Marklin, R W; Monroe, J F
1998-02-01
This study was motivated by the serious impact that cumulative trauma disorders (CTDs) of the upper extremities have on the meat packing industry. To date, no quantitative data have been gathered on the kinematics of hand and wrist motion required in bone-trimming jobs in the red-meat packing industry and how these motions are related to the risk of CTDs. The wrist motion of bone-trimming workers from a medium-sized plant was measured, and the kinematic data were compared to manufacturing industry's preliminary wrist motion benchmarks from industrial workers who performed hand-intensive, repetitive work in jobs that were of low and high risk of hand/wrist CTDs. Results of this comparison show that numerous wrist motion variables in both the left and right hands of bone-trimming workers are in the high-risk category. This quantitative analysis provides biomechanical support for the high incidence of CTDs in the meat packing industry. The research reported in this paper established a preliminary database of wrist and hand kinematics required in bone-trimming jobs in the red-meat packing industry. This kinematic database could augment the industry's efforts to reduce the severity and cost of CTDs. Ergonomics practitioners in the industry could use the kinematic methods employed in this research to assess the CTD risk of jobs that require repetitious, hand-intensive work.
The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman
2013-11-01
In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.
ERIC Educational Resources Information Center
Nobile, Maria; Perego, Paolo; Piccinini, Luigi; Mani, Elisa; Rossi, Agnese; Bellina, Monica; Molteni, Massimo
2011-01-01
In order to increase the knowledge of locomotor disturbances in children with autism, and of the mechanism underlying them, the objective of this exploratory study was to reliably and quantitatively evaluate linear gait parameters (spatio-temporal and kinematic parameters), upper body kinematic parameters, walk orientation and smoothness using an…
Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.
Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W
2017-06-22
Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.
Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback
Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.
2017-01-01
Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038
Evaluation of colonoscopy technical skill levels by use of an objective kinematic-based system.
Obstein, Keith L; Patil, Vaibhav D; Jayender, Jagadeesan; San José Estépar, Raúl; Spofford, Inbar S; Lengyel, Balazs I; Vosburgh, Kirby G; Thompson, Christopher C
2011-02-01
Colonoscopy requires training and experience to ensure accuracy and safety. Currently, no objective, validated process exists to determine when an endoscopist has attained technical competence. Kinematics data describing movements of laparoscopic instruments have been used in surgical skill assessment to define expert surgical technique. We have developed a novel system to record kinematics data during colonoscopy and quantitatively assess colonoscopist performance. To use kinematic analysis of colonoscopy to quantitatively assess endoscopic technical performance. Prospective cohort study. Tertiary-care academic medical center. This study involved physicians who perform colonoscopy. Application of a kinematics data collection system to colonoscopy evaluation. Kinematics data, validated task load assessment instrument, and technical difficulty visual analog scale. All 13 participants completed the colonoscopy to the terminal ileum on the standard colon model. Attending physicians reached the terminal ileum quicker than fellows (median time, 150.19 seconds vs 299.86 seconds; p<.01) with reduced path lengths for all 4 sensors, decreased flex (1.75 m vs 3.14 m; P=.03), smaller tip angulation, reduced absolute roll, and lower curvature of the endoscope. With performance of attending physicians serving as the expert reference standard, the mean kinematic score increased by 19.89 for each decrease in postgraduate year (P<.01). Overall, fellows experienced greater mental, physical, and temporal demand than did attending physicians. Small cohort size. Kinematic data and score calculation appear useful in the evaluation of colonoscopy technical skill levels. The kinematic score appears to consistently vary by year of training. Because this assessment is nonsubjective, it may be an improvement over current methods for determination of competence. Ongoing studies are establishing benchmarks and characteristic profiles of skill groups based on kinematics data. Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio
2013-04-01
Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.
Martelli, S; Zaffagnini, S; Bignozzi, S; Lopomo, N F; Iacono, F; Marcacci, M
2007-10-01
In this paper a new navigation system, KIN-Nav, developed for research and used during 80 anterior cruciate ligament (ACL) reconstructions is described. KIN-Nav is a user-friendly navigation system for flexible intraoperative acquisitions of anatomical and kinematic data, suitable for validation of biomechanical hypotheses. It performs real-time quantitative evaluation of antero-posterior, internal-external, and varus-valgus knee laxity at any degree of flexion and provides a new interface for this task, suitable also for comparison of pre-operative and post-operative knee laxity and surgical documentation. In this paper the concept and features of KIN-Nav, which represents a new approach to navigation and allows the investigation of new quantitative measurements in ACL reconstruction, are described. Two clinical studies are reported, as examples of clinical potentiality and correct use of this methodology. In this paper a preliminary analysis of KIN-Nav's reliability and clinical efficacy, performed during blinded repeated measures by three independent examiners, is also given. This analysis is the first assessment of the potential of navigation systems for evaluating knee kinematics.
Prasad, Nikhil K; Coleman Wood, Krista A; Spinner, Robert J; Kaufman, Kenton R
The assessment of neuromuscular recovery after peripheral nerve surgery has typically been a subjective physical examination. The purpose of this report was to assess the value of gait analysis in documenting recovery quantitatively. A professional football player underwent gait analysis before and after surgery for a peroneal intraneural ganglion cyst causing a left-sided foot drop. Surface electromyography (SEMG) recording from surface electrodes and motion parameter acquisition from a computerized motion capture system consisting of 10 infrared cameras were performed simultaneously. A comparison between SEMG recordings before and after surgery showed a progression from disorganized activation in the left tibialis anterior and peroneus longus muscles to temporally appropriate activation for the phase of the gait cycle. Kinematic analysis of ankle motion planes showed resolution from a complete foot drop preoperatively to phase-appropriate dorsiflexion postoperatively. Gait analysis with dynamic SEMG and motion capture complements physical examination when assessing postoperative recovery in athletes.
NASA Technical Reports Server (NTRS)
Wilmington, R. P.; Klute, Glenn K. (Editor); Carroll, Amy E. (Editor); Stuart, Mark A. (Editor); Poliner, Jeff (Editor); Rajulu, Sudhakar (Editor); Stanush, Julie (Editor)
1992-01-01
Kinematics, the study of motion exclusive of the influences of mass and force, is one of the primary methods used for the analysis of human biomechanical systems as well as other types of mechanical systems. The Anthropometry and Biomechanics Laboratory (ABL) in the Crew Interface Analysis section of the Man-Systems Division performs both human body kinematics as well as mechanical system kinematics using the Ariel Performance Analysis System (APAS). The APAS supports both analysis of analog signals (e.g. force plate data collection) as well as digitization and analysis of video data. The current evaluations address several methodology issues concerning the accuracy of the kinematic data collection and analysis used in the ABL. This document describes a series of evaluations performed to gain quantitative data pertaining to position and constant angular velocity movements under several operating conditions. Two-dimensional as well as three-dimensional data collection and analyses were completed in a controlled laboratory environment using typical hardware setups. In addition, an evaluation was performed to evaluate the accuracy impact due to a single axis camera offset. Segment length and positional data exhibited errors within 3 percent when using three-dimensional analysis and yielded errors within 8 percent through two-dimensional analysis (Direct Linear Software). Peak angular velocities displayed errors within 6 percent through three-dimensional analyses and exhibited errors of 12 percent when using two-dimensional analysis (Direct Linear Software). The specific results from this series of evaluations and their impacts on the methodology issues of kinematic data collection and analyses are presented in detail. The accuracy levels observed in these evaluations are also presented.
NASA Astrophysics Data System (ADS)
Wu, Guanhao; Yang, Yan; Zeng, Lijiang
2006-11-01
A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.
Berens, Angelique M; Harbison, Richard Alex; Li, Yangming; Bly, Randall A; Aghdasi, Nava; Ferreira, Manuel; Hannaford, Blake; Moe, Kris S
2017-08-01
To develop a method to measure intraoperative surgical instrument motion. This model will be applicable to the study of surgical instrument kinematics including surgical training, skill verification, and the development of surgical warning systems that detect aberrant instrument motion that may result in patient injury. We developed an algorithm to automate derivation of surgical instrument kinematics in an endoscopic endonasal skull base surgery model. Surgical instrument motion was recorded during a cadaveric endoscopic transnasal approach to the pituitary using a navigation system modified to record intraoperative time-stamped Euclidian coordinates and Euler angles. Microdebrider tip coordinates and angles were referenced to the cadaver's preoperative computed tomography scan allowing us to assess surgical instrument kinematics over time. A representative cadaveric endoscopic endonasal approach to the pituitary was performed to demonstrate feasibility of our algorithm for deriving surgical instrument kinematics. Technical feasibility of automatically measuring intraoperative surgical instrument motion and deriving kinematics measurements was demonstrated using standard navigation equipment.
Gilliaux, Maxime; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine
2016-04-01
Kinematics is recommended for the quantitative assessment of upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish normative values in healthy subjects. Three hundred and seventy healthy subjects, aged 3-93 years, participated in the study. They performed two unidirectional and two geometrical tasks ten consecutive times with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-six kinematic indices were computed for the four tasks. For the four tasks, nineteen of the computed kinematic indices showed an age effect. Seventeen indices (the accuracy, speed and smoothness indices and the reproducibility of the accuracy, speed and smoothness) improved in young subjects aged 3-30 years, showed stabilization in adults aged 30-60 years and declined in elderly subjects aged 60-93 years. Additionally, for both geometrical tasks, the speed index exhibited a decrease throughout life. Finally, a principal component analysis provided the relations between the kinematic indices, tasks and subjects' age. This study is the first to assess age effects on upper limb kinematics and establish normative values in subjects aged 3-93 years.
Galerkin analysis of kinematic dynamos in the von Kármán geometry
NASA Astrophysics Data System (ADS)
Marié, L.; Normand, C.; Daviaud, F.
2006-01-01
We investigate dynamo action by solving the kinematic dynamo problem for velocity fields of the von Kármán type between two coaxial counter-rotating propellers in a cylinder. A Galerkin method is implemented that takes advantage of the symmetries of the flow and their subsequent influence on the nature of the magnetic field at the dynamo threshold. Distinct modes of instability have been identified that differ by their spatial and temporal behaviors. Our calculations give the result that a stationary and antisymmetric mode prevails at the dynamo threshold. We then present a quantitative analysis of the results based on the parametric study of four interaction coefficients obtained by reduction of our initially large eigenvalue problem. We propose these coefficients to measure the relative importance of the different mechanisms at play in the von Kármán kinematic dynamo.
Galli, M; Cimolin, V; De Pandis, M F; Le Pera, D; Sova, I; Albertini, G; Stocchi, F; Franceschini, M
2016-01-01
The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson's disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD.
NASA Astrophysics Data System (ADS)
Bektasli, Behzat
Graphs have a broad use in science classrooms, especially in physics. In physics, kinematics is probably the topic for which graphs are most widely used. The participants in this study were from two different grade-12 physics classrooms, advanced placement and calculus-based physics. The main purpose of this study was to search for the relationships between student spatial ability, logical thinking, mathematical achievement, and kinematics graphs interpretation skills. The Purdue Spatial Visualization Test, the Middle Grades Integrated Process Skills Test (MIPT), and the Test of Understanding Graphs in Kinematics (TUG-K) were used for quantitative data collection. Classroom observations were made to acquire ideas about classroom environment and instructional techniques. Factor analysis, simple linear correlation, multiple linear regression, and descriptive statistics were used to analyze the quantitative data. Each instrument has two principal components. The selection and calculation of the slope and of the area were the two principal components of TUG-K. MIPT was composed of a component based upon processing text and a second component based upon processing symbolic information. The Purdue Spatial Visualization Test was composed of a component based upon one-step processing and a second component based upon two-step processing of information. Student ability to determine the slope in a kinematics graph was significantly correlated with spatial ability, logical thinking, and mathematics aptitude and achievement. However, student ability to determine the area in a kinematics graph was only significantly correlated with student pre-calculus semester 2 grades. Male students performed significantly better than female students on the slope items of TUG-K. Also, male students performed significantly better than female students on the PSAT mathematics assessment and spatial ability. This study found that students have different levels of spatial ability, logical thinking, and mathematics aptitude and achievement levels. These different levels were related to student learning of kinematics and they need to be considered when kinematics is being taught. It might be easier for students to understand the kinematics graphs if curriculum developers include more activities related to spatial ability and logical thinking.
Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia
ERIC Educational Resources Information Center
Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio
2010-01-01
The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…
STAMPS: development and verification of swallowing kinematic analysis software.
Lee, Woo Hyung; Chun, Changmook; Seo, Han Gil; Lee, Seung Hak; Oh, Byung-Mo
2017-10-17
Swallowing impairment is a common complication in various geriatric and neurodegenerative diseases. Swallowing kinematic analysis is essential to quantitatively evaluate the swallowing motion of the oropharyngeal structures. This study aims to develop a novel swallowing kinematic analysis software, called spatio-temporal analyzer for motion and physiologic study (STAMPS), and verify its validity and reliability. STAMPS was developed in MATLAB, which is one of the most popular platforms for biomedical analysis. This software was constructed to acquire, process, and analyze the data of swallowing motion. The target of swallowing structures includes bony structures (hyoid bone, mandible, maxilla, and cervical vertebral bodies), cartilages (epiglottis and arytenoid), soft tissues (larynx and upper esophageal sphincter), and food bolus. Numerous functions are available for the spatiotemporal parameters of the swallowing structures. Testing for validity and reliability was performed in 10 dysphagia patients with diverse etiologies and using the instrumental swallowing model which was designed to mimic the motion of the hyoid bone and the epiglottis. The intra- and inter-rater reliability tests showed excellent agreement for displacement and moderate to excellent agreement for velocity. The Pearson correlation coefficients between the measured and instrumental reference values were nearly 1.00 (P < 0.001) for displacement and velocity. The Bland-Altman plots showed good agreement between the measurements and the reference values. STAMPS provides precise and reliable kinematic measurements and multiple practical functionalities for spatiotemporal analysis. The software is expected to be useful for researchers who are interested in the swallowing motion analysis.
Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara
2004-01-01
Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.
D'Lima, Darryl D; Patil, Shantanu; Steklov, Nicolai; Colwell, Clifford W
2011-10-01
Tibiofemoral forces are important in the design and clinical outcomes of TKA. We developed a tibial tray with force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo. Knee forces and kinematics traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid. We therefore developed wearable monitoring equipment and computer algorithms for classifying and identifying unsupervised activities outside the laboratory. Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, during 4 years postoperatively. Additional measurements included video motion analysis, EMG, fluoroscopic kinematic analysis, and ground reaction force measurement. In vivo measurements were used to evaluate computer models of the knee. Finite element models were used for contact analysis and for computing knee kinematics from measured knee forces. A third-generation system was developed for continuous monitoring of knee forces and kinematics outside the laboratory using a wearable data acquisition hardware. By using measured knee forces and knee flexion angle, we were able to compute femorotibial AP translation (-12 to +4 mm), mediolateral translation (-1 to 1.5 mm), axial rotation (-3° to 12°), and adduction-abduction (-1° to +1°). The neural-network-based classification system was able to identify walking, stair-climbing, sit-to-stand, and stand-to-sit activities with 100% accuracy. Our data may be used to improve existing in vitro models and wear simulators, and enhance prosthetic designs and biomaterials.
The kinematics of the California sea lion foreflipper during forward swimming.
Friedman, C; Leftwich, M C
2014-11-07
To determine the two-dimensional kinematics of the California sea lion foreflipper during thrust generation, a digital, high-definition video is obtained using a non-research female sea lion at the Smithsonian National Zoological Park in Washington, DC. The observational videos are used to extract maneuvers of interest--forward acceleration from rest using the foreflippers and banked turns. Single camera videos are analyzed to digitize the flipper during the motions using 10 points spanning root to tip in each frame. Digitized shapes were then fitted with an empirical function that quantitatively allows for both comparison between different claps, and for extracting kinematic data. The resulting function shows a high degree of curvature (with a camber of up to 32%). Analysis of sea lion acceleration from rest shows thrust production in the range of 150-680 N and maximum flipper angular velocity (for rotation about the shoulder joint) as high as 20 rad s⁻¹. Analysis of turning maneuvers indicate extreme agility and precision of movement driven by the foreflipper surfaces.
Video fluoroscopic techniques for the study of Oral Food Processing
Matsuo, Koichiro; Palmer, Jeffrey B.
2016-01-01
Food oral processing and pharyngeal food passage cannot be observed directly from the outside of the body without instrumental methods. Videofluoroscopy (x-ray video recording) reveals the movement of oropharyngeal anatomical structures in two dimensions. By adding a radiopaque contrast medium, the motion and shape of the food bolus can be also visualized, providing critical information about the mechanisms of eating, drinking, and swallowing. For quantitative analysis of the kinematics of oral food processing, radiopaque markers are attached to the teeth, tongue or soft palate. This approach permits kinematic analysis with a variety of textures and consistencies, both solid and liquid. Fundamental mechanisms of food oral processing are clearly observed with videofluoroscopy in lateral and anteroposterior projections. PMID:27213138
Remote sensing of the Fram Strait marginal ice zone
Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.
1987-01-01
Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.
Galli, Manuela; Cimolin, Veronica; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Albertini, Giorgio; Stocchi, Fabrizio; Franceschini, Marco
2016-01-01
Summary The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson’s disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD. PMID:27678210
Ghosh, Erina; Shmuylovich, Leonid; Kovacs, Sandor J
2009-01-01
The filling (diastolic) function of the human left ventricle is most commonly assessed by echocardiography, a non-invasive imaging modality. To quantify diastolic function (DF) empiric indices are obtained from the features (height, duration, area) of transmitral flow velocity contour, obtained by echocardiography. The parameterized diastolic filling (PDF) formalism is a kinematic model developed by Kovács et. al. which incorporates the suction pump attribute of the left ventricle and facilitates DF quantitation by analysis of echocardiographic transmitral flow velocity contours in terms of stiffness (k), relaxation (c) and load (x(0)). A complementary approach developed by Gharib et. al., uses fluid mechanics and characterizes DF in terms of vortex formation time (T*) derived from streamline features formed by the jet of blood aspirated into the ventricle. Both of these methods characterize DF using a causality-based approach. In this paper, we derive T*'s kinematic analogue T*(kinematic) in terms of k, c and x(0). A comparison between T*(kinematic) and T*(fluid) (mechanic) obtained from averaged transmitral velocity and mitral annulus diameter, is presented. We found that T* calculated by the two methods were comparable and T*(kinematic) correlated with the peak LV recoil driving force kx(0).
Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe
2017-08-18
Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.
Estimating ankle rotational constraints from anatomic structure
NASA Astrophysics Data System (ADS)
Baker, H. H.; Bruckner, Janice S.; Langdon, John H.
1992-09-01
Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belushkin, A. V., E-mail: belushk@nf.jinr.ru; Manoshin, S. A., E-mail: manoshin@nf.jinr.ru; Rikhvitskiy, V. S.
2016-09-15
The applicability of the modified kinematic approximation to describe the off-specular neutron scattering from interfaces between media is analyzed. It is demonstrated that in some cases one can expect not only a qualitative but also a quantitative agreement between the data and the results of experiments and calculations based on more accurate techniques. Diffuse scattering from rough surfaces and thin films with correlated and noncorrelated roughness of the upper and lower interfaces and the neutron diffraction by stripe magnetic domains and magnetic domains with a random size distribution (magnetic roughness) are considered as examples.
From big data to rich data: The key features of athlete wheelchair mobility performance.
van der Slikke, R M A; Berger, M A M; Bregman, D J J; Veeger, H E J
2016-10-03
Quantitative assessment of an athlete׳s individual wheelchair mobility performance is one prerequisite needed to evaluate game performance, improve wheelchair settings and optimize training routines. Inertial Measurement Unit (IMU) based methods can be used to perform such quantitative assessment, providing a large number of kinematic data. The goal of this research was to reduce that large amount of data to a set of key features best describing wheelchair mobility performance in match play and present them in meaningful way for both scientists and athletes. To test the discriminative power, wheelchair mobility characteristics of athletes with different performance levels were compared. The wheelchair kinematics of 29 (inter-)national level athletes were measured during a match using three inertial sensors mounted on the wheelchair. Principal component analysis was used to reduce 22 kinematic outcomes to a set of six outcomes regarding linear and rotational movement; speed and acceleration; average and best performance. In addition, it was explored whether groups of athletes with known performance differences based on their impairment classification also differed with respect to these key outcomes using univariate general linear models. For all six key outcomes classification showed to be a significant factor (p<0.05). We composed a set of six key kinematic outcomes that accurately describe wheelchair mobility performance in match play. The key kinematic outcomes were displayed in an easy to interpret way, usable for athletes, coaches and scientists. This standardized representation enables comparison of different wheelchair sports regarding wheelchair mobility, but also evaluation at the level of an individual athlete. By this means, the tool could enhance further development of wheelchair sports in general. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.
