of the suggested ways is to use feedforward controller to linearize the input-output relationship of the piezoactuator system. Although there have been many feedforward approaches, it is still a challenge to develop feedforward controller for the piezoactuator system at high frequency. Hence, this paper presents a comprehensive inversion approach in consideration of the coupling of hysteresis and dynamics. In this work, the influence of dynamics compensation on the input-output relationship of the piezoactuator system is investigated first. With system dynamics compensation, the input-output relationship of the piezoactuator system will be further represented as rate-dependent nonlinearity due to the inevitable dynamics compensation error, especially at high frequency. Base on this result, the feedforward controller composed by a cascade of linear dynamics inversion and rate-dependent nonlinearity inversion is developed. Then, the system identification of the comprehensive inversion approach is proposed. Finally, experimental results show that the proposed approach can improve the performance on tracking of both periodic and non-periodic trajectories at medium and high frequency compared with the conventional feedforward approaches.

  9. Quantitative Structure-Cytotoxicity Relationship of Oleoylamides.

    PubMed

    Sakagami, Hiroshi; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Sugita, Yoshiaki

    2015-10-01

    Eighteen oleoylamides were subjected to quantitative structure-activity relationship analysis based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to assess their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and five human oral normal cells (gingival fibroblast, periodontal ligament fibroblast, pulp cell, oral keratinocyte, primary gingival epithelial cells) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor-selectivity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal human oral cells to that against OSCC cell lines. Potency-selectivity expression (PSE) was determined by the ratio of TS to CC50 against OSCC. Anti-HIV activity was evaluated by the ratio of CC50 to the concentration leading to 50% cytoprotection from HIV infection (EC50). Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method. Among 18 derivatives, compounds 8: with a catechol group) and 18: with a (2-pyridyl)amino group) had the highest TS. On the other hand, doxorubicin and 5-fluorouracil (5-FU) were more highly cytotoxic to normal epithelial cells, displaying unexpectedly lower TS and PSE values. None of the compounds had anti-HIV activity. Among 330 chemical descriptors, 75, 73 and 19 descriptors significantly correlated to the cytotoxicity to normal and tumor cells, and TS, respectively. Multivariate statistics with chemical descriptors for molecular polarization and hydrophobicity may be useful for the evaluation of cytotoxicity and TS of oleoylamides. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Timing of growth inhibition following shoot inversion in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Abdel-Rahman, A. M.; Cline, M. G.

    1989-01-01

    Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.

  11. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  12. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  13. Sodium Inverse Relationships During Melting in Ultraslow Spreading Regions: Insights from SWIR-Smoothseafloor Peridotites

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Brunelli, D.; Paquet, M.; Sforna, M. C.; Seyler, M.

    2015-12-01

    Ultraslow spreading ridges are key regions to unravel mantle processes. Low potential temperatures and reduced melting allow decrypting early melting processes and shad lights on the source short-scale heterogeneities and their interactions with transient melts. Mantle-derived peridotites from the Smoothseafloor region of the eastern Southwest Indian Ridge reveal countertrending Na-Ti relationships. Na apparently behaves as a compatible element during partial melting similarly to light REEs. Heavy REEs, however, follow a normal relationship with the other melting indicators (e.g. Cr#), a behaviour that results in pattern rotation around a pivot element when looking to REE systematic. These relationships can be explained by percolation of relatively enriched, grt-field derived, melts in the spinel-field melting mantle 1. A feature that also explains the inverse Na-Cr# correlation, frequently observed in abyssal mantle rocks. Experimental relationships constraint the grt-field derived melts to be produced by low-melting paragenesis that experience a garnet to spinel phase transition shallower than mantle peridotites for a given temperature. Based on potential mantle temperatures estimated by Cannat et al., 19992, the grt-sp transition can be set at ca. 2.0 and 1.5 GPa for mantle peridotites and Mg pyroxenites respectively with the onset of mantle melting at 1.2 GPa. Mass balance calculations based on the amount of produced melt constrains the pyroxenitic fraction < 10% by mass of the mantle source. The contemporaneous presence of lithologies too depleted with respect to the described process suggests that some portions of the mantle source are inherited from more sustained ancient depletion events not related to present-day processes beneath this ridge portion. PNRA funding : PdR 2013/B1.02 1. Brunelli, D., et al., 2104. Percolation of enriched melts during incremental open-system melting in the spinel field : A REE approach to abyssal peridotites from the

  14. Recombination and synaptic adjustment in oocytes of mice heterozygous for a large paracentric inversion.

    PubMed

    Torgasheva, Anna A; Rubtsov, Nikolai B; Borodin, Pavel M

    2013-03-01

    Homologous chromosome synapsis in inversion heterozygotes results in the formation of inversion loops. These loops might be transformed into straight, non-homologously paired bivalents via synaptic adjustment. Synaptic adjustment was discovered 30 years ago; however, its relationship with recombination has remained unclear. We analysed this relationship in female mouse embryos heterozygous for large paracentric inversion In(1)1Rk using immunolocalisation of the synaptonemal complex (SYCP3) and mature recombination nodules (MLH1) proteins. The frequency of cells containing bivalents with inversion loops decreased from 69 % to 28 % during pachytene. If an MLH1 focus was present in the non-homologously paired inverted region of the straight bivalent, it was always located in the middle of the inversion. Most of the small, incompletely adjusted loops contained MLH1 foci near the points at which pairing partners were switched. This observation indicates that the degree of synaptic adjustment depended on the crossover position. Complete synaptic adjustment was only possible if a crossover (CO) was located exactly in the middle of the inversion. If a CO was located at any other site, this interrupted synaptic adjustment and resulted in inversion loops of different sizes with an MLH1 focus at or near the edge of the remaining loop.

  15. The time-lapse AVO difference inversion for changes in reservoir parameters

    NASA Astrophysics Data System (ADS)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  16. A 3D inversion for all-space magnetotelluric data with static shift correction

    NASA Astrophysics Data System (ADS)

    Zhang, Kun

    2017-04-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results. The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm.

  17. Inverse relationship between nonadherence to original GOLD treatment guidelines and exacerbations of COPD

    PubMed Central

    Foda, Hussein D; Brehm, Anthony; Goldsteen, Karen; Edelman, Norman H

    2017-01-01

    Background Prescriber disagreement is among the reasons for poor adherence to COPD treatment guidelines; it is yet not clear whether this leads to adverse outcomes. We tested whether undertreatment according to the original Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines led to increased exacerbations. Methods Records of 878 patients with spirometrically confirmed COPD who were followed from 2005 to 2010 at one Veterans Administration (VA) Medical Center were analyzed. Analysis of variance was performed to assess differences in exacerbation rates between severity groups. Logistic regression analysis was performed to assess the relationship between noncompliance with guidelines and exacerbation rates. Findings About 19% were appropriately treated by guidelines; 14% overtreated, 44% under-treated, and in 23% treatment did not follow any guideline. Logistic regression revealed a strong inverse relationship between undertreatment and exacerbation rate when severity of obstruction was held constant. Exacerbations per year by GOLD stage were significantly different from each other: mild 0.15, moderate 0.27, severe 0.38, very severe 0.72, and substantially fewer than previously reported. Interpretation The guidelines were largely not followed. Undertreatment predominated but, contrary to expectations, was associated with fewer exacerbations. Thus, clinicians were likely advancing therapy primarily based upon exacerbation rates as was subsequently recommended in revised GOLD and other more recent guidelines. In retrospect, a substantial lack of prescriber adherence to treatment guidelines may have been a signal that they required re-evaluation. This is likely to be a general principle regarding therapeutic guidelines. The identification of fewer exacerbations in this cohort than has been generally reported probably reflects the comprehensive nature of the VA system, which is more likely to identify relatively asymptomatic (ie, nonexacerbating) COPD

  18. Inverse relationship between nonadherence to original GOLD treatment guidelines and exacerbations of COPD.

    PubMed

    Foda, Hussein D; Brehm, Anthony; Goldsteen, Karen; Edelman, Norman H

    2017-01-01

    Prescriber disagreement is among the reasons for poor adherence to COPD treatment guidelines; it is yet not clear whether this leads to adverse outcomes. We tested whether undertreatment according to the original Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines led to increased exacerbations. Records of 878 patients with spirometrically confirmed COPD who were followed from 2005 to 2010 at one Veterans Administration (VA) Medical Center were analyzed. Analysis of variance was performed to assess differences in exacerbation rates between severity groups. Logistic regression analysis was performed to assess the relationship between noncompliance with guidelines and exacerbation rates. About 19% were appropriately treated by guidelines; 14% overtreated, 44% under-treated, and in 23% treatment did not follow any guideline. Logistic regression revealed a strong inverse relationship between undertreatment and exacerbation rate when severity of obstruction was held constant. Exacerbations per year by GOLD stage were significantly different from each other: mild 0.15, moderate 0.27, severe 0.38, very severe 0.72, and substantially fewer than previously reported. The guidelines were largely not followed. Undertreatment predominated but, contrary to expectations, was associated with fewer exacerbations. Thus, clinicians were likely advancing therapy primarily based upon exacerbation rates as was subsequently recommended in revised GOLD and other more recent guidelines. In retrospect, a substantial lack of prescriber adherence to treatment guidelines may have been a signal that they required re-evaluation. This is likely to be a general principle regarding therapeutic guidelines. The identification of fewer exacerbations in this cohort than has been generally reported probably reflects the comprehensive nature of the VA system, which is more likely to identify relatively asymptomatic (ie, nonexacerbating) COPD patients. Accordingly, these rates may

  19. Linear Inverse Modeling and Scaling Analysis of Drainage Inventories.

    NASA Astrophysics Data System (ADS)

    O'Malley, C.; White, N. J.

    2016-12-01

    It is widely accepted that the stream power law can be used to describe the evolution of longitudinal river profiles. Over the last 5 years, this phenomenological law has been used to develop non-linear and linear inversion algorithms that enable uplift rate histories to be calculated by minimizing the misfit between observed and calculated river profiles. Substantial, continent-wide inventories of river profiles have been successfully inverted to yield uplift as a function of time and space. Erosional parameters can be determined by independent geological calibration. Our results help to illuminate empirical scaling laws that are well known to the geomorphological community. Here we present an analysis of river profiles from Asia. The timing and magnitude of uplift events across Asia, including the Himalayas and Tibet, have long been debated. River profile analyses have played an important role in clarifying the timing of uplift events. However, no attempt has yet been made to invert a comprehensive database of river profiles from the entire region. Asian rivers contain information which allows us to investigate putative uplift events quantitatively and to determine a cumulative uplift history for Asia. Long wavelength shapes of river profiles are governed by regional uplift and moderated by erosional processes. These processes are parameterised using the stream power law in the form of an advective-diffusive equation. Our non-negative, least-squares inversion scheme was applied to an inventory of 3722 Asian river profiles. We calibrate the key erosional parameters by predicting solid sedimentary flux for a set of Asian rivers and by comparing the flux predictions against published depositional histories for major river deltas. The resultant cumulative uplift history is compared with a range of published geological constraints for uplift and palaeoelevation. We have found good agreement for many regions across Asia. Surprisingly, single values of erosional

  20. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  1. Designing a Quantitative Structure-Activity Relationship for the ...

    EPA Pesticide Factsheets

    Toxicokinetic models serve a vital role in risk assessment by bridging the gap between chemical exposure and potentially toxic endpoints. While intrinsic metabolic clearance rates have a strong impact on toxicokinetics, limited data is available for environmentally relevant chemicals including nearly 8000 chemicals tested for in vitro bioactivity in the Tox21 program. To address this gap, a quantitative structure-activity relationship (QSAR) for intrinsic metabolic clearance rate was developed to offer reliable in silico predictions for a diverse array of chemicals. Models were constructed with curated in vitro assay data for both pharmaceutical-like chemicals (ChEMBL database) and environmentally relevant chemicals (ToxCast screening) from human liver microsomes (2176 from ChEMBL) and human hepatocytes (757 from ChEMBL and 332 from ToxCast). Due to variability in the experimental data, a binned approach was utilized to classify metabolic rates. Machine learning algorithms, such as random forest and k-nearest neighbor, were coupled with open source molecular descriptors and fingerprints to provide reasonable estimates of intrinsic metabolic clearance rates. Applicability domains defined the optimal chemical space for predictions, which covered environmental chemicals well. A reduced set of informative descriptors (including relative charge and lipophilicity) and a mixed training set of pharmaceuticals and environmentally relevant chemicals provided the best intr

  2. Inverse relationship between VO2max and economy/efficiency in world-class cyclists.

    PubMed

    Lucía, Alejandro; Hoyos, Jesus; Pérez, Margarita; Santalla, Alfredo; Chicharro, José L

    2002-12-01

    To determine the relationship that exists between VO2max and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. METHODS Each of 11 male cyclists (26+/-1 yr (mean +/- SEM); VO2max: 72.0 +/- 1.8 mL x kg(-1) x min(-1)) performed: 1) a ramp test for O2max determination and 2) a constant-load test of 20-min duration at the power output eliciting 80% of subjects' VO2max during the previous ramp test (mean power output of 385 +/- 7 W). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. CE and GE averaged 85.2 +/- 2.3 W x L(-1) x min(-1) and 24.5 +/- 0.7%, respectively. An inverse, significant correlation was found between 1) VO2max (mL x kg(-0.32) x min(-1)) and both CE (r = -0.71; P = 0.01) and GE (-0.72; P = 0.01), and 2) VO2max (mL x kg(-1) x min(-1)) and both CE (r = -0.65; P = 0.03) and GE (-0.64; P = 0.03). A high CE/GE seems to compensate for a relatively low VO2max in professional cyclists.

  3. The Relationship between Shyness and Internet Addiction: A Quantitative Study on Middle and Post Secondary School Students

    ERIC Educational Resources Information Center

    Hollingsworth, W. Craig

    2005-01-01

    This small scale quantitative study looks into the relationship between shyness and internet addiction in middle school students. This study has been conducted on the belief that shyness is a possible predictor of Internet Addiction. To prove this hypothesis a questionnaire was created and distributed to 53 middle school students and 159 post…

  4. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  5. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging.

    PubMed

    Liu, Tian; Liu, Jing; de Rochefort, Ludovic; Spincemaille, Pascal; Khalidov, Ildar; Ledoux, James Robert; Wang, Yi

    2011-09-01

    Magnetic susceptibility varies among brain structures and provides insights into the chemical and molecular composition of brain tissues. However, the determination of an arbitrary susceptibility distribution from the measured MR signal phase is a challenging, ill-conditioned inverse problem. Although a previous method named calculation of susceptibility through multiple orientation sampling (COSMOS) has solved this inverse problem both theoretically and experimentally using multiple angle acquisitions, it is often impractical to carry out on human subjects. Recently, the feasibility of calculating the brain susceptibility distribution from a single-angle acquisition was demonstrated using morphology enabled dipole inversion (MEDI). In this study, we further improved the original MEDI method by sparsifying the edges in the quantitative susceptibility map that do not have a corresponding edge in the magnitude image. Quantitative susceptibility maps generated by the improved MEDI were compared qualitatively and quantitatively with those generated by calculation of susceptibility through multiple orientation sampling. The results show a high degree of agreement between MEDI and calculation of susceptibility through multiple orientation sampling, and the practicality of MEDI allows many potential clinical applications. Copyright © 2011 Wiley-Liss, Inc.

  6. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  7. MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties.

    PubMed

    Bae, Won C; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda; Chung, Christine B

    2016-04-01

    To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques.

  8. MR Morphology of Triangular Fibrocartilage Complex: Correlation with Quantitative MR and Biomechanical Properties

    PubMed Central

    Bae, Won C.; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda

    2016-01-01

    Objective To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Materials and Methods Five cadaveric wrists (22 to 70 yrs) were imaged at 3T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. Results On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. Conclusion These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques. PMID:26691643

  9. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  10. Sensitivity analyses of acoustic impedance inversion with full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.

  11. Does the evidence for an inverse relationship between serum vitamin D status and breast cancer risk satisfy the Hill criteria?

    PubMed

    Mohr, Sharif B; Gorham, Edward D; Alcaraz, John E; Kane, Christopher I; Macera, Caroline A; Parsons, J Kellogg; Wingard, Deborah L; Garland, Cedric F

    2012-04-01

    A wide range of epidemiologic and laboratory studies combined provide compelling evidence of a protective role of vitamin D on risk of breast cancer. This review evaluates the scientific evidence for such a role in the context of the A.B. Hill criteria for causality, in order to assess the presence of a causal, inverse relationship, between vitamin D status and breast cancer risk. After evaluation of this evidence in the context of Hill's criteria, it was found that the criteria for a causal relationship were largely satisfied. Studies in human populations and the laboratory have consistently demonstrated that vitamin D plays an important role in the prevention of breast cancer. Vitamin D supplementation is an urgently needed, low cost, effective, and safe intervention strategy for breast cancer prevention that should be implemented without delay. In the meantime, randomized controlled trials of high doses of vitamin D(3) for prevention of breast cancer should be undertaken to provide the necessary evidence to guide national health policy.

  12. Individual differences in children's understanding of inversion and arithmetical skill.

    PubMed

    Gilmore, Camilla K; Bryant, Peter

    2006-06-01

    Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.

  13. Adaptive Inverse Control for Rotorcraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1985-01-01

    This thesis extends the Least Mean Square (LMS) algorithm to solve the mult!ple-input, multiple-output problem of alleviating N/Rev (revolutions per minute by number of blades) helicopter fuselage vibration by means of adaptive inverse control. A frequency domain locally linear model is used to represent the transfer matrix relating the higher harmonic pitch control inputs to the harmonic vibration outputs to be controlled. By using the inverse matrix as the controller gain matrix, an adaptive inverse regulator is formed to alleviate the N/Rev vibration. The stability and rate of convergence properties of the extended LMS algorithm are discussed. It is shown that the stability ranges for the elements of the stability gain matrix are directly related to the eigenvalues of the vibration signal information matrix for the learning phase, but not for the control phase. The overall conclusion is that the LMS adaptive inverse control method can form a robust vibration control system, but will require some tuning of the input sensor gains, the stability gain matrix, and the amount of control relaxation to be used. The learning curve of the controller during the learning phase is shown to be quantitatively close to that predicted by averaging the learning curves of the normal modes. For higher order transfer matrices, a rough estimate of the inverse is needed to start the algorithm efficiently. The simulation results indicate that the factor which most influences LMS adaptive inverse control is the product of the control relaxation and the the stability gain matrix. A small stability gain matrix makes the controller less sensitive to relaxation selection, and permits faster and more stable vibration reduction, than by choosing the stability gain matrix large and the control relaxation term small. It is shown that the best selections of the stability gain matrix elements and the amount of control relaxation is basically a compromise between slow, stable convergence and fast

  14. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  15. Quantitative estimation of source complexity in tsunami-source inversion

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Cummins, Phil R.; Hawkins, Rhys; Jakir Hossen, M.

    2016-04-01

    This work analyses tsunami waveforms to infer the spatiotemporal evolution of sea-surface displacement (the tsunami source) caused by earthquakes or other sources. Since the method considers sea-surface displacement directly, no assumptions about the fault or seafloor deformation are required. While this approach has no ability to study seismic aspects of rupture, it greatly simplifies the tsunami source estimation, making it much less dependent on subjective fault and deformation assumptions. This results in a more accurate sea-surface displacement evolution in the source region. The spatial discretization is by wavelet decomposition represented by a trans-D Bayesian tree structure. Wavelet coefficients are sampled by a reversible jump algorithm and additional coefficients are only included when required by the data. Therefore, source complexity is consistent with data information (parsimonious) and the method can adapt locally in both time and space. Since the source complexity is unknown and locally adapts, no regularization is required, resulting in more meaningful displacement magnitudes. By estimating displacement uncertainties in a Bayesian framework we can study the effect of parametrization choice on the source estimate. Uncertainty arises from observation errors and limitations in the parametrization to fully explain the observations. As a result, parametrization choice is closely related to uncertainty estimation and profoundly affects inversion results. Therefore, parametrization selection should be included in the inference process. Our inversion method is based on Bayesian model selection, a process which includes the choice of parametrization in the inference process and makes it data driven. A trans-dimensional (trans-D) model for the spatio-temporal discretization is applied here to include model selection naturally and efficiently in the inference by sampling probabilistically over parameterizations. The trans-D process results in better

  16. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  17. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course

    PubMed Central

    Flanagan, K. M.; Einarson, J.

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre–post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student’s math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student’s grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide “instructor actions” from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. PMID:28798209

  19. Using Stable Isotopes in Water Vapor to Diagnose Relationships Between Lower-Tropospheric Stability, Mixing, and Low-Cloud Cover Near the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Galewsky, Joseph

    2018-01-01

    In situ measurements of water vapor isotopic composition from Mauna Loa, Hawaii, are merged with soundings from Hilo to show an inverse relationship between the estimated inversion strength (EIS) and isotopically derived measures of lower-tropospheric mixing. Remote sensing estimates of cloud fraction, cloud liquid water path, and cloud top pressure were all found to be higher (lower) under low (high) EIS. Inverse modeling of the isotopic data corresponding to terciles of EIS conditions provide quantitative constraints on the last-saturation temperatures and mixing fractions that govern the humidity above the trade inversion. The mixing fraction of water vapor transported from the boundary layer to Mauna Loa decreases with respect to EIS at a rate of about 3% K-1, corresponding to a mixing ratio decrease of 0.6 g kg-1 K-1. A last-saturation temperature of 240 K can match all observations. This approach can be applied in other settings and may be used to test models of low-cloud climate feedbacks.

  20. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  1. Quantitative structure-cytotoxicity relationship of piperic acid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-09-01

    A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-12-01

    Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { < 110 > _{γ } || < 1\\overline{1} 0 > _{θ } } { < 111 > _{α } || < 1\\overline{1} 0 > _{θ } } { < 110 > _{γ } || < 111 > _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

  3. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  4. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures

    PubMed Central

    Repar, Jelena; Warnecke, Tobias

    2017-01-01

    Abstract Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin–terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus–Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. PMID:28407093

  5. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  6. Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants.

    PubMed

    Harju, Mikael; Hamers, Timo; Kamstra, Jorke H; Sonneveld, Edwin; Boon, Jan P; Tysklind, Mats; Andersson, Patrik L

    2007-04-01

    In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A, and hexabromocyclododecane, have been identified as potential endocrine disruptors. Quantitative structure-activity relationship models were built based on the in vitro potencies of 26 selected BFRs. The in vitro assays included interactions with, for example, androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptor, plus competition with thyroxine for its plasma carrier protein (transthyretin), inhibition of estradiol sulfation via sulfotransferase, and finally, rate of metabolization. The QSAR modeling, a number of physicochemical parameters were calculated describing the electronic, lipophilic, and structural characteristics of the molecules. These include frontier molecular orbitals, molecular charges, polarities, log octanol/water partitioning coefficient, and two- and three-dimensional molecularproperties. Experimental properties were included and measured for PBDEs, such as their individual ultraviolet spectra (200-320 nm) and retention times on three different high-performance liquid chromatography columns and one nonpolar gas chromatography column. Quantitative structure-activity relationship models based on androgen antagonism and metabolic degradation rates generally gave similar results, suggesting that lower-brominated PBDEs with bromine substitutions in ortho positions and bromine-free meta- and para positions had the highest potencies and metabolic degradation rates. Predictions made for the constituents of the technical flame retardant Bromkal 70-5DE found BDE 17 to be a potent androgen antagonist and BDE 66, which is a relevant PBDE in environmental samples, to be only a weak antagonist.

  7. Occupational, social, and relationship hazards and psychological distress among low-income workers: implications of the 'inverse hazard law'.

    PubMed

    Krieger, Nancy; Kaddour, Afamia; Koenen, Karestan; Kosheleva, Anna; Chen, Jarvis T; Waterman, Pamela D; Barbeau, Elizabeth M

    2011-03-01

    Few studies have simultaneously included exposure information on occupational hazards, relationship hazards (eg, intimate partner violence) and social hazards (eg, poverty and racial discrimination), especially among low-income multiracial/ethnic populations. A cross-sectional study (2003-2004) of 1202 workers employed at 14 worksites in the greater Boston area of Massachusetts investigated the independent and joint association of occupational, social and relationship hazards with psychological distress (K6 scale). Among this low-income cohort (45% were below the US poverty line), exposure to occupational, social and relationship hazards, per the 'inverse hazard law,' was high: 82% exposed to at least one occupational hazard, 79% to at least one social hazard, and 32% of men and 34% of women, respectively, stated they had been the perpetrator or target of intimate partner violence (IPV). Fully 15.4% had clinically significant psychological distress scores (K6 score ≥ 13). All three types of hazards, and also poverty, were independently associated with increased risk of psychological distress. In models including all three hazards, however, significant associations with psychological distress occurred among men and women for workplace abuse and high exposure to racial discrimination only; among men, for IPV; and among women, for high exposure to occupational hazards, poverty and smoking. Reckoning with the joint and embodied reality of diverse types of hazards involving how people live and work is necessary for understanding determinants of health status.

  8. Inverse steptoes in Las Bombas volcano, as an evidence of explosive volcanism in a solidified lava flow field. Southern Mendoza-Argentina

    NASA Astrophysics Data System (ADS)

    Risso, Corina; Prezzi, Claudia; Orgeira, María Julia; Nullo, Francisco; Margonari, Liliana; Németh, Karoly

    2015-11-01

    Here we describe the unusual genesis of steptoes in Las Bombas volcano- Llancanelo Volcanic Field (LVF) (Pliocene - Quaternary), Mendoza, Argentina. Typically, a steptoe forms when a lava flow envelops a hill, creating a well-defined stratigraphic relationship between the older hill and the younger lava flow. In the Llancanelo Volcanic Field, we find steptoes formed with an apparent normal stratigraphic relationship but an inverse age-relationship. Eroded remnants of scoria cones occur in ;circular depressions; in the lava field. To express the inverse age-relationship between flow fields and depression-filled cones here we define this landforms as inverse steptoes. Magnetometric analysis supports this inverse age relationship, indicating reverse dipolar magnetic anomalies in the lava field and normal dipolar magnetization in the scoria cones (e.g. La Bombas). Negative Bouguer anomalies calculated for Las Bombas further support the interpretation that the scoria cones formed by secondary fracturing on already solidified basaltic lava flows. Advanced erosion and mass movements in the inner edge of the depressions created a perfectly excavated circular depression enhancing the ;crater-like; architecture of the preserved landforms. Given the unusual genesis of the steptoes in LVF, we prefer the term inverse steptoe for these landforms. The term steptoe is a geomorphological name that has genetic implications, indicating an older hill and a younger lava flow. Here the relationship is reversed.