Kim, Kyung; Song, Won-Kyung; Lee, Jeongsu; Lee, Hwi-Young; Park, Dae Sung; Ko, Byung-Woo; Kim, Jongbae
2014-03-01
It is necessary to analyze the kinematic properties of a paralyzed extremity to quantitatively determine the degree of impairment of hemiplegic people during functional activities of daily living (ADL) such as a drinking task. This study aimed to identify the kinematic differences between 16 hemiplegic and 32 able-bodied participants in relation to the task phases when drinking with a cup and the kinematic strategy used during motion with respect to the gravity direction. The subjects performed a drinking task that was divided into five phases according to Murphy's phase definition: reaching, forward transport, drinking, backward transport, and returning. We found that the groups differed in terms of the movement times and the joint angles and angular velocities of the shoulder, elbow, and wrist joints. Compared to the control group, the hemiplegic participants had a larger shoulder abduction angle of at most 17.1° during all the phases, a larger shoulder flexion angle of 7.6° during the reaching phase, and a smaller shoulder flexion angle of 6.4° during the backward transporting phase. Because of these shoulder joint patterns, a smaller elbow pronation peak angle of at most 13.1° and a larger wrist extension peak angle of 12.0° were found in the motions of the hemiplegic participants, as compensation to complete the drinking task. The movement in the gravity direction during the backward transporting phase resulted in a 15.9% larger peak angular velocity for elbow extension in the hemiplegic participants compared to that of the control group. These quantitative kinematic patterns help provide an understanding of the movements of an affected extremity and can be useful in designing rehabilitation robots to assist hemiplegic people with ADL. Copyright © 2013 Elsevier Ltd. All rights reserved.
3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy.
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2015-04-01
Total knee arthroplasty (TKA) 3D kinematic analysis requires 2D/3D image registration of X-ray fluoroscopic images and a computer-aided design (CAD) model of the knee implant. However, these techniques cannot provide information on the radiolucent polyethylene insert, since the insert silhouette does not appear clearly in X-ray images. Therefore, it is difficult to obtain the 3D kinematics of the polyethylene insert, particularly the mobile-bearing insert. A technique for 3D kinematic analysis of a mobile-bearing insert used in TKA was developed using X-ray fluoroscopy. The method was tested and a clinical application was evaluated. Tantalum beads and a CAD model of the mobile-bearing TKA insert are used for 3D pose estimation of the mobile-bearing insert used in TKA using X-ray fluoroscopy. The insert model was created using four identical tantalum beads precisely located at known positions in a polyethylene insert using a specially designed insertion device. Finally, the 3D pose of the insert model was estimated using a feature-based 2D/3D registration technique, using the silhouette of beads in fluoroscopic images and the corresponding CAD insert model. In vitro testing for the repeatability of the positioning of the tantalum beads and computer simulations for 3D pose estimation of the mobile-bearing insert were performed. The pose estimation accuracy achieved was sufficient for analyzing mobile-bearing TKA kinematics (RMS error: within 1.0 mm and 1.0°, except for medial-lateral translation). In a clinical application, nine patients with mobile-bearing TKA were investigated and analyzed with respect to a deep knee bending motion. A 3D kinematic analysis technique was developed that enables accurate quantitative evaluation of mobile-bearing TKA kinematics. This method may be useful for improving implant design and optimizing TKA surgical techniques.
Pau, Massimiliano; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Concu, Alberto; Galli, Manuela; Marrosu, Maria Giovanna; Cocco, Eleonora
2018-01-01
The purpose of this study is to quantitatively assess the effect of 6 months of supervised adapted physical activity (APA i.e. physical activity designed for people with special needs) on spatio-temporal and kinematic parameters of gait in persons with Multiple Sclerosis (pwMS). Twenty-two pwMS with Expanded Disability Status Scale scores ranging from 1.5 to 5.5 were randomly assigned either to the intervention group (APA, n = 11) or the control group (CG, n = 11). The former underwent 6 months of APA consisting of 3 weekly 60-min sessions of aerobic and strength training, while CG participants were engaged in no structured PA program. Gait patterns were analyzed before and after the training using three-dimensional gait analysis by calculating spatio-temporal parameters and concise indexes of gait kinematics (Gait Profile Score - GPS and Gait Variable Score - GVS) as well as dynamic Range of Motion (ROM) of hip, knee, and ankle joints. The training originated significant improvements in stride length, gait speed and cadence in the APA group, while GPS and GVS scores remained practically unchanged. A trend of improvement was also observed as regard the dynamic ROM of hip, knee, and ankle joints. No significant changes were observed in the CG for any of the parameters considered. The quantitative analysis of gait supplied mixed evidence about the actual impact of 6 months of APA on pwMS. Although some improvements have been observed, the substantial constancy of kinematic patterns of gait suggests that the full transferability of the administered training on the ambulation function may require more specific exercises. Implications for rehabilitation Adapted Physical Activity (APA) is effective in improving spatio-temporal parameters of gait, but not kinematics, in people with multiple sclerosis. Dynamic range of motion during gait is increased after APA. The full transferability of APA on the ambulation function may require specific exercises rather than generic lower limbs strength/flexibility training.
Quantitative gait analysis in parkin disease: Possible role of dystonia.
Castagna, Anna; Frittoli, Serena; Ferrarin, Maurizio; Del Sorbo, Francesca; Romito, Luigi M; Elia, Antonio E; Albanese, Alberto
2016-11-01
Parkin disease (PARK2, OMIM 602544) is an autosomal-recessive early-onset parkinsonism characterized by an early occurrence of lower limb dystonia. The aim of this study was to analyze spatiotemporal, kinematic, and kinetic gait parameters in patients with parkin disease in the OFF and ON conditions compared to healthy age-matched controls. Fifteen patients with parkin disease and 15 healthy age-matched controls were studied in a gait analysis laboratory with an integrated optoelectronic system. Spatiotemporal, kinematic, and kinetic gait parameters at a self-selected speed were recorded in the OFF and ON conditions. A jerk index was computed to quantify the possible reduction of smoothness of joint movements. Compared to controls, parkin patients had, either in the OFF or in the ON conditions, significant reduction of walking velocity, increased step width, and decreased percentage of double support. Kinematic analysis in both conditions showed: increased ankle dorsiflexion and knee flexion at the initial contact; maximal flexion and increased range of motion in mid stance; increased hip flexion and max extension in stance at pelvis; and increased mean tilt antiversion. Kinetics showed increased hip and knee power generation in stance in either condition. The jerk index was increased at all joints both in OFF and ON. There were no correlations between individual gait parameters and clinical ratings. Parkin patients have an abnormal gait pattern that does not vary between the OFF and the ON conditions. Variations recorded with instrumented analysis are more evident for kinematic than kinetic parameters at lower limbs. Severity of dystonia does not correlate with any individual kinematic parameter. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Gudelj, Ines; Babić, Vesna; Milat, Sanja; Čavala, Marijana; Zagorac, Siniša; Katić, Ratko
2015-07-01
The basic aim of this research was to determine the differences of kinematic parameters in two qualitatively different groups of young pole vaulters. With this purpose, a research was conducted in which the video records from a competition were acquired. The sample of entities (N = 71) consisted of successful vaults of 30 pole vaulters, whose attempts were recorded at the European Junior Championship in Novi Sad, held on 23-26th July 2009. The examinees performed the vaults as a part of the elimination competition for the finals, and during the final part of the competition. The age of examinees was from 17 to 19 years, and the span of their best results was from 4.70 to 5.30 meters. The kinematic analysis was conducted according to the standards of APAS procedure (Ariel Performance Analysis System, USA), determining 25 kinematic variables necessary for further analysis. The entities (vaults) were divided into two categories (qualitative classes) based on the expert knowledge. Group 1 consisted of successful vaults up to 4.90 m (N = 46), while group 2 consisted of successful vaults whose height was more than 4.90 m (N = 25). The discrimination analysis determined the parameters differentiating the vaults of different quantitative classes. Also, it was confirmed that the result efficiency in pole vault was primarily determined by the variables defined by motor abilities, as well as the indicators determining the vault performance technique.
NASA Astrophysics Data System (ADS)
Amorese, D.; Grasso, J.-R.; Garambois, S.; Font, M.
2018-05-01
The rank-sum multiple change-point method is a robust statistical procedure designed to search for the optimal number and the location of change points in an arbitrary continue or discrete sequence of values. As such, this procedure can be used to analyse time-series data. Twelve years of robust data sets for the Séchilienne (French Alps) rockslide show a continuous increase in average displacement rate from 50 to 280 mm per month, in the 2004-2014 period, followed by a strong decrease back to 50 mm per month in the 2014-2015 period. When possible kinematic phases are tentatively suggested in previous studies, its solely rely on the basis of empirical threshold values. In this paper, we analyse how the use of a statistical algorithm for change-point detection helps to better understand time phases in landslide kinematics. First, we test the efficiency of the statistical algorithm on geophysical benchmark data, these data sets (stream flows and Northern Hemisphere temperatures) being already analysed by independent statistical tools. Second, we apply the method to 12-yr daily time-series of the Séchilienne landslide, for rainfall and displacement data, from 2003 December to 2015 December, in order to quantitatively extract changes in landslide kinematics. We find two strong significant discontinuities in the weekly cumulated rainfall values: an average rainfall rate increase is resolved in 2012 April and a decrease in 2014 August. Four robust changes are highlighted in the displacement time-series (2008 May, 2009 November-December-2010 January, 2012 September and 2014 March), the 2010 one being preceded by a significant but weak rainfall rate increase (in 2009 November). Accordingly, we are able to quantitatively define five kinematic stages for the Séchilienne rock avalanche during this period. The synchronization between the rainfall and displacement rate, only resolved at the end of 2009 and beginning of 2010, corresponds to a remarkable change (fourfold increase in mean displacement rate) in the landslide kinematic. This suggests that an increase of the rainfall is able to drive an increase of the landslide displacement rate, but that most of the kinematics of the landslide is not directly attributable to rainfall amount. The detailed exploration of the characteristics of the five kinematic stages suggests that the weekly averaged displacement rates are more tied to the frequency or rainy days than to the rainfall rate values. These results suggest the pattern of Séchilienne rock avalanche is consistent with the previous findings that landslide kinematics is dependent upon not only rainfall but also soil moisture conditions (as known as being more strongly related to precipitation frequency than to precipitation amount). Finally, our analysis of the displacement rate time-series pinpoints a susceptibility change of slope response to rainfall, as being slower before the end of 2009 than after, respectively. The kinematic history as depicted by statistical tools opens new routes to understand the apparent complexity of Séchilienne landslide kinematic.
Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope
NASA Astrophysics Data System (ADS)
Saito, Shigeki; Miyazaki, Hideki T.; Sato, Tomomasa; Takahashi, Kunio
2002-11-01
In this paper, the kinematics of mechanical and adhesional micromanipulation using a needle-shaped tool under a scanning electron microscope is analyzed. A mode diagram is derived to indicate the possible micro-object behavior for the specified operational conditions. Based on the diagram, a reasonable method for pick and place operation is proposed. The keys to successful analysis are to introduce adhesional and rolling-resistance factors into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate, and to consider the time dependence of these factors due to the electron-beam (EB) irradiation. Adhesional force and the lower limit of maximum rolling resistance are evaluated quantitatively in theoretical and experimental ways. This analysis shows that it is possible to control the fracture of either the tool-sphere or substrate-sphere interface of the system selectively by the tool-loading angle and that such a selective fracture of the interfaces enables reliable pick or place operation even under EB irradiation. Although the conventional micromanipulation was not repeatable because the technique was based on an empirically effective method, this analysis should provide us with a guideline to reliable micromanipulation.
Mangia, Anna Lisa; Cortesi, Matteo; Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2017-01-01
The aims of the present study were the instrumental validation of inertial-magnetic measurements units (IMMUs) in water, and the description of their use in clinical and sports aquatic applications applying customized 3D multi-body models. Firstly, several tests were performed to map the magnetic field in the swimming pool and to identify the best volume for experimental test acquisition with a mean dynamic orientation error lower than 5°. Successively, the gait and the swimming analyses were explored in terms of spatiotemporal and joint kinematics variables. The extraction of only spatiotemporal parameters highlighted several critical issues and the joint kinematic information has shown to be an added value for both rehabilitative and sport training purposes. Furthermore, 3D joint kinematics applied using the IMMUs provided similar quantitative information than that of more expensive and bulky systems but with a simpler and faster setup preparation, a lower time consuming processing phase, as well as the possibility to record and analyze a higher number of strides/strokes without limitations imposed by the cameras. PMID:28441739
Mangia, Anna Lisa; Cortesi, Matteo; Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2017-04-22
The aims of the present study were the instrumental validation of inertial-magnetic measurements units (IMMUs) in water, and the description of their use in clinical and sports aquatic applications applying customized 3D multi-body models. Firstly, several tests were performed to map the magnetic field in the swimming pool and to identify the best volume for experimental test acquisition with a mean dynamic orientation error lower than 5°. Successively, the gait and the swimming analyses were explored in terms of spatiotemporal and joint kinematics variables. The extraction of only spatiotemporal parameters highlighted several critical issues and the joint kinematic information has shown to be an added value for both rehabilitative and sport training purposes. Furthermore, 3D joint kinematics applied using the IMMUs provided similar quantitative information than that of more expensive and bulky systems but with a simpler and faster setup preparation, a lower time consuming processing phase, as well as the possibility to record and analyze a higher number of strides/strokes without limitations imposed by the cameras.
Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.
Waeyaert, Patirck; Jansen, Daniel; Bastiaansen, Marco; Scafoglieri, Aldo; Buyl, Ronald; Schmitt, Maarten; Cattrysse, Erik
2016-08-01
A cross-sectional observational study of three-dimensional (3D) cervical kinematics in 41 chronic neck pain (CNPs) patients and 156 asymptomatic controls. The objective was to investigate 3D cervical kinematics by analyzing and comparing quantitative and qualitative parameters in healthy subjects and CNPs. Furthermore, subgroups were formed to explore the influence of pain-location on cervical kinematics. The possible correlation of kinematic parameters with the degree of functional disability was examined as well. In patients with chronic neck pain, a clear pathological cause is frequently not identifiable. Therefore, the need to assess neck pain with a broader view than structure or anatomical-based divergences is desirable. Movements of the cervical spine were registered using an electromagnetic tracking system. Quantitative and qualitative kinematics were analyzed for active axial rotation, lateral bending, and flexion-extension motion components. During lateral bending, the range of the main motion demonstrated significant higher values (P = 0.001) in the controls (mean: 68.67° ± 15.17°) than patients (mean: 59.28° ± 15.41°). Significant differences were demonstrated between subgroups for several kinematic parameters (P < 0.05). Although differences were predominantly recorded between the "symmetrical" and "asymmetrical" pain group, some parameters also distinguished subgroups from controls. On average, the symmetrical group showed significant less harmonic movement patterns, expressed by qualitative parameters, in comparison with the "asymmetrical" group and controls. Furthermore, the "asymmetrical" group showed significant lower scores on quantitative parameters than the "symmetrical" group and controls. The degree of functional disability correlated moderately with changes in qualitative parameters. In this study, chronic neck pain patients with a symmetrical pain pattern showed significant poorer quality of movement, while those with asymmetrical pain showed a significant reduction in quantitative measures. Subgrouping of neck patients based on pain location may be of help for further research and clinics. 4.
de los Reyes-Guzmán, Ana; Dimbwadyo-Terrer, Iris; Trincado-Alonso, Fernando; Monasterio-Huelin, Félix; Torricelli, Diego; Gil-Agudo, Angel
2014-08-01
Quantitative measures of human movement quality are important for discriminating healthy and pathological conditions and for expressing the outcomes and clinically important changes in subjects' functional state. However the most frequently used instruments for the upper extremity functional assessment are clinical scales, that previously have been standardized and validated, but have a high subjective component depending on the observer who scores the test. But they are not enough to assess motor strategies used during movements, and their use in combination with other more objective measures is necessary. The objective of the present review is to provide an overview on objective metrics found in literature with the aim of quantifying the upper extremity performance during functional tasks, regardless of the equipment or system used for registering kinematic data. A search in Medline, Google Scholar and IEEE Xplore databases was performed following a combination of a series of keywords. The full scientific papers that fulfilled the inclusion criteria were included in the review. A set of kinematic metrics was found in literature in relation to joint displacements, analysis of hand trajectories and velocity profiles. These metrics were classified into different categories according to the movement characteristic that was being measured. These kinematic metrics provide the starting point for a proposed objective metrics for the functional assessment of the upper extremity in people with movement disorders as a consequence of neurological injuries. Potential areas of future and further research are presented in the Discussion section. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polnau, D G; Ma, P M
2001-12-01
Neuroethology seeks to uncover the neural mechanisms underlying natural behaviour. One of the major challenges in this field is the need to correlate directly neural activity and behavioural output. In most cases, recording of neural activity in freely moving animals is extremely difficult. However, electromyographic recording can often be used in lieu of neural recording to gain an understanding of the motor output program underlying a well-defined behaviour. Electromyographic recording is less invasive than most other recording methods, and does not impede the performance of most natural tasks. Using the opercular display of the Siamese fighting fish as a model, we developed a protocol for correlating directly electromyographic activity and kinematics of opercular movement: electromyographic activity was recorded in the audio channel of a video cassette recorder while video taping the display behaviour. By combining computer-assisted, quantitative video analysis and spike analysis, the kinematics of opercular movement are linked to the motor output program. Since the muscle that mediates opercular abduction in this fish, the dilator operculi, is a relatively small muscle with several subdivisions, we also describe methods for recording from small muscles and marking the precise recording site with electrolytic corrosion. The protocol described here is applicable to studies of a variety of natural behaviour that can be performed in a relatively confined space. It is also useful for analyzing complex or rapidly changing behaviour in which a precise correlation between kinematics and electromyography is required.
Gross, R; Robertson, J; Leboeuf, F; Hamel, O; Brochard, S; Perrouin-Verbe, B
2017-02-01
Stiff knee gait is a troublesome gait disturbance related to spastic paresis, frequently associated with overactivity of the rectus femoris muscle in the swing phase of gait. The aim of this study was to assess the short-term effects of rectus femoris neurotomy for the treatment of spastic stiff-knee gait in patients with hemiparesis. An Intervention study (before-after trial) with an observational design was carried out in a university hospital. Seven ambulatory patients with hemiparesis of spinal or cerebral origin and spastic stiff-knee gait, which had previously been improved by botulinum toxin injections, were proposed a selective neurotomy of the rectus femoris muscle. A functional evaluation (Functional Ambulation Classification and maximal walking distance), clinical evaluation (spasticity - Ashworth scale and Duncan-Ely test, muscle strength - Medical Research Council scale), and quantitative gait analysis (spatiotemporal parameters, stiff knee gait-related kinematic and kinetic parameters, and dynamic electromyography of rectus femoris) were performed as outcome measures, before and 3 months after rectus femoris neurotomy. Compared with preoperative values, there was a significant increase in maximal walking distance, gait speed, and stride length at 3 months. All kinematic parameters improved, and the average early swing phase knee extension moment decreased. The duration of the rectus femoris burst decreased post-op. This study is the first to show that rectus femoris neurotomy helps to normalise muscle activity during gait, and results in improvements in kinetic, kinematic, and functional parameters in patients with spastic stiff knee gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Decoding intentions from movement kinematics
Cavallo, Andrea; Koul, Atesh; Ansuini, Caterina; Capozzi, Francesca; Becchio, Cristina
2016-01-01
How do we understand the intentions of other people? There has been a longstanding controversy over whether it is possible to understand others’ intentions by simply observing their movements. Here, we show that indeed movement kinematics can form the basis for intention detection. By combining kinematics and psychophysical methods with classification and regression tree (CART) modeling, we found that observers utilized a subset of discriminant kinematic features over the total kinematic pattern in order to detect intention from observation of simple motor acts. Intention discriminability covaried with movement kinematics on a trial-by-trial basis, and was directly related to the expression of discriminative features in the observed movements. These findings demonstrate a definable and measurable relationship between the specific features of observed movements and the ability to discriminate intention, providing quantitative evidence of the significance of movement kinematics for anticipating others’ intentional actions. PMID:27845434
Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative Bionic Arms
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Lakhal, Othman; Merzouki, Rochdi
2017-01-01
Forward Kinematics is a stepping stone towards finding an inverse solution and subsequently a dynamic model of a robot. Hence a study and comparison of various Forward Kinematic Models (FKMs) is necessary for robot design. This paper deals with comparison of three FKMs on the same hyper-redundant Compact Bionic Handling Assistant (CBHA) manipulator under same conditions. The aim of this study is to project on modeling cooperative bionic manipulators. Two of these methods are quantitative methods, Arc Geometry HTM (Homogeneous Transformation Matrix) Method and Dual Quaternion Method, while the other one is Hybrid Method which uses both quantitative as well as qualitative approach. The methods are compared theoretically and experimental results are discussed to add further insight to the comparison. HTM is the widely used and accepted technique, is taken as reference and trajectory deviation in other techniques are compared with respect to HTM. Which method allows obtaining an accurate kinematic behavior of the CBHA, controlled in the real-time.
Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A
2015-11-15
We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual. Copyright © 2015 Elsevier B.V. All rights reserved.
Gait Analysis Methods for Rodent Models of Arthritic Disorders: Reviews and Recommendations
Lakes, Emily H.; Allen, Kyle D.
2016-01-01
Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future. PMID:26995111
The mechanics of fault-bend folding and tear-fault systems in the Niger Delta
NASA Astrophysics Data System (ADS)
Benesh, Nathan Philip
This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new map-based structural restoration techniques, we find that the tear faults have distinct displacement patterns that distinguish them from conventional strike-slip faults and reflect their roles in accommodating displacement gradients within the fold-and-thrust belt.
Investigating the Flow and Biomechanics of the Embryonic Zebrafish Heart
NASA Astrophysics Data System (ADS)
Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi
2010-11-01
Understanding flow and kinematic characteristics of the embryonic heart is a prerequisite to devise early intervention or detection methods in the context of congenital heart defects. In this study, the kinematics and fluid dynamics of the embryonic zebrafish heart were analyzed through the early stages of cardiac development (24-48 hours post-fertilization) in vivo using optical microscopy and high-speed video. Endocardial walls and individual blood cells were segmented from raw images and were tracked through the cardiac cycle. Particle tracking velocimetry analysis yielded quantitative blood cell velocity field, chamber volume, and flow rate information. It was seen that the pumping mechanism starts as a combined peristaltic and suction pump while the heart is in the tube configuration and transforms into a positive displacement pump after cardiac looping. Strong two-phase nature of the fluid is evident. This work provides us new understanding of the spatio-temporal characteristics of kinematics and blood cell velocity field inside the developing heart.
Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario
2016-01-01
Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.
Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics.
Lucchetti, L; Cappozzo, A; Cappello, A; Della Croce, U
1998-11-01
In three dimensional (3-D) human movement analysis using close-range photogrammetry, surface marker clusters deform and rigidly move relative to the underlying bone. This introduces an important artefact (skin movement artefact) which propagates to bone position and orientation and joint kinematics estimates. This occurs to the extent that those joint attitude components that undergo small variations result in totally unreliable values. This paper presents an experimental and analytical procedure, to be included in a subject-specific movement analysis protocol, which allows for the assessment of skin movement artefacts and, based on this knowledge, for their compensation. The effectiveness of this procedure was verified with reference to knee-joint kinematics and to the artefacts caused by the hip movements on markers located on the thigh surface. Quantitative validation was achieved through experimental paradigms whereby prior reliable information on the target joint kinematics was available. When position and orientation of bones were determined during the execution of a motor task, using a least-squares optimal estimator, but the rigid artefactual marker cluster movement was not dealt with, then knee joint translations and rotations were affected by root mean square errors (r.m.s.) up to 14 mm and 6 degrees, respectively. When the rigid artefactual movement was also compensated for, then r.m.s errors were reduced to less than 4 mm and 3 degrees, respectively. In addition, errors originally strongly correlated with hip rotations, after compensation, lost this correlation.
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children.
Gilliaux, Maxime; Dierckx, Floriane; Vanden Berghe, Lola; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine
2015-05-01
The use of kinematics is recommended to quantitatively evaluate upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish norms in healthy children. Ninety-three healthy children, aged 3-12 years, participated in this study. Twenty-eight kinematic indices were computed from four tasks. Each task was performed with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-four of the 28 indices showed an improvement during childhood. Indeed, older children showed better upper limb movements. This study was the first to use a robotic device to show the age effects on upper limb kinematics and establish norms in healthy children.
Konow, Nicolai; Sanford, Christopher P J
2008-11-01
A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.
Senington, Billy; Lee, Raymond Y; Williams, Jonathan Mark
2018-03-09
Fast bowlers display a high risk of lower back injury and pain. Studies report factors that may increase this risk, however exact mechanisms remain unclear. To provide a contemporary analysis of literature, up to April 2016, regarding fast bowling, spinal kinematics, ground reaction force (GRF), lower back pain (LBP) and pathology. Key terms including biomechanics, bowling, spine and injury were searched within MEDLINE, Google Scholar, SPORTDiscuss, Science Citation Index, OAIster, CINAHL, Academic Search Complete, Science Direct and Scopus. Following application of inclusion criteria, 56 studies (reduced from 140) were appraised for quality and pooled for further analysis. Twelve times greater risk of lumbar injury was reported in bowlers displaying excessive shoulder counter-rotation (SCR), however SCR is a surrogate measure which may not describe actual spinal movement. Little is known about LBP specifically. Weighted averages of 5.8 ± 1.3 times body weight (BW) vertically and 3.2 ± 1.1 BW horizontally were calculated for peak GRF during fast bowling. No quantitative synthesis of kinematic data was possible due to heterogeneity of reported results. Fast bowling is highly injurious especially with excessive SCR. Studies adopted similar methodologies, constrained to laboratory settings. Future studies should focus on methods to determine biomechanics during live play.
Kinematic analysis of jaw function in children following traumatic brain injury.
Loh, E W L; Goozée, J V; Murdoch, B E
2005-07-01
To investigate jaw movements in children following traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Jaw movements of two non-dysarthric children (aged 12.75 and 13.08 years) who had sustained a TBI were recorded using the AG-100 EMA system (Carstens Medizineletronik) during word-initial consonant productions. Mean quantitative kinematic parameters and coefficient of variation (variability) values were calculated and individually compared to the mean values obtained by a group of six control children (mean age 12.57 years, SD 1.52). The two children with TBI exhibited word-initial consonant jaw movement durations that were comparable to the control children, with sub-clinical reductions in speed being offset by reduced distances. Differences were observed between the two children in jaw kinematic variability, with one child exhibiting increased variability, while the other child demonstrated reduced or comparable variability compared to the control group. Possible sub-clinical impairments of jaw movement for speech were exhibited by two children who had sustained a TBI, providing insight into the consequences of TBI on speech motor control development.
Chen, Yinpeng; Duff, Margaret; Lehrer, Nicole; Liu, Sheng-Min; Blake, Paul; Wolf, Steven L; Sundaram, Hari; Rikakis, Thanassis
2011-01-01
This article presents the principles of an adaptive mixed reality rehabilitation (AMRR) system, as well as the training process and results from 2 stroke survivors who received AMRR therapy, to illustrate how the system can be used in the clinic. The AMRR system integrates traditional rehabilitation practices with state-of-the-art computational and motion capture technologies to create an engaging environment to train reaching movements. The system provides real-time, intuitive, and integrated audio and visual feedback (based on detailed kinematic data) representative of goal accomplishment, activity performance, and body function during a reaching task. The AMRR system also provides a quantitative kinematic evaluation that measures the deviation of the stroke survivor's movement from an idealized, unimpaired movement. The therapist, using the quantitative measure and knowledge and observations, can adapt the feedback and physical environment of the AMRR system throughout therapy to address each participant's individual impairments and progress. Individualized training plans, kinematic improvements measured over the entire therapy period, and the changes in relevant clinical scales and kinematic movement attributes before and after the month-long therapy are presented for 2 participants. The substantial improvements made by both participants after AMRR therapy demonstrate that this system has the potential to considerably enhance the recovery of stroke survivors with varying impairments for both kinematic improvements and functional ability.
Pott, Peter P; Schwarz, Markus L R
2007-10-01
The kinematics of a robotic device significantly determines its installation space when it comes to technical realisation. With regard to the deployment of robotic manipulators in surgery, manipulators with a preferably small installation space are needed. This study describes six versions of novel epicyclic kinematics with six degrees of freedom (DOF). At first, the kinematics functionality was analysed using Gruebler's formula. Subsequently, the quantitative determination of the relation of workspace and installation space was performed using Matlab algorithms. To qualitatively describe the shape of the workspace, the Matlab visualisation features were utilised. For comparison, the well-known Hexapod was used. The assessed kinematics had 6-DOF-functionality. It became apparent that one version of the epicyclic kinematics having two 3-DOF disk systems mounted in a parallel way featured a particularly good relation of workspace and installation space. Compared to the Hexapod, this is approximately four times better. The shape of the workspaces of all epicyclic kinematics assessed was convex and compact. It could be shown that a novel epicyclic kinematics has a notably advantageous relation of workspace and installation space. Apparently, it seems to be well suited for the deployment in robotic machines for surgical procedures.
Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements
NASA Technical Reports Server (NTRS)
Liu, Tianshu
2002-01-01
This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.
ERIC Educational Resources Information Center
Patel, Rita; Donohue, Kevin D.; Unnikrishnan, Harikrishnan; Kryscio, Richard J.
2015-01-01
Purpose: This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Method: Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years)…
Microgravity Investigation of Crew Reactions in 0-G (MICRO-G)
NASA Technical Reports Server (NTRS)
Newman, Dava; Coleman, Charles; Metaxas, Dimitri
2004-01-01
There is a need for a human factors, technology-based bioastronautics research effort to develop an integrated system that reduces risk and provides scientific knowledge of astronaut-induced loads and motions during long-duration missions on the International Space Station (ISS), which will lead to appropriate countermeasures. The primary objectives of the Microgravity Investigation of Crew Reactions in 0-G (MICRO-GI research effort are to quantify astronaut adaptation and movement as well as to model motor strategies for differing gravity environments. The overall goal of this research program is to improve astronaut performance and efficiency through the use of rigorous quantitative dynamic analysis, simulation and experimentation. The MICRO-G research effort provides a modular, kinetic and kinematic capability for the ISS. The collection and evaluation of kinematics (whole-body motion) and dynamics (reacting forces and torques) of astronauts within the ISS will allow for quantification of human motion and performance in weightlessness, gathering fundamental human factors information for design, scientific investigation in the field of dynamics and motor control, technological assessment of microgravity disturbances, and the design of miniaturized, real-time space systems. The proposed research effort builds on a strong foundation of successful microgravity experiments, namely, the EDLS (Enhanced Dynamics Load Sensors) flown aboard the Russian Mir space station (19961998) and the DLS (Dynamic Load Sensors) flown on Space Shuttle Mission STS-62. In addition, previously funded NASA ground-based research into sensor technology development and development of algorithms to produce three-dimensional (3-0) kinematics from video images have come to fruition and these efforts culminate in the proposed collaborative MICRO-G flight experiment. The required technology and hardware capitalize on previous sensor design, fabrication, and testing and can be flight qualified for a fraction of the cost of an initial spaceflight experiment. Four dynamic load sensors/restraints are envisioned for measurement of astronaut forces and torques. Two standard ISS video cameras record typical astronaut operations and prescribed IVA motions for 3-D kinematics. Forces and kinematics are combined for dynamic analysis of astronaut motion, exploiting the results of the detailed dynamic modeling effort for the quantitative verification of astronaut IVA performance, induced-loads, and adaptive control strategies for crewmember whole-body motion in microgravity. This comprehensive effort, provides an enhanced human factors approach based on physics-based modeling to identify adaptive performance during long-duration spaceflight, which is critically important for astronaut training as well as providing a spaceflight database to drive countermeasure design.
Kinematics Control and Analysis of Industrial Robot
NASA Astrophysics Data System (ADS)
Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei
2018-03-01
The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.
Cimolin, Veronica; Beretta, Elena; Piccinini, Luigi; Turconi, Anna Carla; Locatelli, Federica; Galli, Manuela; Strazzer, Sandra
2012-01-01
The aims of this study are to quantify the movement limitation of upper limbs in hemiplegic children with traumatic brain injury (TBI) by using a clinical-functional scale and upper limb kinematics and to evaluate the effectiveness of constraint-induced movement therapy (CIMT) on upper limbs. Pre-post study. Clinical rehabilitation research laboratory. Ten children with TBI. The participants were evaluated by clinical examinations (Gross Motor Function Measure, Besta scale, Quality of Upper Extremities Skills Test, and Manual Ability Classification System) and 3D kinematic movement analysis of the upper limb before the CIMT program (pretest: 0.7 years after the injury) and at the end of the program (posttest: 10 weeks later). After the CIMT, most of the clinical measures improved significantly. Some significant improvements were present in terms of kinematics, in particular, in the movement duration and the velocity of movement execution of both tasks; the index of curvature and the average jerk improved, respectively, during reaching and hand-to-mouth task, while the adjusting sway parameter decreased during the 2 movements. Significant improvements were found in upper limb joint excursion after the rehabilitative programme too. Our results suggest that the CIMT program can improve movement efficiency and upper limb function in children after TBI. The integration of the clinical outcomes and upper limb kinematics revealed to be crucial in detecting the effects of the CIMT programme.
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
Ionised gas kinematics in bipolar H II regions
NASA Astrophysics Data System (ADS)
Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.
2018-05-01
Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
Risk of cervical injuries in mixed martial arts.
Kochhar, T; Back, D L; Mann, B; Skinner, J
2005-07-01
Mixed martial arts have rapidly succeeded boxing as the world's most popular full contact sport, and the incidence of injury is recognised to be high. To assess qualitatively and quantitatively the potential risk for participants to sustain cervical spine and associated soft tissue injuries. Four commonly performed manoeuvres with possible risks to the cervical spine were analysed with respect to their kinematics, and biomechanical models were constructed. Motion analysis of two manoeuvres revealed strong correlations with rear end motor vehicle impact injuries, and kinematics of the remaining two suggested a strong risk of injury. Mathematical models of the biomechanics showed that the forces involved are of the same order as those involved in whiplash injuries and of the same magnitude as compression injuries of the cervical spine. This study shows that there is a significant risk of whiplash injuries in this sport, and there are no safety regulations to address these concerns.
Risk of cervical injuries in mixed martial arts
Kochhar, T; Back, D; Mann, B; Skinner, J
2005-01-01
Background: Mixed martial arts have rapidly succeeded boxing as the world's most popular full contact sport, and the incidence of injury is recognised to be high. Objective: To assess qualitatively and quantitatively the potential risk for participants to sustain cervical spine and associated soft tissue injuries. Methods: Four commonly performed manoeuvres with possible risks to the cervical spine were analysed with respect to their kinematics, and biomechanical models were constructed. Results: Motion analysis of two manoeuvres revealed strong correlations with rear end motor vehicle impact injuries, and kinematics of the remaining two suggested a strong risk of injury. Mathematical models of the biomechanics showed that the forces involved are of the same order as those involved in whiplash injuries and of the same magnitude as compression injuries of the cervical spine. Conclusions: This study shows that there is a significant risk of whiplash injuries in this sport, and there are no safety regulations to address these concerns. PMID:15976168
Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers
Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul
2016-01-01
Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice quality. PMID:27159498
Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.
Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul
2016-01-01
Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice quality.
Strifling, Kelly M B; Lu, Na; Wang, Mei; Cao, Kevin; Ackman, Jeffrey D; Klein, John P; Schwab, Jeffrey P; Harris, Gerald F
2008-10-01
This prospective study analyzes the upper extremity kinematics of 10 children with spastic diplegic cerebral palsy using anterior and posterior walkers. Although both types of walkers are commonly prescribed by clinicians, no quantitative data comparing the two in regards to upper extremity motion has been published. The study methodology included testing of each subject with both types of walkers in a motion analysis laboratory after an acclimation period of at least 1 month. Overall results showed that statistically, both walkers are relatively similar. With both anterior and posterior walkers, the shoulders were extended, elbows flexed, and wrists extended. Energy expenditure, walking speed and stride length was also similar with both walker types. Several differences were also noted although not statistically significant. Anterior torso tilt was reduced with the posterior walker and shoulder extension and elbow flexion were increased. Outcomes analysis indicated that differences in upper extremity torso and joint motion were not dependent on spasticity or hand dominance. These findings may help to build an understanding of upper extremity motion in walker-assisted gait and potentially to improve walker prescription.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Keshavarz, Saeede; Faghih, Ali
2015-05-01
This study is aimed at quantifying the kinematics of deformation using a population of drag fold structures associated with small-scale faults in deformed quartzites from Seh-Ghalatoun area within the HP-LT Sanandaj-Sirjan Metamorphic Belt, SW Iran. A total 30 small-scale faults in the quartzite layers were examined to determine the deformation characteristics. Obtained data revealed α0 (initial fault angle) and ω (angle between flow apophyses) are equal to 83° and 32°, respectively. These data yield mean kinematic vorticity number (Wm) equal to 0.79 and mean finite strain (Rs) of 2.32. These results confirm the relative contribution of ∼43% pure shear and ∼57% simple shear components, respectively. The strain partitioning inferred from this quantitative analysis is consistent with a sub-simple or general shear deformation pattern associated with a transpressional flow regime in the study area as a part of the Zagros Orogen. This type of deformation resulted from oblique convergence between the Afro-Arabian and Central-Iranian plates.
Ashouri, Sajad; Abedi, Mohsen; Abdollahi, Masoud; Dehghan Manshadi, Farideh; Parnianpour, Mohamad; Khalaf, Kinda
2017-10-01
This paper presents a novel approach for evaluating LBP in various settings. The proposed system uses cost-effective inertial sensors, in conjunction with pattern recognition techniques, for identifying sensitive classifiers towards discriminate identification of LB patients. 24 healthy individuals and 28 low back pain patients performed trunk motion tasks in five different directions for validation. Four combinations of these motions were selected based on literature, and the corresponding kinematic data was collected. Upon filtering (4th order, low pass Butterworth filter) and normalizing the data, Principal Component Analysis was used for feature extraction, while Support Vector Machine classifier was applied for data classification. The results reveal that non-linear Kernel classification can be adequately employed for low back pain identification. Our preliminary results demonstrate that using a single inertial sensor placed on the thorax, in conjunction with a relatively simple test protocol, can identify low back pain with an accuracy of 96%, a sensitivity of %100, and specificity of 92%. While our approach shows promising results, further validation in a larger population is required towards using the methodology as a practical quantitative assessment tool for the detection of low back pain in clinical/rehabilitation settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seo, Han Gil; Oh, Byung-Mo; Han, Tai Ryoon
2016-04-01
The purpose of this study was to investigate swallowing kinematics and explore kinematic factors related with penetration-aspiration in patients with post-stroke dysphagia. Videofluoroscopic images of 68 patients with post-stroke dysphagia and 34 sex- and age-matched healthy controls swallowing a thin liquid were quantitatively analyzed using two-dimensional motion digitization. The measurements included the movement distances and velocities of the hyoid and larynx, and the maximal tilt angles and angular velocities of the epiglottis. All velocity variables were significantly decreased in the stroke patients compared to the controls. There was a significant difference in the maximal horizontal displacement of the larynx, but there were no significant differences in other displacements of the larynx, the maximal displacements of the hyoid bone, and the maximum tilt angle of the epiglottis between the two groups. The maximal tilt angle of the epiglottis was lower in the aspiration subgroup than in the no penetration/aspiration and penetration subgroups as well as the controls. The maximal tilt angle from the y axis showed a dichotomous pattern at 90° of the angle, and all 11 patients with an angle <90° showed either penetration or aspiration. In the ROC curve of the angle for prediction of aspiration, the area under the curve was 0.725 (95 % CI 0.557-0.892, P = 0.008). This study suggested that sluggish rather than decreased hyolaryngeal movements during swallowing are a remarkable feature of post-stroke dysphagia. The association of reduced epiglottic movement with the risk of aspiration in patients with post-stroke dysphagia was supported by the quantitative analysis.
Bisio, Ambra; Pedullà, Ludovico; Bonzano, Laura; Ruggeri, Piero; Brichetto, Giampaolo; Bove, Marco
2016-01-01
Writing is a means of communication which requires complex motor, perceptual, and cognitive skills. If one of these abilities gets lost following traumatic events or due to neurological diseases, handwriting could deteriorate. Occupational therapy practitioners provide rehabilitation services for people with impaired handwriting. However, to determine the effectiveness of handwriting interventions no studies assessed whether the proposed treatments improved the kinematics of writing movement or had an effect at the level of the central nervous system. There is need to find new quantitative methodologies able to describe the behavioral and the neural outcomes of the rehabilitative interventions for handwriting. In the present study we proposed a combined approach that allowed evaluating the kinematic parameters of handwriting movements, acquired by means of a magnetic resonance-compatible tablet, and their neural correlates obtained simultaneously from a functional magnetic resonance imaging examination. Results showed that the system was reliable in term of reproducibility of the kinematic data during a test/re-test procedure. Further, despite the modifications with respect to an ecological writing movement condition, the kinematic parameters acquired inside the MR-environment were descriptive of individuals’ movement features. At last, the imaging protocol succeeded to show the activation of the cerebral regions associated with the production of writing movement in healthy people. From these findings, this methodology seems to be promising to evaluate the handwriting movement deficits and the potential alterations in the neural activity in those individuals who have handwriting difficulties. Finally, it would provide a mean to quantitatively assess the effect of a rehabilitative treatment. PMID:27746727
Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro
2012-03-15
We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation
NASA Astrophysics Data System (ADS)
Mossahebi, Sina
Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy, diastatic stiffness, and relaxation and stiffness components of E-wave deceleration time.
Foot and ankle kinematics in patients with posterior tibial tendon dysfunction.
Ness, Mary Ellen; Long, Jason; Marks, Richard; Harris, Gerald
2008-02-01
The purpose of this study is to provide a quantitative characterization of gait in patients with posterior tibial tendon dysfunction (PTTD), including temporal-spatial and kinematic parameters, and to compare these results to those of a Normal population. Our hypothesis was that segmental foot kinematics were significantly different in multiple segments across multiple planes. A 15 camera motion analysis system and weight-bearing radiographs were employed to evaluate 3D foot and ankle motion in a population of 34 patients with PTTD (30 females, 4 males) and 25 normal subjects (12 females, 13 males). The four-segment Milwaukee Foot Model (MFM) with radiographic indexing was used to analyze foot and ankle motion and provided kinematic data in the sagittal, coronal and transverse planes as well as temporal-spatial information. The temporal-spatial parameters revealed statistically significant deviations in all four metrics for the PTTD population. Stride length, cadence and walking speed were all significantly diminished, while stance duration was significantly prolonged (p<0.0125). Significant kinematic differences were noted between the groups (p<0.002), including: (1) diminished dorsiflexion and increased eversion of the hindfoot; (2) decreased plantarflexion of the forefoot, as well as abduction shift and loss of the varus thrust in the forefoot; and (3) decreased range of motion (ROM) with diminished dorsiflexion of the hallux. The study provides an impetus for improved orthotic and bracing designs to aid in the care of distal foot segments during the treatment of PTTD. It also provides the basis for future evaluation of surgical efficacy. The course of this investigation may ultimately lead to improved treatment planning methods, including orthotic and operative interventions.
Kinematic parameters of signed verbs.