  9. Quantitative Effects of P Elements on Hybrid Dysgenesis in Drosophila Melanogaster

    PubMed Central

    Rasmusson, K. E.; Simmons, M. J.; Raymond, J. D.; McLarnon, C. F.

    1990-01-01

    Genetic analyses involving chromosomes from seven inbred lines derived from a single M' strain were used to study the quantitative relationships between the incidence and severity of P-M hybrid dysgenesis and the number of genomic P elements. In four separate analyses, the mutability of sn(w), a P element-insertion mutation of the X-linked singed locus, was found to be inversely related to the number of autosomal P elements. Since sn(w) mutability is caused by the action of the P transposase, this finding supports the hypothesis that genomic P elements titrate the transposase present within a cell. Other analyses demonstrated that autosomal transmission ratios were distorted by P element action. In these analyses, the amount of distortion against an autosome increased more or less linearly with the number of P elements carried by the autosome. Additional analyses showed that the magnitude of this distortion was reduced when a second P element-containing autosome was present in the genome. This reduction could adequately be explained by transposase titration; there was no evidence that it was due to repressor molecules binding to P elements and inhibiting their movement. The influence of genomic P elements on the incidence of gonadal dysgenesis was also investigated. Although no simple relationship between the number of P elements and the incidence of the trait could be discerned, it was clear that even a small number of elements could increase the incidence markedly. The failure to find a quantitative relationship between P element number and the incidence of gonadal dysgenesis probably reflects the complex etiology of this trait. PMID:2155853

  10. [Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].

    PubMed

    Tian, Yong-Chao; Yang, Jie; Yao, Xia; Zhu, Yan; Cao, Wei-Xing

    2009-07-01

    Based on field experiments with different rice varieties under different nitrogen application levels, the quantitative relationships of rice leaf area index (LAI) with canopy hyper-spectral parameters at different growth stages were analyzed. Rice LAI had good relationships with several hyper-spectral vegetation indices, the correlation coefficient being the highest with DI (difference index), followed by with RI (ratio index), and NI (normalized index), based on the spectral reflectance or the first derivative spectra. The two best spectral indices for estimating LAI were the difference index DI (854, 760) (based on two spectral bands of 850 nm and 760 nm) and the difference index DI (D676, D778) (based on two first derivative bands of 676 nm and 778 nm). In general, the hyper-spectral vegetation indices based on spectral reflectance performed better than the spectral indices based on the first derivative spectra. The tests with independent dataset suggested that the rice LAI monitoring models with difference index DI (854,760) as the variable could give an accurate LAI estimation, being available for estimation of rice LAI.

  11. Quantitative Assessment the Relationship between p21 rs1059234 Polymorphism and Cancer Risk.

    PubMed

    Huang, Yong-Sheng; Fan, Qian-Qian; Li, Chuang; Nie, Meng; Quan, Hong-Yang; Wang, Lin

    2015-01-01

    p21 is a cyclin-dependent kinase inhibitor, which can arrest cell proliferation and serve as a tumor suppressor. Though many studies were published to assess the relationship between p21 rs1059234 polymorphism and various cancer risks, there was no definite conclusion on this association. To derive a more precise quantitative assessment of the relationship, a large scale meta-analysis of 5,963 cases and 8,405 controls from 16 eligible published case-control studies was performed. Our analysis suggested that rs1059234 was not associated with the integral cancer risk for both dominant model [(T/T+C/T) vs C/C, OR=1.00, 95% CI: 0.84-1.18] and recessive model [T/T vs (C/C+C/T), OR=1.03, 95% CI: 0.93-1.15)]. However, further stratified analysis showed rs1059234 was greatly associated with the risk of squamous cell carcinoma of head and neck (SCCHN). Thus, larger scale primary studies are still required to further evaluate the interaction of p21 rs1059234 polymorphism and cancer risk in specific cancer subtypes.

  12. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  13. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations

  14. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  15. The Effect of Flow Velocity on Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Lee, D.; Shin, S.; Chung, W.; Ha, J.; Lim, Y.; Kim, S.

    2017-12-01

    The waveform inversion is a velocity modeling technique that reconstructs accurate subsurface physical properties. Therefore, using the model in its final, updated version, we generated data identical to modeled data. Flow velocity, like several other factors, affects observed data in seismic exploration. Despite this, there is insufficient research on its relationship with waveform inversion. In this study, the generated synthetic data considering flow velocity was factored in waveform inversion and the influence of flow velocity in waveform inversion was analyzed. Measuring the flow velocity generally requires additional equipment. However, for situations where only seismic data was available, flow velocity was calculated by fixed-point iteration method using direct wave in observed data. Further, a new waveform inversion was proposed, which can be applied to the calculated flow velocity. We used a wave equation, which can work with the flow velocities used in the study by Käser and Dumbser. Further, we enhanced the efficiency of computation by applying the back-propagation method. To verify the proposed algorithm, six different data sets were generated using the Marmousi2 model; each of these data sets used different flow velocities in the range 0-50, i.e., 0, 2, 5, 10, 25, and 50. Thereafter, the inversion results from these data sets along with the results without the use of flow velocity were compared and analyzed. In this study, we analyzed the results of waveform inversion after flow velocity has been factored in. It was demonstrated that the waveform inversion is not affected significantly when the flow velocity is of smaller value. However, when the flow velocity has a large value, factoring it in the waveform inversion produces superior results. This research was supported by the Basic Research Project(17-3312, 17-3313) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

  16. Iterative inversion of deformation vector fields with feedback control.

    PubMed

    Dubey, Abhishek; Iliopoulos, Alexandros-Stavros; Sun, Xiaobai; Yin, Fang-Fang; Ren, Lei

    2018-05-14

    Often, the inverse deformation vector field (DVF) is needed together with the corresponding forward DVF in four-dimesional (4D) reconstruction and dose calculation, adaptive radiation therapy, and simultaneous deformable registration. This study aims at improving both accuracy and efficiency of iterative algorithms for DVF inversion, and advancing our understanding of divergence and latency conditions. We introduce a framework of fixed-point iteration algorithms with active feedback control for DVF inversion. Based on rigorous convergence analysis, we design control mechanisms for modulating the inverse consistency (IC) residual of the current iterate, to be used as feedback into the next iterate. The control is designed adaptively to the input DVF with the objective to enlarge the convergence area and expedite convergence. Three particular settings of feedback control are introduced: constant value over the domain throughout the iteration; alternating values between iteration steps; and spatially variant values. We also introduce three spectral measures of the displacement Jacobian for characterizing a DVF. These measures reveal the critical role of what we term the nontranslational displacement component (NTDC) of the DVF. We carry out inversion experiments with an analytical DVF pair, and with DVFs associated with thoracic CT images of six patients at end of expiration and end of inspiration. The NTDC-adaptive iterations are shown to attain a larger convergence region at a faster pace compared to previous nonadaptive DVF inversion iteration algorithms. By our numerical experiments, alternating control yields smaller IC residuals and inversion errors than constant control. Spatially variant control renders smaller residuals and errors by at least an order of magnitude, compared to other schemes, in no more than 10 steps. Inversion results also show remarkable quantitative agreement with analysis-based predictions. Our analysis captures properties of DVF data

  17. Clinical knowledge-based inverse treatment planning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-11-01

    planning process. The new formalism proposed also reveals the relationship between different inverse planning schemes and gives important insight into the problem of therapeutic plan optimization. In particular, we show that the EUD-based optimization is a special case of the general inverse planning formalism described in this paper.

  18. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish).more » Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.« less

  19. Relationship between self-reported upper limb disability and quantitative tests in hand-arm vibration syndrome.

    PubMed

    Poole, Kerry; Mason, Howard

    2007-03-15

    To establish the relationship between quantitative tests of hand function and upper limb disability, as measured by the Disability of the Arm, Shoulder and Hand (DASH) questionnaire, in hand-arm vibration syndrome (HAVS). A total of 228 individuals with HAVS were included in this study. Each had undergone a full HAVS assessment by an experienced physician, including quantitative tests of vibrotactile and thermal perception thresholds, maximal hand-grip strength (HG) and the Purdue pegboard (PP) test. Individuals were also asked to complete a DASH questionnaire. PP and HG of the quantitative tests gave the best and statistically significant individual correlations with the DASH disability score (r2 = 0.168 and 0.096). Stepwise linear regression analysis revealed that only PP and HG measurements were statistically significant predictors of upper limb disability (r2 = 0.178). Overall a combination of the PP and HG measurements, rather than each alone, gave slightly better discrimination, although not statistically significant, between normal and abnormal DASH scores with a sensitivity of 73.1% and specificity of 64.3%. Measurements of manual dexterity and hand-grip strength using PP and HG may be useful in helping to confirm lack of upper limb function and 'perceived' disability in HAVS.

  20. Investigation on Quantitative Structure Activity Relationships of a Series of Inducible Nitric Oxide.

    PubMed

    Sharma, Mukesh C; Sharma, S

    2016-12-01

    A series of 2-dihydro-4-quinazolin with potent highly selective inhibitors of inducible nitric oxide synthase activities was subjected to quantitative structure activity relationships (QSAR) analysis. Statistically significant equations with high correlation coefficient (r 2  = 0.8219) were developed. The k-nearest neighbor model has showed good cross-validated correlation coefficient and external validation values of 0.7866 and 0.7133, respectively. The selected electrostatic field descriptors the presence of blue ball around R1 and R4 in the quinazolinamine moiety showed electronegative groups favorable for nitric oxide synthase activity. The QSAR models may lead to the structural requirements of inducible nitric oxide compounds and help in the design of new compounds.

  1. Experimental exploration of the Mulliken-Hush relationship for intramolecular electron transfer reactions.

    PubMed

    Mukherjee, Tamal; Ito, Naoki; Gould, Ian R

    2011-03-17

    The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.

  2. Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila. The martensis cluster revisited.

    PubMed

    Prada, Carlos F; Delprat, Alejandra; Ruiz, Alfredo

    2011-02-01

    The chromosomal relationships of the four martensis cluster species are among the most complex and intricate within the entire Drosophila repleta group, due to the so-called sharing of inversions. Here, we have revised these relationships using comparative mapping of bacterial artificial chromosome (BAC) clones on the salivary gland chromosomes. A physical map of chromosome 2 of Drosophila uniseta (one of the cluster members) was generated by in situ hybridization of 82 BAC clones from the physical map of the Drosophila buzzatii genome (an outgroup that represents the ancestral arrangement). By comparing the marker positions, we determined the number, order, and orientation of conserved chromosomal segments between chromosome 2 of D. buzzatii and D. uniseta. GRIMM software was used to infer that a minimum of five chromosomal inversions are necessary to transform the chromosome 2 of D. buzzatii into that of D. uniseta. Two of these inversions have been overlooked in previous cytological analyses. The five fixed inversions entail two breakpoint reuses because only nine syntenic segments and eight interruptions were observed. We tested for the presence of the five inversions fixed in D. uniseta in the other three species of the martensis cluster by in situ hybridization of eight breakpoint-bearing BAC clones. The results shed light on the chromosomal phylogeny of the martensis cluster, yet leave a number of questions open.

  3. Geoacoustic inversion with two source-receiver arrays in shallow water.

    PubMed

    Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc

    2010-08-01

    A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.

  4. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    PubMed

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  5. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.

    PubMed

    Repar, Jelena; Warnecke, Tobias

    2017-08-01

    Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin-terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus-Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Inverse Proportional Relationship Between Switching-Time Length and Fractal-Like Structure for Continuous Tracking Movement

    NASA Astrophysics Data System (ADS)

    Hirakawa, Takehito; Suzuki, Hiroo; Gohara, Kazutoshi; Yamamoto, Yuji

    We investigate the relationship between the switching-time length T and the fractal-like feature that characterizes the behavior of dissipative dynamical systems excited by external temporal inputs for tracking movement. Seven healthy right-handed male participants were asked to continuously track light-emitting diodes that were located on the right and left sides in front of them. These movements were performed under two conditions: when the same input pattern was repeated (the periodic-input condition) and when two different input patterns were switched stochastically (the switching-input condition). The repeated time lengths of input patterns during these conditions were 2.00, 1.00, 0.75, 0.50, 0.35, and 0.25s. The movements of a lever held between a participant’s thumb and index finger were measured by a motion-capture system and were analyzed with respect to position and velocity. The condition in which the same input was repeated revealed that two different stable trajectories existed in a cylindrical state space, while the condition in which the inputs were switched induced transitions between these two trajectories. These two different trajectories were considered as excited attractors. The transitions between the two excited attractors produced eight trajectories; they were then characterized by a fractal-like feature as a third-order sequence effect. Moreover, correlation dimensions, which are typically used to evaluate fractal-like features, calculated from the set on the Poincaré section increased as the switching-time length T decreased. These results suggest that an inverse proportional relationship exists between the switching-time length T and the fractal-like feature of human movement.

  7. Molecular basis of quantitative structure-properties relationships (QSPR): a quantum similarity approach.

    PubMed

    Ponec, R; Amat, L; Carbó-Dorca, R

    1999-05-01

    Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett sigma constants and the logarithm of the octanol-water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

  8. Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach

    NASA Astrophysics Data System (ADS)

    Ponec, Robert; Amat, Lluís; Carbó-dorca, Ramon

    1999-05-01

    Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett σ constants and the logarithm of the octanol- water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

  9. Inverse expression of survivin and reprimo correlates with poor patient prognosis in gastric cancer.

    PubMed

    Cerda-Opazo, Paulina; Valenzuela-Valderrama, Manuel; Wichmann, Ignacio; Rodríguez, Andrés; Contreras-Reyes, Daniel; Fernández, Elmer A; Carrasco-Aviño, Gonzalo; Corvalán, Alejandro H; Quest, Andrew F G

    2018-02-27

    The objective of the study was to determine the relationship between Survivin and Reprimo transcript/protein expression levels, and gastric cancer outcome. In silico correlations between an agnostic set of twelve p53-dependent apoptosis and cell-cycle genes were explored in the gastric adenocarcinoma TCGA database, using cBioPortal. Findings were validated by regression analysis of RNAseq data. Separate regression analyses were performed to assess the impact of p53 status on Survivin and Reprimo. Quantitative reverse-transcription PCR (RT-qPCR) and immunohistochemistry confirmed in silico findings on fresh-frozen and paraffin-embedded gastric cancer tissues, respectively. Wild-type (AGS, SNU-1) and mutated p53 (NCI-N87) cell lines transfected with pEGFP-Survivin or pCMV6-Reprimo were evaluated by RT-qPCR and Western blotting. Kaplan-Meier method and Long-Rank test were used to assess differences in patient outcome. cBioPortal analysis revealed an inverse correlation between Survivin and Reprimo expression (Pearson's r= -0.3, Spearman's ρ= -0.55). RNAseq analyses confirmed these findings (Spearman's ρ= -0.37, p<4.2e-09) and revealed p53 dependence in linear regression models (p<0.05). mRNA and protein levels validated these observations in clinical samples (p<0.001). In vitro analysis in cell lines demonstrated that increasing Survivin reduced Reprimo, while increasing Reprimo reduced Survivin expression, but only did so in p53 wild-type gastric cells (p<0.05). Survivin-positive but Reprimo-negative patients displayed shorter overall survival rates (p=0.047, Long Rank Test) (HR=0.32; 95%IC: 0.11-0.97; p=0.044). TCGA RNAseq data analysis, evaluation of clinical samples and studies in cell lines identified an inverse relationship between Survivin and Reprimo. Elevated Survivin and reduced Reprimo protein expression correlated with poor patient prognosis in gastric cancer.

  10. Inverse Relationship between Adherence to the Mediterranean Diet and Serum Cystatin C Levels.

    PubMed

    Vallianou, Natalia G; Georgousopoulou, Ekavi; Evangelopoulos, Angelos A; Bountziouka, Vassiliki; Bonou, Maria S; Vogiatzakis, Evangelos D; Avgerinos, Petros C; Barbetseas, John; Panagiotakos, Demosthenes B

    2017-09-01

    The aim of the present study was to examine serum cystatin C levels in association with the Mediterranean diet in a healthy Greek population. Cystatin C together with basic clinical chemistry tests was measured in a total of 490 adults (46±16 years, 40% of males), who underwent an annual health check. Demographic, anthropometric and lifestyle characteristics were recorded, while adherence to the Mediterranean diet was evaluated through the MedDietScore (0-55). The mean level of serum cystatin C was 0.84 mg/L, while men had increased serum cystatin C levels compared to women (0.86 mg/L vs. 0.83 mg/L, respectively, 0.017). After adjusting for age, gender, body mass index, smoking status, hypertension, diabetes, hypercholesterolemia, estimated glomerular filtration rate (eGFR), albumin and ferritin levels, each unit increase in MedDietScore led to 0.002 mg/dL drop off in cystatin C serum levels. We have demonstrated an inverse relationship between the MedDietScore and serum cystatin C levels. Our finding that increases in MedDietScore are associated with decreases in serum cystatin C levels could imply that adherence to the Mediterranean diet may reduce the cardiovascular risk, as assessed by cystatin C, a prognostic marker of the cardiometabolic risk. This notion could have a great impact on public health. Copyright© by the National Institute of Public Health, Prague 2017

  11. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  12. Inverse Theory for Petroleum Reservoir Characterization and History Matching

    NASA Astrophysics Data System (ADS)

    Oliver, Dean S.; Reynolds, Albert C.; Liu, Ning

    This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.

  13. Rational Quantitative Structure-Activity Relationship (RQSAR) Screen for PXR and CAR Isoform-Specific Nuclear Receptor Ligands

    PubMed Central

    Dring, Ann M.; Anderson, Linnea E.; Qamar, Saima; Stoner, Matthew A.

    2010-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  14. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    NASA Astrophysics Data System (ADS)

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; Li, J.-L. F.

    2015-08-01

    In this study, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPL measurements are 1.0 km and 0.6 km, respectively, with the largest difference ( 1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. This result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.

  15. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    DOE PAGES

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; ...

    2015-07-20

    In this work, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPLmore » measurements are 1.0 km and 0.6 km, respectively, with the largest difference (~1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. In conclusion, this result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.« less

  16. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  17. The whole space three-dimensional magnetotelluric inversion algorithm with static shift correction

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2016-12-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results.The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm. The verification and application example of 3D inversion algorithm is shown in Figure 1. From the comparison of figure 1, the inversion model can reflect all the abnormal bodies and terrain clearly regardless of what type of data (impedance/tipper/impedance and tipper). And the resolution of the bodies' boundary can be improved by using tipper data. The algorithm is very effective for terrain inversion. So it is very useful for the study of continental shelf with continuous exploration of land, marine and underground.The three-dimensional electrical model of the ore zone reflects the basic information of stratum, rock and structure. Although it cannot indicate the ore body position directly, the important clues are provided for prospecting work by the delineation of diorite pluton uplift range. The test results show that, the high quality of

  18. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  19. Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent

  20. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less

  1. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  2. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  3. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  4. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections.

  5. Reproductive isolation and local adaptation quantified for a chromosome inversion in a malaria mosquito.

    PubMed

    Ayala, Diego; Guerrero, Rafael F; Kirkpatrick, Mark

    2013-04-01

    Chromosome inversions have long been thought to be involved in speciation and local adaptation. We have little quantitative information, however, about the effects that inversion polymorphisms have on reproductive isolation and viability. Here we provide the first estimates from any organism for the total amount of reproductive isolation associated with an inversion segregating in natural populations. We sampled chromosomes from 751 mosquitoes of the malaria vector Anopheles funestus along a 1421 km transect in Cameroon that traverses savannah, highland, and rainforest ecological zones. We then developed a series of population genetic models that account for selection, migration, and assortative mating, and fit the models to the data using likelihood. Results from the best-fit models suggest there is strong local adaptation, with relative viabilities of homozygotes ranging from 25% to 130% compared to heterozygotes. Viabilities vary qualitatively between regions: the inversion is underdominant in the savannah, whereas in the highlands it is overdominant. The inversion is also implicated in strong assortative mating. In the savannah, the two homozygote forms show 92% reproductive isolation, suggesting that this one inversion can generate most of the genetic barriers needed for speciation. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  6. Inverse relationship between erythrocyte size and platelet reactivity in elderly.

    PubMed

    Milovanovic, M; Nilsson, S; Winblad, B; Jelic, V; Behbahani, H; Shahnaz, T; Oweling, M; Järemo, P

    2017-03-01

    Previous work indicates that erythrocytes (RBCs) accumulate β-amyloid X-40 (Aβ 40 ) in individuals with Alzheimer disease (AD) and to a lesser extent in healthy elderly. The toxin damages RBCs and increases their mean corpuscular volume (MCV). Furthermore, AD platelets demonstrate lower reactivity. This study investigated interactions between RBCs and platelets. Older individuals with moderate hypertension (n = 57) were classified into two groups, depending on MCV in whole blood: The MCV high group comprised individuals with higher MCV (n = 27; 97 ± 3(SD) fl) and MCV low group had relatively lower MCV (n = 30; 90 ± 3(SD) fl). Flow cytometry was used to determine platelet reactivity, i.e., the surface binding of fibrinogen after provocation. Adenosine diphosphate (ADP) and a thrombin receptor-activating protein (TRAP-6) were used as agonists. Subsequently, blood cells were divided according to density into 17 subfractions. Intra-RBC Aβ 40 content was analyzed and in all platelet populations surface-bound fibrinogen was determined to estimate platelet in vivo activity. We found Aβ 40 inside RBCs of approximately 50% of participants, but the toxin did not affect MCV and platelet reactivity. In contrast, MCV associated inversely with platelet reactivity as judged from surface-attached fibrinogen after ADP (1.7 μmol/L) (p < 0.05) and TRAP-6 provocation (57 μmol/L (p = 0.01) and 74 μmol/L (p < 0.05)). In several density fractions (nos. 3, 4, 8, 11-13 (p < 0.05) and nos. 5-7 (p < 0.01)) MCV linked inversely with platelet-attached fibrinogen. In our community-dwelling sample, enhanced MCV associated with decreased platelet reactivity and lower in vivo platelet activity. It resembles RBCs and platelet behavior in AD-type dementia.

  7. [Quantitative relationships of intra- and interspecific competition in Cryptocarya concinna].

    PubMed

    Zhang, Chi; Huang, Zhongliang; Li, Jiong; Shi, Junhui; Li, Lin

    2006-01-01

    The monsoon evergreen broad-leaved forest (MEBF) in Dinghushan Nature Reserve (DNR) has been considered as a zonal vegetation in lower subtropical China, with a history of more than 400 years. In this paper, the intra- and interspecific competition intensity in Cryptocarya concinna, one of the constructive species in MEBF in DNR was quantitatively analyzed by Hegyi single-tree competition index model. The results showed that the intraspecific competition intensity in C. concinna decreased gradually with increasing tree diameter. For C. concinna, its intraspecific competition was weaker than its interspecific competition with Aporosa yunnanensis. The competition intensity of interspecific competition with C. concinna followed the order of A. yunnanensis > Schima superba > Gironniera subaequalis > Acmena acuminatissima > Castanopsis chinensis > Syzygium rehderianum > Pygeum topengii > Blastus cochinchinensis > Sarcosperma laurinum > Pterospermum lanceaefolium > Cryptocarya chinensis. The relationship of the DBH of objective tree and the competition intensity between competitive tree and objective tree in the whole forest and C. concinna population nearly conformed to power function, while that between other competitive tree and the objective C. concinna tree conformed to logarithm function. There was a significantly negative correlation between the competition intensity and the DBH of objective tree.

  8. Inverse Calibration Free fs-LIBS of Copper-Based Alloys

    NASA Astrophysics Data System (ADS)

    Smaldone, Antonella; De Bonis, Angela; Galasso, Agostino; Guarnaccio, Ambra; Santagata, Antonio; Teghil, Roberto

    2016-09-01

    In this work the analysis by Laser Induced Breakdown Spectroscopy (LIBS) technique of copper-based alloys having different composition and performed with fs laser pulses is presented. A Nd:Glass laser (Twinkle Light Conversion, λ = 527 nm at 250 fs) and a set of bronze and brass certified standards were used. The inverse Calibration-Free method (inverse CF-LIBS) was applied for estimating the temperature of the fs laser induced plasma in order to achieve quantitative elemental analysis of such materials. This approach strengthens the hypothesis that, through the assessment of the plasma temperature occurring in fs-LIBS, straightforward and reliable analytical data can be provided. With this aim the capability of the here adopted inverse CF-LIBS method, which is based on the fulfilment of the Local Thermodynamic Equilibrium (LTE) condition, for an indirect determination of the species excitation temperature, is shown. It is reported that the estimated temperatures occurring during the process provide a good figure of merit between the certified and the experimentally determined composition of the bronze and brass materials, here employed, although further correction procedure, like the use of calibration curves, can be demanded. The reported results demonstrate that the inverse CF-LIBS method can be applied when fs laser pulses are used even though the plasma properties could be affected by the matrix effects restricting its full employment to unknown samples provided that a certified standard having similar composition is available.

  9. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    PubMed

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  10. The relationship of quantitative nuclear morphology to molecular genetic alterations in the adenoma-carcinoma sequence of the large bowel.

    PubMed Central

    Mulder, J. W.; Offerhaus, G. J.; de Feyter, E. P.; Floyd, J. J.; Kern, S. E.; Vogelstein, B.; Hamilton, S. R.