Malaia, Evie; Wilbur, Ronnie B; Milkovic, Marina
2013-10-01
Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production ( Malaia & Wilbur, 2012a) and process these distinctions as part of the phonological structure of these verb classes in comprehension ( Malaia, Ranaweera, Wilbur, & Talavage, 2012). These studies are driven by the event visibility hypothesis by Wilbur (2003), who proposed that such use of kinematic features should be universal to sign language (SL) by the grammaticalization of physics and geometry for linguistic purposes. In a prior motion capture study, Malaia and Wilbur (2012a) lent support for the event visibility hypothesis in ASL, but there has not been quantitative data from other SLs to test the generalization to other languages. The authors investigated the kinematic parameters of predicates in Croatian Sign Language ( Hrvatskom Znakovnom Jeziku [HZJ]). Kinematic features of verb signs were affected both by event structure of the predicate (semantics) and phrase position within the sentence (prosody). The data demonstrate that kinematic features of motion in HZJ verb signs are recruited to convey morphological and prosodic information. This is the first crosslinguistic motion capture confirmation that specific kinematic properties of articulator motion are grammaticalized in other SLs to express linguistic features.
Raouafi, Sana; Achiche, Sofiane; Begon, Mickael; Sarcher, Aurélie; Raison, Maxime
2018-01-01
Treatment for cerebral palsy depends upon the severity of the child's condition and requires knowledge about upper limb disability. The aim of this study was to develop a systematic quantitative classification method of the upper limb disability levels for children with spastic unilateral cerebral palsy based on upper limb movements and muscle activation. Thirteen children with spastic unilateral cerebral palsy and six typically developing children participated in this study. Patients were matched on age and manual ability classification system levels I to III. Twenty-three kinematic and electromyographic variables were collected from two tasks. Discriminative analysis and K-means clustering algorithm were applied using 23 kinematic and EMG variables of each participant. Among the 23 kinematic and electromyographic variables, only two variables containing the most relevant information for the prediction of the four levels of severity of spastic unilateral cerebral palsy, which are fixed by manual ability classification system, were identified by discriminant analysis: (1) the Falconer index (CAI E ) which represents the ratio of biceps to triceps brachii activity during extension and (2) the maximal angle extension (θ Extension,max ). A good correlation (Kendall Rank correlation coefficient = -0.53, p = 0.01) was found between levels fixed by manual ability classification system and the obtained classes. These findings suggest that the cost and effort needed to assess and characterize the disability level of a child can be further reduced.
Some aspects of the analysis of geodetic strain observations in kinematic models
NASA Astrophysics Data System (ADS)
Welsch, W. M.
1986-11-01
Frequently, deformation processes are analyzed in static models. In many cases, this procedure is justified, in particular if the deformation occurring is a singular event. If. however, the deformation is a continuous process, as is the case, for instance, with recent crustal movements, the analysis in kinematic models is more commensurate with the problem because the factor "time" is considered an essential part of the model. Some specialities have to be considered when analyzing geodetic strain observations in kinematic models. They are dealt with in this paper. After a brief derivation of the basic kinematic model and the kinematic strain model, the following subjects are treated: the adjustment of the pointwise velocity field and the derivation of strain-rate parameters; the fixing of the kinematic reference system as part of the geodetic datum; statistical tests of models by testing linear hypotheses; the invariance of kinematic strain-rate parameters with respect to transformations of the coordinate-system and the geodetic datum; the interpolation of strain rates by finite-element methods. After the representation of some advanced models for the description of secular and episodic kinematic processes, the data analysis in dynamic models is regarded as a further generalization of deformation analysis.
NASA Astrophysics Data System (ADS)
Hamimi, Z.; Kassem, O. M. K.; El-Sabrouty, M. N.
2015-09-01
The rotation of rigid objects within a flowing viscous medium is a function of several factors including the degree of non-coaxiality. The relationship between the orientation of such objects and their aspect ratio can be used in vorticity analyses in a variety of geological settings. Method for estimation of vorticity analysis to quantitative of kinematic vorticity number (Wm) has been applied using rotated rigid objects, such as quartz and feldspar objects. The kinematic vorticity number determined for high temperature mylonitic Abt schist in Al Amar area, extreme eastern Arabian Shield, ranges from ˜0.8 to 0.9. Obtained results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during an earlier thrusting event, probably by brittle imbrications. Ductile strain was superimposed on the nappe structure at high-pressure as revealed by a penetrative subhorizontal foliation that is developed subparallel to tectonic contacts versus the underlying and overlying nappes. Accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Al Amar area. In most cases, this foliation was formed concurrently with thrust sheets imbrications, indicating that nappe stacking was associated with vertical shortening.
Kinematics and dynamics of vortex rings in a tube
NASA Technical Reports Server (NTRS)
Brasseur, J. G.
1979-01-01
Kinematic theory and flow visualization experiments were combined to examine the dynamic processes which control the evolution of vortex rings from very low to very high Reynolds numbers, and to assess the effects of the wall as a vortex ring travels up a tube. The kinematic relationships among the size, shape, speed, and strength of vortex rings in a tube were computed from the theory. Relatively simple flow visualization measurements were used to calculate the total circulation of a vortex rings at a given time. Using this method, the strength was computated and plotted as a function of time for experimentally produced vortex rings. Reynolds number relationships are established and quantitative differences among the three Reynolds number groups are discussed.
Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy.
Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Shane
2014-01-01
This article provides a comprehensive review of studies that investigated ankle assessment techniques to better understand those that can be used in the real-time monitoring of rehabilitation progress for implementation in conjunction with robot-assisted therapy. Seventy-six publications published between January 1980 and August 2013 were selected based on eight databases. They were divided into two main categories (16 qualitative and 60 quantitative studies): 13 goniometer studies, 18 dynamometer studies, and 29 studies about innovative techniques. A total of 465 subjects participated in the 29 quantitative studies of innovative measurement techniques that may potentially be integrated in a real-time monitoring device, of which 19 studies included less than 10 participants. Results show that qualitative ankle assessment methods are not suitable for real-time monitoring in robot-assisted therapy, though they are reliable for certain patients, while the quantitative methods show great potential. The majority of quantitative techniques are reliable in measuring ankle kinematics and kinetics but are usually available only for use in the sagittal plane. Limited studies determine kinematics and kinetics in all three planes (sagittal, transverse, and frontal) where motions of the ankle joint and the subtalar joint actually occur.
Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents
Chagas, André M.; Theis, Lucas; Sengupta, Biswa; Stüttgen, Maik C.; Bethge, Matthias; Schwarz, Cornelius
2013-01-01
Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of “how much” information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on “what” is coded by primary afferents. Amongst the kinematic variables tested—position, velocity, and acceleration—primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80–90%. The final 10–20% were found to be due to non-linear coding by spike bursts. PMID:24367295
Elias, J A; McBrayer, L D; Reilly, S M
2000-02-01
Although lizards have been predicted to show extensive intraoral prey-processing behaviors, quantitative analyses of the types of prey-processing behavior they demonstrate and of their kinematics have been limited. The more basal lizard lineages (Iguanians) have undergone some study, but the prey-processing repertoires of crown taxa have not been thoroughly examined and quantitative comparisons of behaviors within or among species have not been made. In this study, the prey transport behavior of the savannah monitor (Varanus exanthematicus) and gold tegu (Tupinambis teguixin) are described. Although these two lineages have independently evolved tongues that are highly specialized for chemoreception, we found that they share the same three distinct types of transport behavior. These behavior patterns are (i) a purely inertial transport, (ii) an inertial transport with use of the tongue, and (iii) a non-inertial lingual transport. The tongue is used extensively in both the inertial and the purely lingual transport behaviors. More than 75 % of all transport behaviors involved tongue movements. These species appear to exhibit a conservation of feeding kinematics compared with patterns known for basal lizards. A hypothesis for the evolution of inertial feeding is proposed.
A Computational Framework for Quantitative Evaluation of Movement during Rehabilitation
NASA Astrophysics Data System (ADS)
Chen, Yinpeng; Duff, Margaret; Lehrer, Nicole; Sundaram, Hari; He, Jiping; Wolf, Steven L.; Rikakis, Thanassis
2011-06-01
This paper presents a novel generalized computational framework for quantitative kinematic evaluation of movement in a rehabilitation clinic setting. The framework integrates clinical knowledge and computational data-driven analysis together in a systematic manner. The framework provides three key benefits to rehabilitation: (a) the resulting continuous normalized measure allows the clinician to monitor movement quality on a fine scale and easily compare impairments across participants, (b) the framework reveals the effect of individual movement components on the composite movement performance helping the clinician decide the training foci, and (c) the evaluation runs in real-time, which allows the clinician to constantly track a patient's progress and make appropriate adaptations to the therapy protocol. The creation of such an evaluation is difficult because of the sparse amount of recorded clinical observations, the high dimensionality of movement and high variations in subject's performance. We address these issues by modeling the evaluation function as linear combination of multiple normalized kinematic attributes y = Σwiφi(xi) and estimating the attribute normalization function φi(ṡ) by integrating distributions of idealized movement and deviated movement. The weights wi are derived from a therapist's pair-wise comparison using a modified RankSVM algorithm. We have applied this framework to evaluate upper limb movement for stroke survivors with excellent results—the evaluation results are highly correlated to the therapist's observations.
Gender differences in joint biomechanics during walking: normative study in young adults.
Kerrigan, D C; Todd, M K; Della Croce, U
1998-01-01
The effect of gender on specific joint biomechanics during gait has been largely unexplored. Given the perceived, subjective, and temporal differences in walking between genders, we hypothesized that quantitative analysis would reveal specific gender differences in joint biomechanics as well. Sagittal kinematic (joint motion) and kinetic (joint torque and power) data from the lower limbs during walking were collected and analyzed in 99 young adult subjects (49 females), aged 20 to 40 years, using an optoelectronic motion analysis and force platform system. Kinetic data were normalized for both height and weight. Female and male data were compared graphically and statistically to assess differences in all major peak joint kinematic and kinetic values. Females had significantly greater hip flexion and less knee extension before initial contact, greater knee flexion moment in pre-swing, and greater peak mechanical joint power absorption at the knee in pre-swing (P < 0.0019 for each parameter). Other differences were noted (P < 0.05) that were not statistically significant when accounting for multiple comparisons. These gender differences may provide new insights into walking dynamics and may be important for both clinical and research studies in motivating the development of separate biomechanical reference databases for males and females.
Validation and structural analysis of the kinematics concept test
NASA Astrophysics Data System (ADS)
Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stern, E.; Vaterlaus, A.
2017-06-01
The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part of this article we describe the development and the validation process of the KCT. We applied the KCT to 338 Swiss high school students who attended traditional teaching in kinematics. We analyzed the response data to provide the psychometric properties of the test. In the second part we present the results of a structural analysis of the test. An exploratory factor analysis of 664 student answers finally uncovered the seven kinematics concepts as factors. However, the analysis revealed a hierarchical structure of concepts. At the higher level, mathematical concepts group together, and then split up into physics concepts at the lower level. Furthermore, students who seem to understand a concept in one representation have difficulties transferring the concept to similar problems in another representation. Both results have implications for teaching kinematics. First, teaching mathematical concepts beforehand might be beneficial for learning kinematics. Second, instructions have to be designed to teach students the change between different representations.
Three-dimensional micro-scale strain mapping in living biological soft tissues.
Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter
2018-04-01
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Patel, Rita; Donohue, Kevin D; Unnikrishnan, Harikrishnan; Kryscio, Richard J
2015-04-01
This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys.
Custom-Molded Foot-Orthosis Intervention and Multisegment Medial Foot Kinematics During Walking
Cobb, Stephen C.; Tis, Laurie L.; Johnson, Jeffrey T.; Wang, Yong “Tai”; Geil, Mark D.
2011-01-01
Context: Foot-orthosis (FO) intervention to prevent and treat numerous lower extremity injuries is widely accepted clinically. However, the results of quantitative gait analyses have been equivocal. The foot models used, participants receiving intervention, and orthoses used might contribute to the variability. Objective: To investigate the effect of a custom-molded FO intervention on multisegment medial foot kinematics during walking in participants with low-mobile foot posture. Design: Crossover study. Setting: University biomechanics and ergonomics laboratory. Patients or Other Participants: Sixteen participants with low-mobile foot posture (7 men, 9 women) were assigned randomly to 1 of 2 FO groups. Interventions : After a 2-week period to break in the FOs, individuals participated in a gait analysis that consisted of 5 successful walking trials (1.3 to 1.4 m/s) during no-FO and FO conditions. Main Outcome Measure(s): Three-dimensional displacements during 4 subphases of stance (loading response, mid-stance, terminal stance, preswing) were computed for each multisegment foot model articulation. Results: Repeated-measures analyses of variance (ANOVAs) revealed that rearfoot complex dorsiflexion displacement during midstance was greater in the FO than the no-FO condition (F1,14 = 5.24, P = .04, partial η2 = 0.27). Terminal stance repeated-measures ANOVA results revealed insert-by-insert condition interactions for the first metatarsophalangeal joint complex (F1,14 = 7.87, P = .01, partial η2 = 0.36). However, additional follow-up analysis did not reveal differences between the no-FO and FO conditions for the balanced traditional orthosis (F1,14 = 4.32, P = .08, partial η2 = 0.38) or full-contact orthosis (F1,14 = 4.10, P = .08, partial η2 = 0.37). Conclusions: Greater rearfoot complex dorsiflexion during midstance associated with FO intervention may represent improved foot kinematics in people with low-mobile foot postures. Furthermore, FO intervention might partially correct dys-functional kinematic patterns associated with low-mobile foot postures. PMID:21944067
Sheffler, Lynne R; Bailey, Stephanie Nogan; Wilson, Richard D; Chae, John
2013-06-01
The relative effect of a transcutaneous peroneal nerve stimulator (tPNS) and an ankle foot orthosis (AFO) on spatiotemporal, kinematic, and kinetic parameters of hemiparetic gait has not been well described. To compare the relative neuroprosthetic effect of a tPNS with the orthotic effect of an AFO using quantitative gait analysis (QGA). In all, 12 stroke survivors underwent QGA under 3 device conditions: (1) no device (ND), (2) AFO, and (3) tPNS. A series of repeated-measures analyses of variance (rmANOVAs) were performed with dorsiflexion status (presence or absence of volitional dorsiflexion) as a covariate to compare selected spatiotemporal, kinematic, and kinetic parameters for each device condition. Post hoc pairwise comparisons and/or subset analysis by dorsiflexion status were performed for significant effect. Stride length was improved with both the AFO (P = .035) and the tPNS (P = .029) relative to ND. Those with absent dorsiflexion had longer stride length with the tPNS relative to ND (P = .034) and a higher walking velocity with a tPNS relative to the AFO (P = .015). There was no device effect on dorsiflexion angle at initial contact; however, a significant Device × Dorsiflexion status interaction effect favored the AFO relative to ND (P = .025) in those with dorsiflexion present. This study suggests that level of motor impairment may influence the relative effects of the tPNS and AFO devices in chronic hemiparetic gait; however, the small sample size limits generalizability. Future studies are necessary to determine if motor impairment level should be considered in the clinical prescription of these devices.
Data representation for joint kinematics simulation of the lower limb within an educational context.
Van Sint Jan, Serge; Hilal, Isam; Salvia, Patrick; Sholukha, Victor; Poulet, Pascal; Kirokoya, Ibrahim; Rooze, Marcel
2003-04-01
Three-dimensional (3D) visualization is becoming increasingly frequent in both qualitative and quantitative biomechanical studies of anatomical structures involving multiple data sources (e.g. morphological data and kinematics data). For many years, this kind of experiment was limited to the use of bi-dimensional images due to a lack of accurate 3D data. However, recent progress in medical imaging and computer graphics has forged new perspectives. Indeed, new techniques allow the development of an interactive interface for the simulation of human motions combining data from both medical imaging (i.e., morphology) and biomechanical studies (i.e., kinematics). Fields of application include medical education, biomechanical research and clinical research. This paper presents an experimental protocol for the development of anatomically realistic joint simulation within a pedagogical context. Results are shown for the lower limb. Extension to other joints is straightforward. This work is part of the Virtual Animation of the Kinematics of the Human project (VAKHUM) (http://www.ulb.ac.be/project/vakhum).
NASA Astrophysics Data System (ADS)
Abadjieva, Emilia; Abadjiev, Valentin
2017-06-01
The science that study the processes of motions transformation upon a preliminary defined law between non-coplanar axes (in general case) axes of rotations or axis of rotation and direction of rectilinear translation by three-link mechanisms, equipped with high kinematic joints, can be treated as an independent branch of Applied Mechanics. It deals with mechanical behaviour of these multibody systems in relation to the kinematic and geometric characteristics of the elements of the high kinematic joints, which form them. The object of study here is the process of regular transformation of rotation into translation. The developed mathematical model is subjected to the defined task for studying the sliding velocity vector function at the contact point from the surfaces elements of arbitrary high kinematic joints. The main kinematic characteristics of the studied type motions transformation (kinematic cylinders on level, kinematic relative helices (helical conoids) and kinematic pitch configurations) are defined on the bases of the realized analysis. These features expand the theoretical knowledge, which is the objective of the gearing theory. They also complement the system of kinematic and geometric primitives, that form the mathematical model for synthesis of spatial rack mechanisms.
Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P
2016-06-14
Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frost, David M; Beach, Tyson A C; Campbell, Troy L; Callaghan, Jack P; McGill, Stuart M
2017-01-01
To examine whether objective measures of spine and frontal plane knee motion exhibited during Functional Movement Screen™ (FMS) task performance changed following a movement-guided fitness (MOV) and conventional fitness (FIT) exercise intervention. Secondary analysis of a randomized controlled experiment. Before and after 12 weeks of exercise, participants' kinematics were quantified while performing the FMS and a series of general whole-body movement tasks. Biomechanics laboratory. Fifty-two firefighters were assigned to MOV, FIT, or a control (CON) group. Peak lumbar spine flexion/extension, lateral bend and axial twist, and frontal plane knee motion. The post-training kinematic changes exhibited by trainees while performing the FMS tasks were similar in magnitude (effect size < 0.8) to those exhibited by CON. However, when performing the battery of general whole-body movement tasks, only MOV showed significant improvements in spine and frontal plane knee motion control (effect size > 0.5). Whether graded qualitatively, or quantitatively via kinematic analyses, the FMS may not be a viable tool to detect movement-based exercise adaptations. Amendments to the FMS tasks and/or scoring method are needed before it can be used for reasons beyond appraising the ability to move freely, symmetrically, and without pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jamshidi, N; Rostami, M; Najarian, S; Menhaj, M B; Saadatnia, M; Firooz, S
2009-04-01
This paper deals with the dynamic modelling of human walking. The main focus of this research was to optimise the function of the orthosis in patients with neuropathic feet, based on the kinematics data from different categories of neuropathic patients. The patient's body on the sagittal plane was modelled for calculating the torques generated in joints. The kinematics data required for mathematical modelling of the patients were obtained from the films of patients captured by high speed camera, and then the films were analysed through a motion analysis software. An inverse dynamic model was used for estimating the spring coefficient. In our dynamic model, the role of muscles was substituted by adding a spring-damper between the shank and ankle that could compensate for their weakness by designing ankle-foot orthoses based on the kinematics data obtained from the patients. The torque generated in the ankle was varied by changing the spring constant. Therefore, it was possible to decrease the torque generated in muscles which could lead to the design of more comfortable and efficient orthoses. In this research, unlike previous research activities, instead of studying the abnormal gait or modelling the ankle-foot orthosis separately, the function of the ankle-foot orthosis on the abnormal gait has been quantitatively improved through a correction of the torque.
Shahabpoor, Erfan; Pavic, Aleksandar
2017-09-12
Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment.
Shahabpoor, Erfan; Pavic, Aleksandar
2017-01-01
Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the ‘accuracy’ and ‘practicality’ of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment. PMID:28895909
Quantitative theory of diffraction by cylindrical scroll nanotubes.
Khadiev, Azat; Khalitov, Zufar
2018-05-01
A quantitative theory of Fraunhofer diffraction by right- and left-handed multiwalled cylindrical scroll nanotubes is developed on the basis of the kinematical approach. The proposed theory is mainly dedicated to structural studies of individual nanotubes by the selected-area electron diffraction technique. Strong and diffuse reflections of the scroll nanotube were studied and explicit formulas that govern relations between the direct and reciprocal lattice of the scroll nanotube are achieved.
Estimation of kinematic parameters in CALIFA galaxies: no-assumption on internal dynamics
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Barrera-Ballesteros, J.; CALIFA Team
2016-06-01
We propose a simple approach to homogeneously estimate kinematic parameters of a broad variety of galaxies (elliptical, spirals, irregulars or interacting systems). This methodology avoids the use of any kinematical model or any assumption on internal dynamics. This simple but novel approach allows us to determine: the frequency of kinematic distortions, systemic velocity, kinematic center, and kinematic position angles which are directly measured from the two dimensional-distributions of radial velocities. We test our analysis tools using the CALIFA Survey
Quantitative assessment of human motion using video motion analysis
NASA Technical Reports Server (NTRS)
Probe, John D.
1990-01-01
In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.
Applying machine learning to identify autistic adults using imitation: An exploratory study.
Li, Baihua; Sharma, Arjun; Meng, James; Purushwalkam, Senthil; Gowen, Emma
2017-01-01
Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including social, sensory and motor aspects. Although stereotyped, repetitive motor movements are considered during diagnosis, quantitative measures that identify kinematic characteristics in the movement patterns of autistic individuals are poorly studied, preventing advances in understanding the aetiology of motor impairment, or whether a wider range of motor characteristics could be used for diagnosis. The aim of this study was to investigate whether data-driven machine learning based methods could be used to address some fundamental problems with regard to identifying discriminative test conditions and kinematic parameters to classify between ASC and neurotypical controls. Data was based on a previous task where 16 ASC participants and 14 age, IQ matched controls observed then imitated a series of hand movements. 40 kinematic parameters extracted from eight imitation conditions were analysed using machine learning based methods. Two optimal imitation conditions and nine most significant kinematic parameters were identified and compared with some standard attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to kinematic movement parameters measured during imitation of hand movements to investigate the identification of ASC. Although based on a small sample, the work demonstrates the feasibility of applying machine learning methods to analyse high-dimensional data and suggest the potential of machine learning for identifying kinematic biomarkers that could contribute to the diagnostic classification of autism.
NASA Astrophysics Data System (ADS)
Prokešová, Roberta; Kardoš, Miroslav; Tábořík, Petr; Medveďová, Alžbeta; Stacke, Václav; Chudý, František
2014-11-01
Large earthflow-type landslides are destructive mass movement phenomena with highly unpredictable behaviour. Knowledge of earthflow kinematics is essential for understanding the mechanisms that control its movements. The present paper characterises the kinematic behaviour of a large earthflow near the village of Ľubietová in Central Slovakia over a period of 35 years following its most recent reactivation in 1977. For this purpose, multi-temporal spatial data acquired by point-based in-situ monitoring and optical remote sensing methods have been used. Quantitative data analyses including strain modelling and DEM differencing techniques have enabled us to: (i) calculate the annual landslide movement rates; (ii) detect the trend of surface displacements; (iii) characterise spatial variability of movement rates; (iv) measure changes in the surface topography on a decadal scale; and (v) define areas with distinct kinematic behaviour. The results also integrate the qualitative characteristics of surface topography, in particular the distribution of surface structures as defined by a high-resolution DEM, and the landslide subsurface structure, as revealed by 2D resistivity imaging. Then, the ground surface kinematics of the landslide is evaluated with respect to the specific conditions encountered in the study area including slope morphology, landslide subsurface structure, and local geological and hydrometeorological conditions. Finally, the broader implications of the presented research are discussed with particular focus on the role that strain-related structures play in landslide kinematic behaviour.
Donohue, Kevin D.; Unnikrishnan, Harikrishnan; Kryscio, Richard J.
2015-01-01
Purpose This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Method Vocal-fold vibrations were analyzed for 28 children (aged 5–11 years) and 28 adults (aged 21–45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Results Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. Conclusions When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys. PMID:25652615
Kinematic reconstruction of the Caribbean region since the Early Jurassic
NASA Astrophysics Data System (ADS)
Bochman, Lydian; van Hinsbergen, Douwe; Torsvik, Trond; Spakman, Wim; Pindell, James
2014-05-01
The Caribbean region results from a complex tectonic history governed by the interplay of the North American, South American and (Paleo-)Pacific plates, between which the Caribbean plate evolved since the early Cretaceous. During its entire tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, which hampers a quantitative integration into the global circuit of plate motions. In addition, reconstructions of the region have so far not resulted in a first order kinematic description of the main tectonic units in terms of Euler poles and finite rotation angles. Here, we present an updated, quantitatively described kinematic reconstruction of the Caribbean region back to 200 Ma integrated into the global plate circuit, and implemented with GPlates free software. Our analysis of Caribbean tectonic evolution incorporates an extensive literature review. To constrain the Caribbean plate motion between the American continents, we use a novel approach that takes structural geological observations rather than marine magnetic anomalies as prime input, and uses regionally extensive metamorphic and magmatic phenomena such as the Great Arc of the Caribbean, the Caribbean Large Igneous Province (CLIP) and the Caribbean high-pressure belt as correlation markers. The resulting model restores the Caribbean plate back along the Cayman Trough and major strike-slip faults in Guatemala, offshore Nicaragua, offshore Belize and along the Northern Andes towards its position of origin, west of the North and South American continents in early Cretaceous time. We provide the paleomagnetic reference frame for the Caribbean region by rotating the Global Apparent Polar Wander Path into coordinates of the Caribbean plate interior, Cuba, and the Chortis Block. We conclude that a plate kinematic scenario for a Panthalassa/Pacific origin of Caribbean lithosphere leads to a much simpler explanation than a Proto-Caribbean/Atlantic origin. Placing our reconstruction in the most recent mantle reference frames shows that the CLIP erupted 2000-3000 km east of the modern Galápagos hotspot, and may not have been derived from the corresponding mantle plume. Finally, our reconstruction suggests that most if not all modern subduction zones surrounding the Caribbean plate initiated at transform faults, two of these (along the southern Mexican and NW South American margins) evolved diachronously as a result of migrating trench-trench-transform triple junctions.
Three-dimensional shoulder kinematics normalize after rotator cuff repair.
Kolk, Arjen; de Witte, Pieter Bas; Henseler, Jan Ferdinand; van Zwet, Erik W; van Arkel, Ewoud R A; van der Zwaal, Peer; Nelissen, Rob G H H; de Groot, Jurriaan H
2016-06-01
Patients with a rotator cuff (RC) tear often exhibit scapular dyskinesia with increased scapular lateral rotation and decreased glenohumeral elevation with arm abduction. We hypothesized that in patients with an RC tear, scapular lateral rotation, and thus glenohumeral elevation, will be restored to normal after RC repair. Shoulder kinematics were quantitatively analyzed in 26 patients with an electromagnetic tracking device (Flock of Birds) before and 1 year after RC repair in this observational case series. We focused on humeral range of motion and scapular kinematics during abduction. The asymptomatic contralateral shoulder was used as the control. Changes in scapular kinematics were associated with the gain in range of motion. Shoulder kinematics were analyzed using a linear mixed model. Mean arm abduction and forward flexion improved after surgery by 20° (95% confidence interval [CI], 2.7°-36.5°; P = .025) and 13° (95% CI, 1.2°-36.5°; P = .044), respectively. Kinematic analyses showed decreases in mean scapular protraction (ie, internal rotation) and lateral rotation (ie, upward rotation) during abduction by 3° (95% CI, 0.0°-5.2°; P = .046) and 4° (95% CI, 1.6°-8.4°; P = .042), respectively. Glenohumeral elevation increased by 5° (95% CI, 0.6°-9.7°; P = .028) at 80°. Humeral range of motion increased when scapular lateral rotation decreased and posterior tilt increased. Scapular kinematics normalize after RC repair toward a symmetrical scapular motion pattern as observed in the asymptomatic contralateral shoulder. The observed changes in scapular kinematics are associated with an increased overall range of motion and suggest restored function of shoulder muscles. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Avila, Mariana Arias; Camargo, Paula Rezende; Ribeiro, Ivana Leão; Alburquerque-Sendín, Francisco; Zamunér, Antonio Roberto; Salvini, Tania Fatima
2017-11-01
Although hydrotherapy is widely used to treat women with fibromyalgia, no studies have investigated the effects of this intervention on scapular kinematics in this population. This study verified the effectiveness of a hydrotherapy program on scapular kinematics, pain and quality of life in women with fibromyalgia. Twenty women completed the study and performed three evaluations before treatment (to establish a baseline), and two other evaluations (after 8 and 16weeks of hydrotherapy) at the end of treatment. Three-dimensional kinematics of the scapula was evaluated during arm elevation in two different planes with the Flock of Birds® system. Patients also answered quality of life and Fibromyalgia Impact Questionnaires and had pain assessed with a digital algometer. Treatment consisted of 2 weekly hydrotherapy sessions, lasting 45min each, for 16weeks. Data were analyzed with a two-way ANOVA (for kinematics results) and one-way ANOVA (for the other variables). Effect size was assessed with Cohen's d coefficient for all quantitative variables. Although an important improvement was achieved in terms of pain and quality of life (P<0.05, effect sizes varied from -1.93 to 1.61 depending on the variable), scapular kinematics did not change after treatment (P>0.05, effect sizes from -0.40 to 0.46 for all kinematic variables). The proposed program of hydrotherapy was effective to improve quality of life, pain intensity and fibromyalgia impact in women with fibromyalgia. However, scapular kinematics did not change after the period of treatment. Although symptoms improved after the treatment, the lack of changes in scapular kinematics may indicate these women have an adaptive movement pattern due to their chronic painful condition. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bonanno, A.; Bozzo, G.; Sapia, P.
2017-11-01
In this work, we present a coherent sequence of experiments on electromagnetic (EM) induction and eddy currents, appropriate for university undergraduate students, based on a magnet falling through a drilled aluminum disk. The sequence, leveraging on the didactical interplay between the EM and mechanical aspects of the experiments, allows us to exploit the students’ awareness of mechanics to elicit their comprehension of EM phenomena. The proposed experiments feature two kinds of measurements: (i) kinematic measurements (performed by means of high-speed video analysis) give information on the system’s kinematics and, via appropriate numerical data processing, allow us to get dynamic information, in particular on energy dissipation; (ii) induced electromagnetic field (EMF) measurements (by using a homemade multi-coil sensor connected to a cheap data acquisition system) allow us to quantitatively determine the inductive effects of the moving magnet on its neighborhood. The comparison between experimental results and the predictions from an appropriate theoretical model (of the dissipative coupling between the moving magnet and the conducting disk) offers many educational hints on relevant topics related to EM induction, such as Maxwell’s displacement current, magnetic field flux variation, and the conceptual link between induced EMF and induced currents. Moreover, the didactical activity gives students the opportunity to be trained in video analysis, data acquisition and numerical data processing.
Żuk, Magdalena; Pezowicz, Celina
2015-01-01
Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment. Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets. Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect. Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.
Validation and Structural Analysis of the Kinematics Concept Test
ERIC Educational Resources Information Center
Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stem, E.; Vaterlaus, A.
2017-01-01
The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part…
Coordination of multiple appendages in drag-based swimming.
Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette
2010-11-06
Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-04-24
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.
NASA Astrophysics Data System (ADS)
Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda
2017-10-01
The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.
Throwing velocity and kinematics in elite male water polo players.
Melchiorri, G; Padua, E; Padulo, J; D'Ottavio, S; Campagna, S; Bonifazi, M
2011-12-01
Fifty-three members of the Italian Men Water Polo Team were filmed using two synchronized cameras, while they were shooting a goal. Considering the differences in body mass, height, training strategies and the technical-tactical features of the players, the aims of this study were to employ video-analysis techniques in order to investigate selected kinematic parameters in water polo throwing, and to provide comprehensive quantitative information on the throwing movement in relation to the different team player positions. Video analysis was used to estimate the elbow angle at release, the shoulder angle at follow through, the back and head height at ball release, trunk rotation angle and ball velocity at release. Ball release velocities ranged from 21.0 to 29.8 m/s (average value 25.3±1.4 m/s), for field players. Goal keepers show the lowest team values (average 21.7±0.3 m/s). Similar to previous study results, ball release was typically reached just prior to the elbow approaching full extension (151.6±3.6°), and the follow through shoulder angle was 143±5.9°. No significant statistical difference was recorded between injured and non-injured athletes. No positive association was demonstrated between physical characteristics (body mass and height) and ball velocity.
EMA analysis of tongue function in children with dysarthria following traumatic brain injury.
Murdoch, Bruce E; Goozée, Justine V
2003-01-01
To investigate the speed and accuracy of tongue movements exhibited by a sample of children with dysarthria following severe traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Four children, aged between 12.75-17.17 years with dysarthria following TBI, were assessed using the AG-100 electromagnetic articulography system (Carstens Medizinelektronik). The movement trajectories of receiver coils affixed to each child's tongue were examined during consonant productions, together with a range of quantitative kinematic parameters. The children's results were individually compared against the mean values obtained by a group of eight control children (mean age of 14.67 years, SD 1.60). All four TBI children were perceived to exhibit reduced rates of speech and increased word durations. Objective EMA analysis revealed that two of the TBI children exhibited significantly longer consonant durations compared to the control group, resulting from different underlying mechanisms relating to speed generation capabilities and distances travelled. The other two TBI children did not exhibit increased initial consonant movement durations, suggesting that the vowels and/or final consonants may have been contributing to the increased word durations. The finding of different underlying articulatory kinematic profiles has important implications for the treatment of speech rate disturbances in children with dysarthria following TBI.
Quantitative Assessment of Knee Progression Angle During Gait in Children With Cerebral Palsy.
Davids, Jon R; Cung, Nina Q; Pomeroy, Robin; Schultz, Brooke; Torburn, Leslie; Kulkarni, Vedant A; Brown, Sean; Bagley, Anita M
2018-04-01
Abnormal hip rotation is a common deviation in children with cerebral palsy (CP). Clinicians typically assess hip rotation during gait by observing the direction that the patella points relative to the path of walking, which is referred to as the knee progression angle (KPA). Two kinematic methods for calculating the KPA are compared with each other. Video-based qualitative assessment of KPA is compared with the quantitative methods to determine reliability and validity. The KPA was calculated by both direct and indirect methods for 32 typically developing (TD) children and a convenience cohort of 43 children with hemiplegic type CP. An additional convenience cohort of 26 children with hemiplegic type CP was selected for qualitative assessment of KPA, performed by 3 experienced clinicians, using 3 categories (internal, >10 degrees; neutral, -10 to 10 degrees; and external, >-10 degrees). Root mean square (RMS) analysis comparing the direct and indirect KPAs was 1.14+0.43 degrees for TD children, and 1.75+1.54 degrees for the affected side of children with CP. The difference in RMS among the 2 groups was statistically, but not clinically, significant (P=0.019). Intraclass correlation coefficient revealed excellent agreement between the direct and indirect methods of KPA for TD and CP children (0.996 and 0.992, respectively; P<0.001).For the qualitative assessment of KPA there was complete agreement among all examiners for 17 of 26 cases (65%). Direct KPA matched for 49 of 78 observations (63%) and indirect KPA matched for 52 of 78 observations (67%). The RMS analysis of direct and indirect methods for KPA was statistically but not clinically significant, which supports the use of either method based upon availability. Video-based qualitative assessment of KPA showed moderate reliability and validity. The differences between observed and calculated KPA indicate the need for caution when relying on visual assessments for clinical interpretation, and demonstrate the value of adding KPA calculation to standard kinematic analysis. Level II-diagnostic test.
Objective analysis of pseudostress over the Indian Ocean using a direct-minimization approach
NASA Technical Reports Server (NTRS)
Legler, David M.; Navon, I. M.; O'Brien, James J.
1989-01-01
A technique not previously used in objective analysis of meteorological data is used here to produce monthly average surface pseudostress data over the Indian Ocean. An initial guess field is derived and a cost functional is constructed with five terms: approximation to initial guess, approximation to climatology, a smoothness parameter, and two kinematic terms. The functional is minimized using a conjugate-gradient technique, and the weight for the climatology term controls the overall balance of influence between the climatology and the initial guess. Results from various weight combinations are presented for January and July 1984. Quantitative and qualitative comparisons to the subject analysis are made to find which weight combination provides the best results. The weight on the approximation to climatology is found to balance the influence of the original field and climatology.
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.
Stodden, David F; Langendorfer, Stephen J; Fleisig, Glenn S; Andrews, James R
2006-12-01
The purposes of this study were to: (a) examine the differences within 11 specific kinematic variables and an outcome measure (ball velocity) associated with component developmental levels of humerus and forearm action (Roberton & Halverson, 1984), and (b) if the differences in kinematic variables were significantly associated with the differences in component levels, determine potential kinematic constraints associated with skilled throwing acquisition. Significant differences among component levels in five of six humerus kinematic variables (p <.01) and all five forearm kinematic variables (p < .01) were identified using multivariate analysis of variance. These kinematic variables represent potential control parameters and, therefore, constraints on overarm throwing acquisition.
Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.
The Kinematic Learning Model using Video and Interfaces Analysis
NASA Astrophysics Data System (ADS)
Firdaus, T.; Setiawan, W.; Hamidah, I.
2017-09-01
An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.
Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
Duprey, Sonia; Naaim, Alexandre; Moissenet, Florent; Begon, Mickaël; Chèze, Laurence
2017-09-06
Soft tissue artefact (STA), i.e. the motion of the skin, fat and muscles gliding on the underlying bone, may lead to a marker position error reaching up to 8.7cm for the particular case of the scapula. Multibody kinematics optimisation (MKO) is one of the most efficient approaches used to reduce STA. It consists in minimising the distance between the positions of experimental markers on a subject skin and the simulated positions of the same markers embedded on a kinematic model. However, the efficiency of MKO directly relies on the chosen kinematic model. This paper proposes an overview of the different upper limb models available in the literature and a discussion about their applicability to MKO. The advantages of each joint model with respect to its biofidelity to functional anatomy are detailed both for the shoulder and the forearm areas. Models capabilities of personalisation and of adaptation to pathological cases are also discussed. Concerning model efficiency in terms of STA reduction in MKO algorithms, a lack of quantitative assessment in the literature is noted. In priority, future studies should concern the evaluation and quantification of STA reduction depending on upper limb joint constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uncertainty modelling of real-time observation of a moving object: photogrammetric measurements
NASA Astrophysics Data System (ADS)
Ulrich, Thomas
2015-04-01
Photogrametric systems are widely used in the field of industrial metrology to measure kinematic tasks such as tracking robot movements. In order to assess spatiotemporal deviations of a kinematic movement, it is crucial to have a reliable uncertainty of the kinematic measurements. Common methods to evaluate the uncertainty in kinematic measurements include approximations specified by the manufactures, various analytical adjustment methods and Kalman filters. Here a hybrid system estimator in conjunction with a kinematic measurement model is applied. This method can be applied to processes which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. Additionally, it has been shown that the approach is in accordance with GUM (Guide to the Expression of Uncertainty in Measurement). The approach is compared to the Kalman filter using simulated data to achieve an overall error calculation. Furthermore, the new approach is used for the analysis of a rotating system as this system has both a constant and a variable turn rate. As the new approach reduces overshoots it is more appropriate for analysing kinematic processes than the Kalman filter. In comparison with the manufacturer’s approximations, the new approach takes account of kinematic behaviour, with an improved description of the real measurement process. Therefore, this approach is well-suited to the analysis of kinematic processes with unknown changes in kinematic behaviour.
Langenderfer, Joseph E; Rullkoetter, Paul J; Mell, Amy G; Laz, Peter J
2009-04-01
An accurate assessment of shoulder kinematics is useful for understanding healthy normal and pathological mechanics. Small variability in identifying and locating anatomical landmarks (ALs) has potential to affect reported shoulder kinematics. The objectives of this study were to quantify the effect of landmark location variability on scapular and humeral kinematic descriptions for multiple subjects using probabilistic analysis methods, and to evaluate the consistency in results across multiple subjects. Data from 11 healthy subjects performing humeral elevation in the scapular plane were used to calculate Euler angles describing humeral and scapular kinematics. Probabilistic analyses were performed for each subject to simulate uncertainty in the locations of 13 upper-extremity ALs. For standard deviations of 4 mm in landmark location, the analysis predicted Euler angle envelopes between the 1 and 99 percentile bounds of up to 16.6 degrees . While absolute kinematics varied with the subject, the average 1-99% kinematic ranges for the motion were consistent across subjects and sensitivity factors showed no statistically significant differences between subjects. The description of humeral kinematics was most sensitive to the location of landmarks on the thorax, while landmarks on the scapula had the greatest effect on the description of scapular elevation. The findings of this study can provide a better understanding of kinematic variability, which can aid in making accurate clinical diagnoses and refining kinematic measurement techniques.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-01-01
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370
Smith, Rebecca L.; da Costa, Ronaldo C.
2018-01-01
Background The efficacy of treatment of dogs with cervical spondylomyelopathy (CSM) is commonly based on the owner's and clinician's perception of the gait, which is highly subjective and suffers from observer bias. Hypothesis/Objectives To compare selected kinetic and kinematic parameters before and after treatments and to correlate the findings of gait analysis to clinical outcome. Animals Eight Doberman Pinschers with CSM confirmed by magnetic resonsance imaging. Methods Patients were prospectively studied and treated with either medical management (n = 5) or surgery (n = 3). Force plate analysis and 3‐D kinematic motion capture were performed at initial presentation and approximately 8 weeks later. Force plate parameters evaluated included peak vertical force (PVF). Kinematic parameters measured included number of pelvic limb strides, stifle flexion and extension, maximum and minimum thoracic limb distance, truncal sway, and thoracic limb stride duration. Results Kinematic analysis showed that deviation of the spine to the right (truncal sway) was significantly smaller (P < .001) and the degree of right stifle flexion was significantly larger (P = .029) after treatment. Force plate analysis indicated that PVF was significantly different after treatment (P = .049) and the difference of the PVF also was significantly larger (P = .027). However, no correlation was found with either method of gait analysis and clinical recovery. Conclusions and Clinical Importance Kinetic and kinematic gait analysis were able to detect differences in dogs with CSM before and after treatment. A correlation of gait analysis to clinical improvement could not be determined. PMID:29572944
Comparisons of Kinematics and Dynamics Simulation Software Tools
NASA Technical Reports Server (NTRS)
Shiue, Yeu-Sheng Paul
2002-01-01
Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.
Effect of thong style flip-flops on children's barefoot walking and jogging kinematics.
Chard, Angus; Greene, Andrew; Hunt, Adrienne; Vanwanseele, Benedicte; Smith, Richard
2013-03-05
Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children's barefoot three dimensional foot kinematics during walking and jogging. Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion. Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001). Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought.