    1992-01-01

    The relationship of abnormal nuclear morphology to molecular genetic alterations that are important in colorectal tumorigenesis is unknown. Therefore, Feulgen-stained isolated nuclei from 22 adenomas and 42 carcinomas that had been analyzed for ras gene mutations and allelic deletions on chromosomes 5q, 18q, and 17p were characterized by computerized image analysis. Both nuclear area and the nuclear shape factor representing irregularity correlated with adenoma-carcinoma progression (r = 0.57 and r = 0.52, P < 0.0001), whereas standard nuclear texture, a parameter of chromatin homogeneity, was inversely correlated with progression (r = -0.80, P < 0.0001). The nuclear parameters were strongly interrelated (P < 0.0005). In multivariate analysis, the nuclear parameters were predominantly associated with adenoma-carcinoma progression (P < or = 0.0001) and were not influenced significantly by the individual molecular genetic alterations. Nuclear texture, however, was inversely correlated with fractional allelic loss, a global measure of genetic changes, in carcinomas (r = -0.39, P = 0.011). The findings indicate that nuclear morphology in colorectal neoplasms is strongly related to tumor progression. Nuclear morphology and biologic behavior appear to be influenced by accumulated alterations in cancer-associated genes. Images Figure 1 PMID:1357973

  11. Quantitative Structure-Cytotoxicity Relationship of Cinnamic Acid Phenetyl Esters.

    PubMed

    Uesawa, Yoshihiro; Sakagami, Hiroshi; Okudaira, Noriyuki; Toda, Kazuhiro; Takao, Koichi; Kagaya, Hajime; Sugita, Yoshiaki

    2018-02-01

    Many phenolic acid phenethyl esters possess diverse biological effects including antioxidant, cytoprotective, anti-inflammation and anti-tumor activities. However, most previous antitumor studies have not considered the cytotoxicity against normal cells. Ten cinnamic acid phenetyl esters were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity and tumor-specificity, in order to find their new biological activities. Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC 50 ) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC 50 against tumor cells. Apoptosis markers were detected by western blot analysis. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by force-field minimization. Western blot analysis demonstrated that [ 9 ] stimulated the cleavage of caspase-3, suggesting the induction of apoptosis. QSAR analysis demonstrated that TS values were correlated with shape, size and ionization potential. Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drugs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging.

    PubMed

    Cai, Chuangjian; Deng, Kexin; Ma, Cheng; Luo, Jianwen

    2018-06-15

    An end-to-end deep neural network, ResU-net, is developed for quantitative photoacoustic imaging. A residual learning framework is used to facilitate optimization and to gain better accuracy from considerably increased network depth. The contracting and expanding paths enable ResU-net to extract comprehensive context information from multispectral initial pressure images and, subsequently, to infer a quantitative image of chromophore concentration or oxygen saturation (sO 2 ). According to our numerical experiments, the estimations of sO 2 and indocyanine green concentration are accurate and robust against variations in both optical property and object geometry. An extremely short reconstruction time of 22 ms is achieved.

  13. Seismic waveform inversion best practices: regional, global and exploration test cases

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  14. Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.

    PubMed

    Bonanno, Gabriele; Brotman, David; Stuber, Matthias

    2015-03-01

    Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.

  15. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids.

    PubMed

    Jing, Pu; Zhao, Shu-Juan; Jian, Wen-Jie; Qian, Bing-Jun; Dong, Ying; Pang, Jie

    2012-11-01

    Phenolic acids are potent antioxidants, yet the quantitative structure-activity relationships of phenolic acids remain unclear. The purpose of this study was to establish 3D-QSAR models able to predict phenolic acids with high DPPH• scavenging activity and understand their structure-activity relationships. The model has been established by using a training set of compounds with cross-validated q2 = 0.638/0.855, non-cross-validated r2 = 0.984/0.986, standard error of estimate = 0.236/0.216, and F = 139.126/208.320 for the best CoMFA/CoMSIA models. The predictive ability of the models was validated with the correlation coefficient r2(pred) = 0.971/0.996 (>0.6) for each model. Additionally, the contour map results suggested that structural characteristics of phenolics acids favorable for the high DPPH• scavenging activity might include: (1) bulky and/or electron-donating substituent groups on the phenol ring; (2) electron-donating groups at the meta-position and/or hydrophobic groups at the meta-/ortho-position; (3) hydrogen-bond donor/electron-donating groups at the ortho-position. The results have been confirmed based on structural analyses of phenolic acids and their DPPH• scavenging data from eight recent publications. The findings may provide deeper insight into the antioxidant mechanisms and provide useful information for selecting phenolic acids for free radical scavenging properties.

  16. Quantitative Literacy: Geosciences and Beyond

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  17. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    PubMed

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the

  18. A quantitative topographic analysis of the Sky Islands: a closer examination of the topography-biodiversity relationship in the Madrean Archipelago

    Treesearch

    David Coblentz; Kurt H. Riitters

    2005-01-01

    The relationship between topography and biodiversity is well documented in the Madrean Archipelago. However, despite this recognition, most biogeographical studies concerning the role of topography have relied primarily on a qualitative description of the landscape. Using an algorithm that operates on a high-resolution digital elevation model we present a quantitative...

  19. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  20. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform.

    PubMed

    Larkin, Kieran G; Fletcher, Peter A

    2014-03-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform.

  1. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  2. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    PubMed Central

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR) and three-dimensional quantitative structure–selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2′-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure–property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature. PMID:25848211

  3. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope

  4. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects.

    PubMed

    Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan

    2014-01-01

    Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed.

  6. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    PubMed

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  7. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  8. Inversion of chlorophyll contents by use of hyperspectral CHRIS data based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, M. C.; Niu, X. F.; Chen, S. B.; Guo, P. J.; Yang, Q.; Wang, Z. J.

    2014-03-01

    Chlorophyll content, the most important pigment related to photosynthesis, is the key parameter for vegetation growth. The continuous spectrum characteristics of ground objects can be captured through hyperspectral remotely sensed data. In this study, based on the coniferous forest radiative transfer model, chlorophyll contents were inverted by use of hyperspectral CHRIS data in the coniferous forest coverage of Changbai Mountain Area. In addition, the sensitivity of LIBERTY model was analyzed. The experimental results validated that the reflectance simulation of different chlorophyll contents was coincided with that of the field measurement, and hyperspectral vegetation indices applied to the quantitative inversion of chlorophyll contents was feasible and accurate. This study presents a reasonable method of chlorophyll inversion for the coniferous forest, promotes the inversion precision, is of significance in coniferous forest monitoring.

  9. Inference of relativistic electron spectra from measurements of inverse Compton radiation

    NASA Astrophysics Data System (ADS)

    Craig, I. J. D.; Brown, J. C.

    1980-07-01

    The inference of relativistic electron spectra from spectral measurement of inverse Compton radiation is discussed for the case where the background photon spectrum is a Planck function. The problem is formulated in terms of an integral transform that relates the measured spectrum to the unknown electron distribution. A general inversion formula is used to provide a quantitative assessment of the information content of the spectral data. It is shown that the observations must generally be augmented by additional information if anything other than a rudimentary two or three parameter model of the source function is to be derived. It is also pointed out that since a similar equation governs the continuum spectra emitted by a distribution of black-body radiators, the analysis is relevant to the problem of stellar population synthesis from galactic spectra.

  10. Localized time-lapse elastic waveform inversion using wavefield injection and extrapolation: 2-D parametric studies

    NASA Astrophysics Data System (ADS)

    Yuan, Shihao; Fuji, Nobuaki; Singh, Satish; Borisov, Dmitry

    2017-06-01

    We present a methodology to invert seismic data for a localized area by combining source-side wavefield injection and receiver-side extrapolation method. Despite the high resolving power of seismic full waveform inversion, the computational cost for practical scale elastic or viscoelastic waveform inversion remains a heavy burden. This can be much more severe for time-lapse surveys, which require real-time seismic imaging on a daily or weekly basis. Besides, changes of the structure during time-lapse surveys are likely to occur in a small area rather than the whole region of seismic experiments, such as oil and gas reservoir or CO2 injection wells. We thus propose an approach that allows to image effectively and quantitatively the localized structure changes far deep from both source and receiver arrays. In our method, we perform both forward and back propagation only inside the target region. First, we look for the equivalent source expression enclosing the region of interest by using the wavefield injection method. Second, we extrapolate wavefield from physical receivers located near the Earth's surface or on the ocean bottom to an array of virtual receivers in the subsurface by using correlation-type representation theorem. In this study, we present various 2-D elastic numerical examples of the proposed method and quantitatively evaluate errors in obtained models, in comparison to those of conventional full-model inversions. The results show that the proposed localized waveform inversion is not only efficient and robust but also accurate even under the existence of errors in both initial models and observed data.

  11. Earthquake Source Inversion Blindtest: Initial Results and Further Developments

    NASA Astrophysics Data System (ADS)

    Mai, P.; Burjanek, J.; Delouis, B.; Festa, G.; Francois-Holden, C.; Monelli, D.; Uchide, T.; Zahradnik, J.

    2007-12-01

    Images of earthquake ruptures, obtained from modelling/inverting seismic and/or geodetic data exhibit a high degree in spatial complexity. This earthquake source heterogeneity controls seismic radiation, and is determined by the details of the dynamic rupture process. In turn, such rupture models are used for studying source dynamics and for ground-motion prediction. But how reliable and trustworthy are these earthquake source inversions? Rupture models for a given earthquake, obtained by different research teams, often display striking disparities (see http://www.seismo.ethz.ch/srcmod) However, well resolved, robust, and hence reliable source-rupture models are an integral part to better understand earthquake source physics and to improve seismic hazard assessment. Therefore it is timely to conduct a large-scale validation exercise for comparing the methods, parameterization and data-handling in earthquake source inversions.We recently started a blind test in which several research groups derive a kinematic rupture model from synthetic seismograms calculated for an input model unknown to the source modelers. The first results, for an input rupture model with heterogeneous slip but constant rise time and rupture velocity, reveal large differences between the input and inverted model in some cases, while a few studies achieve high correlation between the input and inferred model. Here we report on the statistical assessment of the set of inverted rupture models to quantitatively investigate their degree of (dis-)similarity. We briefly discuss the different inversion approaches, their possible strength and weaknesses, and the use of appropriate misfit criteria. Finally we present new blind-test models, with increasing source complexity and ambient noise on the synthetics. The goal is to attract a large group of source modelers to join this source-inversion blindtest in order to conduct a large-scale validation exercise to rigorously asses the performance and

  12. Permittivity and conductivity parameter estimations using full waveform inversion

    NASA Astrophysics Data System (ADS)

    Serrano, Jheyston O.; Ramirez, Ana B.; Abreo, Sergio A.; Sadler, Brian M.

    2018-04-01

    Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.

  13. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  15. Dual exposure, two-photon, conformal phasemask lithography for three dimensional silicon inverse woodpile photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shir, Daniel J.; Nelson, Erik C.; Chanda, Debashis

    2010-01-01

    The authors describe the fabrication and characterization of three dimensional silicon inverse woodpile photonic crystals. A dual exposure, two-photon, conformal phasemask technique is used to create high quality polymer woodpile structures over large areas with geometries that quantitatively match expectations based on optical simulations. Depositing silicon into these templates followed by the removal of the polymer results in silicon inverse woodpile photonic crystals for which calculations indicate a wide, complete photonic bandgap over a range of structural fill fractions. Spectroscopic measurements of normal incidence reflection from both the polymer and siliconphotonic crystals reveal good optical properties.

  16. Birth and death of genes linked to chromosomal inversion

    PubMed Central

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  17. An adaptive coupling strategy for joint inversions that use petrophysical information as constraints

    NASA Astrophysics Data System (ADS)

    Heincke, Björn; Jegen, Marion; Moorkamp, Max; Hobbs, Richard W.; Chen, Jin

    2017-01-01

    Joint inversion strategies for geophysical data have become increasingly popular as they allow for the efficient combination of complementary information from different data sets. The algorithm used for the joint inversion needs to be flexible in its description of the subsurface so as to be able to handle the diverse nature of the data. Hence, joint inversion schemes are needed that 1) adequately balance data from the different methods, 2) have stable convergence behavior, 3) consider the different resolution power of the methods used and 4) link the parameter models in a way that they are suited for a wide range of applications. Here, we combine active source seismic P-wave tomography, gravity and magnetotelluric (MT) data in a petrophysical joint inversion that accounts for these issues. Data from the different methods are inverted separately but are linked through constraints accounting for parameter relationships. An advantage of performing the inversions separately is that no relative weighting between the data sets is required. To avoid perturbing the convergence behavior of the inversions by the coupling, the strengths of the constraints are readjusted at each iteration. The criterion we use to control the adaption of the coupling strengths is based on variations in the objective functions of the individual inversions from one to the next iteration. Adaption of the coupling strengths makes the joint inversion scheme also applicable to subsurface conditions, where assumed relationships are not valid everywhere, because the individual inversions decouple if it is not possible to reach adequately low data misfits for the made assumptions. In addition, the coupling constraints depend on the relative resolutions of the methods, which leads to an improved convergence behavior of the joint inversion. Another benefit of the proposed scheme is that structural information can easily be incorporated in the petrophysical joint inversion (no additional terms are added

  18. INVERSE QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP ANALYSIS FOR IMPROVING PREDICTIONS OF CHEMICAL TOXICITY

    EPA Science Inventory

    The toxic outcomes associated with environmental contaminants are often not due to the chemical form that was originally introduced into the environment, but rather to the chemical having undergone a transformation prior to reaching the vulnerable species. More importantly, the c...

  19. Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2017-12-01

    Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.

  20. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    PubMed

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  1. Coffee and Tea Consumption Are Inversely Associated with Mortality in a Multiethnic Urban Population123

    PubMed Central

    Gardener, Hannah; Rundek, Tatjana; Wright, Clinton B.; Elkind, Mitchell S. V.; Sacco, Ralph L.

    2013-01-01

    Coffee and tea are commonly consumed beverages. Inverse associations with mortality have been suggested for coffee and tea, but the relationships with cause-specific mortality are not well understood. We examined regular and decaffeinated coffee and tea in relation to mortality due to all causes, vascular, nonvascular, and cancer in the multi-ethnic, prospective, population-based Northern Manhattan Study. The study population included 2461 participants with diet data who were free of stroke, myocardial infarction, and cancer at baseline (mean age 68.30 ± 10.23 y, 36% men, 19% white, 23% black, 56% Hispanic). During a mean follow-up of 11 y, we examined the associations between coffee and tea consumption, assessed by food frequency questionnaire, and 863 deaths (342 vascular related and 444 nonvascular including 160 cancer deaths) using multivariable-adjusted Cox models. Coffee consumption was inversely associated with all-cause mortality [for each additional cup/d, HR = 0.93 (95% CI: 0.88, 0.99); P = 0.02]. Caffeinated coffee was inversely associated with all-cause mortality, driven by a strong protection among those who drank ≥4 cups/d. An inverse dose-response relationship between tea and all-cause mortality was suggested [for each additional cup/d, HR = 0.91 (95% CI: 0.84, 0.99); P = 0.01]. Coffee consumption ≥4/d was protective against nonvascular death [vs. <1/mo, HR = 0.57 (95% CI: 0.33, 0.97)] and tea consumption ≥2/d was protective against nonvascular death [HR = 0.63 (95% CI: 0.41, 0.95)] and cancer [HR = 0.33 (95% CI: 0.14, 0.80)]. There was a strong inverse association between coffee and vascular-related mortality among Hispanics only. Further study is needed, including investigation into the mechanisms and compounds in coffee and tea responsible for the inverse associations with mortality. The differential relationship between coffee and vascular death across race/ethnicity underscores the need for research in similar multi-ethnic cohorts

  2. Structural diagnostics of the tropopause inversion layer and its evolution

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Wang, T.

    2015-01-01

    The Tropopause Inversion Layer (TIL) is marked by a peak in static stability directly above the tropopause. The TIL is quantitatively defined with new diagnostics using Global Positioning System Radio Occultation temperature soundings and reanalysis data. A climatology of the TIL is developed from reanalysis data (1980-2011) using diagnostics for the position, depth, and strength of the TIL based on the TIL peak in static stability. TIL diagnostics have defined relationships to the synoptic situation in the Upper Troposphere and Lower Stratosphere. The TIL is present nearly all the time. The TIL becomes hard to define in the subtropics where tropical air overlies midlatitude air, in a region of complex static stability profiles. The mean position of the subtropical TIL gradient is sharp and is co-located with the subtropical tropopause break. Over the period 1980-2011 the TIL depth below the tropopause has decreased by 5% per decade and increased above the tropical tropopause by a similar percentage. Furthermore, the latitude of the abrupt change in the TIL from tropical to extratropical in the lower stratosphere appears to have shifted poleward in each hemisphere by ˜1° latitude per decade, depending on the diagnostic examined. Reanalysis trends should be treated with caution.

  3. Using Live-Crown Ratio to Control Wood Quality: An Example of Quantitative Silviculture

    Treesearch

    Thomas J. Dean

    1999-01-01

    Quantitative silviculture is the application of biological relationships in meeting specific, quantitative management objectives. It is a two-sided approach requiring the identification and application of biological relationships. An example of quantitative silviculture is presented that uses a relationship between average-live crown ratio and relative stand density...

  4. Generalized Moore Penrose Inverse of Normal Elements in a Ring with Involution

    NASA Astrophysics Data System (ADS)

    Titi Udjiani, SRRM; Harjito; Suryoto; Prima P, Nikken

    2018-01-01

    Based on the definition of a normal element in a ring with involution, it is found that each normal element is commutatively with the product of itself and the involution of itself. On the other hand, if the element of a ring with involution has generalized Moore Penrose inverse, then the element is also commutative with the product of itself and the involution of itself. In this paper, the phenomenon of the similarity properties from normal elements and generalized Moore Penrose inverse is used to establish the relationship between of them with them. .

  5. The Relationship Between Online Social Networking and Depression: A Systematic Review of Quantitative Studies.

    PubMed

    Baker, David A; Algorta, Guillermo Perez

    2016-11-01

    Online social networking sites (SNSs) such as Facebook, Twitter, and MySpace are used by billions of people every day to communicate and interact with others. There has been increasing interest in the potential impact of online social networking on wellbeing, with a broadening body of new research into factors associated with both positive and negative mental health outcomes such as depression. This systematic review of empirical studies (n = 30) adds to existing research in this field by examining current quantitative studies focused on the relationship between online social networking and symptoms of depression. The academic databases PsycINFO, Web of Science, CINAHL, MEDLINE, and EMBASE were searched systematically using terms related to online social networking and depression. Reporting quality was critically appraised and the findings discussed with reference to their wider implications. The findings suggest that the relationship between online social networking and symptoms of depression may be complex and associated with multiple psychological, social, behavioral, and individual factors. Furthermore, the impact of online social networking on wellbeing may be both positive and negative, highlighting the need for future research to determine the impact of candidate mediators and moderators underlying these heterogeneous outcomes across evolving networks.

  6. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation.

    PubMed

    Finley, Anna J; Tang, David; Schmeichel, Brandon J

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration.

  7. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helguera, Aliuska Morales; Molecular Simulation and Drug Design, Chemical Bioactive Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara; Department of Chemistry, Central University of Las Villas, Santa Clara, 54830, Villa Clara

    2008-09-01

    In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q{sup 2}{sub LOO} = 78.53 and q{sup 2}{sub Boot} = 74.97). Such a model wasmore » based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts.« less

  8. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  9. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues.

    PubMed

    Das, Sreeparna; Mitra, Indrani; Batuta, Shaikh; Niharul Alam, Md; Roy, Kunal; Begum, Naznin Ara

    2014-11-01

    A series of flavonoid analogues were synthesized and screened for the in vitro antioxidant activity through their ability to quench 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The activity of these compounds, measured in comparison to the well-known standard antioxidants (29-32), their precursors (38-42) and other bioactive moieties (38-42) resembling partially the flavone skeleton was analyzed further to develop Quantitative Structure-Activity Relationship (QSAR) models using the Genetic Function Approximation (GFA) technique. Based on the essential structural requirements predicted by the QSAR models, some analogues were designed, synthesized and tested for activity. The predicted and experimental activities of these compounds were well correlated. Flavone analogue 20 was found to be the most potent antioxidant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application.

    PubMed

    Girgis, Adel S; Basta, Altaf H; El-Saied, Houssni; Mohamed, Mohamed A; Bedair, Ahmad H; Salim, Ahmad S

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12 . Some of the synthesized compounds provided promising fluorescence properties with quantum yield ( Φ ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines ( 13 , 15 , 18 , 19 and 23 ) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23 , provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  11. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application

    NASA Astrophysics Data System (ADS)

    Girgis, Adel S.; Basta, Altaf H.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  12. On the Structural Plasticity of the Human Genome: Chromosomal Inversions Revisited

    PubMed Central

    Alves, Joao M; Lopes, Alexandra M; Chikhi, Lounès; Amorim, António

    2012-01-01

    With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome. PMID:23730202

  13. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform

    PubMed Central

    Larkin, Kieran G.; Fletcher, Peter A.

    2014-01-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform. PMID:24688823

  14. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. © 2015 John Wiley & Sons A/S.

  15. Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects

    PubMed Central

    Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan

    2014-01-01

    Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed. PMID:25469217

  16. Estimating Irrigation Water Requirements using MODIS Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Harriss, Robert; Harriss, Robert; Wells, Gordon; Glantz, Michael; Dukhovny, Victor A.; Orlovsky, Leah

    2007-01-01

    An inverse process approach using satellite-driven (MODIS) biophysical modeling was used to quantitatively assess water resource demand in semi-arid and arid agricultural lands by comparing the carbon and water flux modeled under both equilibrium (in balance with prevailing climate) and non-equilibrium (irrigated) conditions. Since satellite observations of irrigated areas show higher leaf area indices (LAI) than is supportable by local precipitation, we postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. For an observation year we used MODIS vegetation indices, local climate data, and the SiB2 photosynthesis-conductance model to examine the relationship between climate and the water stress function for a given grid-cell and observed leaf area. To estimate the minimum amount of supplemental water required for an observed cell, we added enough precipitation to the prevailing climatology at each time step to minimize the water stress function and bring the soil to field capacity. The experiment was conducted on irrigated lands on the U.S. Mexico border and Central Asia and compared to estimates of irrigation water used.

  17. Inverse Relationship between Serum VEGF Levels and Late In-Stent Restenosis of Drug-Eluting Stents

    PubMed Central

    Shen, Li; Ji, Meng; Cai, Sishi; Chen, Jiahui; Yao, Zhifeng

    2017-01-01

    Late in-stent restenosis (ISR) has raised concerns regarding the long-term efficacy of drug-eluting stents (DES). The role of vascular endothelial growth factor (VEGF) in the pathological process of ISR is controversial. This retrospective study aimed to investigate the relationship between serum VEGF levels and late ISR in patients with DES implantation. A total of 158 patients who underwent angiography follow-up beyond 1 year after intervention were included. The study population was classified into ISR and non-ISR groups. The ISR group was further divided according to follow-up duration and Mehran classification. VEGF levels were significantly lower in the ISR group than in the non-ISR group [96.34 (48.18, 174.14) versus 179.14 (93.59, 307.74) pg/mL, p < 0.0001]. Multivariate regression revealed that VEGF level, procedure age, and low-density lipoprotein cholesterol were independent risk factors for late ISR formation. Subgroup analysis demonstrated that VEGF levels were even lower in the very late (≥5 years) and diffuse ISR group (Mehran patterns II, III, and IV) than in the late ISR group (1–4 years) and the focal ISR group (Mehran pattern I), respectively. Furthermore, significant difference was found between diffuse and focal ISR groups. Serum VEGF levels were inversely associated with late ISR after DES implantation. PMID:28373989

  18. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self

  19. Investigating Children's Understanding of Inversion Using the Missing Number Paradigm

    ERIC Educational Resources Information Center

    Gilmore, Camilla K.

    2006-01-01

    The development of conceptual understanding in arithmetic is a gradual process and children may make use of a concept in some situations before others. Previous research has demonstrated that when children are given arithmetic problems with an inverse relationship they can infer that the initial and final quantities are the same. However, we do…

  20. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    PubMed

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  1. Love 2.0: a quantitative exploration of sex and relationships in the virtual world Second Life.

    PubMed

    Craft, Ashley John

    2012-08-01

    This study presents the quantitative results of a web-based survey exploring the experiences of those who seek sex and relationships in the virtual world of Second Life. The survey gathered data on demographics, relationships, and sexual behaviors from 235 Second Life residents to compare with U.S. General Social Survey data on Internet users and the general population. The Second Life survey also gathered data on interests in and experiences with a number of sexual practices in both offline and online environments. Comparative analysis found that survey participants were significantly older, more educated, and less religious than a wider group of Internet users, and in certain age groups were far less likely to be married or have children. Motivations for engaging in cybersex were presented. Analysis of interest and experience of different sexual practices supported findings by other researchers that online environments facilitated access, but also indicated that interest in certain sexual practices could differ between offline and online environments.

  2. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  3. Lung nodule detection in pediatric chest CT: quantitative relationship between image quality and radiologist performance.

    PubMed

    Li, Xiang; Samei, Ehsan; Barnhart, Huiman X; Gaca, Ana Maria; Hollingsworth, Caroline L; Maxfield, Charles M; Carrico, Caroline W T; Colsher, James G; Frush, Donald P

    2011-05-01

    To determine the quantitative relationship between image quality and radiologist performance in detecting small lung nodules in pediatric CT. The study included clinical chest CT images of 30 pediatric patients (0-16 years) scanned at tube currents of 55-180 mA. Calibrated noise addition software was used to simulate cases at three nominal mA settings: 70, 35, and 17.5 mA, resulting in quantum noise of 7-32 Hounsfield Unit (HU). Using a validated nodule simulation technique, lung nodules with diameters of 3-5 mm and peak contrasts of 200-500 HU were inserted into the cases, which were then randomized and rated independently by four experienced pediatric radiologists for nodule presence on a continuous scale from 0 (definitely absent) to 100 (definitely present). The receiver operating characteristic (ROC) data were analyzed to quantify the relationship between diagnostic accuracy (area under the ROC curve, AUC) and image quality (the product of nodule peak contrast and displayed diameter to noise ratio, CDNR display). AUC increased rapidly from 0.70 to 0.87 when CDNR display increased from 60 to 130 mm, followed by a slow increase to 0.94 when CDNR display further increased to 257 mm. For the average nodule diameter (4 mm) and contrast (350 HU), AUC decreased from 0.93 to 0.71 with noise increased from 7 to 28 HU. We quantified the relationship between image quality and the performance of radiologists in detecting lung nodules in pediatric CT. The relationship can guide CT protocol design to achieve the desired diagnostic performance at the lowest radiation dose.

  4. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  5. Coffee consumption is inversely associated with type 2 diabetes in Chinese

    PubMed Central

    Lin, Wen-Yuan; Pi-Sunyer, F. Xaiver; Chen, Ching-Chu; Davidson, Lance E.; Liu, Chiu-Shong; Li, Tsai-Chung; Wu, Mei-Fong; Li, Chia-Ing; Chen, Walter; Lin, Cheng-Chieh

    2011-01-01

    Background Coffee consumption has been shown to be inversely associated to type 2 diabetes mellitus (T2DM), but evidence in Chinese populations is limited. We investigated the relationship between coffee consumption and T2DM in a population-based cohort of middle-aged Chinese. Materials and Methods We studied 2,332 subjects who participated in the Taichung Community Health Study in Taiwan in 2004. The relationships between coffee consumption, T2DM and fasting glucose were assessed. Results The prevalence of T2DM was 14.0% and 10.4% in men and women. After adjustment for age, body mass index, blood pressure, smoking, alcohol drinking, betel nut chewing, physical activity, income, education level, fat%, protein%, carbohydrate%, and magnesium, coffee intake was inversely associated with T2DM. Habitual coffee drinkers had 38–46% lower risk of T2DM than non-drinkers. Compared to non-drinkers, the adjusted odds ratios (ORs) for T2DM according to subjects with habitual coffee consumption (<1, 1–6, ≥ 7 times per week) were 0.77(0.52–1.13), 0.46(0.28–0.76), and 0.37(0.16–0.83), respectively. The decreasing ORs indicate a dose-response effect of coffee consumption on the likelihood of having T2DM (p < 0.001). A similar relationship was also evident in newly-diagnosed T2DM (p < 0.05). The adjusted mean fasting glucose levels gradually decreased as the frequency of coffee consumption increased (p < 0.05). Conclusions Coffee intake is inversely associated with T2DM in Chinese. Coffee may be a protective agent for T2DM in Chinese. PMID:21226707

  6. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela; ...

    2017-07-01

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  7. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  8. The emotional coaching model: quantitative and qualitative research into relationships, communication and decisions in physical and sports rehabilitation

    PubMed Central

    RESPIZZI, STEFANO; COVELLI, ELISABETTA

    2015-01-01

    The emotional coaching model uses quantitative and qualitative elements to demonstrate some assumptions relevant to new methods of treatment in physical rehabilitation, considering emotional, cognitive and behavioral aspects in patients, whether or not they are sportsmen. Through quantitative tools (Tampa Kinesiophobia Scale, Emotional Interview Test, Previous Re-Injury Test, and reports on test scores) and qualitative tools (training contracts and relationships of emotional alliance or “contagion”), we investigate initial assumptions regarding: the presence of a cognitive and emotional mental state of impasse in patients at the beginning of the rehabilitation pathway; the curative value of the emotional alliance or “emotional contagion” relationship between healthcare provider and patient; the link between the patient’s pathology and type of contact with his own body and emotions; analysis of the psychosocial variables for the prediction of possible cases of re-injury for patients who have undergone or are afraid to undergo reconstruction of the anterior cruciate ligament (ACL). Although this approach is still in the experimental stage, the scores of the administered tests show the possibility of integrating quantitative and qualitative tools to investigate and develop a patient’s physical, mental and emotional resources during the course of his rehabilitation. Furthermore, it seems possible to identify many elements characterizing patients likely to undergo episodes of re-injury or to withdraw totally from sporting activity. In particular, such patients are competitive athletes, who fear or have previously undergone ACL reconstruction. The theories referred to (the transactional analysis theory, self-determination theory) and the tools used demonstrate the usefulness of continuing this research in order to build a shared coaching model treatment aimed at all patients, sportspeople or otherwise, which is not only physical but also emotional, cognitive

  9. A Hybrid Seismic Inversion Method for V P/V S Ratio and Its Application to Gas Identification

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Zhang, Hongbing; Han, Feilong; Xiao, Wei; Shang, Zuoping

    2018-03-01

    The ratio of compressional wave velocity to shear wave velocity (V P/V S ratio) has established itself as one of the most important parameters in identifying gas reservoirs. However, considering that seismic inversion process is highly non-linear and geological conditions encountered may be complex, a direct estimation of V P/V S ratio from pre-stack seismic data remains a challenging task. In this paper, we propose a hybrid seismic inversion method to estimate V P/V S ratio directly. In this method, post- and pre-stack inversions are combined in which the pre-stack inversion for V P/V S ratio is driven by the post-stack inversion results (i.e., V P and density). In particular, the V P/V S ratio is considered as a model parameter and is directly inverted from the pre-stack inversion based on the exact Zoeppritz equation. Moreover, anisotropic Markov random field is employed in order to regularise the inversion process as well as taking care of geological structures (boundaries) information. Aided by the proposed hybrid inversion strategy, the directional weighting coefficients incorporated in the anisotropic Markov random field neighbourhoods are quantitatively calculated by the anisotropic diffusion method. The synthetic test demonstrates the effectiveness of the proposed inversion method. In particular, given low quality of the pre-stack data and high heterogeneity of the target layers in the field data, the proposed inversion method reveals the detailed model of V P/V S ratio that can successfully identify the gas-bearing zones.

  10. Noninvasive Assessment of Biochemical and Mechanical Properties of Lumbar Discs Through Quantitative Magnetic Resonance Imaging in Asymptomatic Volunteers.

    PubMed

    Foltz, Mary H; Kage, Craig C; Johnson, Casey P; Ellingson, Arin M

    2017-11-01

    Intervertebral disc degeneration is a prevalent phenomenon associated with back pain. It is of critical clinical interest to discriminate disc health and identify early stages of degeneration. Traditional clinical T2-weighted magnetic resonance imaging (MRI), assessed using the Pfirrmann classification system, is subjective and fails to adequately capture initial degenerative changes. Emerging quantitative MRI techniques offer a solution. Specifically, T2* mapping images water mobility in the macromolecular network, and our preliminary ex vivo work shows high predictability of the disc's glycosaminoglycan content (s-GAG) and residual mechanics. The present study expands upon this work to predict the biochemical and biomechanical properties in vivo and assess their relationship with both age and Pfirrmann grade. Eleven asymptomatic subjects (range: 18-62 yrs) were enrolled and imaged using a 3T MRI scanner. T2-weighted images (Pfirrmann grade) and quantitative T2* maps (predict s-GAG and residual stress) were acquired. Surface maps based on the distribution of these properties were generated and integrated to quantify the surface volume. Correlational analyses were conducted to establish the relationship between each metric of disc health derived from the quantitative T2* maps with both age and Pfirrmann grade, where an inverse trend was observed. Furthermore, the nucleus pulposus (NP) signal in conjunction with volumetric surface maps provided the ability to discern differences during initial stages of disc degeneration. This study highlights the ability of T2* mapping to noninvasively assess the s-GAG content, residual stress, and distributions throughout the entire disc, which may provide a powerful diagnostic tool for disc health assessment.

  11. Inverse expression of survivin and reprimo correlates with poor patient prognosis in gastric cancer

    PubMed Central

    Cerda-Opazo, Paulina; Valenzuela-Valderrama, Manuel; Wichmann, Ignacio; Rodríguez, Andrés; Contreras-Reyes, Daniel; Fernández, Elmer A.; Carrasco-Aviño, Gonzalo; Corvalán, Alejandro H.; Quest, Andrew F.G.

    2018-01-01

    BACKGROUND The objective of the study was to determine the relationship between Survivin and Reprimo transcript/protein expression levels, and gastric cancer outcome. METHODS In silico correlations between an agnostic set of twelve p53-dependent apoptosis and cell-cycle genes were explored in the gastric adenocarcinoma TCGA database, using cBioPortal. Findings were validated by regression analysis of RNAseq data. Separate regression analyses were performed to assess the impact of p53 status on Survivin and Reprimo. Quantitative reverse-transcription PCR (RT-qPCR) and immunohistochemistry confirmed in silico findings on fresh-frozen and paraffin-embedded gastric cancer tissues, respectively. Wild-type (AGS, SNU-1) and mutated p53 (NCI-N87) cell lines transfected with pEGFP-Survivin or pCMV6-Reprimo were evaluated by RT-qPCR and Western blotting. Kaplan-Meier method and Long-Rank test were used to assess differences in patient outcome. RESULTS cBioPortal analysis revealed an inverse correlation between Survivin and Reprimo expression (Pearson’s r= −0.3, Spearman’s ρ= −0.55). RNAseq analyses confirmed these findings (Spearman’s ρ= −0.37, p<4.2e-09) and revealed p53 dependence in linear regression models (p<0.05). mRNA and protein levels validated these observations in clinical samples (p<0.001). In vitro analysis in cell lines demonstrated that increasing Survivin reduced Reprimo, while increasing Reprimo reduced Survivin expression, but only did so in p53 wild-type gastric cells (p<0.05). Survivin-positive but Reprimo-negative patients displayed shorter overall survival rates (p=0.047, Long Rank Test) (HR=0.32; 95%IC: 0.11-0.97; p=0.044). CONCLUSIONS TCGA RNAseq data analysis, evaluation of clinical samples and studies in cell lines identified an inverse relationship between Survivin and Reprimo. Elevated Survivin and reduced Reprimo protein expression correlated with poor patient prognosis in gastric cancer. PMID:29560115

  12. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    PubMed

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Prospective Middle-School Mathematics Teachers' Quantitative Reasoning and Their Support for Students' Quantitative Reasoning

    ERIC Educational Resources Information Center

    Kabael, Tangul; Akin, Ayca

    2018-01-01

    The aim of this research is to examine prospective mathematics teachers' quantitative reasoning, their support for students' quantitative reasoning and the relationship between them, if any. The teaching experiment was used as the research method in this qualitatively designed study. The data of the study were collected through a series of…

  14. Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application

    PubMed Central

    Girgis, Adel S.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-01-01

    A variety of fluorescence-active fluorinated pyrazolines 13–33 was synthesized in good yields through cyclocondensation reaction of propenones 1–9 with aryl hydrazines 10–12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure–property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents. PMID:29657796

  15. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation

    PubMed Central

    Finley, Anna J.; Tang, David; Schmeichel, Brandon J.

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration. PMID:26402334

  16. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    PubMed

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quantitative structure-retention relationships of polycyclic aromatic hydrocarbons gas-chromatographic retention indices.

    PubMed

    Drosos, Juan Carlos; Viola-Rhenals, Maricela; Vivas-Reyes, Ricardo

    2010-06-25

    Polycyclic aromatic compounds (PAHs) are of concern in environmental chemistry and toxicology. In the present work, a QSRR study was performed for 209 previously reported PAHs using quantum mechanics and other sources descriptors estimated by different approaches. The B3LYP/6-31G* level of theory was used for geometrical optimization and quantum mechanics related variables. A good linear relationship between gas-chromatographic retention index and electronic or topologic descriptors was found by stepwise linear regression analysis. The molecular polarizability (alpha) and the second order molecular connectivity Kier and Hall index ((2)chi) showed evidence of significant correlation with retention index by means of important squared coefficient of determination, (R(2)), values (R(2)=0.950 and 0.962, respectively). A one variable QSRR model is presented for each descriptor and both models demonstrates a significant predictive capacity established using the leave-many-out LMO (excluding 25% of rows) cross validation method's q(2) cross-validation coefficients q(2)(CV-LMO25%), (obtained q(2)(CV-LMO25%) 0.947 and 0.960, respectively). Furthermore, the physicochemical interpretation of selected descriptors allowed detailed explanation of the source of the observed statistical correlation. The model analysis suggests that only one descriptor is sufficient to establish a consistent retention index-structure relationship. Moderate or non-significant improve was observed for quantitative results or statistical validation parameters when introducing more terms in predictive equation. The one parameter QSRR proposed model offers a consistent scheme to predict chromatographic properties of PAHs compounds. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  19. Time-reversal and Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  20. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.

  1. Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs

    PubMed Central

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-01-01

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  2. Male infertility associated with de novo pericentric inversion of chromosome 1.

    PubMed

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  3. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  4. Controllable rotational inversion in nanostructures with dual chirality.

    PubMed

    Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain

    2018-04-05

    Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.

  5. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  6. Value of F-wave inversion in diagnosis of carpal tunnel syndrome and it's relation with anthropometric measurements.

    PubMed

    Komurcu, Hatice Ferhan; Kilic, Selim; Anlar, Omer

    2015-01-01

    The clinical importance of F-wave inversion in the diagnosis of Carpal Tunnel Syndrome (CTS) is not yet well known. This study aims to investigate the value of F-wave inversion in diagnosing CTS, and to evaluate the relationship of F-wave inversion with age, gender, diabetes mellitus, body mass index (BMI), wrist or waist circumferences. Patients (n=744) who were considered to have CTS with clinical findings were included in the study. In order to confirm the diagnosis of CTS, standard electrophysiological parameters were studied with electroneuromyography. In addition, median nerve F-wave measurements were done and we determined if F-wave inversion was present or not. Sensitivity and specificity of F-wave inversion were investigated for its value in showing CTS diagnosed by electrophysiological examination. CTS diagnosis was confirmed by routine electrophysiological parameters in 307 (41.3%) patients. The number of the patients with the presence of F-wave inversion was 243 (32.7%). Sensitivity of F-wave inversion was found as 56% and specificity as 83.8%. BMI and wrist circumference values were significantly higher in patients with F-wave inversion present than those with F-wave inversion absent (p=0.0033, p=0.025 respectively). F-wave inversion can be considered as a valuable electrophysiological measurement for screening of CTS.

  7. Qualitative and quantitative processing of side-scan sonar data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwan, F.S.; Anderson, A.L.; Hilde, T.W.C.

    1990-06-01

    Modern side-scan sonar systems allow vast areas of seafloor to be rapidly imaged and quantitatively mapped in detail. The application of remote sensing image processing techniques can be used to correct for various distortions inherent in raw sonography. Corrections are possible for water column, slant-range, aspect ratio, speckle and striping noise, multiple returns, power drop-off, and for georeferencing. The final products reveal seafloor features and patterns that are geometrically correct, georeferenced, and have improved signal/noise ratio. These products can be merged with other georeferenced data bases for further database management and information extraction. In order to compare data collected bymore » different systems from a common area and to ground truth measurements and geoacoustic models, quantitative correction must be made for calibrated sonar system and bathymetry effects. Such data inversion must account for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area, and grazing angle effects. Seafloor classification can then be performed on the calculated back-scattering strength using Lambert's Law and regression analysis. Examples are given using both approaches: image analysis and inversion of data based on the sonar equation.« less

  8. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  9. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  10. Pain Sensitivity is Inversely Related to Regional Grey Matter Density in the Brain

    PubMed Central

    Emerson, Nichole M.; Zeidan, Fadel; Lobanov, Oleg V.; Hadsel, Morten S.; Martucci, Katherine T.; Quevedo, Alexandre S.; Starr, Christopher J.; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C.

    2014-01-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity we used voxel-based morphometry (VBM) to investigate the relationship between grey matter density across the whole brain and inter-individual differences in pain sensitivity in 116 healthy volunteers (62 females, 54 males). Structural MRI and psychophysical data from 10 previous fMRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions exhibited a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. PMID:24333778

  11. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  12. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.

    PubMed

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  13. Improving Quantitative Structure-Activity Relationship Models using Artificial Neural Networks Trained with Dropout

    PubMed Central

    Mendenhall, Jeffrey; Meiler, Jens

    2016-01-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery (LB-CADD) pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both Enrichment false positive rate (FPR) and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22–46% over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods. PMID:26830599

  14. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis

  15. On the virtues of automated quantitative structure-activity relationship: the new kid on the block.

    PubMed

    de Oliveira, Marcelo T; Katekawa, Edson

    2018-02-01

    Quantitative structure-activity relationship (QSAR) has proved to be an invaluable tool in medicinal chemistry. Data availability at unprecedented levels through various databases have collaborated to a resurgence in the interest for QSAR. In this context, rapid generation of quality predictive models is highly desirable for hit identification and lead optimization. We showcase the application of an automated QSAR approach, which randomly selects multiple training/test sets and utilizes machine-learning algorithms to generate predictive models. Results demonstrate that AutoQSAR produces models of improved or similar quality to those generated by practitioners in the field but in just a fraction of the time. Despite the potential of the concept to the benefit of the community, the AutoQSAR opportunity has been largely undervalued.

  16. AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling.

    PubMed

    Dixon, Steven L; Duan, Jianxin; Smith, Ethan; Von Bargen, Christopher D; Sherman, Woody; Repasky, Matthew P

    2016-10-01

    We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models. The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish. AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.

  17. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  18. Synthesis and quantitative structure-antifungal activity relationships of clovane derivatives against Botrytis cinerea.

    PubMed

    Saiz-Urra, Liane; Racero, Juan C; Macías-Sáchez, Antonio J; Hernández-Galán, Rosario; Hanson, James R; Perez-Gonzalez, Maykel; Collado, Isidro G

    2009-03-25

    Twenty-three clovane derivatives, nine described here for the first time, bearing substituents on carbon C-2, have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The results showed that compounds 9, 14, 16, and 18 bearing nitrogen atoms in the chain attached at C-2 displayed potent antifungal activity, whereas mercapto derivatives 13, 19, and 22 displayed low activity. The antifungal activity showed a clear structure-activity relationship (SAR) trend, which confirmed the importance of the nature of the C-2 chain on the antifungal activity. On the basis of these observations, the metabolism of compounds 8 and 14 by the fungus B. cinerea, and the metabolism of other clovanes by this fungus, described previously, a pro-drug action mechanism for 2-alkoxyclovane compounds is proposed. Quantitative structure-activity relationship (QSAR) studies were performed to rationalize the results and to suggest further optimization, using a topological sub-structural molecular design (TOPS-MODE) approach. The model displayed good fit and predictive capability, describing 85.5% of the experimental variance, with a standard deviation of 9.502 and yielding high values of cross-validation determination coefficients (q2CV-LOO = 0.784 and q2boot = 0.673). The most significant variables were the spectral moments weighted by bond dipole moment (Dip), hydrophobicity (Hyd), and the combined dipolarity/polarizability Abraham molecular descriptor (Ab-pi2H).

  19. Quantitative assessment of the relationship between biomarker content and biomass in marine phytoplankton in responses to temperature and nutrient supply ratio changes

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Chen, X.; Bi, R.; Zhang, L. H.; Li, L.; Zhao, M.

    2016-12-01

    Alkenones and sterols are useful biomarkers to construct past productivity and community structure changes in aquatic environments. Until now, the quantitative relationship between biomarker content and biomass in marine phytoplankton remains understudied, which hinders the quantitative reconstruction of ocean changes. In this study, we carried out laboratory culture experiments to determine the quantitative relationship between biomarker content and biomass under three temperatures (15°, 20° and 25°) and three N:P supply ratios (N:P=10:1, 24:1 and 63:1 mol mol-1) for three common phytoplankton groups, diatoms (Phaeodactylum tricornutum Bohlin, Skeletonema costatum, Chaetoceros muelleri), dinoflagellates (Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum), and coccolithophores (Emiliania huxleyi). Alkenones were only detected in E. huxleyiand dinosterol was only detected in dinoflagellates, confirming that they are the biomarkers for these two groups of phytoplankton, respectively. Brassicasterol was detected in all three groups of phytoplankton, but its content was higher in diatoms, suggesting that it is still a useful biomarker for diatoms. Cell-normalized alkenone content (pg/cell) increases with increasing growth temperature by up to 30%; while the effect of nutrients on alkenone content is minimum. On the other hand, cell-normalized dinosterol content is not temperature dependent, but it is strongly affected by nutrient ratio changes. The effects of temperature and nutrients on cell-normalized brassicasterol content are phytoplankton dependent. For diatoms, the temperature effect is minimum while the nutrient effect is significant but also varies with temperatures. Our results have strong implications for understanding how different phytoplankton respond to global changes, and for more quantitative reconstruction of past productivity and community structure changes using these biomarkers.

  20. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  1. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  2. Utilization of quantitative structure-activity relationships (QSARs) in risk assessment: Alkylphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, B.D.; Toole, A.P.; Callahan, B.G.

    1991-12-01

    Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromaticmore » ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.« less

  3. A thorough experimental study of CH/π interactions in water: quantitative structure-stability relationships for carbohydrate/aromatic complexes.

    PubMed

    Jiménez-Moreno, Ester; Jiménez-Osés, Gonzalo; Gómez, Ana M; Santana, Andrés G; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesus; Asensio, Juan Luis

    2015-11-13

    CH/π interactions play a key role in a large variety of molecular recognition processes of biological relevance. However, their origins and structural determinants in water remain poorly understood. In order to improve our comprehension of these important interaction modes, we have performed a quantitative experimental analysis of a large data set comprising 117 chemically diverse carbohydrate/aromatic stacking complexes, prepared through a dynamic combinatorial approach recently developed by our group. The obtained free energies provide a detailed picture of the structure-stability relationships that govern the association process, opening the door to the rational design of improved carbohydrate-based ligands or carbohydrate receptors. Moreover, this experimental data set, supported by quantum mechanical calculations, has contributed to the understanding of the main driving forces that promote complex formation, underlining the key role played by coulombic and solvophobic forces on the stabilization of these complexes. This represents the most quantitative and extensive experimental study reported so far for CH/π complexes in water.

  4. Ecomorphology of morpho-functional relationships in the family of Sparidae: a quantitative statistic approach.

    PubMed

    Antonucci, Francesca; Costa, Corrado; Aguzzi, Jacopo; Cataudella, Stefano

    2009-07-01

    In many fish species, morphological similarity can be considered as a proxy for similarities in habitat use. The Sparidae family includes species that are recognized for common morphological features such as structure and positioning of the fins and specialized dentition. The aim of this study was to quantitatively describe the relationship of body shape morphology with habitat use, trophic level, and systematics in the majority of known Sparidae species (N = 92). This ecomorphological comparison was performed with a geometric morphometric approach considering as variables the Trophic Index (TROPH), the habitat (i.e., classified as demersal, benthopelagic and reef associated) and the phylogenetic relationship of species at the subfamily level. The analysis by the TROPH variable showed a positive relation with shape because the morphological features of all the species are strongly correlated with their trophic behavior (e.g., herbivore species have a smaller mouth gap that make them able to feed upon sessile resources). The morphological analysis according to the Habitat variable was used to classify species according to a feeding-habitat niche in terms of portion of the water column and seabed space where species mostly perform their behavioral activities. We described three kinds of morphological designs in relation to a benthopelagic, demersal and reef-associated habit. The six subfamily groups were morphologically well distinguishable and the cladogram relative to Mahalanobis' morphological distances was compared with those proposed by other authors. We also quantified the phylogenetic relationship among the different subfamilies based on the analysis of shape in relation to trophic ecology, confirming the observations of the authors. (c) 2009 Wiley-Liss, Inc.

  5. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships.

    PubMed

    Xu, Yuting; Ma, Junshui; Liaw, Andy; Sheridan, Robert P; Svetnik, Vladimir

    2017-10-23

    Deep neural networks (DNNs) are complex computational models that have found great success in many artificial intelligence applications, such as computer vision1,2 and natural language processing.3,4 In the past four years, DNNs have also generated promising results for quantitative structure-activity relationship (QSAR) tasks.5,6 Previous work showed that DNNs can routinely make better predictions than traditional methods, such as random forests, on a diverse collection of QSAR data sets. It was also found that multitask DNN models-those trained on and predicting multiple QSAR properties simultaneously-outperform DNNs trained separately on the individual data sets in many, but not all, tasks. To date there has been no satisfactory explanation of why the QSAR of one task embedded in a multitask DNN can borrow information from other unrelated QSAR tasks. Thus, using multitask DNNs in a way that consistently provides a predictive advantage becomes a challenge. In this work, we explored why multitask DNNs make a difference in predictive performance. Our results show that during prediction a multitask DNN does borrow "signal" from molecules with similar structures in the training sets of the other tasks. However, whether this borrowing leads to better or worse predictive performance depends on whether the activities are correlated. On the basis of this, we have developed a strategy to use multitask DNNs that incorporate prior domain knowledge to select training sets with correlated activities, and we demonstrate its effectiveness on several examples.

  6. Quantitative structure-activity relationship: promising advances in drug discovery platforms.

    PubMed

    Wang, Tao; Wu, Mian-Bin; Lin, Jian-Ping; Yang, Li-Rong

    2015-12-01

    Quantitative structure-activity relationship (QSAR) modeling is one of the most popular computer-aided tools employed in medicinal chemistry for drug discovery and lead optimization. It is especially powerful in the absence of 3D structures of specific drug targets. QSAR methods have been shown to draw public attention since they were first introduced. In this review, the authors provide a brief discussion of the basic principles of QSAR, model development and model validation. They also highlight the current applications of QSAR in different fields, particularly in virtual screening, rational drug design and multi-target QSAR. Finally, in view of recent controversies, the authors detail the challenges faced by QSAR modeling and the relevant solutions. The aim of this review is to show how QSAR modeling can be applied in novel drug discovery, design and lead optimization. QSAR should intentionally be used as a powerful tool for fragment-based drug design platforms in the field of drug discovery and design. Although there have been an increasing number of experimentally determined protein structures in recent years, a great number of protein structures cannot be easily obtained (i.e., membrane transport proteins and G-protein coupled receptors). Fragment-based drug discovery, such as QSAR, could be applied further and have a significant role in dealing with these problems. Moreover, along with the development of computer software and hardware, it is believed that QSAR will be increasingly important.

  7. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors towards Materials Quantitative Structure Property Relationships

    ERIC Educational Resources Information Center

    Krein, Michael

    2011-01-01

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright…

  8. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial

  9. Transdimensional, hierarchical, Bayesian inversion of ambient seismic noise: Australia

    NASA Astrophysics Data System (ADS)

    Crowder, E.; Rawlinson, N.; Cornwell, D. G.

    2017-12-01

    We present models of crustal velocity structure in southeastern Australia using a novel, transdimensional and hierarchical, Bayesian inversion approach. The inversion is applied to long-time ambient noise cross-correlations. The study area of SE Australia is thought to represent the eastern margin of Gondwana. Conflicting tectonic models have been proposed to explain the formation of eastern Gondwana and the enigmatic geological relationships in Bass Strait, which separates Tasmania and the mainland. A geologically complex area of crustal accretion, Bass Strait may contain part of an exotic continental block entrained in colliding crusts. Ambient noise data recorded by an array of 24 seismometers is used to produce a high resolution, 3D shear wave velocity model of Bass Strait. Phase velocity maps in the period range 2-30 s are produced and subsequently inverted for 3D shear wave velocity structure. The transdimensional, hierarchical Bayesian, inversion technique is used. This technique proves far superior to linearised inversion. The inversion model is dynamically parameterised during the process, implicitly controlled by the data, and noise is treated as an inversion unknown. The resulting shear wave velocity model shows three sedimentary basins in Bass Strait constrained by slow shear velocities (2.4-2.9 km/s) at 2-10 km depth. These failed rift basins from the breakup of Australia-Antartica appear to be overlying thinned crust, where typical mantle velocities of 3.8-4.0 km/s occur at depths greater than 20 km. High shear wave velocities ( 3.7-3.8 km/s) in our new model also match well with regions of high magnetic and gravity anomalies. Furthermore, we use both Rayleigh and Love wave phase data to to construct Vsv and Vsh maps. These are used to estimate crustal radial anisotropy in the Bass Strait. We interpret that structures delineated by our velocity models support the presence and extent of the exotic Precambrian micro-continent (the Selwyn Block) that was

  10. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  11. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  12. A Generalization of the Spherical Inversion

    ERIC Educational Resources Information Center

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  13. A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis

    PubMed Central

    Barter, Laura M. C.; Durrant, James R.; Klug, David R.