Effect of thong style flip-flops on children’s barefoot walking and jogging kinematics
2013-01-01
Background Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children’s barefoot three dimensional foot kinematics during walking and jogging. Methods Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion. Results Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001). Conclusions Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought. PMID:23497571
Lau, Brian C.; Thuillier, Daniel U.; Pedoia, Valentina; Chen, Ellison Y.; Zhang, Zhihong; Feeley, Brian T.; Souza, Richard B.
2016-01-01
Background Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Methods Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Results Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p = 0.002 and p = 0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. Conclusions A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. PMID:26746045
Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina; Chen, Ellison Y; Zhang, Zhihong; Feeley, Brian T; Souza, Richard B
2016-01-01
Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p=0.002 and p=0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. Level IV. Published by Elsevier B.V.
Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E
2016-02-01
Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.
NASA Astrophysics Data System (ADS)
Kuzmin, Yu. O.
2017-11-01
The comparative analysis of the Earth's surface deformations measured by ground-based and satellite geodetic methods on the regional and zonal measurement scales is carried out. The displacement velocities and strain rates are compared in the active regions such as Turkmenian-Iranian zone of interaction of the Arabian and Eurasian lithospheric plates and the Kamchatka segment of the subduction of the Pacific Plate beneath the Okotsk Plate. The comparison yields a paradoxical result. With the qualitatively identical kinematics of the motion, the quantitative characteristics of the displacement velocities and rates of strain revealed by the observations using the global navigational satellite system (GNSS) are by 1-2 orders of magnitude higher than those estimated by the more accurate methods of ground-based geodesy. For resolving the revealed paradoxes, it is required to set up special studies on the joint analysis of ground-based and satellite geodetic data from the combined observation sites.
Richards, Christopher T
2010-02-15
This study aimed to compare the swimming kinematics and hydrodynamics within and among aquatic and semi-aquatic/terrestrial frogs. High-speed video was used to obtain kinematics of the leg joints and feet as animals swam freely across their natural range of speeds. Blade element analysis was then used to model the hydrodynamic thrust as a function of foot kinematics. Two purely aquatic frogs, Xenopus laevis and Hymenochirus boettgeri, were compared with two semi-aquatic/terrestrial frogs, Rana pipiens and Bufo americanus. The four species performed similarly. Among swimming strokes, peak stroke velocity ranged from 3.3+/-1.1 to 20.9+/-2.5, from 6.8+/-2.1 to 28.6+/-3.7 and from 4.9+/-0.5 to 20.9+/-4.1 body lengths per second (BL s(-1)) in X. laevis, H. boettgeri and R. pipiens, respectively (means +/- s.d.; N=4 frogs for each). B. americanus swam much more slowly at 3.1+/-0.3 to 7.0+/-2.0 BL s(-1) (N=3 frogs). Time-varying joint kinematics patterns were superficially similar among species. Because foot kinematics result from the cumulative motion of joints proximal to the feet, small differences in time-varying joint kinematics among species resulted in species-specific foot kinematics (therefore hydrodynamics) patterns. To obtain a simple measure of the hydrodynamically useful motion of the foot, this study uses 'effective foot velocity' (EFV): a measure of the component of foot velocity along the axis of swimming. Resolving EFV into translational and rotational components allows predictions of species-specific propulsion strategies. Additionally, a novel kinematic analysis is presented here that enables the partitioning of translational and rotational foot velocity into velocity components contributed by extension at each individual limb joint. Data from the kinematics analysis show that R. pipiens and B. americanus translated their feet faster than their body moved forward, resulting in positive net translational EFV. Conversely, translational EFV was slower than the body velocity in H. boettgeri and X. laevis, resulting in negative net translational EFV. Consequently, the translational component of thrust (caused mostly by hip, knee and ankle extension) was twofold higher than rotational thrust in Rana pipiens. Likewise, rotational components of thrust were nearly twofold higher than translational components in H. boettgeri. X. laevis, however, was the most skewed species observed, generating nearly 100% of total thrust by foot rotation generated by hip, ankle and tmt extension. Thus, this study presents a simple kinematics analysis that is predictive of hydrodynamic differences among species. Such differences in kinematics reveal a continuum of different propulsive strategies ranging from mostly rotation-powered (X. laevis) to mostly translation-powered (R. pipiens) swimming.
Shamur, Eyal; Zilka, Miri; Hassner, Tal; China, Victor; Liberzon, Alex; Holzman, Roi
2016-06-01
Using videography to extract quantitative data on animal movement and kinematics constitutes a major tool in biomechanics and behavioral ecology. Advanced recording technologies now enable acquisition of long video sequences encompassing sparse and unpredictable events. Although such events may be ecologically important, analysis of sparse data can be extremely time-consuming and potentially biased; data quality is often strongly dependent on the training level of the observer and subject to contamination by observer-dependent biases. These constraints often limit our ability to study animal performance and fitness. Using long videos of foraging fish larvae, we provide a framework for the automated detection of prey acquisition strikes, a behavior that is infrequent yet critical for larval survival. We compared the performance of four video descriptors and their combinations against manually identified feeding events. For our data, the best single descriptor provided a classification accuracy of 77-95% and detection accuracy of 88-98%, depending on fish species and size. Using a combination of descriptors improved the accuracy of classification by ∼2%, but did not improve detection accuracy. Our results indicate that the effort required by an expert to manually label videos can be greatly reduced to examining only the potential feeding detections in order to filter false detections. Thus, using automated descriptors reduces the amount of manual work needed to identify events of interest from weeks to hours, enabling the assembly of an unbiased large dataset of ecologically relevant behaviors. © 2016. Published by The Company of Biologists Ltd.
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
Kinematic foot types in youth with equinovarus secondary to hemiplegia.
Krzak, Joseph J; Corcos, Daniel M; Damiano, Diane L; Graf, Adam; Hedeker, Donald; Smith, Peter A; Harris, Gerald F
2015-02-01
Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). Copyright © 2014 Elsevier B.V. All rights reserved.
Kinematic foot types in youth with equinovarus secondary to hemiplegia
Krzak, Joseph J.; Corcos, Daniel M.; Damiano, Diane L.; Graf, Adam; Hedeker, Donald; Smith, Peter A.; Harris, Gerald F.
2015-01-01
Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). PMID:25467429
Sign-singular measures - Fast magnetic dynamos, and high-Reynolds-number fluid turbulence
NASA Astrophysics Data System (ADS)
Ott, Edward; Du, Yunson; Sreenivasan, K. R.; Juneja, A.; Suri, A. K.
1992-11-01
It is shown that sign-singular measures with nontrivial cancellation exponents occur in dynamos and fluid turbulence. A cancellation exponent is introduced to characterize such measures quantitatively. Examples from kinematic magnetic dynamos and fluid turbulence are used to illlustrate this kind of singular behavior.
Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms
Togo, Shunta; Kagawa, Takahiro; Uno, Yoji
2016-01-01
The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque change, the variance components, and the index of synergy as well as the human subjects. We concluded that UCM reference feedback control can reproduce human-like joint coordination. The inference for motor control of the human central nervous system based on the proposed method was discussed. PMID:27462215
Determinants of the half-turn with the ball in sub-elite youth soccer players.
Zago, Matteo; Codari, Marina; Grilli, Massimo; Bellistri, Giuseppe; Lovecchio, Nicola; Sforza, Chiarella
2016-06-01
We explored the biomechanics of the 180° change-of-direction with the ball (half-turn) in soccer. We aimed at identifying movement strategies which enhance the players' half-turning performance, by characterising technique kinematics and understanding the structure of biomechanical and anthropometrics variables. Ten Under-13 sub-elite male players were recorded with an optoelectronic motion analyser while performing a 5-m straight dribbling followed by a half-turn with the sole. Joints kinematics differences between faster and slower trials were found in support-side hip rotation, driving-side hip adduction, trunk flexion and rotation, and arms abduction. To unveil the data-set structure, a principal component (PC) analysis and a stepwise linear discriminant analysis were performed using 30 biomechanical parameters and four anthropometric variables for each trial. Seven retained PCs explained 79% of the overall variability, featuring combinations of original variables that help in understanding the factors facilitating fast half-turns: keeping short steps, minimising lateral and forward body movements, and centre-of-mass lowering, even with ample lower limbs ranges of motion (RoM); abducting the upper limbs while limiting trunk flexion and pelvic inclination RoM. Balance and task-constrained exercises may be proposed to improve this technique. Moreover, a quantitative knowledge of the movement structure could give coaches objective insights to better instruct young players.
Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow
NASA Astrophysics Data System (ADS)
Moreira, N.; Dias, R.
2018-05-01
The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.
Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R
2015-01-01
The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022
Quantitative Analysis of Flow through Free-swimming Appendicularians
NASA Astrophysics Data System (ADS)
Sutherland, K.; Conley, K. R.; Gemmell, B. J.; Thompson, E.; Bouquet, J. M.
2016-02-01
Appendicularians are pelagic tunicates (Phylum: Chordata, Subphylum: Tunicata) that frequently dominate the mesozooplankton community and are key grazers in both coastal shallow seas and oligotrophic environments. Understanding of their feeding mechanisms, specifically selective feeding, has important ramifications for predicting their impact on particle distributions in the upper ocean. The goal of the current study was to determine the role of flow morphology in regulating particle capture within the houses of free-swimming appendicularians (Oikopleura dioica). We used two methods— standard Particle Image Velocimetry (PIV) with laser sheet illumination and bright field micro-PIV— to gain unprecedented spatial and temporal resolution of body kinematics and fluid motion through the mucous-mesh house. Analysis of small-scale fluid interactions at various parts of the house provided insight into factors that influence particle capture and selection in these important grazers.
Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy.
Mailleux, Lisa; Simon-Martinez, Cristina; Klingels, Katrijn; Jaspers, Ellen; Desloovere, Kaat; Demaerel, Philippe; Fiori, Simona; Guzzetta, Andrea; Ortibus, Els; Feys, Hilde
2017-01-01
Background: In children with unilateral cerebral palsy (uCP) virtually nothing is known on the relation between structural brain damage and upper limb (UL) kinematics quantified with three-dimensional movement analysis (3DMA). This explorative study aimed to (1) investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM) vs. cortical and deep gray matter (CDGM) lesions and (2) to explore the relation between UL kinematics and lesion location and extent within each lesion timing group. Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM) underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of) maximum velocity, trajectory straightness], the Arm Profile Score (APS) and Arm Variable Scores (AVS) were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale. Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters ( p < 0.03) and more movement pathology (APS, p = 0.003) compared to the PWM group, mostly characterized by increased wrist flexion ( p = 0.01). In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness ( r = 0.53-0.90). Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50-0.65) and with the APS ( r = 0.51-0.63). In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation ( r = 0.35-0.42). Regression analysis revealed damage to the temporal lobe with lesion timing as interactor (27%, p = 0.002) and the posterior limb of the internal capsule (PLIC) (7%, p = 0.04) as the strongest predictors, explaining 34% of the variance in APS. Conclusion: UL kinematic deviations are more influenced by lesion location and extent in children with later (CDGM) versus earlier lesions (PWM), except for proximal movement pathology. Damage to the PLIC is a significant predictor for UL movement pathology irrespective of lesion timing.
Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio
2016-01-01
The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.
Teeter, Matthew G; Perry, Kevin I; Yuan, Xunhua; Howard, James L; Lanting, Brent A
2018-03-01
Contact kinematics between total knee arthroplasty components is thought to affect implant migration; however, the interaction between kinematics and tibial component migration has not been thoroughly examined in a modern implant system. A total of 24 knees from 23 patients undergoing total knee arthroplasty with a single radius, posterior stabilized implant were examined. Patients underwent radiostereometric analysis at 2 and 6 weeks, 3 and 6 months, and 1 and 2 years to measure migration of the tibial component in all planes. At 1 year, patients also had standing radiostereometric analysis examinations acquired in 0°, 20°, 40°, and 60° of flexion, and the location of contact and magnitude of any condylar liftoff was measured for each flexion angle. Regression analysis was performed between kinematic variables and migration at 1 year. The average magnitude of maximum total point motion across all patients was 0.671 ± 0.270 mm at 1 year and 0.608 ± 0.359 mm at 2 years (P = .327). Four implants demonstrated continuous migration of >0.2 mm between the first and second year of implantation. There were correlations between the location of contact and tibial component anterior-posterior tilt, varus-valgus tilt, and anterior-posterior translation. The patients with continuous migration demonstrated atypical kinematics and condylar liftoff in some instances. Kinematics can influence tibial component migration, likely through alterations of force transmission. Abnormal kinematics may play a role in long-term implant loosening. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative assessment of upper extremities motor function in multiple sclerosis.
Daunoraviciene, Kristina; Ziziene, Jurgita; Griskevicius, Julius; Pauk, Jolanta; Ovcinikova, Agne; Kizlaitiene, Rasa; Kaubrys, Gintaras
2018-05-18
Upper extremity (UE) motor function deficits are commonly noted in multiple sclerosis (MS) patients and assessing it is challenging because of the lack of consensus regarding its definition. Instrumented biomechanical analysis of upper extremity movements can quantify coordination with different spatiotemporal measures and facilitate disability rating in MS patients. To identify objective quantitative parameters for more accurate evaluation of UE disability and relate it to existing clinical scores. Thirty-four MS patients and 24 healthy controls (CG) performed a finger-to-nose test as fast as possible and, in addition, clinical evaluation kinematic parameters of UE were measured by using inertial sensors. Generally, a higher disability score was associated with an increase of several temporal parameters, like slower task performance. The time taken to touch their nose was longer when the task was fulfilled with eyes closed. Time to peak angular velocity significantly changed in MS patients (EDSS > 5.0). The inter-joint coordination significantly decreases in MS patients (EDSS 3.0-5.5). Spatial parameters indicated that maximal ROM changes were in elbow flexion. Our findings have revealed that spatiotemporal parameters are related to the UE motor function and MS disability level. Moreover, they facilitate clinical rating by supporting clinical decisions with quantitative data.
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385
Accelerated 4D self-gated MRI of tibiofemoral kinematics.
Mazzoli, Valentina; Schoormans, Jasper; Froeling, Martijn; Sprengers, Andre M; Coolen, Bram F; Verdonschot, Nico; Strijkers, Gustav J; Nederveen, Aart J
2017-11-01
Anatomical (static) magnetic resonance imaging (MRI) is the most useful imaging technique for the evaluation and assessment of internal derangement of the knee, but does not provide dynamic information and does not allow the study of the interaction of the different tissues during motion. As knee pain is often only experienced during dynamic tasks, the ability to obtain four-dimensional (4D) images of the knee during motion could improve the diagnosis and provide a deeper understanding of the knee joint. In this work, we present a novel approach for dynamic, high-resolution, 4D imaging of the freely moving knee without the need for external triggering. The dominant knee of five healthy volunteers was scanned during a flexion/extension task. To evaluate the effects of non-uniform motion and poor coordination skills on the quality of the reconstructed images, we performed a comparison between fully free movement and movement instructed by a visual cue. The trigger signal for self-gating was extracted using principal component analysis (PCA), and the images were reconstructed using a parallel imaging and compressed sensing reconstruction pipeline. The reconstructed 4D movies were scored for image quality and used to derive bone kinematics through image registration. Using our method, we were able to obtain 4D high-resolution movies of the knee without the need for external triggering hardware. The movies obtained with and without instruction did not differ significantly in terms of image scoring and quantitative values for tibiofemoral kinematics. Our method showed to be robust for the extraction of the self-gating signal even for uninstructed motion. This can make the technique suitable for patients who, as a result of pain, may find it difficult to comply exactly with instructions. Furthermore, bone kinematics can be derived from accelerated MRI without the need for additional hardware for triggering. Copyright © 2017 John Wiley & Sons, Ltd.
Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality.
Hussain, Netha; Alt Murphy, Margit; Sunnerhagen, Katharina S
2018-01-01
Kinematic analysis using virtual reality (VR) environment provides quantitative assessment of upper limb movements. This technique has rarely been used in evaluating motor function in stroke despite its availability in stroke rehabilitation. To determine the discriminative validity of VR-based kinematics during target-to-target pointing task in individuals with mild or moderate arm impairment following stroke and in healthy controls. Sixty-seven participants with moderate (32-57 points) or mild (58-65 points) stroke impairment as assessed with Fugl-Meyer Assessment for Upper Extremity were included from the Stroke Arm Longitudinal study at the University of Gothenburg-SALGOT cohort of non-selected individuals within the first year of stroke. The stroke groups and 43 healthy controls performed the target-to-target pointing task, where 32 circular targets appear one after the other and disappear when pointed at by the haptic handheld stylus in a three-dimensional VR environment. The kinematic parameters captured by the stylus included movement time, velocities, and smoothness of movement. The movement time, mean velocity, and peak velocity were discriminative between groups with moderate and mild stroke impairment and healthy controls. The movement time was longer and mean and peak velocity were lower for individuals with stroke. The number of velocity peaks, representing smoothness, was also discriminative and significantly higher in both stroke groups (mild, moderate) compared to controls. Movement trajectories in stroke more frequently showed clustering (spider's web) close to the target indicating deficits in movement precision. The target-to-target pointing task can provide valuable and specific information about sensorimotor impairment of the upper limb following stroke that might not be captured using traditional clinical scale. The trial was registered with register number NCT01115348 at clinicaltrials.gov, on May 4, 2010. URL: https://clinicaltrials.gov/ct2/show/NCT01115348.
A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.
Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L
2018-01-01
The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.
A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait
Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.
2018-01-01
The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336
Assessment of Suited Reach Envelope in an Underwater Environment
NASA Technical Reports Server (NTRS)
Kim, Han; Benson, Elizabeth; Bernal, Yaritza; Jarvis, Sarah; Meginnis, Ian; Rajulu, Sudhakar
2017-01-01
Predicting the performance of a crewmember in an extravehicular activity (EVA) space suit presents unique challenges. The kinematic patterns of suited motions are difficult to reproduce in gravity. Additionally, 3-D suited kinematics have been practically and technically difficult to quantify in an underwater environment, in which crewmembers are commonly trained and assessed for performance. The goal of this study is to develop a hardware and software system to predictively evaluate the kinematic mobility of suited crewmembers, by measuring the 3-D reach envelope of the suit in an underwater environment. This work is ultimately aimed at developing quantitative metrics to compare the mobility of the existing Extravehicular Mobility Unit (EMU) to newly developed space suit, such as the Z-2. The EMU has been extensively used at NASA since 1981 for EVA outside the Space Shuttle and International Space Station. The Z-2 suit is NASA's newest prototype space suit. The suit is comprised of new upper torso and lower torso architectures, which were designed to improve test subject mobility.
Kinematic synthesis of bevel-gear-type robotic wrist mechanisms
NASA Astrophysics Data System (ADS)
Lin, Chen-Chou
Bevel-gear-type robotic wrist mechanisms are commonly used in industry. The reasons for their popularity are that they are compact, light-weight, and relatively inexpensive. However, there are singularities in their workspace, which substantially degrade their manipulative performance. The objective of this research is to develop an atlas of three-degree-of-freedom bevel-gear-type wrist mechanisms, and through dimensional synthesis to improve their kinematic performance. The dissertation contains two major parts: the first is structural analysis and synthesis, the other is kinematic analysis and dimensional synthesis. To synthesize the kinematic structures of bevel-gear-type wrist mechanisms, the kinematic structures are separated from their functional considerations. All kinematic structures which satisfy the mobility condition are enumerated in an unbiased, systematic manner. Then the bevel-gear-type wrist mechanisms are identified by applying the functional requirements. Structural analysis shows that a three-degree-of-freedom wrist mechanism usually consists of non-fractionated, two degree-of-freedom epicyclic gear train jointed with the base link. Therefore, the structural synthesis can be simplified into a problem of examining the atlas of non-fractionated, two-degree-of-freedom epicyclic gear trains. The resulting bevel-gear-type wrist mechanism has been categorized and evaluated. It is shown that three-degree-of-freedom, four-jointed wrist mechanisms are promising for further improving the kinematic performance. It is found that a spherical planetary gear train is necessarily imbedded in a three-degree-of-freedom, four-jointed wrist mechanism. Therefore, to study the workspace and singularity problems of three-degree-of-freedom four-jointed spherical wrist mechanisms, we have to study the trajectories of spherical planetary gear trains. The parametric equations of the trajectories and some useful geometric properties for the analysis and synthesis of workplace are derived. The workspace boundary equations can be derived via both geometric consideration and Jacobian analysis. The workspace is divided by inner and outer boundaries into regions of accessibility of zero, two, and four. The design criteria of full workspace and a maximum four-root region are established.
A young bipolar outflow from IRAS15398-3359
NASA Astrophysics Data System (ADS)
Bjerkeli, Per; Jørgensen, Jes K.
2015-08-01
The Class 0 protostar IRAS 15398-3359 is located in the Lupus I cloud at a distance of 155 pc. The source is known to harbour a molecular outflow, but the region has not attracted much interest until recently. IRAS 15398 is known to show interesting chemical signatures and being one of the very nearby, young outflow sources makes it an excellent target for detailed studies of the gas kinematics of different species.We present observations of several molecular species, carried out with the Submillimeter Array and ALMA, towards the IRAS 15398 outflow. The analysis of CO emission show obvious signs of episodic mass ejections, with a dynamical time scale between the knots in the jet, of the order 100 years. This is consistent with recent ALMA results where luminosity outbursts are estimated to occur on similar time-scales. The physical properties of the outflow, such as mass, momentum, momentum rate, mechanical luminosity, kinetic energy and mass-loss rate are estimated at relatively low values. We argue that this source is of a very young age, possibly younger than ~1000 years. This is consistent with recent studies of the kinematics of the inner envelope/disk. The observed line profiles were compared to full 3D radiative transfer models of the source, constructed with the Line Modelling Engine (LIME). The observed line shapes can only be understood when considering several distinctly different physical components, viz. the outflow cavity, the infalling envelope and the surrounding cloud material. This allows us to put quantitative constraints on the kinematics of the material close to the central source.
Postural Hand Synergies during Environmental Constraint Exploitation
Della Santina, Cosimo; Bianchi, Matteo; Averta, Giuseppe; Ciotti, Simone; Arapi, Visar; Fani, Simone; Battaglia, Edoardo; Catalano, Manuel Giuseppe; Santello, Marco; Bicchi, Antonio
2017-01-01
Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings. PMID:28900393
Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images
NASA Astrophysics Data System (ADS)
Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko
2008-03-01
The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).
Evaluation of RSA set-up from a clinical biplane fluoroscopy system for 3D joint kinematic analysis.
Bonanzinga, Tommaso; Signorelli, Cecilia; Bontempi, Marco; Russo, Alessandro; Zaffagnini, Stefano; Marcacci, Maurilio; Bragonzoni, Laura
2016-01-01
dinamic roentgen stereophotogrammetric analysis (RSA), a technique currently based only on customized radiographic equipment, has been shown to be a very accurate method for detecting three-dimensional (3D) joint motion. The aim of the present work was to evaluate the applicability of an innovative RSA set-up for in vivo knee kinematic analysis, using a biplane fluoroscopic image system. To this end, the Authors describe the set-up as well as a possible protocol for clinical knee joint evaluation. The accuracy of the kinematic measurements is assessed. the Authors evaluated the accuracy of 3D kinematic analysis of the knee in a new RSA set-up, based on a commercial biplane fluoroscopy system integrated into the clinical environment. The study was organized in three main phases: an in vitro test under static conditions, an in vitro test under dynamic conditions reproducing a flexion-extension range of motion (ROM), and an in vivo analysis of the flexion-extension ROM. For each test, the following were calculated, as an indication of the tracking accuracy: mean, minimum, maximum values and standard deviation of the error of rigid body fitting. in terms of rigid body fitting, in vivo test errors were found to be 0.10±0.05 mm. Phantom tests in static and kinematic conditions showed precision levels, for translations and rotations, of below 0.1 mm/0.2° and below 0.5 mm/0.3° respectively for all directions. the results of this study suggest that kinematic RSA can be successfully performed using a standard clinical biplane fluoroscopy system for the acquisition of slow movements of the lower limb. a kinematic RSA set-up using a clinical biplane fluoroscopy system is potentially applicable and provides a useful method for obtaining better characterization of joint biomechanics.
Wang, Wei; Qiao, Yu; Ishijima, Reika; Yokozeki, Tomoaki; Honda, Daigo; Matsuda, Akihiro; Hanson, Steen G; Takeda, Mitsuo
2008-09-01
A novel technique for biological kinematic analysis is proposed that makes use of the pseudophase singularities in a complex signal generated from a speckle-like pattern. In addition to the information about the locations and the anisotropic core structures of the pseudophase singularities, we also detect the spatial structures of a cluster of phase singularities, which serves as a unique constellation characterizing the mutual position relation between the individual pseudophase singularities. Experimental results of in vivo measurements for a swimming fish along with its kinematic analysis are presented, which demonstrate the validity of the proposed technique.
Modelling and Simulation Based on Matlab/Simulink: A Press Mechanism
NASA Astrophysics Data System (ADS)
Halicioglu, R.; Dulger, L. C.; Bozdana, A. T.
2014-03-01
In this study, design and kinematic analysis of a crank-slider mechanism for a crank press is studied. The crank-slider mechanism is the commonly applied one as direct and indirect drive alternatives in practice. Since inexpensiveness, flexibility and controllability are getting more and more important in many industrial applications especially in automotive industry, a crank press with servo actuator (servo crank press) is taken as an application. Design and kinematic analysis of representative mechanism is presented with geometrical analysis for the inverse kinematic of the mechanism by using desired motion concept of slider. The mechanism is modelled in MATLAB/Simulink platform. The simulation results are presented herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Kristofer E.; Conant, David F.; Anumanchipalli, Gopala K.
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial-especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship acrossmore » speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.« less
Anumanchipalli, Gopala K.; Dichter, Benjamin; Chaisanguanthum, Kris S.; Johnson, Keith; Chang, Edward F.
2016-01-01
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial—especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106
Bouchard, Kristofer E.; Conant, David F.; Anumanchipalli, Gopala K.; ...
2016-03-28
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial-especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship acrossmore » speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.« less
Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L
2013-01-01
In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.
A decoupled recursive approach for constrained flexible multibody system dynamics
NASA Technical Reports Server (NTRS)
Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung
1989-01-01
A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.
Pelvic posture and kinematics in femoroacetabular impingement: a systematic review.
Pierannunzii, Luca
2017-09-01
Pelvic posture and kinematics influence acetabular orientation and are therefore expected to be involved in the pathomechanics of femoroacetabular impingement (FAI). This systematic review aims to determine whether FAI patients show pelvic postures or patterns of motion contributing to impingement or, conversely, develop compensatory postures and patterns of motion preventing it. PubMed/MEDLINE, Embase, Google Scholar and the Cochrane Library were systematically searched to find all the studies that measured pelvic positional and/or kinematic data in humans (patients or cadaveric specimens) affected by FAI. Twelve items were selected and grouped according to the main field of investigation. No quantitative data synthesis was allowed due to methodological heterogeneity. Pelvic posture and kinematics seem to play a relevant role in FAI. The patients, especially if symptomatic, show a paradoxical lack of pelvic back tilt in standing hip flexions, i.e., in squatting, that enhances femoroacetabular engagement. Such an aberrant pattern might depend on a lower pelvic incidence. On the contrary, active hip flexion in decubitus elicits a compensatory, more pronounced back tilt to facilitate hip flexion without impingement. Stair climbing shows a compensatory pattern of augmented pelvic axial rotation and augmented peak forward tilt to reduce painful hip motions, namely internal rotation and extension. In FAI patients, pelvic posture and kinematics are sometimes an expression of compensatory mechanisms developed to reduce pain and discomfort, and sometimes an expression of paradoxical responses that further enhance the impingement pathomechanism. IV.
Human-centric predictive model of task difficulty for human-in-the-loop control tasks
Majewicz Fey, Ann
2018-01-01
Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301
Lagrangian approach to understanding the origin of the gill-kinematics switch in mayfly nymphs.
Chabreyrie, R; Balaras, E; Abdelaziz, K; Kiger, K
2014-12-01
The mayfly nymph breathes under water through an oscillating array of plate-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly nymph as a pumping device fails in giving clear reasons for this switch. In order to shed some light on this switch between the two distinct kinematics, we analyze the problem under a Lagrangian viewpoint. We consider that a good Lagrangian transport that effectively distributes and stirs water and dissolved oxygen between and around the gills is the main goal of the gill motion. Using this Lagrangian approach, we are able to provide possible reasons behind the observed switch from rowing to flapping. More precisely, we conduct a series of in silico mayfly nymph experiments, where body shape, as well as gill shapes, structures, and kinematics are matched to those from in vivo. In this paper, we show both qualitatively and quantitatively how the change of kinematics enables better attraction, confinement, and stirring of water charged of dissolved oxygen inside the gills area. We reveal the attracting barriers to transport, i.e., attracting Lagrangian coherent structures, that form the transport skeleton between and around the gills. In addition, we quantify how well the fluid particles are stirred inside the gills area, which by extension leads us to conclude that it will increase the proneness of molecules of dissolved oxygen to be close enough to the gills for extraction.
Fong, Daniel Tik-Pui; Ha, Sophia Chui-Wai; Mok, Kam-Ming; Chan, Christie Wing-Long; Chan, Kai-Ming
2012-11-01
Ankle ligamentous sprain is common in sports. The most direct way to study the mechanism quantitatively is to study real injury cases; however, it is unethical and impractical to produce an injury in the laboratory. A recently developed, model-based image-matching motion analysis technique allows quantitative analysis of real injury incidents captured in televised events and gives important knowledge for the development of injury prevention protocols and equipment. To date, there have been only 4 reported cases, and there is a need to conduct more studies for a better understanding of the mechanism of ankle ligamentous sprain injury. This study presents 5 cases in tennis and a comparison with 4 previous cases for a better understanding of the mechanism of ankle ligamentous sprain injury. Case series; level of evidence, 4. Five sets of videos showing ankle sprain injuries in televised tennis competition with 2 camera views were collected. The videos were transformed, synchronized, and rendered to a 3-dimensional animation software. The dimensions of the tennis court in each case were obtained to build a virtual environment, and a skeleton model scaled to the injured athlete's height was used for the skeleton matching. Foot strike was determined visually, and the profiles of the ankle joint kinematics were individually presented. There was a pattern of sudden inversion and internal rotation at the ankle joint, with the peak values ranging from 48°-126° and 35°-99°, respectively. In the sagittal plane, the ankle joint fluctuated between plantar flexion and dorsiflexion within the first 0.50 seconds after foot strike. The peak inversion velocity ranged from 509 to 1488 deg/sec. Internal rotation at the ankle joint could be one of the causes of ankle inversion sprain injury, with a slightly inverted ankle joint orientation at landing as the inciting event. To prevent the foot from rolling over the edge to cause a sprain injury, tennis players who do lots of sideward cutting motions should try to land with a neutral ankle orientation and keep the center of pressure from shifting laterally.
The Maiden Voyage of a Kinematics Robot
NASA Astrophysics Data System (ADS)
Greenwolfe, Matthew L.
2015-04-01
In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).
Clinical Research Abstracts of the British Equine Veterinary Association Congress 2015.
Simons, V; Weller, R; Stubbs, N C; Rombach, N; Pfau, T
2015-09-01
Training and rehabilitation techniques which improve core muscle strength are beneficial for improvement of dynamic stability of the equine vertebral column. The Equiband™ system, consisting of resistance bands attached to a customised saddle pad, is suggested to provide constant proprioceptive feedback during motion to encourage recruitment of abdominal and hindquarter musculature. To quantify the effect of the Equiband™ system on back kinematics and movement symmetry. Longitudinal intervention study. Quantitative analysis of back movement and gait symmetry before/after a 4-week exercise programme. Inertial sensor data was collected from 7 horses at Weeks 0 and 4 of a fixed exercise protocol. Analysis with and without the Equiband™ system was completed at trot in hand on a hard surface, and for both reins on the lunge on a soft surface. Six back kinematic and 3 movement symmetry parameters were calculated according to published methods. Movement symmetry values were side-corrected to allow comparison between reins on the lunge. A mixed model (P<0.05) evaluated the effects of the Equiband™ system over time, and trotting direction on back kinematic and movement symmetry parameters. The Equiband™ system significantly reduced (all P<0.02) roll, pitch and mediolateral displacement in the cranial-mid thoracic region. Across all horses, back displacement and range of motion values were significantly greater (P<0.01) on the lunge than in a straight line, movement symmetry was consistent with having corrected all horses to be left-sided. Preliminary results suggest the Equiband™ system may aid dynamic stabilisation of the vertebral column. Ethical animal research: This study was authorised by the Ethics and Welfare Committee of the Royal Veterinary College, London (URN Approval Number 1238). Written consent was obtained from the owner/keeper of each animal. Royal Veterinary College. Competing interests: N.C. Stubbs and N. Rombach developed the Equiband™ system. The remaining authors have no competing interests. © 2015 The Author(s). Equine Veterinary Journal © 2015 EVJ Ltd.
Biomechanical Analysis of T2 Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.
2010-01-01
Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.
Mun, Frederick; Suh, Seung Woo; Park, Hyun-Joon; Choi, Ahnryul
2015-05-14
Understanding the kinematics of the lumbar spine and hip joints during a golf swing is a basic step for identifying swing-specific factors associated with low back pain. The objective of this study was to examine the kinematic relationship between rotational movement of the lumbar spine and hip joints during a golf swing. Fifteen professional golfers participated in this study with employment of six infrared cameras to record their golf swings. Anatomical reference system of the upper torso, pelvis and thigh segments, and the location of each hip and knee joint were defined by the protocols of the kinematic model of previous studies. Lumbar spine and hip joint rotational angle was calculated utilizing the Euler angle method. Cross-correlation and angle-angle plot was used to examine the degree of kinematic relationship between joints. A fairly strong coupling relationship was shown between the lumbar spine and hip rotational movements with an average correlation of 0.81. Leading hip contribution to overall rotation was markedly high in the early stage of the downswing, while the lumbar spine contributed greater towards the end of the downswing; however, the relative contributions of the trailing hip and lumbar spine were nearly equal during the entire downswing. Most of the professional golfers participated in this study used a similar coordination strategy when moving their hips and lumbar spine during golf swings. The rotation of hips was observed to be more efficient in producing the overall rotation during the downswing when compared to the backswing. These results provide quantitative information to better understand the lumbar spine and hip joint kinematic characteristics of professional golfers. This study will have great potential to be used as a normal control data for the comparison with kinematic information among golfers with low back pain and for further investigation of golf swing-specific factors associated with injury.
Surface Peroneal Nerve Stimulation in Lower Limb Hemiparesis: Effect on Quantitative Gait Parameters
Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John
2015-01-01
Objective To evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation (PNS) versus usual care (UC) via quantitative gait analysis. Design Randomized controlled clinical trial. Setting Teaching hospital of academic medical center. Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis. Interventions Subjects were randomized to a surface PNS device or UC intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Spatiotemporal, kinematic, and kinetic parameters of gait. Results Cadence (F3,153=5.81, p=.012), stride length (F3,179=20.01, p<.001), walking speed (F3,167=18.2, p<.001), anterior posterior ground reaction force (F3,164=6.61, p=.004), peak hip power in pre-swing (F3,156=8.76, p<.001), and peak ankle power at push-off (F3,149=6.38, p=.005) all improved with respect to time. However, peak ankle DF in swing (F3,184=4.99, p=.031) worsened. In general, the greatest change for all parameters occurred during the treatment period. There was no significant treatment group by time interaction effects for any of the spatiotemporal, kinematic, or kinetic parameters. Conclusions Gait training with PNS and usual care was associated with improvements in peak hip power in pre-swing and peak ankle power at push-off, which may have resulted in improved cadence, stride length, and walking speed; however, there were no differences between treatment groups. Both treatment groups also experienced a decrease in peak ankle DF in swing, though the clinical implications of this finding are unclear. PMID:25802966
Lloyd, Christopher W; Shmuylovich, Leonid; Holland, Mark R; Miller, James G; Kovács, Sándor J
2011-08-01
Myocardial tissue characterization represents an extension of currently available echocardiographic imaging. The systematic variation of backscattered energy during the cardiac cycle (the "cyclic variation" of backscatter) has been employed to characterize cardiac function in a wide range of investigations. However, the mechanisms responsible for observed cyclic variation remain incompletely understood. As a step toward determining the features of cardiac structure and function that are responsible for the observed cyclic variation, the present study makes use of a kinematic approach of diastolic function quantitation to identify diastolic function determinants that influence the magnitude and timing of cyclic variation. Echocardiographic measurements of 32 subjects provided data for determination of the cyclic variation of backscatter to diastolic function relation characterized in terms of E-wave determined, kinematic model-based parameters of chamber stiffness, viscosity/relaxation and load. The normalized time delay of cyclic variation appears to be related to the relative viscoelasticity of the chamber and predictive of the kinematic filling dynamics as determined using the parameterized diastolic filling formalism (with r-values ranging from .44 to .59). The magnitude of cyclic variation does not appear to be strongly related to the kinematic parameters. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson's Disease.
San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B; Lipton, Richard B; Pullman, Seth; Saunders-Pullman, Rachel
2016-01-01
Pre-clinical markers of Parkinson's Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD.
Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson’s Disease
San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A.; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B.; Lipton, Richard B.; Pullman, Seth; Saunders-Pullman, Rachel
2016-01-01
Introduction Pre-clinical markers of Parkinson’s Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. Methods 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. Results All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Conclusion Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD. PMID:27732597
Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo
2016-06-01
The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical development. Statistical analysis showed that the kinematics of the grasp component was spared in autism, whereas early kinematics of the reach component was atypical. We discussed this evidence as suggesting impairment in the feedforward processes involved in action execution, whereas impairment in feedback-based control processes remained unclear. We proposed that certain motor abilities are available in autism, and children may use them differently as a function of motor context complexity.
Schiffman, Jeffrey M; Chelidze, David; Adams, Albert; Segala, David B; Hasselquist, Leif
2009-09-18
Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.
Kinematic Analysis of the Standing Long Jump in Children 6- to 12-Years-Old
ERIC Educational Resources Information Center
Fernandez-Santos, Jorge R.; Gonzalez-Montesinos, Jose Luis; Ruiz, Jonatan R.; Jiménez-Pavón, David; Castro-Piñero, Jose
2018-01-01
The purpose of this study was to analyze the kinematic variables that determine the performance of the standing long jump in children 6- to 12-years-old. There were 121 healthy children (58 girls) recorded while they performed the standing long jump test. All kinematic variables showed a significant correlation with calculated jump distance and…
The coupling between gaze behavior and opponent kinematics during anticipation of badminton shots.
Alder, David; Ford, Paul R; Causer, Joe; Williams, A Mark
2014-10-01
We examined links between the kinematics of an opponent's actions and the visual search behaviors of badminton players responding to those actions. A kinematic analysis of international standard badminton players (n = 4) was undertaken as they completed a range of serves. Video of these players serving was used to create a life-size temporal occlusion test to measure anticipation responses. Expert (n = 8) and novice (n = 8) badminton players anticipated serve location while wearing an eye movement registration system. During the execution phase of the opponent's movement, the kinematic analysis showed between-shot differences in distance traveled and peak acceleration at the shoulder, elbow, wrist and racket. Experts were more accurate at responding to the serves compared to novice players. Expert players fixated on the kinematic locations that were most discriminating between serve types more frequently and for a longer duration compared to novice players. Moreover, players were generally more accurate at responding to serves when they fixated vision upon the discriminating arm and racket kinematics. Findings extend previous literature by providing empirical evidence that expert athletes' visual search behaviors and anticipatory responses are inextricably linked to the opponent action being observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Lessi, Giovanna Camparis; Dos Santos, Ana Flávia; Batista, Luis Fylipe; de Oliveira, Gabriela Clemente; Serrão, Fábio Viadanna
2017-02-01
Muscle fatigue is associated with biomechanical changes that may lead to anterior cruciate ligament (ACL) injuries. Alterations in trunk and pelvis kinematics may also be involved in ACL injury. Although some studies have compared the effects of muscle fatigue on lower limb kinematics between men and women, little is known about its effects on pelvis and trunk kinematics. The aim of the study was to compare the effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation between men and women during landing. The participants included forty healthy subjects. We performed kinematic analysis of the trunk, pelvis, hip and knee and muscle activation analysis of the gluteal muscles, vastus lateralis and biceps femoris, during a single-leg landing before and after fatigue. Men had greater trunk flexion than women after fatigue. After fatigue, a decrease in peak knee flexion and an increase in Gmax and BF activation were observed. The increase in the trunk flexion can decrease the anterior tibiofemoral shear force resulted from the lower knee flexion angle, thereby decreasing the stress on the ACL. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanai, L.; Chenini, I.; Ben Mammou, A.; Mercier, E.
2015-01-01
The spatial distribution of fracturing in hard rocks is extremely related to the structural profile and traduces the kinematic evolution. The quantitative and qualitative analysis of fracturing combined to GIS techniques seem to be primordial and efficient in geometric characterization of lineament's network and to reconstruct the relative timing and interaction of the folding and fracturing histories. Also a detailed study of the area geology, lithology, tectonics, is primordial for any hydrogeological study. For that purpose we used a structural approach that consist in comparison between fracture sets before and after unfolding completed by aerospace data and DEM generated from topographic map. The above methodology applied in this study carried out in J. Rebia located in Northwestern of Tunisia demonstrated the heterogeneity of fracturing network and his relation with the fold growth throught time and his importance on groundwater flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, S. X.; Hayato, Y.; Hirai, M.
2015-05-15
Next generation neutrino oscillation experiments will need a quantitative understanding of neutrino-nucleus interaction far better than ever. Kinematics covered by the relevant neutrino-nucleus interaction spans wide region, from the quasi-elastic, through the resonance region, to the deeply inelastic scattering region. The neutrino-nucleus interaction in each region has quite different characteristics. Obviously, it is essential to combine different expertise to construct a unified model that covers all the kinematical region of the neutrino-nucleus interaction. Recently, several experimentalists and theorists got together to form a collaboration to tackle this problem. In this contribution, we report the collaboration’s recent activity and a goalmore » in near future.« less
Quantitative assessment of human motion using video motion analysis
NASA Technical Reports Server (NTRS)
Probe, John D.
1993-01-01
In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.