    2003-01-01

    Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865

  14. PLS-based quantitative structure-activity relationship for substituted benzamides of clebopride type. Application of experimental design in drug design.

    PubMed

    Norinder, U; Högberg, T

    1992-04-01

    The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.

  15. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    NASA Astrophysics Data System (ADS)

    Casillas, Danielle Courtney

    Solar energy has the potential to supply more than enough energy to meet humanity's energy demands. Here, a method for thermochemical solar energy storage through fuel production is presented. A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and oxidation with concentrated solar energy as a heat source, and water as an oxidant. The resulting yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material maintains its original phase. Ordered porosity has been shown superior to random porosity for thermochemical fuel production applications, but stability limits for these structures are currently undefined. Ceria-based inverse opals are currently being investigated to assess the architectural influence on thermochemical hydrogen production. Low tortuosity and continuous interconnected pore network allow for facile gas transport and improved reaction kinetics. Ceria-based ordered materials have recently been shown to increase maximum hydrogen production over non-ordered porous ceria. Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier analysis was applied to SEM images of the material. The algorithm results in an order parameter gamma that describes the degree of long range order maintained by these structures, where gamma>4 signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000°C. Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired tetragonal phases. Through gamma, we were able to find a balance between the benefit of zirconium additions on structural stability and its negative impact on phase. This work demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria based inverse opals to be 1000°C for 1microm pore size. Inverse opals having sub

  16. Data inversion immune to cycle-skipping using AWI

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Umpleby, A.; Yao, G.; Morgan, J. V.

    2014-12-01

    Over the last decade, 3D Full Waveform Inversion (FWI) has become a standard model-building tool in exploration seismology, especially in oil and gas applications -thanks to the high quality (spatial density of sources and receivers) datasets acquired by the industry. FWI provides superior quantitative images than its travel-time counterparts (travel-time based inversion methods) because it aims to match all the information in the observations instead of a severely restricted subset of them, namely picked arrivals.The downside is that the solution space explored by FWI has a high number of local minima, and since the solution is restricted to local optimization methods (due to the objective function evaluation cost), the success of the inversion is subject to starting within the basin of attraction of the global minimum.Local minima can exist for a wide variety of reasons, and it seems unlikely that a formulation of the problem that can eliminate all of them -by defining the optimization problem in a form that results in a monotonic objective function- exist. However, a significant amount of local minima are created by the definition of data misfit. In its standard formulation FWI compares observed data (field data) with predicted data (generated with a synthetic model) by subtracting one from the other, and the objective function is defined as some norm of this difference. The combination of this criteria and the fact that seismic data is oscillatory produces the well-known phenomenon of cycle-skipping, where model updates try to match nearest cycles from one dataset to the other.In order to avoid cycle-skipping we propose a different comparison between observed and predicted data, based on Wiener filters, which exploits the fact that the "identity" Wiener filter is a spike at zero lag. This gives rise to a new objective function without cycle-skipped related local minima, and therefore suppress the need of accurate starting models or low frequencies in the data

  17. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology.

    PubMed

    Kaiser, K L E

    2007-01-01

    This presentation will review the evolution of the workshops from a scientific and personal perspective. From their modest beginning in 1983, the workshops have developed into larger international meetings, regularly held every two years. Their initial focus on the aquatic sphere soon expanded to include properties and effects on atmospheric and terrestrial species, including man. Concurrent with this broadening of their scientific scope, the workshops have become an important forum for the early dissemination of all aspects of qualitative and quantitative structure-activity research in ecotoxicology and human health effects. Over the last few decades, the field of quantitative structure/activity relationships (QSARs) has quickly emerged as a major scientific method in understanding the properties and effects of chemicals on the environment and human health. From substances that only affect cell membranes to those that bind strongly to a specific enzyme, QSARs provides insight into the biological effects and chemical and physical properties of substances. QSARs are useful for delineating the quantitative changes in biological effects resulting from minor but systematic variations of the structure of a compound with a specific mode of action. In addition, more holistic approaches are being devised that result in our ability to predict the effects of structurally unrelated compounds with (potentially) different modes of action. Research in QSAR environmental toxicology has led to many improvements in the manufacturing, use, and disposal of chemicals. Furthermore, it has led to national policies and international agreements, from use restrictions or outright bans of compounds, such as polychlorinated biphenyls (PCBs), mirex, and highly chlorinated pesticides (e.g. DDT, dieldrin) for the protection of avian predators, to alternatives for ozone-depleting compounds, to better waste treatment systems, to more powerful and specific acting drugs. Most of the recent advances

  18. Quantitative Use of Fluorescent In Situ Hybridization To Examine Relationships between Mycolic Acid-Containing Actinomycetes and Foaming in Activated Sludge Plants

    PubMed Central

    Davenport, Russell J.; Curtis, Thomas P.; Goodfellow, Michael; Stainsby, Fiona M.; Bingley, Marc

    2000-01-01

    The formation of viscous foams on aeration basins and secondary clarifiers of activated sludge plants is a common and widespread problem. Foam formation is often attributed to the presence of mycolic acid-containing actinomycetes (mycolata). In order to examine the relationship between the number of mycolata and foam, we developed a group-specific probe targeting the 16S rRNA of the mycolata, a protocol to permeabilize mycolata, and a statistically robust quantification method. Statistical analyses showed that a lipase-based permeabilization method was quantitatively superior to previously described methods (P << 0.05). When mixed liquor and foam samples were examined, most of the mycolata present were rods or cocci, although filamentous mycolata were also observed. A nested analysis of variance showed that virtually all of the measured variance occurred between fields of view and not between samples. On this basis we determined that as few as five fields of view could be used to give a statistically meaningful sample. Quantitative fluorescent in situ hybridization (FISH) was used to examine the relationship between foaming and the concentration of mycolata in a 20-m3 completely mixed activated sludge plant. Foaming occurred when the number of mycolata exceeded a certain threshold value. Baffling of the plant affected foaming without affecting the number of mycolata. We tentatively estimated that the threshold foaming concentration of mycolata was about 2 × 106 cells ml−1 or 4 × 1012 cells m−2. We concluded that quantitative use of FISH is feasible and that quantification is a prerequisite for rational investigation of foaming in activated sludge. PMID:10698786

  19. Wake Vortex Inverse Model User's Guide

    NASA Technical Reports Server (NTRS)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  20. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure-activity relationship.

    PubMed

    Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-09-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2  = 0.9346 for A. niger , R 2  = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.

  1. Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors.

    PubMed

    Ivanciuc, O; Ivanciuc, T; Klein, D J; Seitz, W A; Balaban, A T

    2001-02-01

    Quantitative structure-retention relationships (QSRR) represent statistical models that quantify the connection between the molecular structure and the chromatographic retention indices of organic compounds, allowing the prediction of retention indices of novel, not yet synthesized compounds, solely from their structural descriptors. Using multiple linear regression, QSRR models for the gas chromatographic Kováts retention indices of 129 alkylbenzenes are generated using molecular graph descriptors. The correlational ability of structural descriptors computed from 10 molecular matrices is investigated, showing that the novel reciprocal matrices give numerical indices with improved correlational ability. A QSRR equation with 5 graph descriptors gives the best calibration and prediction results, demonstrating the usefulness of the molecular graph descriptors in modeling chromatographic retention parameters. The sequential orthogonalization of descriptors suggests simpler QSRR models by eliminating redundant structural information.

  2. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    PubMed Central

    Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758

  3. Spatial delineation, fluid-lithology characterization, and petrophysical modeling of deepwater Gulf of Mexico reservoirs though joint AVA deterministic and stochastic inversion of three-dimensional partially-stacked seismic amplitude data and well logs

    NASA Astrophysics Data System (ADS)

    Contreras, Arturo Javier

    This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By

  4. 2.5D complex resistivity modeling and inversion using unstructured grids

    NASA Astrophysics Data System (ADS)

    Xu, Kaijun; Sun, Jie

    2016-04-01

    The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are

  5. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    NASA Astrophysics Data System (ADS)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  6. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    USGS Publications Warehouse

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  7. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  8. Causal role for inverse reasoning on obsessive-compulsive symptoms: Preliminary evidence from a cognitive bias modification for interpretation bias study.

    PubMed

    Wong, Shiu F; Grisham, Jessica R

    2017-12-01

    The inference-based approach (IBA) is a cognitive account of the genesis and maintenance of obsessive-compulsive disorder (OCD). According to the IBA, individuals with OCD are prone to using inverse reasoning, in which hypothetical causes form the basis of conclusions about reality. Several studies have provided preliminary support for an association between features of the IBA and OCD symptoms. However, there are currently no studies that have investigated the proposed causal relationship of inverse reasoning in OCD. In a non-clinical sample (N = 187), we used an interpretive cognitive bias procedure to train a bias towards using inverse reasoning (n = 64), healthy sensory-based reasoning (n = 65), or a control condition (n = 58). Participants were randomly allocated to these training conditions. This manipulation allowed us to assess whether, consistent with the IBA, inverse reasoning training increased compulsive-like behaviours and self-reported OCD symptoms. Results indicated that compared to a control condition, participants trained in inverse reasoning reported more OCD symptoms and were more avoidant of potentially contaminated objects. Moreover, change in inverse reasoning bias was a small but significant mediator of the relationship between training condition and behavioural avoidance. Conversely, training in a healthy (non-inverse) reasoning style did not have any effect on symptoms or behaviour relative to the control condition. As this study was conducted in a non-clinical sample, we were unable to generalise our findings to a clinical population. Findings generally support the IBA model by providing preliminary evidence of a causal role for inverse reasoning in OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pain sensitivity is inversely related to regional grey matter density in the brain.

    PubMed

    Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C

    2014-03-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Quantitative structure-activity relationship studies of threo-methylphenidate analogs.

    PubMed

    Misra, Milind; Shi, Qing; Ye, Xiaocong; Gruszecka-Kowalik, Ewa; Bu, Wei; Liu, Zhanzhu; Schweri, Margaret M; Deutsch, Howard M; Venanzi, Carol A

    2010-10-15

    Complementary two-dimensional (2D) and three-dimensional (3D) Quantitative Structure-Activity Relationship (QSAR) techniques were used to derive a preliminary model for the dopamine transporter (DAT) binding affinity of 80 racemic threo-methylphenidate (MP) analogs. A novel approach based on using the atom-level E-state indices of the 14 common scaffold atoms in a sphere exclusion protocol was used to identify a test set for 2D- and 3D-QSAR model validation. Comparative Molecular Field Analysis (CoMFA) contour maps based on the structure-activity data of the training set indicate that the 2' position of the phenyl ring cannot tolerate much steric bulk and that addition of electron-withdrawing groups to the 3' or 4' positions of the phenyl ring leads to improved DAT binding affinity. In particular, the optimal substituents were found to be those whose bulk is mainly in the plane of the phenyl ring. Substituents with significant bulk above or below the plane of the ring led to decreased binding affinity. Suggested alterations to be explored in the design of new compounds are the placement at the 3' and 4' position of the phenyl ring of electron-withdrawing groups that lie chiefly in the plane of the ring, for example, halogen substituents on the 3',4'-benzo analog, 79. A complementary 2D-QSAR approach-partial least squares analysis using a reduced set of Molconn-Z descriptors-supports the CoMFA structure-activity interpretation that phenyl ring substitution is a major determinant of DAT binding affinity. The potential usefulness of the CoMFA models was demonstrated by the prediction of the binding affinity of methyl 2-(naphthalen-1-yl)-2-(piperidin-2-yl)acetate, an analog not in the original data set, to be in good agreement with the experimental value. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Density reconstruction in multiparameter elastic full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Sun, Min'ao; Yang, Jizhong; Dong, Liangguo; Liu, Yuzhu; Huang, Chao

    2017-12-01

    Elastic full-waveform inversion (EFWI) is a quantitative data fitting procedure that recovers multiple subsurface parameters from multicomponent seismic data. As density is involved in addition to P- and S-wave velocities, the multiparameter EFWI suffers from more serious tradeoffs. In addition, compared with P- and S-wave velocities, the misfit function is less sensitive to density perturbation. Thus, a robust density reconstruction remains a difficult problem in multiparameter EFWI. In this paper, we develop an improved scattering-integral-based truncated Gauss-Newton method to simultaneously recover P- and S-wave velocities and density in EFWI. In this method, the inverse Gauss-Newton Hessian has been estimated by iteratively solving the Gauss-Newton equation with a matrix-free conjugate gradient algorithm. Therefore, it is able to properly handle the parameter tradeoffs. To give a detailed illustration of the tradeoffs between P- and S-wave velocities and density in EFWI, wavefield-separated sensitivity kernels and the Gauss-Newton Hessian are numerically computed, and their distribution characteristics are analyzed. Numerical experiments on a canonical inclusion model and a modified SEG/EAGE Overthrust model have demonstrated that the proposed method can effectively mitigate the tradeoff effects, and improve multiparameter gradients. Thus, a high convergence rate and an accurate density reconstruction can be achieved.

  12. Quantitative structure-activity relationships by neural networks and inductive logic programming. II. The inhibition of dihydrofolate reductase by triazines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.

  13. Chromosome Inversion Polymorphisms in DROSOPHILA MELANOGASTER. I. Latitudinal Clines and Associations between Inversions in Australasian Populations

    PubMed Central

    Knibb, W. R.; Oakeshott, J. G.; Gibson, J. B.

    1981-01-01

    Nineteen Australasian populations of Drosophila melanogaster have been screened for chromosome inversion polymorphisms. All 15 of the inversion types found are paracentric and autosomal, but only four of these, one on each of the major autosome arms, are common and cosmopolitan. North-south clines occur, with the frequencies of all four of the common cosmopolitan inversions increasing toward the equator. These clines in the Southern Hemisphere mirror north-south clines in the Northern Hemisphere, where the frequencies of all four of the common cosmopolitan inversions again increase towards the equator.—While few of the Australasian populations show significant disequilibrium between linked common cosmopolitan inversions, those that do invariably have excesses of coupling gametes, which is consistent with other reports. We also find nonrandom associations between the two major autosomes, with the northern populations in Australasia (those with high inversion frequencies) tending to be deficient in gametes with common cosmopolitan inversions on both major autosomes, while the southern populations in Australasia (low inversion frequencies) tend to have an excess of this class of gametes.—The clines and the nonrandom associations between the two major autosomes are best interpreted in terms of selection operating to maintain the common cosmopolitan inversion polymorphisms in natural populations of D. melanogaster. PMID:17249108

  14. Development of quantitative structure-activity relationships and its application in rational drug design.

    PubMed

    Yang, Guang-Fu; Huang, Xiaoqin

    2006-01-01

    Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

  15. Deep neural nets as a method for quantitative structure-activity relationships.

    PubMed

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  16. Action understanding as inverse planning.

    PubMed

    Baker, Chris L; Saxe, Rebecca; Tenenbaum, Joshua B

    2009-12-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. The mental states that caused an agent's behavior are inferred by inverting this model of rational planning using Bayesian inference, integrating the likelihood of the observed actions with the prior over mental states. This approach formalizes in precise probabilistic terms the essence of previous qualitative approaches to action understanding based on an "intentional stance" [Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press] or a "teleological stance" [Gergely, G., Nádasdy, Z., Csibra, G., & Biró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165-193]. In three psychophysical experiments using animated stimuli of agents moving in simple mazes, we assess how well different inverse planning models based on different goal priors can predict human goal inferences. The results provide quantitative evidence for an approximately rational inference mechanism in human goal inference within our simplified stimulus paradigm, and for the flexible nature of goal representations that human observers can adopt. We discuss the implications of our experimental results for human action understanding in real-world contexts, and suggest how our framework might be extended to capture other kinds of mental state inferences, such as inferences about beliefs, or inferring whether an entity is an intentional agent.

  17. Effects of induced stress on seismic forward modelling and inversion

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  18. Quantitative assessment of cerebral blood flow in genetically confirmed spinocerebellar ataxia type 6.

    PubMed

    Honjo, Kie; Ohshita, Tomohiko; Kawakami, Hideshi; Naka, Hiromitsu; Imon, Yukari; Maruyama, Hirofumi; Mimori, Yasuyo; Matsumoto, Masayasu

    2004-06-01

    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant cerebellar ataxia caused by CAG trinucleotide expansion. The characteristics of regional cerebral blood flow (rCBF) in SCA6 patients have not been established, whereas it has been reported that decreased rCBF in the cerebrum seems to be a remote effect of cerebellar impairment in other cerebellar disorders. To clarify the characteristics of rCBF, including cerebro-cerebellar relationship, and its correlation with clinical manifestations in patients with genetically confirmed SCA6 using quantitative assessment of rCBF by brain single-photon emission computed tomography (SPECT). Technetium Tc 99m ethyl cysteinate dimer SPECT study using a Patlak plot. Patients Hiroshima University Hospital, Hiroshima, Japan. Ten patients with SCA6 and 9 healthy controls. Main Outcome Measure The rCBF of the cerebellar vermis, cerebellar hemisphere, and frontal lobes. In SCA6 patients, rCBF was decreased only in the cerebellar vermis and hemisphere compared with healthy controls, and this was inversely correlated with duration of illness. The rCBF in the frontal lobes was slightly correlated with duration of illness without statistical significance. The rCBF in the vermis was inversely correlated with severity of dysarthria, but there was no significant correlation with CAG repeated expansions. Decrease in rCBF was found only in the cerebellum and was associated with duration of illness, dysarthria and ataxia, and cerebellar atrophy. No remote effect of cerebellar hypoperfusion was found in the SCA6 patients.

  19. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  20. Interplay of Nitrogen-Atom Inversion and Conformational Inversion in Enantiomerization of 1H-1-Benzazepines.

    PubMed

    Ramig, Keith; Subramaniam, Gopal; Karimi, Sasan; Szalda, David J; Ko, Allen; Lam, Aaron; Li, Jeffrey; Coaderaj, Ani; Cavdar, Leyla; Bogdan, Lukasz; Kwon, Kitae; Greer, Edyta M

    2016-04-15

    A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.

  1. Human inversions and their functional consequences

    PubMed Central

    Puig, Marta; Casillas, Sònia; Villatoro, Sergi

    2015-01-01

    Polymorphic inversions are a type of structural variants that are difficult to analyze owing to their balanced nature and the location of breakpoints within complex repeated regions. So far, only a handful of inversions have been studied in detail in humans and current knowledge about their possible functional effects is still limited. However, inversions have been related to phenotypic changes and adaptation in multiple species. In this review, we summarize the evidences of the functional impact of inversions in the human genome. First, given that inversions have been shown to inhibit recombination in heterokaryotes, chromosomes displaying different orientation are expected to evolve independently and this may lead to distinct gene-expression patterns. Second, inversions have a role as disease-causing mutations both by directly affecting gene structure or regulation in different ways, and by predisposing to other secondary arrangements in the offspring of inversion carriers. Finally, several inversions show signals of being selected during human evolution. These findings illustrate the potential of inversions to have phenotypic consequences also in humans and emphasize the importance of their inclusion in genome-wide association studies. PMID:25998059

  2. On the inversion-indel distance

    PubMed Central

    2013-01-01

    Background The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. Results In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components. PMID:24564182

  3. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    PubMed

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, p<0.001) and adults (r=-0.650, p<0.001). In regression analysis with pelvic vBMD as the dependent variable and BMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  4. Approximate nonlinear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-07-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.

  5. Field theory of the inverse cascade in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Mayo, Jackson R.

    2005-11-01

    A two-dimensional fluid, stirred at high wave numbers and damped by both viscosity and linear friction, is modeled by a statistical field theory. The fluid’s long-distance behavior is studied using renormalization-group (RG) methods, as begun by Forster, Nelson, and Stephen [Phys. Rev. A 16, 732 (1977)]. With friction, which dissipates energy at low wave numbers, one expects a stationary inverse energy cascade for strong enough stirring. While such developed turbulence is beyond the quantitative reach of perturbation theory, a combination of exact and perturbative results suggests a coherent picture of the inverse cascade. The zero-friction fluctuation-dissipation theorem (FDT) is derived from a generalized time-reversal symmetry and implies zero anomalous dimension for the velocity even when friction is present. Thus the Kolmogorov scaling of the inverse cascade cannot be explained by any RG fixed point. The β function for the dimensionless coupling ĝ is computed through two loops; the ĝ3 term is positive, as already known, but the ĝ5 term is negative. An ideal cascade requires a linear β function for large ĝ , consistent with a Padé approximant to the Borel transform. The conjecture that the Kolmogorov spectrum arises from an RG flow through large ĝ is compatible with other results, but the accurate k-5/3 scaling is not explained and the Kolmogorov constant is not estimated. The lack of scale invariance should produce intermittency in high-order structure functions, as observed in some but not all numerical simulations of the inverse cascade. When analogous RG methods are applied to the one-dimensional Burgers equation using an FDT-preserving dimensional continuation, equipartition is obtained instead of a cascade—in agreement with simulations.

  6. Some Phenomena on Negative Inversion Constructions

    ERIC Educational Resources Information Center

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  7. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  8. Eikonal-Based Inversion of GPR Data from the Vaucluse Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; van Vorst, D.; Guglielmi, Y.; Cappa, F.; Gaffet, S.

    2009-12-01

    In this paper, we present an easy-to-implement eikonal-based travel time inversion algorithm and apply it to borehole GPR measurement data obtained from a karst aquifer located in the Vaucluse in Provence. The boreholes are situated with a fault zone deep inside the aquifer, in the Laboratoire Souterrain à Bas Bruit (LSBB). The measurements were made using 250 MHz MALA RAMAC borehole GPR antennas. The inversion formulation is unique in its application of a fast-sweeping eikonal solver (Zhao [1]) to the minimization of an objective functional that is composed of a travel time misfit and a model-based regularization [2]. The solver is robust in the presence of large velocity contrasts, efficient, easy to implement, and does not require the use of a sorting algorithm. The computation of sensitivities, which are required for the inversion process, is achieved by tracing rays backward from receiver to source following the gradient of the travel time field [2]. A user wishing to implement this algorithm can opt to avoid the ray tracing step and simply perturb the model to obtain the required sensitivities. Despite the obvious computational inefficiency of such an approach, it is acceptable for 2D problems. The relationship between travel time and the velocity profile is non-linear, requiring an iterative approach to be used. At each iteration, a set of matrix equations is solved to determine the model update. As the inversion continues, the weighting of the regularization parameter is adjusted until an appropriate data misfit is obtained. The inversion results, shown in the attached image, are consistent with previously obtained geological structure. Future work will look at improving inversion resolution and incorporating other measurement methodologies, with the goal of providing useful data for groundwater analysis. References: [1] H. Zhao, “A fast sweeping method for Eikonal equations,” Mathematics of Computation, vol. 74, no. 250, pp. 603-627, 2004. [2] D

  9. Recursive inverse factorization.

    PubMed

    Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N

    2008-03-14

    A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.

  10. 3D CSEM inversion based on goal-oriented adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.

    2016-12-01

    We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with

  11. Quantitative Data Analysis--In the Graduate Curriculum

    ERIC Educational Resources Information Center

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  12. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  13. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  14. Preliminary Comparison of Multi-scale and Multi-model Direct Inversion Algorithms for 3T MR Elastography.

    PubMed

    Yoshimitsu, Kengo; Shinagawa, Yoshinobu; Mitsufuji, Toshimichi; Mutoh, Emi; Urakawa, Hiroshi; Sakamoto, Keiko; Fujimitsu, Ritsuko; Takano, Koichi

    2017-01-10

    To elucidate whether any differences are present in the stiffness map obtained with a multiscale direct inversion algorithm (MSDI) vs that with a multimodel direct inversion algorithm (MMDI), both qualitatively and quantitatively. The MR elastography (MRE) data of 37 consecutive patients who underwent liver MR elastography between September and October 2014 were retrospectively analyzed by using both MSDI and MMDI. Two radiologists qualitatively assessed the stiffness maps for the image quality in consensus, and the measured liver stiffness and measurable areas were quantitatively compared between MSDI and MMDI. MMDI provided a stiffness map of better image quality, with comparable or slightly less artifacts. Measurable areas by MMDI (43.7 ± 17.8 cm 2 ) was larger than that by MSDI (37.5 ± 14.7 cm 2 ) (P < 0.05). Liver stiffness measured by MMDI (4.51 ± 2.32 kPa) was slightly (7%), but significantly less than that by MSDI (4.86 ± 2.44 kPa) (P < 0.05). MMDI can provide stiffness map of better image quality, and slightly lower stiffness values as compared to MSDI at 3T MRE, which radiologists should be aware of.

  15. Identification of polymorphic inversions from genotypes

    PubMed Central

    2012-01-01

    Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by

  16. HomoSAR: bridging comparative protein modeling with quantitative structural activity relationship to design new peptides.

    PubMed

    Borkar, Mahesh R; Pissurlenkar, Raghuvir R S; Coutinho, Evans C

    2013-11-15

    Peptides play significant roles in the biological world. To optimize activity for a specific therapeutic target, peptide library synthesis is inevitable; which is a time consuming and expensive. Computational approaches provide a promising way to simply elucidate the structural basis in the design of new peptides. Earlier, we proposed a novel methodology termed HomoSAR to gain insight into the structure activity relationships underlying peptides. Based on an integrated approach, HomoSAR uses the principles of homology modeling in conjunction with the quantitative structural activity relationship formalism to predict and design new peptide sequences with the optimum activity. In the present study, we establish that the HomoSAR methodology can be universally applied to all classes of peptides irrespective of sequence length by studying HomoSAR on three peptide datasets viz., angiotensin-converting enzyme inhibitory peptides, CAMEL-s antibiotic peptides, and hAmphiphysin-1 SH3 domain binding peptides, using a set of descriptors related to the hydrophobic, steric, and electronic properties of the 20 natural amino acids. Models generated for all three datasets have statistically significant correlation coefficients (r(2)) and predictive r2 (r(pred)2) and cross validated coefficient ( q(LOO)2). The daintiness of this technique lies in its simplicity and ability to extract all the information contained in the peptides to elucidate the underlying structure activity relationships. The difficulties of correlating both sequence diversity and variation in length of the peptides with their biological activity can be addressed. The study has been able to identify the preferred or detrimental nature of amino acids at specific positions in the peptide sequences. Copyright © 2013 Wiley Periodicals, Inc.

  17. Bayesian probabilistic approach for inverse source determination from limited and noisy chemical or biological sensor concentration measurements

    NASA Astrophysics Data System (ADS)

    Yee, Eugene

    2007-04-01

    Although a great deal of research effort has been focused on the forward prediction of the dispersion of contaminants (e.g., chemical and biological warfare agents) released into the turbulent atmosphere, much less work has been directed toward the inverse prediction of agent source location and strength from the measured concentration, even though the importance of this problem for a number of practical applications is obvious. In general, the inverse problem of source reconstruction is ill-posed and unsolvable without additional information. It is demonstrated that a Bayesian probabilistic inferential framework provides a natural and logically consistent method for source reconstruction from a limited number of noisy concentration data. In particular, the Bayesian approach permits one to incorporate prior knowledge about the source as well as additional information regarding both model and data errors. The latter enables a rigorous determination of the uncertainty in the inference of the source parameters (e.g., spatial location, emission rate, release time, etc.), hence extending the potential of the methodology as a tool for quantitative source reconstruction. A model (or, source-receptor relationship) that relates the source distribution to the concentration data measured by a number of sensors is formulated, and Bayesian probability theory is used to derive the posterior probability density function of the source parameters. A computationally efficient methodology for determination of the likelihood function for the problem, based on an adjoint representation of the source-receptor relationship, is described. Furthermore, we describe the application of efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) for sampling from the posterior distribution of the source parameters, the latter of which is required to undertake the Bayesian computation. The Bayesian inferential methodology for source reconstruction is validated against real

  18. Accuracy and Resolution in Micro-earthquake Tomographic Inversion Studies

    NASA Astrophysics Data System (ADS)

    Hutchings, L. J.; Ryan, J.

    2010-12-01

    Accuracy and resolution are complimentary properties necessary to interpret the results of earthquake location and tomography studies. Accuracy is the how close an answer is to the “real world”, and resolution is who small of node spacing or earthquake error ellipse one can achieve. We have modified SimulPS (Thurber, 1986) in several ways to provide a tool for evaluating accuracy and resolution of potential micro-earthquake networks. First, we provide synthetic travel times from synthetic three-dimensional geologic models and earthquake locations. We use this to calculate errors in earthquake location and velocity inversion results when we perturb these models and try to invert to obtain these models. We create as many stations as desired and can create a synthetic velocity model with any desired node spacing. We apply this study to SimulPS and TomoDD inversion studies. “Real” travel times are perturbed with noise and hypocenters are perturbed to replicate a starting location away from the “true” location, and inversion is performed by each program. We establish travel times with the pseudo-bending ray tracer and use the same ray tracer in the inversion codes. This, of course, limits our ability to test the accuracy of the ray tracer. We developed relationships for the accuracy and resolution expected as a function of the number of earthquakes and recording stations for typical tomographic inversion studies. Velocity grid spacing started at 1km, then was decreased to 500m, 100m, 50m and finally 10m to see if resolution with decent accuracy at that scale was possible. We considered accuracy to be good when we could invert a velocity model perturbed by 50% back to within 5% of the original model, and resolution to be the size of the grid spacing. We found that 100 m resolution could obtained by using 120 stations with 500 events, bu this is our current limit. The limiting factors are the size of computers needed for the large arrays in the inversion and a

  19. Recombination rate predicts inversion size in Diptera.

    PubMed Central

    Cáceres, M; Barbadilla, A; Ruiz, A

    1999-01-01

    Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710

  20. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Nishikawa, R; Reiser, I

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or

  1. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation.

    PubMed

    Aguilar, I; Misztal, I; Legarra, A; Tsuruta, S

    2011-12-01

    Genomic evaluations can be calculated using a unified procedure that combines phenotypic, pedigree and genomic information. Implementation of such a procedure requires the inverse of the relationship matrix based on pedigree and genomic relationships. The objective of this study was to investigate efficient computing options to create relationship matrices based on genomic markers and pedigree information as well as their inverses. SNP maker information was simulated for a panel of 40 K SNPs, with the number of genotyped animals up to 30 000. Matrix multiplication in the computation of the genomic relationship was by a simple 'do' loop, by two optimized versions of the loop, and by a specific matrix multiplication subroutine. Inversion was by a generalized inverse algorithm and by a LAPACK subroutine. With the most efficient choices and parallel processing, creation of matrices for 30 000 animals would take a few hours. Matrices required to implement a unified approach can be computed efficiently. Optimizations can be either by modifications of existing code or by the use of efficient automatic optimizations provided by open source or third-party libraries. © 2011 Blackwell Verlag GmbH.

  2. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  3. The new AP Physics exams: Integrating qualitative and quantitative reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew

    2015-04-01

    When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

  4. Three-dimensional quantitative structure-activity relationship studies on c-Src inhibitors based on different docking methods.

    PubMed

    Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni

    2009-04-01

    c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.

  5. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos

    PubMed Central

    Freyhult, Eva; Moulton, Vincent; Ardell, David H.

    2006-01-01

    Sequence logos are stacked bar graphs that generalize the notion of consensus sequence. They employ entropy statistics very effectively to display variation in a structural alignment of sequences of a common function, while emphasizing its over-represented features. Yet sequence logos cannot display features that distinguish functional subclasses within a structurally related superfamily nor do they display under-represented features. We introduce two extensions to address these needs: function logos and inverse logos. Function logos display subfunctions that are over-represented among sequences carrying a specific feature. Inverse logos generalize both sequence logos and function logos by displaying under-represented, rather than over-represented, features or functions in structural alignments. To make inverse logos, a compositional inverse is applied to the feature or function frequency distributions before logo construction, where a compositional inverse is a mathematical transform that makes common features or functions rare and vice versa. We applied these methods to a database of structurally aligned bacterial tDNAs to create highly condensed, birds-eye views of potentially all so-called identity determinants and antideterminants that confer specific amino acid charging or initiator function on tRNAs in bacteria. We recovered both known and a few potentially novel identity elements. Function logos and inverse logos are useful tools for exploratory bioinformatic analysis of structure–function relationships in sequence families and superfamilies. PMID:16473848

  6. Inversion climatology at San Jose, California

    NASA Technical Reports Server (NTRS)

    Morgan, T.; Bornstein, R. D.

    1977-01-01

    Month-to-month variations in the early morning surface-based and near-noon elevated inversions at San Jose, Calif., were determined from slow rise radiosondes launched during a four-year period. A high frequency of shallow, radiative, surface-based inversions were found in winter during the early morning hours, while during the same period in summer, a low frequency of deeper based inversions arose from a combination of radiative and subsidence processes. The frequency of elevated inversions in the hours near noon was lowest during fall and spring, while inversion bases were highest and thicknesses least during these periods.

  7. Sediment Acoustics: Wideband Model, Reflection Loss and Ambient Noise Inversion

    DTIC Science & Technology

    2009-09-30

    between 1 and 10 kHz. The model is also capable of explaining the apparent discrepancy between the data and the Kramers- Kronig relationship (K-K...of in-situ measurements of sediment sound speed and attenuation from SAX99, SAX04 and SW06 with the commonly used Kramers- Kronig equation (black...inverse quality factor. The data is overlaid by the Kramers- Kronig estimate of sound speed from measured attenuation, by both the commonly used equation

  8. Evaluation of Multispectral Based Radiative Transfer Model Inversion to Estimate Leaf Area Index in Wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) is a critical variable for predicting the growth and productivity of crops. Remote sensing estimates of LAI have relied upon empirical relationships between spectral vegetation indices and ground measurements that are costly to obtain. Radiative transfer model inversion based o...

  9. Accommodating Chromosome Inversions in Linkage Analysis

    PubMed Central

    Chen, Gary K.; Slaten, Erin; Ophoff, Roel A.; Lange, Kenneth

    2006-01-01

    This work develops a population-genetics model for polymorphic chromosome inversions. The model precisely describes how an inversion changes the nature of and approach to linkage equilibrium. The work also describes algorithms and software for allele-frequency estimation and linkage analysis in the presence of an inversion. The linkage algorithms implemented in the software package Mendel estimate recombination parameters and calculate the posterior probability that each pedigree member carries the inversion. Application of Mendel to eight Centre d'Étude du Polymorphisme Humain pedigrees in a region containing a common inversion on 8p23 illustrates its potential for providing more-precise estimates of the location of an unmapped marker or trait gene. Our expanded cytogenetic analysis of these families further identifies inversion carriers and increases the evidence of linkage. PMID:16826515

  10. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less

  11. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  12. Inverse structure functions in the canonical wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Gion, Moira; Ali, Naseem; Tutkun, Murat; Cal, Raúl Bayoán

    2015-11-01

    Insight into the statistical behavior of the flow past an array of wind turbines is useful in determining how to improve power extraction from the overall available energy. Considering a wind tunnel experiment, hot-wire anemometer velocity signals are obtained at the centerline of a 3 x 3 canonical wind turbine array boundary layer. Two downstream locations are considered referring to the near- and far-wake, and 21 vertical points were acquired per profile. Velocity increments are used to quantify the ordinary and inverse structure functions at both locations and their relationship between the scaling exponents is noted. It is of interest to discern if there is evidence of an inverted scaling. The inverse structure functions will also be discussed from the standpoint of the proximity to the array. Observations will also address if inverted scaling exponents follow a power law behavior and furthermore, extended self-similarity of the second moment is used to obtain the scaling exponent of other moments. Inverse structure functions of moments one through eight are tested via probability density functions and the behavior of the negative moment is investigated as well. National Science Foundation-CBET-1034581.

  13. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  14. Antitumor activity of 3,4-ethylenedioxythiophene derivatives and quantitative structure-activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Jukić, Marijana; Rastija, Vesna; Opačak-Bernardi, Teuta; Stolić, Ivana; Krstulović, Luka; Bajić, Miroslav; Glavaš-Obrovac, Ljubica

    2017-04-01

    The aim of this study was to evaluate nine newly synthesized amidine derivatives of 3,4- ethylenedioxythiophene (3,4-EDOT) for their cytotoxic activity against a panel of human cancer cell lines and to perform a quantitative structure-activity relationship (QSAR) analysis for the antitumor activity of a total of 27 3,4-ethylenedioxythiophene derivatives. Induction of apoptosis was investigated on the selected compounds, along with delivery options for the optimization of activity. The best obtained QSAR models include the following group of descriptors: BCUT, WHIM, 2D autocorrelations, 3D-MoRSE, GETAWAY descriptors, 2D frequency fingerprint and information indices. Obtained QSAR models should be relieved in elucidation of important physicochemical and structural requirements for this biological activity. Highly potent molecules have a symmetrical arrangement of substituents along the x axis, high frequency of distance between N and O atoms at topological distance 9, as well as between C and N atoms at topological distance 10, and more C atoms located at topological distances 6 and 3. Based on the conclusion given in the QSAR analysis, a new compound with possible great activity was proposed.

  15. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    PubMed Central

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  16. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  17. Qualitative Versus Quantitative Social Support as a Predictor of Depression in the Elderly.

    ERIC Educational Resources Information Center

    Chwalisz, Kathleen D.; And Others

    This study examined the relationship between qualitative and quantitative indicators of social support in the prediction of depression. Quantitative indicators were examined with regard to their direct effects on depression as well as their indirect effects through their relationship to perceived social support. Subjects were 301…

  18. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We

  19. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

    PubMed Central

    Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507

  20. Interactive Inverse Groundwater Modeling - Addressing User Fatigue

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B. S.

    2006-12-01

    This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these

  1. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.

    PubMed

    Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S

    2006-10-01

    p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.

  2. Physics for clinicians: Fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging.

    PubMed

    Saranathan, Manojkumar; Worters, Pauline W; Rettmann, Dan W; Winegar, Blair; Becker, Jennifer

    2017-12-01

    A pedagogical review of fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging is conducted in this article. The basics of the two pulse sequences are first described, including the details of the inversion preparation and imaging sequences with accompanying mathematical formulae for choosing the inversion time in a variety of scenarios for use on clinical MRI scanners. Magnetization preparation (or T2prep), a strategy for improving image signal-to-noise ratio and contrast and reducing T 1 weighting at high field strengths, is also described. Lastly, image artifacts commonly associated with FLAIR and DIR are described with clinical examples, to help avoid misdiagnosis. 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1590-1600. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Angelman syndrome associated with an inversion of chromosome 15q11.2q24.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greger, V.; Knoll, J.H.M.; Wagstaff, J.

    1997-03-01

    Angelman syndrome (AS) most frequently results from large ({ge}5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangementsmore » in AS. We report the first such case involving a paracentric inversion with a breakpoint located {approximately}25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within {approximately}1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype. 47 refs., 3 figs.« less

  4. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2017-11-01

    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  5. EDITORIAL: Inverse Problems in Engineering

    NASA Astrophysics Data System (ADS)

    West, Robert M.; Lesnic, Daniel

    2007-01-01

    Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.

  6. Groundwater contamination in the Roorkee area, India: 2D joint inversion of radiomagnetotelluric and direct current resistivity data

    NASA Astrophysics Data System (ADS)

    Yogeshwar, P.; Tezkan, B.; Israil, M.; Candansayar, M. E.

    2012-01-01

    The impact of sewage irrigation and groundwater contamination were investigated near Roorkee in north India using the Direct Current Resistivity (DCR) method and the Radiomagnetotelluric (RMT) method. Intensive field measurements were carried out in the vicinity of a waste disposal site, which was extensively irrigated with sewage water. For comparison a profile was investigated on a reference site, where no contamination was expected. In addition to conventional 1D and 2D inversion, the measured data sets were interpreted using a 2D joint inversion algorithm. The inversion results from the data obtained from the sewage irrigated site indicate a decrease of resistivity up to 75% in comparison with the reference site. The depth range from 5 to 15 m is identified as a shallow unconfined aquifer and the decreased resistivities are ascribed as the influence of contamination. Furthermore, a systematic increase in the resistivities of the shallow unconfined aquifer is detected as we move away from the waste disposal site. The advantages of both, the DCR and RMT methods, are quantitatively integrated by the 2D joint inversion of both data sets and lead to a joint model, which explains both data sets.

  7. Constrained inversion as a hypothesis testing tool, what can we learn about the lithosphere?

    NASA Astrophysics Data System (ADS)

    Moorkamp, Max; Stewart, Fishwick; Jones, Alan G.

    2017-04-01

    Inversion of geophysical data constrained by a reference model is typically used to guide the inversion of low resolution data towards a geologically plausible solution. For example, a migrated seismic section can provide the location of lithological boundaries for potential field inversions. Here we consider the inversion of long-period magnetotelluric data constrained by models generated through surface wave inversion. In this case, we do not consider the surface wave model inherently better in any sense and want to guide the magnetotelluric inversion towards this model, but we want to test the hypothesis that both datasets can be explained by models with similar structure. If the hypothesis test is successful, i.e. we can fit the observations with a conductivity model with structural similarity to the seismic model, we have found an alternative explanation compared to the individual inversion and can use the differences to learn about the resolution of the magnetotelluric data and can improve our interpretation. Conversely, if the test refutes our hypothesis of coincident structure, we have found features in the models that are sensed fundamentally different by both methods which is potentially instructive on the nature of the anomalies. We use a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons together with a tomographic model for the region to illustrate and test this approach. Here, various conductive structures have been identified that bridge the Moho. Furthermore, the thickness of the lithosphere inferred from the different methods differs. In both cases the question is in how far this is a result of the ill-posed nature of inversion and in how far these differences can be reconciled. Thus this dataset is an ideal test case for our hypothesis testing approach. Finally, we will demonstrate how we can use the results of the constrained inversion to extract conductivity-velocity relationships in the

  8. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  9. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  10. A new, double-inversion mechanism of the F- + CH3Cl SN2 reaction in aqueous solution.

    PubMed

    Liu, Peng; Wang, Dunyou; Xu, Yulong

    2016-11-23

    Atomic-level, bimolecular nucleophilic substitution reaction mechanisms have been studied mostly in the gas phase, but the gas-phase results cannot be expected to reliably describe condensed-phase chemistry. As a novel, double-inversion mechanism has just been found for the F - + CH 3 Cl S N 2 reaction in the gas phase [Nat. Commun., 2015, 6, 5972], here, using multi-level quantum mechanics methods combined with the molecular mechanics method, we discovered a new, double-inversion mechanism for this reaction in aqueous solution. However, the structures of the stationary points along the reaction path show significant differences from those in the gas phase due to the strong influence of solvent and solute interactions, especially due to the hydrogen bonds formed between the solute and the solvent. More importantly, the relationship between the two double-inversion transition states is not clear in the gas phase, but, here we revealed a novel intermediate complex serving as a "connecting link" between the two transition states of the abstraction-induced inversion and the Walden-inversion mechanisms. A detailed reaction path was constructed to show the atomic-level evolution of this novel double reaction mechanism in aqueous solution. The potentials of mean force were calculated and the obtained Walden-inversion barrier height agrees well with the available experimental value.

  11. Quantitative Reasoning in Problem Solving

    ERIC Educational Resources Information Center

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  12. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.

    PubMed

    Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C

    2008-07-21

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.

  13. Plasma phospholipid transfer protein activity is inversely associated with betaine in diabetic and non-diabetic subjects.

    PubMed

    Dullaart, R P F; Garcia, Erwin; Jeyarajah, Elias; Gruppen, Eke G; Connelly, Margery A

    2016-08-31

    The choline metabolite, betaine, plays a role in lipid metabolism, and may predict the development of cardiovascular disease and type 2 diabetes mellitus (T2DM). Phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) require phosphatidylcholine as substrate, raising the possibility that there is an intricate relationship of these protein factors with choline metabolism. Here we determined the relationships of PLTP and LCAT activity with betaine in subjects with and without T2DM. Plasma betaine (nuclear magnetic resonance spectroscopy), PLTP activity (liposome-vesicle HDL system), LCAT activity (exogenous substrate assay) and (apo)lipoproteins were measured in 65 type 2 diabetic (T2DM) and in 55 non-diabetic subjects. PLTP and LCAT activity were elevated in T2DM (p < 0.05), whereas the difference in betaine was not significant. In age-, sex- and diabetes status-controlled correlation analysis, betaine was inversely correlated with triglycerides and positively with HDL cholesterol (p < 0.05 to 0.01). PLTP and LCAT activity were positively correlated with triglycerides and inversely with HDL cholesterol (p < 0.05 to 0.001). PLTP (r = -0.245, p = 0.006) and LCAT activity (r = -0.195, p = 0.035) were correlated inversely with betaine. The inverse association of PLTP activity with betaine remained significant after additional adjustment for body mass index and lipoprotein variables (β = -0.179, p = 0.034), whereas its association with LCAT activity lost significance (β = -0.056, p = 0.44). Betaine may influence lipoprotein metabolism via an effect on PLTP activity.

  14. Donor states in inverse opals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, G. D.

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikelymore » to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.« less

  15. Inverse Slip Accompanying Twinning and Detwinning during Cyclic Loading of Magnesium Single Crystal

    DOE PAGES

    Yu, Qin; Wang, Jian; Jiang, Yanyao

    2013-01-01

    In situ , observation of twinning and detwinning in magnesium single crystals during tension-compression cyclic loading was made using optical microscopy. A quantitative analysis of plastic strain indicates that twinning and detwinning experience two stages, low and high work hardening de-twinning, and pure re-twinning and fresh twinning combined with retwinning. Slip is always activated. For the first time, inverse slip accompanying with pure retwinning and high work hardening detwinning was experimentally identified, which provides insights in better understanding of the activity of twining, detwinning, and slips.

  16. Exploring the influence of workplace supports and relationships on safe medication practice: A pilot study of Australian graduate nurses.

    PubMed

    Sahay, Ashlyn; Hutchinson, Marie; East, Leah

    2015-05-01

    Despite the growing awareness of the benefits of positive workplace climates, unsupportive and disruptive workplace behaviours are widespread in health care organisations. Recent graduate nurses, who are often new to a workplace, are particularly vulnerable in unsupportive climates, and are also recognised to be at higher risk for medication errors. Investigate the association between workplace supports and relationships and safe medication practice among graduate nurses. Exploratory study using quantitative survey with a convenience sample of 58 nursing graduates in two Australian States. Online survey focused on graduates' self-reported medication errors, safe medication practice and the nature of workplace supports and relationships. Spearman's correlations identified that unsupportive workplace relationships were inversely related to graduate nurse medication errors and erosion of safe medication practices, while supportive Nurse Unit Manager and supportive work team relationships positively influenced safe medication practice among graduates. Workplace supports and relationships are potentially both the cause and solution to graduate nurse medication errors and safe medication practices. The findings develop further understanding about the impact of unsupportive and disruptive behaviours on patient safety and draw attention to the importance of undergraduate and continuing education strategies that promote positive workplace behaviours and graduate resilience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    PubMed

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ).

  18. Pareto-Optimal Multi-objective Inversion of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham

    2018-01-01

    In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.

  19. Geophysical approaches to inverse problems: A methodological comparison. Part 1: A Posteriori approach

    NASA Technical Reports Server (NTRS)

    Seidman, T. I.; Munteanu, M. J.

    1979-01-01

    The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.

  20. Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Leyffer, Sven; Wild, Stefan M.

    2016-01-01

    Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less

  1. Inversion of Crater Morphometric Data to Gain Insight on the Cratering Process

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Lyons, Suzane N.

    1998-01-01

    In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.

  2. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  3. A mini-library of TBA analogues containing 3'-3' and 5'-5' inversion of polarity sites.

    PubMed

    Esposito, V; Galeone, A; Mayol, L; Randazzo, A; Virgilio, A; Virno, A

    2007-01-01

    Several researches have been devoted to structure-activity relationship and to post-SELEX modifications of the thrombin binding aptamer (TBA), one of the first aptamers discovered by the SELEX methodology. However, no studies on TBA dealing with the effects of introduction of inversion of polarity sites have been reported yet. In this frame, we have undertaken the synthesis and the study of a mini-library composed of several TBA analogues containing a 3'-3' or a 5'-5' inversion of polarity site at different positions into the sequence. Particularly, in this article, we present preliminary results about their structural and biological properties.

  4. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  5. Inversion group (IG) fitting: A new T1 mapping method for modified look-locker inversion recovery (MOLLI) that allows arbitrary inversion groupings and rest periods (including no rest period).

    PubMed

    Sussman, Marshall S; Yang, Issac Y; Fok, Kai-Ho; Wintersperger, Bernd J

    2016-06-01

    The Modified Look-Locker Inversion Recovery (MOLLI) technique is used for T1 mapping in the heart. However, a drawback of this technique is that it requires lengthy rest periods in between inversion groupings to allow for complete magnetization recovery. In this work, a new MOLLI fitting algorithm (inversion group [IG] fitting) is presented that allows for arbitrary combinations of inversion groupings and rest periods (including no rest period). Conventional MOLLI algorithms use a three parameter fitting model. In IG fitting, the number of parameters is two plus the number of inversion groupings. This increased number of parameters permits any inversion grouping/rest period combination. Validation was performed through simulation, phantom, and in vivo experiments. IG fitting provided T1 values with less than 1% discrepancy across a range of inversion grouping/rest period combinations. By comparison, conventional three parameter fits exhibited up to 30% discrepancy for some combinations. The one drawback with IG fitting was a loss of precision-approximately 30% worse than the three parameter fits. IG fitting permits arbitrary inversion grouping/rest period combinations (including no rest period). The cost of the algorithm is a loss of precision relative to conventional three parameter fits. Magn Reson Med 75:2332-2340, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  7. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  8. Using seismically constrained magnetotelluric inversion to recover velocity structure in the shallow lithosphere

    NASA Astrophysics Data System (ADS)

    Moorkamp, M.; Fishwick, S.; Jones, A. G.

    2015-12-01

    Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.

  9. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  10. Parental Involvement and Student Motivation: A Quantitative Study of the Relationship between Student Goal Orientation and Student Perceptions of Parental Involvement among 5th Grade Students

    ERIC Educational Resources Information Center

    Mendoza, Christine Daryabigi

    2012-01-01

    The purpose of this study was to examine a possible relationship between student perceptions of parental involvement and student goal orientation for an ethnically diverse fifth grade elementary population from high-poverty schools. This study was quantitative in nature and employed the Patterns of Adaptive Learning Scales (PALS) to assess the…

  11. Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta).

    PubMed

    Goffinet, Bernard; Wickett, Norman J; Werner, Olaf; Ros, Rosa Maria; Shaw, A Jonathan; Cox, Cymon J

    2007-04-01

    The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inversion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture. The survey reveals that exemplars of eight genera of Funariaceae, the sole species of Disceliaceae and three generic representatives of Encalyptales all share the 71-kb inversion in the large single copy of the plastid genome. By contrast, the plastid genome of Gigaspermaceae (Funariales) is characterized by a gene order congruent with that described for other mosses, liverworts and hornworts, and hence it does not possess this inversion. The phylogenetic distribution of the inversion in the gene order supports a hypothesis only weakly supported by inferences from sequence data whereby Funariales are paraphyletic, with Funariaceae and Disceliaceae sharing a common ancestor with Encalyptales, and Gigaspermaceae sister to this combined clade. To reflect these relationships, Gigaspermaceae are excluded from Funariales and accommodated in their own order, Gigaspermales order nov., within Funariideae.

  12. A preprocessing strategy for helioseismic inversions

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, J.; Thompson, M. J.

    1993-05-01

    Helioseismic inversion in general involves considerable computational expense, due to the large number of modes that is typically considered. This is true in particular of the widely used optimally localized averages (OLA) inversion methods, which require the inversion of one or more matrices whose order is the number of modes in the set. However, the number of practically independent pieces of information that a large helioseismic mode set contains is very much less than the number of modes, suggesting that the set might first be reduced before the expensive inversion is performed. We demonstrate with a model problem that by first performing a singular value decomposition the original problem may be transformed into a much smaller one, reducing considerably the cost of the OLA inversion and with no significant loss of information.

  13. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  14. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    PubMed

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantitative Comparison of the Walk and Trot of Border Collies and Labrador Retrievers, Breeds with Different Performance Requirements

    PubMed Central

    Carr, Brittany Jean; Canapp, Sherman O; Zink, M. Christine

    2015-01-01

    Introduction We hypothesized that breed differences of Border Collies and Labrador Retrievers would be reflected in the temporospatial characteristics of the walk and trot. Materials and Methods Twenty healthy Border Collies and 20 healthy Labrador Retrievers made three passes across a pressure sensing walkway system that recorded quantitative temporospatial information at a walk and a trot. The following variables were measured for each dog: velocity, total pressure index percentage (TPI%), ratio of weight borne on the thoracic vs. pelvic limbs (T/P TPI%), stance time percentage (ST%), and thoracic limb stride length (TSrL). Results The mean T/P TPI% for Border Collies at a walk and at a trot were significantly lower than for Labrador Retrievers (p = 0.0007 and p = 0.0003). Border Collies had a significantly lower ST% than Labrador Retrievers for the thoracic limbs and pelvic limbs at a walk (p = 0.0058 and 0.0003) and the trot (p = 0.0280 and 0.0448). There was no relationship between ST% and TSrL in Border Collies and an inverse correlation between ST% and TSrL in Labrador Retrievers (p = 0.0002). Discussion Key quantitative gait differences were identified in Border Collies and Labrador Retrievers, which could potentially provide each breed with an advantage for their working function. PMID:26689372

  16. Comparative evolution of the inverse problems (Introduction to an interdisciplinary study of the inverse problems)

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.

  17. Parts-based geophysical inversion with application to water flooding interface detection and geological facies detection

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei

    data and prior distributions. We pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case study, performing a joint inversion of gravity and galvanometric resistivity data with the stations all located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to deform the facies boundaries preserving prior topological properties of the facies throughout the inversion. With the additional help of prior facies petrophysical relationships, topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The result of the inversion technique is encouraging when applied to a second synthetic case study, showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries. A paper has been submitted to Geophysics on this topic and I am the first author of this paper. During this thesis, I also worked on the time lapse inversion problem of gravity data in collaboration with Marios Karaoulis and a paper was published in Geophysical Journal international on this topic. I also worked on the time-lapse inversion of cross-well geophysical data (seismic and resistivity) using both a structural approach named the cross-gradient approach and

  18. Growth hormone-binding protein activity is inversely related to 24-hour growth hormone release in normal boys.

    PubMed

    Martha, P M; Rogol, A D; Blizzard, R M; Shaw, M A; Baumann, G

    1991-07-01

    To investigate the physiological relationship between serum GH-binding proteins and 24-h GH release, we compared the 24-h GH pulse attributes in serum samples obtained at 20-min intervals to the serum GH-binding protein activity (GH-BP) from 38 normal boys between 7 5/12 and 18 4/12 yr of age. GH-BP was determined in a serum sample from each study (containing less than 1.0 micrograms/L GH) using a standardized GH-BP assay. GH-BP results are expressed as the percentage of [125I]human GH bound to the high affinity GH-BP complex (peak II) per 160 microL serum. There were significant inverse relationships between the high affinity (receptor-related) GH-BP and several characteristics of 24-h GH release. Specifically, GH-BP was significantly (P less than 0.005 for all), but negatively, correlated with mean 24-h GH concentration (r = -0.62), sum of the GH pulse amplitudes (r = -0.57), sum of the GH pulse areas (r = -0.55), interpulse mean GH concentration (r = -0.53), and number of GH pulses per 24 h (r = -0.53). In addition, GH-BP correlated positively with the mean time interval between pulses (r = 0.59). There was also a significant positive correlation (r = 0.75; P less than 0.001) between GH-BP and the subject's age-adjusted body mass index SD score (BMI-SDS). Each characteristic of 24-h GH release correlating inversely with GH-BP also correlated inversely with BMI-SDS (P less than 0.01 for all comparisons). GH-BP did not, however, correlate with plasma insulin-like growth factor-I levels, serum testosterone concentrations, or height SDS. Binding to the low affinity GH-BP (peak I) did not correlate significantly with any of the examined GH pulse attributes, BMI-SDS, or the degree of binding to the high affinity GH-BP (peak II). We conclude that an inverse relationship exists between the high affinity serum GH-BP and 24-h GH release in boys under normal physiological conditions. We speculate that abnormalities in this relationship probably also exist and may underlie

  19. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.

    PubMed

    Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui

    2006-11-03

    Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.

  20. Stochastic Gabor reflectivity and acoustic impedance inversion

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Morley, Christopher Keith; Ferguson, Angus John

    2018-02-01

    To delineate subsurface lithology to estimate petrophysical properties of a reservoir, it is possible to use acoustic impedance (AI) which is the result of seismic inversion. To change amplitude to AI, removal of wavelet effects from the seismic signal in order to get a reflection series, and subsequently transforming those reflections to AI, is vital. To carry out seismic inversion correctly it is important to not assume that the seismic signal is stationary. However, all stationary deconvolution methods are designed following that assumption. To increase temporal resolution and interpretation ability, amplitude compensation and phase correction are inevitable. Those are pitfalls of stationary reflectivity inversion. Although stationary reflectivity inversion methods are trying to estimate reflectivity series, because of incorrect assumptions their estimations will not be correct, but may be useful. Trying to convert those reflection series to AI, also merging with the low frequency initial model, can help us. The aim of this study was to apply non-stationary deconvolution to eliminate time variant wavelet effects from the signal and to convert the estimated reflection series to the absolute AI by getting bias from well logs. To carry out this aim, stochastic Gabor inversion in the time domain was used. The Gabor transform derived the signal’s time-frequency analysis and estimated wavelet properties from different windows. Dealing with different time windows gave an ability to create a time-variant kernel matrix, which was used to remove matrix effects from seismic data. The result was a reflection series that does not follow the stationary assumption. The subsequent step was to convert those reflections to AI using well information. Synthetic and real data sets were used to show the ability of the introduced method. The results highlight that the time cost to get seismic inversion is negligible related to general Gabor inversion in the frequency domain. Also

  1. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    NASA Astrophysics Data System (ADS)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  2. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    PubMed

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  3. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    PubMed

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  4. Confidence estimation for quantitative photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Gröhl, Janek; Kirchner, Thomas; Maier-Hein, Lena

    2018-02-01

    Quantification of photoacoustic (PA) images is one of the major challenges currently being addressed in PA research. Tissue properties can be quantified by correcting the recorded PA signal with an estimation of the corresponding fluence. Fluence estimation itself, however, is an ill-posed inverse problem which usually needs simplifying assumptions to be solved with state-of-the-art methods. These simplifications, as well as noise and artifacts in PA images reduce the accuracy of quantitative PA imaging (PAI). This reduction in accuracy is often localized to image regions where the assumptions do not hold true. This impedes the reconstruction of functional parameters when averaging over entire regions of interest (ROI). Averaging over a subset of voxels with a high accuracy would lead to an improved estimation of such parameters. To achieve this, we propose a novel approach to the local estimation of confidence in quantitative reconstructions of PA images. It makes use of conditional probability densities to estimate confidence intervals alongside the actual quantification. It encapsulates an estimation of the errors introduced by fluence estimation as well as signal noise. We validate the approach using Monte Carlo generated data in combination with a recently introduced machine learning-based approach to quantitative PAI. Our experiments show at least a two-fold improvement in quantification accuracy when evaluating on voxels with high confidence instead of thresholding signal intensity.

  5. Inversion Therapy: Can It Relieve Back Pain?

    MedlinePlus

    Inversion therapy: Can it relieve back pain? Does inversion therapy relieve back pain? Is it safe? Answers from Edward R. Laskowski, M.D. Inversion therapy doesn't provide lasting relief from back ...

  6. Inverse problems in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Karwowski, Jacek

    Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.

  7. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  8. Schistosome Infection Intensity Is Inversely Related to Auto-Reactive Antibody Levels

    PubMed Central

    Mutapi, Francisca; Imai, Natsuko; Nausch, Norman; Bourke, Claire D.; Rujeni, Nadine; Mitchell, Kate M.; Midzi, Nicholas; Woolhouse, Mark E. J.; Maizels, Rick M.; Mduluza, Takafira

    2011-01-01

    In animal experimental models, parasitic helminth infections can protect the host from auto-immune diseases. We conducted a population-scale human study investigating the relationship between helminth parasitism and auto-reactive antibodies and the subsequent effect of anti-helminthic treatment on this relationship. Levels of antinuclear antibodies (ANA) and plasma IL-10 were measured by enzyme linked immunosorbent assay in 613 Zimbabweans (aged 2–86 years) naturally exposed to the blood fluke Schistosoma haematobium. ANA levels were related to schistosome infection intensity and systemic IL-10 levels. All participants were offered treatment with the anti-helminthic drug praziquantel and 102 treated schoolchildren (5–16 years) were followed up 6 months post-antihelminthic treatment. ANA levels were inversely associated with current infection intensity but were independent of host age, sex and HIV status. Furthermore, after allowing for the confounding effects of schistosome infection intensity, ANA levels were inversely associated with systemic levels of IL-10. ANA levels increased significantly 6 months after anti-helminthic treatment. Our study shows that ANA levels are attenuated in helminth-infected humans and that anti-helminthic treatment of helminth-infected people can significantly increase ANA levels. The implications of these findings are relevant for understanding both the aetiology of immune disorders mediated by auto-reactive antibodies and in predicting the long-term consequences of large-scale schistosomiasis control programs. PMID:21573157

  9. Relationship between thin cap fibroatheroma identified by virtual histology and angioscopic yellow plaque in quantitative analysis with colorimetry.

    PubMed

    Yamamoto, Masanori; Takano, Masamichi; Okamatsu, Kentaro; Murakami, Daisuke; Inami, Shigenobu; Xie, Yong; Seimiya, Koji; Ohba, Takayoshi; Seino, Yoshihiko; Mizuno, Kyoichi

    2009-03-01

    Thin cap fibroatheroma (TCFA) is considered to be a vulnerable plaque. Virtual Histology-intravascular ultrasound (VH-IVUS) can precisely identify TCFA in vivo. Intense yellow plaque on angioscopy determined by quantitative colorimetry with L a b color space corresponds with histological TCFA; in particular, a plaque of color b value >23 indicates an atheroma with a fibrous cap thickness <100 mum. In the present study, the relationship between VH-TCFA and angioscopic plaque color determined by colorimetry was investigated. Fifty-seven culprit plaques in 57 patients were evaluated by VH-IVUS and angioscopy. VH-TCFA was defined as a plaque with a necrotic core >10% of plaque area without overlying fibrous tissue, and angioscopic TCFA was a plaque with b value >23. The frequency of angioscopic TCFA was higher in the VH-TCFA group than in the VH-non-TCFA group (74% vs 23%, P=0.0002). Moreover, yellow color intensity (b value) significantly correlated with plaque classification on VH-IVUS. When TCFA detected with angioscopy was used as the gold standard, the sensitivity, specificity, and accuracy for TCFA with VH-IVUS was 68%, 81%, and 75%, respectively. VH-TCFA strongly correlated with angioscopic TCFA determined by a quantitative analysis with colorimetry.

  10. Real-time quantitative reverse transcription-PCR assay for renal cell carcinoma-associated antigen G250.

    PubMed

    Chuanzhong, Ye; Ming, Guan; Fanglin, Zhang; Haijiao, Chen; Zhen, Lin; Shiping, Chen; YongKang, Zhang

    2002-04-01

    Gene amplification/expression of G250 is a major event in human renal tumorigenesis. G250-based therapeutic agents and G250-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen G250 alterations in renal cell cancer (RCC) patients and investigate the relationship between G250 mRNA expression and RCC. We developed a quantitative RT-PCR assay for the measurement of G250 mRNA expression using a real-time procedure based on the use of fluorogenic probes and the ABI PRISM 7700 Sequence Detector System. The method has been applied to the measurement of quantitative mRNA level of G250 in 31 cases RCC and 6 normal renal tissues. The dynamic range was 10(3)-10(8). The relationship between Ct and log starting concentration was linear (r=0.99). G250 expression was present in all RCCs with G250 amplification but was absent in normal ones. G250 mRNA expression ranged from 2.9 x 10(3) to 6.5 x 10(7) copy/microg RNA, with a mean value of 3.5 x 10(6) copy/microg RNA. The expression of G250 revealed an inverse correlation to tumor grade. G250 mRNA level did not correlate with the cell types and clinical stages (P>0.05). G250 has the potential to be used as a marker of diagnosis and increasing proliferation in RCC. This new simple, rapid, semi-automated assay was a major alternative to competitive PCR and Northern blot analysis for gene alteration analysis in human tumors and might be a powerful tool for large randomized, prospective cooperative group trials and supporting future G250-based biological and gene therapy approaches.

  11. GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION

    NASA Astrophysics Data System (ADS)

    Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič

    2015-10-01

    In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.

  12. Joint inversions of two VTEM surveys using quasi-3D TDEM and 3D magnetic inversion algorithms

    NASA Astrophysics Data System (ADS)

    Kaminski, Vlad; Di Massa, Domenico; Viezzoli, Andrea

    2016-05-01

    In the current paper, we present results of a joint quasi-three-dimensional (quasi-3D) inversion of two versatile time domain electromagnetic (VTEM) datasets, as well as a joint 3D inversion of associated aeromagnetic datasets, from two surveys flown six years apart from one another (2007 and 2013) over a volcanogenic massive sulphide gold (VMS-Au) prospect in northern Ontario, Canada. The time domain electromagnetic (TDEM) data were inverted jointly using the spatially constrained inversion (SCI) approach. In order to increase the coherency in the model space, a calibration parameter was added. This was followed by a joint inversion of the total magnetic intensity (TMI) data extracted from the two surveys. The results of the inversions have been studied and matched with the known geology, adding some new valuable information to the ongoing mineral exploration initiative.

  13. Exploring Nurse Faculty Incivility and Resonant Leadership.

    PubMed

    Casale, Katherine R

    The purpose of this quantitative correlational study was to explore the relationship between the frequency of interfaculty incivility among nurses in academia and observed levels of resonant leadership of immediate supervisors. Despite mandates to address incivility in health care, nurse faculty report high levels of horizontal incivility among their peers. No known quantitative research has measured the relationship between nurse faculty-to-faculty incivility and resonant leadership traits of leaders. Nursing faculty from 17 universities (n = 260) were emailed an anonymous link to answer survey questions about horizontal peer incivility and leaders' management styles. There was a significant inverse relationship (Pearson's r, -.560) between the frequency of experienced faculty-to-faculty incivility and the level of observed resonant leadership behaviors of participants' immediate supervisors. Resonant supervisory behaviors inversely correlated with nurse faculty peer incivility, with potential to impact satisfaction, recruitment, and retention.

  14. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript

    PubMed Central

    Puig, Marta; Castellano, David; Pantano, Lorena; Giner-Delgado, Carla; Izquierdo, David; Gayà-Vidal, Magdalena; Lucas-Lledó, José Ignacio; Esko, Tõnu; Terao, Chikashi; Matsuda, Fumihiko; Cáceres, Mario

    2015-01-01

    Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000–50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far. PMID:26427027

  15. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript.

    PubMed

    Puig, Marta; Castellano, David; Pantano, Lorena; Giner-Delgado, Carla; Izquierdo, David; Gayà-Vidal, Magdalena; Lucas-Lledó, José Ignacio; Esko, Tõnu; Terao, Chikashi; Matsuda, Fumihiko; Cáceres, Mario

    2015-10-01

    Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000-50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far.

  16. Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming.

    PubMed

    Shi, Weimin; Zhang, Xiaoya; Shen, Qi

    2010-01-01

    Quantitative structure-activity relationship (QSAR) study of chemokine receptor 5 (CCR5) binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas and toxicity of aromatic compounds have been performed. The gene expression programming (GEP) was used to select variables and produce nonlinear QSAR models simultaneously using the selected variables. In our GEP implementation, a simple and convenient method was proposed to infer the K-expression from the number of arguments of the function in a gene, without building the expression tree. The results were compared to those obtained by artificial neural network (ANN) and support vector machine (SVM). It has been demonstrated that the GEP is a useful tool for QSAR modeling. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  17. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    PubMed

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Testing earthquake source inversion methodologies

    USGS Publications Warehouse

    Page, M.; Mai, P.M.; Schorlemmer, D.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  19. Ocular manifestations of gravity inversion.

    PubMed

    Friberg, T R; Weinreb, R N

    To determine the ocular manifestations of inverting the human body into a head-down vertical position, we evaluated normal volunteers with applanation tonometry, fundus photography, fluorescein angiography, and ophthalmodynamometry. Compared with data obtained in the sitting position, the intraocular pressure more than doubled on inversion (35.6 +/- 4 v 14.1 +/- 2.8 mm Hg, n = 16), increasing to levels well within the glaucomatous range. Pressures in the central retinal artery underwent similar increases, while the caliber of the retinal arterioles decreased substantially. External ocular findings associated with gravity inversion included orbital congestion, conjunctival hyperemia, petechiae of the eyelids, excessive tearing (epiphora), and subconjunctival hemorrhage. We suggest that patients with retinal vascular abnormalities, macular degeneration, ocular hypertension, glaucoma, and similar disorders refrain from inversion altogether. Whether normal individuals will suffer irreversible damage from inversion is uncertain, but it seems prudent to recommend that prolonged periods of inverted posturing be avoided.

  20. Sequential Inverse Problems Bayesian Principles and the Logistic Map Example

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Farmer, Chris L.; Moroz, Irene M.

    2010-09-01

    Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.

  1. Unanticipated ankle inversions are significantly different from anticipated ankle inversions during drop landings: overcoming anticipation bias.

    PubMed

    Dicus, Jeremy R; Seegmiller, Jeff G

    2012-05-01

    Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.

  2. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  3. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.; ...

    2017-11-21

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  4. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  5. Zinc oxide inverse opal enzymatic biosensor

    NASA Astrophysics Data System (ADS)

    You, Xueqiu; Pikul, James H.; King, William P.; Pak, James J.

    2013-06-01

    We report ZnO inverse opal- and nanowire (NW)-based enzymatic glucose biosensors with extended linear detection ranges. The ZnO inverse opal sensors have 0.01-18 mM linear detection range, which is 2.5 times greater than that of ZnO NW sensors and 1.5 times greater than that of other reported ZnO sensors. This larger range is because of reduced glucose diffusivity through the inverse opal geometry. The ZnO inverse opal sensors have an average sensitivity of 22.5 μA/(mM cm2), which diminished by 10% after 35 days, are more stable than ZnO NW sensors whose sensitivity decreased by 10% after 7 days.

  6. An Inversion Analysis of Recent Variability in CO2 Fluxes Using GOSAT and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kawa, S. R.; Baker, D. F.; Collatz, G. J.

    2016-12-01

    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks and their location and year-to-year variability are not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations. We also use measurement-based ocean flux estimates and fixed fossil CO2 emissions. Our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3° x 3.75° weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM transport model with MERRA meteorology. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble each other and those from other studies. For example, a GOSAT-only inversion suggests a shift in the global sink from the tropics/south to the north relative to the prior and to an in-situ-only inversion. The posterior fluxes of the GOSAT inversion are better

  7. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, Biological Evaluation, Quantitative Structure Activity Relationship, and Molecular Docking Studies.

    PubMed

    Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S

    2016-02-01

    Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities. © 2015 John Wiley & Sons A/S.

  8. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2000-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales approximately > 100 pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.

  9. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    PubMed Central

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  10. Seismic velocity structure of the forearc in northern Cascadia from Bayesian inversion of teleseismic data

    NASA Astrophysics Data System (ADS)

    Gosselin, J.; Audet, P.; Schaeffer, A. J.

    2017-12-01

    The seismic velocity structure in the forearc of subduction zones provides important constraints on material properties, with implications for seismogenesis. In Cascadia, previous studies have imaged a downgoing low-velocity zone (LVZ) characterized by an elevated P-to-S velocity ratio (Vp/Vs) down to 45 km depth, near the intersection with the mantle wedge corner, beyond which the signature of the LVZ disappears. These results, combined with the absence of a "normal" continental Moho, indicate that the down-going oceanic crust likely carries large amounts of overpressured free fluids that are released downdip at the onset of crustal eclogitization, and are further stored in the mantle wedge as serpentinite. These overpressured free fluids affect the stability of the plate interface and facilitate slow slip. These results are based on the inversion and migration of scattered teleseismic data for individual layer properties; a methodology which suffers from regularization and smoothing, non-uniqueness, and does not consider model uncertainty. This study instead applies trans-dimensional Bayesian inversion of teleseismic data collected in the forearc of northern Cascadia (the CAFÉ experiment in northern Washington) to provide rigorous, quantitative estimates of local velocity structure, and associated uncertainties (particularly Vp/Vs structure and depth to the plate interface). Trans-dimensional inversion is a generalization of fixed-dimensional inversion that includes the number (and type) of parameters required to describe the velocity model (or data error model) as unknown in the problem. This allows model complexity to be inherently determined by data information content, not by subjective regularization. The inversion is implemented here using the reversible-jump Markov chain Monte Carlo algorithm. The result is an ensemble set of candidate velocity-structure models which approximate the posterior probability density (PPD) of the model parameters. The solution

  11. Tomographic inversion of satellite photometry

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Hays, P. B.; Abreu, V. J.

    1984-01-01

    An inversion algorithm capable of reconstructing the volume emission rate of thermospheric airglow features from satellite photometry has been developed. The accuracy and resolution of this technique are investigated using simulated data, and the inversions of several sets of observations taken by the Visible Airglow Experiment are presented.

  12. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Satisfaction (sexual, life, relationship, and mental health) is associated directly with penile-vaginal intercourse, but inversely with other sexual behavior frequencies.

    PubMed

    Brody, Stuart; Costa, Rui Miguel

    2009-07-01

    Some sex therapists and educators assume that many sexual behaviors provide comparable sexual satisfaction. Evidence is required to determine whether sexual behaviors differ in their associations with both sexual satisfaction and satisfaction with other aspects of life. To test the hypothesis that satisfaction with sex life, life in general, sexual partnership, and mental health correlates directly with frequency of penile-vaginal intercourse (PVI) and inversely with frequency of both masturbation and partnered sexual activity excluding PVI (noncoital sex). A representative sample of 2,810 Swedes reported frequency of PVI, noncoital sex, and masturbation during the past 30 days, and degree of satisfaction with their sex life, life in general, partnership, and mental health. Multivariate analyses (for the sexes separately and combined) considering the different satisfaction parameters as dependent variables, and the different types of sexual activities (and age) as putative predictors. For both sexes, multivariate analyses revealed that PVI frequency was directly associated with all satisfaction measures (part correlation = 0.50 with sexual satisfaction), masturbation frequency was independently inversely associated with almost all satisfaction measures, and noncoital sex frequencies independently inversely associated with some satisfaction measures (and uncorrelated with the rest). Age did not confound the results. The results are consistent with evidence that specifically PVI frequency, rather than other sexual activities, is associated with sexual satisfaction, health, and well-being. Inverse associations between satisfaction and masturbation are not due simply to insufficient PVI.

  14. THE RELATIONSHIP BETWEEN WHOLE BLOOD SEROTONIN AND REPETITIVE BEHAVIORS IN AUTISM

    PubMed Central

    Kolevzon, Alexander; Newcorn, Jeffrey H.; Kryzak, Lauren; Chaplin, William; Watner, Dryden; Hollander, Eric; Smith, Christopher J.; Cook, Edwin H.; Silverman, Jeremy M.

    2009-01-01

    This study was conducted to examine the relationship between whole blood serotonin level and behavioral symptoms in 78 subjects with autism. No significant associations were found between serotonin level and the primary behavioral outcome measures. However, a significant inverse relationship between serotonin level and self-injury was demonstrated. PMID:20044143

  15. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    PubMed

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  16. Hologram quantitative structure–activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors

    PubMed Central

    de Oliveira Magalhães, Uiaran; de Souza, Alessandra Mendonça Teles; Albuquerque, Magaly Girão; de Brito, Monique Araújo; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives. PMID:24039405

  17. NLSE: Parameter-Based Inversion Algorithm

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.

    Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.

  18. A quantitative comparison of corrective and perfective maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Joel; Cain, James

    1994-01-01

    This paper presents a quantitative comparison of corrective and perfective software maintenance activities. The comparison utilizes basic data collected throughout the maintenance process. The data collected are extensive and allow the impact of both types of maintenance to be quantitatively evaluated and compared. Basic statistical techniques test relationships between and among process and product data. The results show interesting similarities and important differences in both process and product characteristics.

  19. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

  20. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes

  1. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae).

    PubMed

    Walker, Joseph F; Zanis, Michael J; Emery, Nancy C

    2014-04-01

    Complete chloroplast genome studies can help resolve relationships among large, complex plant lineages such as Asteraceae. We present the first whole plastome from the Madieae tribe and compare its sequence variation to other chloroplast genomes in Asteraceae. We used high throughput sequencing to obtain the Lasthenia burkei chloroplast genome. We compared sequence structure and rates of molecular evolution in the small single copy (SSC), large single copy (LSC), and inverted repeat (IR) regions to those for eight Asteraceae accessions and one Solanaceae accession. The chloroplast sequence of L. burkei is 150 746 bp and contains 81 unique protein coding genes and 4 coding ribosomal RNA sequences. We identified three major inversions in the L. burkei chloroplast, all of which have been found in other Asteraceae lineages, and a previously unreported inversion in Lactuca sativa. Regions flanking inversions contained tRNA sequences, but did not have particularly high G + C content. Substitution rates varied among the SSC, LSC, and IR regions, and rates of evolution within each region varied among species. Some observed differences in rates of molecular evolution may be explained by the relative proportion of coding to noncoding sequence within regions. Rates of molecular evolution vary substantially within and among chloroplast genomes, and major inversion events may be promoted by the presence of tRNAs. Collectively, these results provide insight into different mechanisms that may promote intramolecular recombination and the inversion of large genomic regions in the plastome.

  2. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  3. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood.

    PubMed

    Levitt, David G

    2010-01-07

    The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly

  4. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  5. Variable-permittivity linear inverse problem for the H(sub z)-polarized case

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Chew, W. C.

    1993-01-01

    The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.

  6. MAP Estimators for Piecewise Continuous Inversion

    DTIC Science & Technology

    2016-08-08

    MAP estimators for piecewise continuous inversion M M Dunlop1 and A M Stuart Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK E...Published 8 August 2016 Abstract We study the inverse problem of estimating a field ua from data comprising a finite set of nonlinear functionals of ua...then natural to study maximum a posterior (MAP) estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has been shown that MAP

  7. Relationship Building as a Retention Strategy: Linking Relationship Attitudes and Satisfaction Evaluations to Behavioral Outcomes.

    ERIC Educational Resources Information Center

    Bruning, Stephen D.

    2002-01-01

    Determines whether student-university relationship attitudes and satisfaction evaluations distinguished those who returned to a university from those who did not. Shows that respondent relationship attitudes differentiate those who returned to the university from those who did not, which provides a quantitative illustration of the benefits of…

  8. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  9. Relationship of cognitions and symptoms of agoraphobia in Hong Kong Chinese: a combined quantitative and qualitative study.

    PubMed

    Hui, Lung Kit; Ng, Roger M K; Pau, Lui; Yip, K C

    2012-03-01

    The aim of this study was to explore and describe the subjective experiences of agoraphobia in Hong Kong Chinese. This was a cross-sectional descriptive study, using a combined qualitative-quantitative approach. In the qualitative part, two focus groups were held with nine participants suffering from DSM-IV panic disorder with agoraphobia, followed up in a regional hospital in Hong Kong. The audiotaped was transcribed and analysed into four main categories and 13 subcategories based on a grounded theory approach. One subcategory ('Fear of making others worried and being a burden to others') was identified as a novel, culture-specific concept in agoraphobia that was not reported in Western literature. In the quantitative part, this subcategory was redefined and measured by a two-item, self-rated questionnaire survey in another 35 participants suffering from DSM-IV defined panic disorder with agoraphobia. Qualitative data showed that the clinical manifestations of agoraphobia were specifically related to the underlying corresponding catastrophic cognitions. An individual's agoraphobic cognitions and symptoms were highly related to the identity of the surrounding people during panic attacks in agoraphobic situations, which reflected the characteristic structure of the Chinese interpersonal network. Participants preferred reliance on self to cope with the anxiety first, then turned to their family members for help due to higher interpersonal trust. Participants also expressed fear of affecting others due to their illness. A new sub-theme of agoraphobia ('Fear of making others worried and being a burden to others') was extracted from the qualitative data. Its validity was confirmed by the quantitative description of this new theme using a self-rated questionnaire as a methodological triangulation. The central theme to emerge from the qualitative data was that agoraphobia is a clinical condition that has a close relationship to Chinese cultural factors. 'Fear of making

  10. Neurocognition, Insight into Illness and Subjective Quality-of-Life in Schizophrenia: What is Their Relationship?

    PubMed Central

    Kurtz, Matthew M.; Tolman, Arielle

    2010-01-01

    Subjective quality-of-life (SQOL) has been recognized as a crucial domain of outcome in schizophrenia treatment, and yet its determinants are not well understood. In a recent meta-analytic investigation of 10 studies of neurocognition and SQOL in schizophrenia (Tolman & Kurtz, Scz Bull, in press) measures of crystallized verbal ability and processing speed were moderately negatively correlated with SQOL. One potential explanation for inverse relationships between measures of elementary neurocognition and SQOL is that higher levels of cognition may serve as a proxy for better insight into the illness, and better consequent recognition of illness-related functional impairment. This study sought to determine whether: (1) symptoms, neurocognitive variables, and insight into illness influence SQOL; and, (2) whether insight mediated or moderated a relationship between elementary neurocognitive function and SQOL. Seventy-one stabilized clients with schizophrenia or schizoaffective disorder were administered a neuropsychological test battery, symptom and subjective quality-of-life measures. Elementary neuropsychological measures of crystallized verbal ability, attention and working memory, and problem-solving were all inversely related to SQOL. Insight into illness and depression severity, but not positive and negative symptoms, were also inversely related to SQOL. Insight was not found to mediate or moderate any of the relationships between elementary neurocognition and SQOL. Taken together, these findings suggest that neurocognition and insight into illness have inverse relationships to SQOL and that elementary neurocognition does not influence SQOL through its link with illness insight. PMID:21211943

  11. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  12. Inversion Analysis of Postseismic Deformation in Poroelastic Material Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kawamoto, S.; Ito, T.; Hirahara, K.

    2005-12-01

    Following a large earthquake, postseismic deformations in the focal source region have been observed by several geodetic measurements. To explain the postseismic deformations, researchers have proposed some physical mechanisms known as afterslip, viscoelastic relaxation and poroelastic rebound. There are a number of studies about postseismic deformations but for poroelastic rebound. So, we calculated the postseismic deformations caused by afterslip and poroelastic rebound using modified FEM code _eCAMBIOT3D_f originally developed by Geotech. Lab. Gunma University, Japan (2003). The postseismic deformations caused by both afterslip and poroelastic rebound are characteristically different from those caused only by afterslip. This suggests that the slip distributions on the fault estimated from geodetic measurements also change. Because of this, we developed the inversion method that accounts for both afterslip and poroelastic rebound using FEM to estimate the difference of slip distributions on the fault quantitatively. The inversion analysis takes following steps. First, we calculate the coseismic and postseismic response functions on each fault segment induced by the unit slip. Where postseismic response function indicate the poroelastic rebound. Next, we make the observation equations at each time step using the response functions and estimate the spatiotemporal distribution of slip on the fault. In solving this inverse problem, we assume the slip distributions on the fault are smooth in space and time except for rapid change (coseismic change). Because the hyperparameters that control the smoothness of spatial and temporal distributions of slip are needed, we determine the best hyperparameters using ABIC. In this presentation, we introduce the example of analysis results using this method.

  13. Preview-Based Stable-Inversion for Output Tracking

    NASA Technical Reports Server (NTRS)

    Zou, Qing-Ze; Devasia, Santosh

    1999-01-01

    Stable Inversion techniques can be used to achieve high-accuracy output tracking. However, for nonminimum phase systems, the inverse is non-causal - hence the inverse has to be pre-computed using a pre-specified desired-output trajectory. This requirement for pre-specification of the desired output restricts the use of inversion-based approaches to trajectory planning problems (for nonminimum phase systems). In the present article, it is shown that preview information of the desired output can be used to achieve online inversion-based output tracking of linear systems. The amount of preview-time needed is quantified in terms of the tracking error and the internal dynamics of the system (zeros of the system). The methodology is applied to the online output tracking of a flexible structure and experimental results are presented.

  14. Modern quantitative schlieren techniques

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Settles, Gary

    2010-11-01

    Schlieren optical techniques have traditionally been used to qualitatively visualize refractive flowfields in transparent media. Modern schlieren optics, however, are increasingly focused on obtaining quantitative information such as temperature and density fields in a flow -- once the sole purview of interferometry -- without the need for coherent illumination. Quantitative data are obtained from schlieren images by integrating the measured refractive index gradient to obtain the refractive index field in an image. Ultimately this is converted to a density or temperature field using the Gladstone-Dale relationship, an equation of state, and geometry assumptions for the flowfield of interest. Several quantitative schlieren methods are reviewed here, including background-oriented schlieren (BOS), schlieren using a weak lens as a "standard," and "rainbow schlieren." Results are presented for the application of these techniques to measure density and temperature fields across a supersonic turbulent boundary layer and a low-speed free-convection boundary layer in air. Modern equipment, including digital cameras, LED light sources, and computer software that make this possible are also discussed.

  15. Strong Matrix & Weak Blocks: Evolutionary Inversion of Mélange Rheological Relationships During Subduction and Its Implications for Seismogenesis

    NASA Astrophysics Data System (ADS)

    Clarke, A. P.; Vannucchi, P.; Ougier-Simonin, A.; Morgan, J. P.

    2017-12-01

    Subduction zone interface layers are often conceived to be heterogeneous, polyrheological zones analogous to exhumed mélanges. Mélanges typically contain mechanically strong blocks within a weaker matrix. However, our geomechanical study of the Osa Mélange, SW Costa Rica shows that this mélange contains blocks of altered basalt which are now weaker in friction than their surrounding indurated volcanoclastic matrix. Triaxial deformation experiments were conducted on samples of both the altered basalt blocks and the indurated volcanoclastic matrix at confining pressures of 60 and 120 MPa. These revealed that the volcanoclastic matrix has a strength 7.5 times that of the altered basalt at 60 MPa and 4 times at 120 MPa, with the altered basalt experiencing multi-stage failure. The inverted strength relationship between weaker blocks and stronger matrix evolved during subduction and diagenesis of the melange unit by dewatering, compaction and diagenesis of the matrix and cataclastic brecciation and hydrothermal alteration of the basalt blocks. During the evolution of this material, the matrix progressively indurated until its plastic yield stress became greater than the brittle yield stress of the blocks. At this point, the typical rheological relationship found within melanges inverts and melange blocks can fail seismically as the weakest links along the subduction plate interface. The Osa Melange is currently in the forearc of the erosive Middle America Trench and is being incorporated into the subduction zone interface at the updip limit of seismogenesis. The presence of altered basalt blocks acting as weak inclusions within this rock unit weakens the mélange as a whole rock mass. Seismic fractures can nucleate at or within these weak inclusions and the size of the block may limit the size of initial microseismic rock failure. However, when fractures are able to bridge across the matrix between blocks, significantly larger rupture areas may be possible. While

  16. Eco-Evolutionary Genomics of Chromosomal Inversions.

    PubMed

    Wellenreuther, Maren; Bernatchez, Louis

    2018-05-03

    Chromosomal inversions have long fascinated evolutionary biologists due to their suppression of recombination, which can protect co-adapted alleles. Emerging research documents that inversions are commonly linked to spectacular phenotypes and have a pervasive role in eco-evolutionary processes, from mating systems, social organisation, environmental adaptation, and reproductive isolation to speciation. Studies also reveal that inversions are taxonomically widespread, with many being old and large, and that balancing selection is commonly facilitating their maintenance. This challenges the traditional view that the role of balancing selection in maintaining variation is relatively minor. The ubiquitous importance of inversions in ecological and evolutionary processes suggests that structural variation should be better acknowledged and integrated in studies pertaining to the molecular basis of adaptation and speciation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Inversion layer solar cell fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1972-01-01

    Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.

  18. Three-dimensional inversion for Network-Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Siripunvaraporn, W.; Uyeshima, M.; Egbert, G.

    2004-09-01

    Three-dimensional inversion of Network-Magnetotelluric (MT) data has been implemented. The program is based on a conventional 3-D MT inversion code (Siripunvaraporn et al., 2004), which is a data space variant of the OCCAM approach. In addition to modifications required for computing Network-MT responses and sensitivities, the program makes use of Massage Passing Interface (MPI) software, with allowing computations for each period to be run on separate CPU nodes. Here, we consider inversion of synthetic data generated from simple models consisting of a 1 W-m conductive block buried at varying depths in a 100 W-m background. We focus in particular on inversion of long period (320-40,960 seconds) data, because Network-MT data usually have high coherency in these period ranges. Even with only long period data the inversion recovers shallow and deep structures, as long as these are large enough to affect the data significantly. However, resolution of the inversion depends greatly on the geometry of the dipole network, the range of periods used, and the horizontal size of the conductive anomaly.

  19. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua

    2009-09-01

    With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.

  20. Inversion exercises inspired by mechanics

    NASA Astrophysics Data System (ADS)

    Groetsch, C. W.

    2016-02-01

    An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.

  1. Sex differences in the relationship between white matter connectivity and creativity.

    PubMed

    Ryman, Sephira G; van den Heuvel, Martijn P; Yeo, Ronald A; Caprihan, Arvind; Carrasco, Jessica; Vakhtin, Andrei A; Flores, Ranee A; Wertz, Christopher; Jung, Rex E

    2014-11-01

    Creative cognition emerges from a complex network of interacting brain regions. This study investigated the relationship between the structural organization of the human brain and aspects of creative cognition tapped by divergent thinking tasks. Diffusion weighted imaging (DWI) was used to obtain fiber tracts from 83 segmented cortical regions. This information was represented as a network and metrics of connectivity organization, including connectivity strength, clustering and communication efficiency were computed, and their relationship to individual levels of creativity was examined. Permutation testing identified significant sex differences in the relationship between global connectivity and creativity as measured by divergent thinking tests. Females demonstrated significant inverse relationships between global connectivity and creative cognition, whereas there were no significant relationships observed in males. Node specific analyses revealed inverse relationships across measures of connectivity, efficiency, clustering and creative cognition in widespread regions in females. Our findings suggest that females involve more regions of the brain in processing to produce novel ideas to solutions, perhaps at the expense of efficiency (greater path lengths). Males, in contrast, exhibited few, relatively weak positive relationships across these measures. Extending recent observations of sex differences in connectome structure, our findings of sexually dimorphic relationships suggest a unique topological organization of connectivity underlying the generation of novel ideas in males and females. Published by Elsevier Inc.

  2. Effects of spatially variable resolution on field-scale estimates of tracer concentration from electrical inversions using Archie's law

    USGS Publications Warehouse

    Singha, Kamini; Gorelick, Steven M.

    2006-01-01

    Two important mechanisms affect our ability to estimate solute concentrations quantitatively from the inversion of field-scale electrical resistivity tomography (ERT) data: (1) the spatially variable physical processes that govern the flow of current as well as the variation of physical properties in space and (2) the overparameterization of inverse models, which requires the imposition of a smoothing constraint (regularization) to facilitate convergence of the inverse solution. Based on analyses of field and synthetic data, we find that the ability of ERT to recover the 3D shape and magnitudes of a migrating conductive target is spatially variable. Additionally, the application of Archie's law to tomograms from field ERT data produced solute concentrations that are consistently less than 10% of point measurements collected in the field and estimated from transport modeling. Estimates of concentration from ERT using Archie's law only fit measured solute concentrations if the apparent formation factor is varied with space and time and allowed to take on unreasonably high values. Our analysis suggests that the inability to find a single petrophysical relation in space and time between concentration and electrical resistivity is largely an effect of two properties of ERT surveys: (1) decreased sensitivity of ERT to detect the target plume with increasing distance from the electrodes and (2) the smoothing imprint of regularization used in inversion.

  3. Quantitative phase microscopy via optimized inversion of the phase optical transfer function.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-10-01

    Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.

  4. Relationship between quantitative measurement of Porphyromonas gingivalis on dental plaque with periodontal status of patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Dwiyanti, Stephani; Soeroso, Yuniarti; Sunarto, Hari; Radi, Basuni

    2017-02-01

    Coronary heart disease is a narrowing of coronary artery due to plaque build-up. [1] Chronic periodontitis increases risk of cardiovascular disease. P.gingivalis is linked to both diseases. Objective: to analyse quantitative difference of P.gingivalis on dental plaque and its relationship with periodontal status of CHD patient and control. Methods: Periodontal status of 66 CHD patient and 40 control was checked. Subgingival plaque was isolated and P.gingivalis was measured using real-time PCR. Result: P.gingivalis of CHD patient differs from control. P.gingivalis is linked to pocket depth of CHD patient. Conclusion: P.gingivalis count of CHD patient is higher than control. P.gingivalis count is not linked to any periodontal status, except for pocket depth of CHD patient.

  5. Mass Spectrometry Based Identification of Geometric Isomers during Metabolic Stability Study of a New Cytotoxic Sulfonamide Derivatives Supported by Quantitative Structure-Retention Relationships

    PubMed Central

    Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz

    2014-01-01

    A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers’ geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the

  6. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  7. Predicting human skin absorption of chemicals: development of a novel quantitative structure activity relationship.

    PubMed

    Luo, Wen; Medrek, Sarah; Misra, Jatin; Nohynek, Gerhard J

    2007-02-01

    The objective of this study was to construct and validate a quantitative structure-activity relationship model for skin absorption. Such models are valuable tools for screening and prioritization in safety and efficacy evaluation, and risk assessment of drugs and chemicals. A database of 340 chemicals with percutaneous absorption was assembled. Two models were derived from the training set consisting 306 chemicals (90/10 random split). In addition to the experimental K(ow) values, over 300 2D and 3D atomic and molecular descriptors were analyzed using MDL's QsarIS computer program. Subsequently, the models were validated using both internal (leave-one-out) and external validation (test set) procedures. Using the stepwise regression analysis, three molecular descriptors were determined to have significant statistical correlation with K(p) (R2 = 0.8225): logK(ow), X0 (quantification of both molecular size and the degree of skeletal branching), and SsssCH (count of aromatic carbon groups). In conclusion, two models to estimate skin absorption were developed. When compared to other skin absorption QSAR models in the literature, our model incorporated more chemicals and explored a large number of descriptors. Additionally, our models are reasonably predictive and have met both internal and external statistical validations.

  8. AIDA - from Airborne Data Inversion to In-Depth Analysis

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Goetze, H.; Schroeder, M.; Boerner, R.; Tezkan, B.; Winsemann, J.; Siemon, B.; Alvers, M.; Stoll, J. B.

    2011-12-01

    order to follow up these questions raised the project aims to achieve the following goals: a) Development of new and expansion of existent inversion strategies to improve structural parameter information on different space and time scales. b) Development, modification, and tests for a multi-parameter inversion (joint inversion). c) Development of new quantitative approaches in data assimilation and plausibility studies. d) Compilation of optimized work flows for fast employment by end users. e) Primary goal is to solve comparable society related problems (as salinization, erosion, contamination, degradation etc.) in regions within Germany and abroad by generalization of project results.

  9. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masahiro

    2003-06-01

    This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight

  10. Varieties of Anger and the Inverse Link between Education and Inflammation: Toward an Integrative Framework

    PubMed Central

    Boylan, Jennifer Morozink; Ryff, Carol D.

    2013-01-01

    Objective To examine multiple aspects of anger experience and expression (frequency, outward expression, suppression, control) as moderators of the association of social inequality as measured by educational status with inflammation and coagulation markers. Methods Following survey assessments via telephone and mail, MIDUS (Midlife in the U.S.) respondents (N = 1,054) participated in an overnight clinic visit, where they completed anger questionnaires and provided a fasting blood sample to measure IL-6, C-reactive protein (CRP), and fibrinogen. Results Educational status was linked to higher anger-control among men (B = .14, p = .001). Significant inverse correlations emerged between education and IL-6, CRP, and fibrinogen (r's ≥ -.09, p's < .004) and between anger-control and IL-6 and CRP (r's = -.07, p's <. 03). Controlling for demographic and health status covariates, anger-in predicted lower fibrinogen (p = .031). Interactions between education and anger measures were significant for education and trait anger as related to fibrinogen (p = .023), education and anger-out as related to IL-6 (p = 0.05) and fibrinogen (p = .05). As predicted, the inverse relationships between education and IL-6 and fibrinogen were stronger among individuals reporting high anger. Anger-control also moderated the association of education with IL-6 in women (p = .026), such that the link between education and IL-6 was attenuated among women with high anger-control. Conclusion Varieties of anger moderated educational gradients in inflammation: The inverse relationships between education and inflammation markers were strongest among individuals with high anger, and were attenuated among those with high anger control. PMID:23766379

  11. Varieties of anger and the inverse link between education and inflammation: toward an integrative framework.

    PubMed

    Boylan, Jennifer Morozink; Ryff, Carol D

    2013-01-01

    To examine multiple aspects of anger experience and expression (frequency, outward expression, suppression, and control) as moderators of the association of social inequality, as measured by educational status, with inflammation and coagulation markers. After survey assessments via telephone and mail, Midlife in the United States respondents (N = 1054) participated in an overnight clinic visit, where they completed anger questionnaires and provided a fasting blood sample to measure interleukin-6 (IL-6), C-reactive protein (CRP), and fibrinogen. Educational status was linked to higher anger control among men (B = 0.14, p = .001). Significant inverse correlations emerged between education and IL-6, CRP, and fibrinogen (r values ≥ -0.09, p values <.004) and between anger control and IL-6 and CRP (r values = -0.07, p values < .03). Controlling for demographic and health status covariates, anger-in predicted lower fibrinogen (p = .03). Interactions between education and anger measures were significant for education and trait anger as related to fibrinogen (p = .02) and education and anger-out as related to IL-6 (p = .05) and fibrinogen (p = .05). As predicted, the inverse relationships between education and IL-6 and fibrinogen were stronger among individuals reporting high anger. Anger control also moderated the association of education with IL-6 in women (p = .026), such that the link between education and IL-6 was attenuated among women with high anger control. Varieties of anger moderated educational gradients in inflammation: The inverse relationships between education and inflammation markers were strongest among individuals with high anger and were attenuated among those with high anger control.

  12. Relationships between depression and anxiety symptoms scores and blood pressure in young adults.

    PubMed

    Bhat, Sunil K; Beilin, Lawrence J; Robinson, Monique; Burrows, Sally; Mori, Trevor A

    2017-10-01

    Depression and anxiety are risk factors for cardiovascular disease, but their relationship to blood pressure (BP) is less clear. Age-related comorbidity and lifestyle factors may confound these relationships. This study aimed to assess the relationships among BP, depression and anxiety symptom scores and self-reported history of depression in young adults. Data on 1014 participants aged 20 years from the Western Australian Cohort (Raine) Study were analyzed for cross-sectional associations between clinic BP and Depression, Anxiety, Stress Scale questionnaire scores or a reported history of depression, accounting for relevant confounders. Multivariable adjusted analyses showed an inverse relationship between SBP with depression (coefficient = -0.10; P = 0.012) and anxiety (after excluding two outliers with SBP > 156 mmHg, coefficient = -0.13; P = 0.018) scores, independent of sex, BMI, female hormonal contraceptive use, alcohol consumption, birth weight and maternal hypertension in pregnancy. SBP was 1.6 mmHg lower for 2 SD (16 units) increase in depression score. There was an inverse association between self-reported history of depression (15.8% of participants) and SBP (coefficient = -1.91; P = 0.023), with an interaction with increasing BMI (interaction coefficient = -0.43; P = 0.002) enhancing this difference. Our findings show that SBP in young adults is inversely associated with depression and anxiety scores, independent of a range of lifestyle confounders. Despite a positive association between BMI and BP, adiposity enhanced the inverse association between self-reported history of depression and SBP. These findings contrast with the predisposition of depressed participants to cardiovascular disease in later life when decades of unhealthy lifestyle changes may dominate.

  13. High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction

    PubMed Central

    Joseph, Arun A; Kalentev, Oleksandr; Merboldt, Klaus-Dietmar; Voit, Dirk; Roeloffs, Volkert B; van Zalk, Maaike; Frahm, Jens

    2016-01-01

    Objective: To develop a novel method for rapid myocardial T1 mapping at high spatial resolution. Methods: The proposed strategy represents a single-shot inversion recovery experiment triggered to early diastole during a brief breath-hold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3-T MRI system using a graphics processing unit-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 beats per minute. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers. Results: At 1-mm in-plane resolution and 6-mm section thickness, the inversion recovery measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 beats per minute. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± standard deviation, n = 6). Conclusion: Diastolic myocardial T1 mapping with use of single-shot inversion recovery FLASH offers high spatial resolution, T1 accuracy and precision, and practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation. PMID:27759423

  14. Data-resolution matrix and model-resolution matrix for Rayleigh-wave inversion using a damped least-squares method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.

  15. Convex blind image deconvolution with inverse filtering

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  16. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.

    2014-03-01

    Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

  17. Severe Headache or Migraine History is Inversely Correlated With Dietary Sodium Intake: NHANES 1999-2004.

    PubMed

    Pogoda, Janice M; Gross, Noah B; Arakaki, Xianghong; Fonteh, Alfred N; Cowan, Robert P; Harrington, Michael G

    2016-04-01

    We investigated whether dietary sodium intake from respondents of a national cross-sectional nutritional study differed by history of migraine or severe headaches. Several lines of evidence support a disruption of sodium homeostasis in migraine. Our analysis population was 8819 adults in the 1999-2004 National Health and Nutrition Examination Survey (NHANES) with reliable data on diet and headache history. We classified respondents who reported a history of migraine or severe headaches as having probable history of migraine. To reduce the diagnostic conflict from medication overuse headache, we excluded respondents who reported taking analgesic medications. Dietary sodium intake was measured using validated estimates of self-reported total grams of daily sodium consumption and was analyzed as the residual value from the linear regression of total grams of sodium on total calories. Multivariable logistic regression that accounted for the stratified, multistage probability cluster sampling design of NHANES was used to analyze the relationship between migraine and dietary sodium. Odds of probable migraine history decreased with increasing dietary sodium intake (odds ratio = 0.93, 95% confidence interval = 0.87, 1.00, P = .0455). This relationship was maintained after adjusting for age, sex, and body mass index (BMI) with slightly reduced significance (P = .0505). In women, this inverse relationship was limited to those with lower BMI (P = .007), while in men the relationship did not differ by BMI. We likely excluded some migraineurs by omitting frequent analgesic users; however, a sensitivity analysis suggested little effect from this exclusion. This study is the first evidence of an inverse relationship between migraine and dietary sodium intake. These results are consistent with altered sodium homeostasis in migraine and our hypothesis that dietary sodium may affect brain extracellular fluid sodium concentrations and neuronal excitability.

  18. Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao

    2017-05-01

    AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.

  19. An inverse problem in thermal imaging

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Caudill, Lester F., Jr.

    1994-01-01

    This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.

  20. Error analysis applied to several inversion techniques used for the retrieval of middle atmospheric constituents from limb-scanning MM-wave spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Puliafito, E.; Bevilacqua, R.; Olivero, J.; Degenhardt, W.

    1992-01-01

    The formal retrieval error analysis of Rodgers (1990) allows the quantitative determination of such retrieval properties as measurement error sensitivity, resolution, and inversion bias. This technique was applied to five numerical inversion techniques and two nonlinear iterative techniques used for the retrieval of middle atmospheric constituent concentrations from limb-scanning millimeter-wave spectroscopic measurements. It is found that the iterative methods have better vertical resolution, but are slightly more sensitive to measurement error than constrained matrix methods. The iterative methods converge to the exact solution, whereas two of the matrix methods under consideration have an explicit constraint, the sensitivity of the solution to the a priori profile. Tradeoffs of these retrieval characteristics are presented.