Buganè, Francesca; Benedetti, Maria Grazia; D'Angeli, Valentina; Leardini, Alberto
2014-10-21
Kinematics measures from inertial sensors have a value in the clinical assessment of pathological gait, to track quantitatively the outcome of interventions and rehabilitation programs. To become a standard tool for clinicians, it is necessary to evaluate their capability to provide reliable and comprehensible information, possibly by comparing this with that provided by the traditional gait analysis. The aim of this study was to assess by state-of-the-art gait analysis the reliability of a single inertial device attached to the sacrum to measure pelvis kinematics during level walking. The output signals of the three-axis gyroscope were processed to estimate the spatial orientation of the pelvis in the sagittal (tilt angle), frontal (obliquity) and transverse (rotation) anatomical planes These estimated angles were compared with those provided by a 8 TV-cameras stereophotogrammetric system utilizing a standard experimental protocol, with four markers on the pelvis. This was observed in a group of sixteen healthy subjects while performing three repetitions of level walking along a 10 meter walkway at slow, normal and fast speeds. The determination coefficient, the scale factor and the bias of a linear regression model were calculated to represent the differences between the angular patterns from the two measurement systems. For the intra-subject variability, one volunteer was asked to repeat walking at normal speed 10 times. A good match was observed for obliquity and rotation angles. For the tilt angle, the pattern and range of motion was similar, but a bias was observed, due to the different initial inclination angle in the sagittal plane of the inertial sensor with respect to the pelvis anatomical frame. A good intra-subject consistency has also been shown by the small variability of the pelvic angles as estimated by the new system, confirmed by very small values of standard deviation for all three angles. These results suggest that this inertial device is a reliable alternative to stereophotogrammetric systems for pelvis kinematics measurements, in addition to being easier to use and cheaper. The device can provide to the patient and to the examiner reliable feedback in real-time during routine clinical tests.
Chen, Hao-ling; Lin, Keh-chung; Liing, Rong-jiuan; Wu, Ching-yi; Chen, Chia-ling
2015-09-21
Kinematic analysis has been used to objectively evaluate movement patterns, quality, and strategies during reaching tasks. However, no study has investigated whether kinematic variables during unilateral and bilateral reaching tasks predict a patient's perceived arm use during activities of daily living (ADL) after an intensive intervention. Therefore, this study investigated whether kinematic measures during unilateral and bilateral reaching tasks before an intervention can predict clinically meaningful improvement in perceived arm use during ADL after intensive poststroke rehabilitation. The study was a secondary analysis of 120 subjects with chronic stroke who received 90-120 min of intensive intervention every weekday for 3-4 weeks. Reaching kinematics during unilateral and bilateral tasks and the Motor Activity Log (MAL) were evaluated before and after the intervention. Kinematic variables explained 22 and 11 % of the variance in actual amount of use (AOU) and quality of movement (QOM), respectively, of MAL improvement during unilateral reaching tasks. Kinematic variables also explained 21 and 31 % of the variance in MAL-AOU and MAL-QOM, respectively, during bilateral reaching tasks. Selected kinematic variables, including endpoint variables, trunk involvement, and joint recruitment and interjoint coordination, were significant predictors for improvement in perceived arm use during ADL (P < 0.05). Arm-trunk kinematics may be used to predict clinically meaningful improvement in perceived arm use during ADL after intensive rehabilitation. Involvement of interjoint coordination and trunk control variables as predictors in bilateral reaching models indicates that a high level of motor control (i.e., multijoint coordination) and trunk stability may be important in obtaining treatment gains in arm use, especially for bilateral daily activities, in intensive rehabilitation after stroke.
Foucault Dissipation in a Rolling Cylinder: A Webcam Quantitative Study
ERIC Educational Resources Information Center
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-01-01
In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…
Kinematic Analysis and Performance Evaluation of Novel PRS Parallel Mechanism
NASA Astrophysics Data System (ADS)
Balaji, K.; Khan, B. Shahul Hamid
2018-02-01
In this paper, a 3 DoF (Degree of Freedom) novel PRS (Prismatic-Revolute- Spherical) type parallel mechanisms has been designed and presented. The combination of striaght and arc type linkages for 3 DOF parallel mechanism is introduced for the first time. The performances of the mechanisms are evaluated based on the indices such as Minimum Singular Value (MSV), Condition Number (CN), Local Conditioning Index (LCI), Kinematic Configuration Index (KCI) and Global Conditioning Index (GCI). The overall reachable workspace of all mechanisms are presented. The kinematic measure, dexterity measure and workspace analysis for all the mechanism have been evaluated and compared.
NASA Astrophysics Data System (ADS)
Dotta, Giulia; Gigli, Giovanni; Ferrigno, Federica; Gabbani, Giuliano; Nocentini, Massimiliano; Lombardi, Luca; Agostini, Andrea; Nolesini, Teresa; Casagli, Nicola
2017-09-01
The shipwreck of the Costa Concordia cruise ship, which ran aground on 13 January 2012 on the northwestern coast of Giglio Island (Italy), required continuous monitoring of the position and movement of the vessel to guarantee the security of workers and rescuers operating around and within the wreck and to support shipwreck removal operations. Furthermore, understanding the geomechanical properties and stability behaviour of the coastal rock mass and rocky seabed underlying the ship was of similar importance. To assess the stability conditions of the ship, a ground-based monitoring system was installed in front of the wreck. The network included a terrestrial laser scanner (TLS) device, which was used to perform remote semiautomatic geomechanical characterization of the observed rock mass. Using TLS survey techniques, three main discontinuity sets were identified in the granitic rock mass of Giglio Island. Furthermore, a multibeam bathymetric survey was used to qualitatively characterize the seabed. To integrate the processed TLS data and quantitatively describe the rock mass quality, a subsequent field survey was carried out to provide a rock mass geomechanical evaluation (from very good to moderate quality). Based on the acquired information, kinematic and stability analyses were performed to create a spatial prediction of rock failure mechanisms in the study area. The obtained kinematic hazard index values were generally low; only the plane failure index reached slightly higher values. The general stability of the rock mass was confirmed by the stability analysis, which yielded a high safety factor value (approximately 12).
Lee, Hyunyoung; Cheon, Byungsik; Hwang, Minho; Kang, Donghoon; Kwon, Dong-Soo
2018-02-01
In robotic surgical systems, commercial master devices have limitations owing to insufficient workspace and lack of intuitiveness. To overcome these limitations, a remote-center-of-motion (RCM) master manipulator was proposed. The feasibility of the proposed RCM structure was evaluated through kinematic analysis using a conventional serial structure. Two performance comparison experiments (peg transfer task and objective transfer task) were conducted for the developed master and Phantom Omni. The kinematic analysis results showed that compared with the serial structure, the proposed RCM structure has better performance in terms of design efficiency (19%) and workspace quality (59.08%). Further, in comparison with Phantom Omni, the developed master significantly increased task efficiency and significantly decreased workload in both experiments. The comparatively better performance in terms of intuitiveness, design efficiency, and operability of the proposed master for a robotic system for minimally invasive surgery was confirmed through kinematic and experimental analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Animation of in vitro biomechanical tests.
Cripton, P A; Sati, M; Orr, T E; Bourquin, Y; Dumas, G A; Nolte, L P
2001-08-01
Interdisciplinary communication of three-dimensional kinematic data arising from in vitro biomechanical tests is challenging. Complex kinematic representations such as the helical axes of motion (HAM) add to the challenge. The difficulty increases further when other quantities (i.e. load or tissue strain data) are combined with the kinematic data. The objectives of this study were to develop a method to graphically replay and animate in vitro biomechanical tests including HAM data. This will allow intuitive interpretation of kinematic and other data independent of the viewer's area of expertise. The value of this method was verified with a biomechanical test investigating load-sharing of the cervical spine. Three 3.0 mm aluminium spheres were glued to each of the two vertebrae from a C2-3 segment of a human cervical spine. Before the biomechanical tests, CT scans were made of the specimen (slice thickness=1.0 mm and slice spacing=1.5 mm). The specimens were subjected to right axial torsion moments (2.0 Nm). Strain rosettes mounted to the anterior surface of the C3 vertebral body and bilaterally beneath the facet joints on C3 were used to estimate the force flow through the specimen. The locations of the aluminium spheres were digitised using a space pointer and the motion analysis system. Kinematics were measured using an optoelectronic motion analysis system. HAMs were calculated to describe the specimen kinematics. The digitised aluminium sphere locations were used to match the CT and biomechanical test data (RMS errors between the CT and experimental points were less than 1.0 mm). The biomechanical tests were "replayed" by animating reconstructed CT models in accordance with the recorded experimental kinematics, using custom software. The animated test replays allowed intuitive analysis of the kinematic data in relation to the strain data. This technique improves the ability of experts from disparate backgrounds to interpret and discuss this type of biomechanical data.
Mostaed, Maria F; Werner, David M; Barrios, Joaquin A
2018-02-01
The lateral step-down test is an established clinical evaluation tool to assess quality of movement in patients with knee disorders. However, this test has not been investigated in individuals after anterior cruciate ligament reconstruction (ACLR) in association with quantitative 3D motion analysis. The purpose of this study was to determine the strength of association between visually-assessed quality of movement during the lateral step-down test and 3D lower limb kinematics in patients with history of ACLR. A second purpose was to compare kinematics between subgroups based on the presence or absence of faulty alignments during the task. The final purpose was to compare visually-assessed quality of movement scores between box heights during lateral step-down testing. Twenty subjects at least one year status post-ACLR (18 females, age of 24.5 ± 4.6 years and body mass index of 23.4 ± 2.3 kg/m 2 ) performed the lateral step-down test unilaterally on the surgical limb atop four and six inch boxes. A board-certified orthopedic physical therapist scored overall quality of movement during the lateral step-down test using established criteria during 2D video playback. Lower limb kinematics were simultaneously collected using 3D motion capture. An alpha level of 0.05 was used for all statistical treatments. Overall 2D quality of movement score significantly correlated (r =0.47-0.57) with 3D hip adduction and hip internal rotation across box heights. Across box heights, the presence of faulty pelvic alignment differentiated a subgroup exhibiting less peak knee flexion, and the presence of faulty knee alignment differentiated a subgroup exhibiting greater peak hip adduction. The six inch box elicited worse quality of movement compared to the four inch box. These results suggest that visually-assessed quality of movement is associated with several kinematic variables after ACLR. 2D movement deviations at the pelvis appear to consistently relate to less knee flexion, and 2D deviations at the knee appear to suggest greater hip adduction. Generally, poorer quality of movement was observed for the six inch box height. Clinically, these data suggest that interventions targeting hip abductor and knee extensor strength and neuromuscular control may be useful in the presence of poor quality of movement during lateral step-down testing. 2b.
Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones
Bennett, Paul
2015-01-01
Background In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. Objective The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. Methods This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Results Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). Conclusions The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient. PMID:28582241
Evidence of early development of action planning in the human foetus: a kinematic study.
Zoia, Stefania; Blason, Laura; D'Ottavio, Giuseppina; Bulgheroni, Maria; Pezzetta, Eva; Scabar, Aldo; Castiello, Umberto
2007-01-01
The aim of the present study was to investigate whether foetal hand movements are planned and how they are executed. We performed a kinematic analysis of hand movements directed towards the mouth and the eyes in the foetuses of eight women with normally evolving pregnancies. At 14, 18 and 22 weeks of gestation, eight foetuses underwent a 20-min four-dimensional-ultrasound session. The video recordings for these movements were then imported into in-house software developed to perform kinematic analysis. We found that spatial and temporal characteristics of foetal movements are by no means uncoordinated or unpatterned. By 22 weeks of gestation the movements seem to show the recognizable form of intentional actions, with kinematic patterns that depend on the goal of the action, suggesting a surprisingly advanced level of motor planning.
García-Pinillos, Felipe; Molina-Molina, Alejandro; Latorre-Román, Pedro Á
2016-06-01
This study aimed to determine whether kinematic data during countermovement jump (CMJ) might explain post-activation potentiation (PAP) phenomenon after an exhausting running test. Thirty-three trained endurance runners performed the Léger Test; an incremental test which consists of continuous running between two lines 20 m apart. CMJ performance was determined before (pre-test) and immediately after the protocol (post-test). Sagittal plane, video of CMJs was recorded and kinematic data were obtained throughout 2-Dimensional analysis. In addition to the duration of eccentric and concentric phases of CMJ, hip, knee and ankle angles were measured at four key points during CMJ: the lowest position of the squat, take-off, landing, and at the lowest position after landing. Additionally, heart rate was monitored, and rate of perceived exertion was recorded at post-test. Analysis of variance revealed a significant improvement in CMJ (p = 0.002) at post-test. Cluster analysis grouped according to whether PAP was experienced (responders group: RG, n = 25) or not (non-responders group: NRG, n = 8) relative to CMJ change from rest to post-test. RG significantly improved (p < 0.001) the performance in CMJ, whereas NRG remained unchanged. Kinematic data did not show significant differences between RG and NRG. Thus, the data suggest that jumping kinematic does not provide the necessary information to explain PAP phenomenon after intensive running exercises in endurance athletes.
A comparative analysis of speed profile models for wrist pointing movements.
Vaisman, Lev; Dipietro, Laura; Krebs, Hermano Igo
2013-09-01
Following two decades of design and clinical research on robot-mediated therapy for the shoulder and elbow, therapeutic robotic devices for other joints are being proposed: several research groups including ours have designed robots for the wrist, either to be used as stand-alone devices or in conjunction with shoulder and elbow devices. However, in contrast with robots for the shoulder and elbow which were able to take advantage of descriptive kinematic models developed in neuroscience for the past 30 years, design of wrist robots controllers cannot rely on similar prior art: wrist movement kinematics has been largely unexplored. This study aimed at examining speed profiles of fast, visually evoked, visually guided, target-directed human wrist pointing movements. One thousand three-hundred ninety-eight (1398) trials were recorded from seven unimpaired subjects who performed center-out flexion/extension and abduction/adduction wrist movements and fitted with 19 models previously proposed for describing reaching speed profiles. A nonlinear, least squares optimization procedure extracted parameters' sets that minimized error between experimental and reconstructed data. Models' performances were compared based on their ability to reconstruct experimental data. Results suggest that the support-bounded lognormal is the best model for speed profiles of fast, wrist pointing movements. Applications include design of control algorithms for therapeutic wrist robots and quantitative metrics of motor recovery.
NASA Astrophysics Data System (ADS)
Fioretto, E.; Corradi, L.; Galtarossa, F.; Szilner, S.; Montanari, D.; Mijatović, T.; Pollarolo, G.; Jia, H. M.; Ackermann, D.; Bourgin, D.; Colucci, G.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; John, P. R.; Milin, M.; Montagnoli, G.; Skukan, N.; Scarlassara, F.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.
2017-11-01
Multineutron and multiproton transfer channels, populated in the inverse kinematics reaction 197Au+130Te at Elab=1.07 GeV, were measured at Laboratori Nazionali di Legnaro using the presently heaviest ion beam delivered by the PIAVE-ALPI accelerator complex and detecting both projectile-like and targetlike ions. To this end the large solid angle magnetic spectrometer PRISMA was coupled to a second arm for the detection of the heavy fragments in kinematic coincidence with the light ones selected and identified with the spectrometer. The data analysis is still in progress and will allow to compare the yields of both light and heavy partner with theoretical predictions performed with the GRAZING code to get quantitative information on transfer channels and the effect of evaporation and fission on the production rate of primary fragments. The mass integrated Z distribution, extracted from the experimental data, evidenced the population of proton pickup channels that, in conjunction with the neutron stripping ones from the 130Te, open the path for the production of neutron-rich heavy nuclei. In the following, we will present some preliminary results as well as details on the experimental configuration and perspectives for future investigations in the neutron-rich heavy region.
Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed
2014-01-01
Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685
[Kinematics of the healthy and arthritic hip joint during walking. A study of 136 subjects].
Dujardin, F; Aucouturier, T; Bocquet, G; Duparc, F; Weber, J; Thomine, J M
1998-11-01
The study aimed to analyze the spatiotemporal parameters and 3-dimensional pelvic and hip kinematic components during gait in two groups: patients with a primitive osteoarthritis of the hip and control normal subjects. The study included 51 patients, ranged from 42 to 81 years, and 86 normal subjects. Gait analysis was performed using the optoelectronic system VICON with 5 cameras in free-speed conditions. Functional grading of the patients was assessed by Lequesne's score. Thickness of the hip cartilage was measured on pelvis AP radiograph. A preliminary study was performed to measure reliability of the data on 11 patients. At the initial stage of osteoarthritis, speed, cadence, stride length and hip flexion-extension motion appeared as very close to normal data. After this initial stage, there was a statistical relationship between these parameters and arthritis functional grading. Pelvis rotation around the vertical axis did not change according to severity of functional grading. The mean value of this component of pelvis motion was 10 degrees in the pathological group, whereas it was 8 degrees in the female normal group, and 7 degrees in the male group. There were no significant relationship between radiographical thickness of hip cartilage and functional grading of patients or gait parameters. This study demonstrates that spatiotemporal gait parameters and kinematic data appear as quantitative index which could be used in future studies. It also shows that pelvic rotation is greater in pathological group than in normal subjects, even in the extreme beginning of the hip osteoarthritis. This particularity can be explained as a very early consequence of the arthritis or, in the opposite, as risk factor.
Beretta, Elena; Cesareo, Ambra; Biffi, Emilia; Schafer, Carolyn; Galbiati, Sara; Strazzer, Sandra
2018-01-01
Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT) and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy. The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each patient, depending on the goal, and may thus support clinical decision.
Goodson, Summer G; White, Sarah; Stevans, Alicia M; Bhat, Sanjana; Kao, Chia-Yu; Jaworski, Scott; Marlowe, Tamara R; Kohlmeier, Martin; McMillan, Leonard; Zeisel, Steven H; O'Brien, Deborah A
2017-11-01
The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Shuman, Nicholas S.; Mihok, Morgan; Fistik, Margaret; Valentini, James J.
2005-08-01
Experimentally observed product quantum state distributions across a wide range of abstraction reactions at suprathreshold collision energies have shown a strong bias against product internal energy. Only a fraction, sometimes quite a small fraction, of the energetically accessible product quantum states are populated. Picconatto et al. [J. Chem. Phys. 114, 1663 (2001)] noted a simple mathematical relationship between the highest-energy rovibrational states observed and the kinematics of the reaction system. They proposed a reaction model based on reaction kinematics that quantitatively explains this behavior. The model is in excellent agreement with measured quantum state distributions. The assumptions of the model invoke detailed characteristics of reactive trajectories at suprathreshold collision energies. Here we test those assumptions using quasiclassical trajectory calculations for the abstraction reactions H +HCl→H2+Cl, D +HCl→HD+Cl, and H +DCl→HD+Cl. Trajectories were run on a potential-energy surface calculated with a London-Eyring-Polyani-Sato function with a localized 3-center term (LEPS-3C) previously shown to accurately reproduce experimentally observed product state distributions for the H +HCl abstraction reaction. The trajectories sample collision energies near threshold and also substantially above it. Although the trajectories demonstrate some aspects of the model, they show that it is not valid. However, the inadequacy of the proposed model does not invalidate the apparent kinematic basis of the observed energy constraint. The present results show that there must be some other molecular behavior rooted in the reaction kinematics that is the explanation and the source of the constraint.
Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
Discher, D E; Mohandas, N
1996-10-01
Maps of fluorescing red cell membrane components on a pipette-aspirated projection are quantitated in an effort to elucidate and unify the heterogeneous kinematics of deformation. Transient gradients of diffusing fluorescent lipid first demonstrate the fluidity of an otherwise uniform-density bilayer and corroborate a "universal" calibration scale for relative surface density. A steep but smooth and stable gradient in the densities of the skeleton components spectrin, actin, and protein 4.1 is used to estimate large elastic strains along the aspirated skeleton. The deformation fields are argued to be an unhindered response to loading in the surface normal direction. Density maps intermediate to those of the compressible skeleton and fluid bilayer are exhibited by particular transmembrane proteins (e.g., Band 3) and yield estimates for the skeleton-connected fractions. Such connected proteins appear to occupy a significant proportion of the undeformed membrane surface and can lead to steric exclusion of unconnected integral membrane proteins from regions of network condensation. Consistent with membrane repatterning kinematics in reversible deformation, final vesiculation of the projection tip produces a cell fragment concentrated in freely diffusing proteins but depleted of skeleton.
A kinematic analysis of the modified flight telerobotic servicer manipulator system
NASA Technical Reports Server (NTRS)
Crane, Carl; Carnahan, Tim; Duffy, Joseph
1992-01-01
A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic servicer manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.
Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet
Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo
2016-01-01
Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766
NASA Astrophysics Data System (ADS)
Schwarz, W.; Schwub, S.; Quering, K.; Wiedmann, D.; Höppel, H. W.; Göken, M.
2011-09-01
During their operational life-time, actively cooled liners of cryogenic combustion chambers are known to exhibit a characteristic so-called doghouse deformation, pursued by formation of axial cracks. The present work aims at developing a model that quantitatively accounts for this failure mechanism. High-temperature material behaviour is characterised in a test programme and it is shown that stress relaxation, strain rate dependence, isotropic and kinematic hardening as well as material ageing have to be taken into account in the model formulation. From fracture surface analyses of a thrust chamber it is concluded that the failure mode of the hot wall ligament at the tip of the doghouse is related to ductile rupture. A material model is proposed that captures all stated effects. Basing on the concept of continuum damage mechanics, the model is further extended to incorporate softening effects due to material degradation. The model is assessed on experimental data and quantitative agreement is established for all tests available. A 3D finite element thermo-mechanical analysis is performed on a representative thrust chamber applying the developed material-damage model. The simulation successfully captures the observed accrued thinning of the hot wall and quantitatively reproduces the doghouse deformation.
Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men
Santolaria, Pilar; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Yániz, Jesús L
2016-01-01
This study was designed to analyze the sperm kinematic and morphometric subpopulations in the different fractions of the ejaculate in normozoospermic men. Ejaculates from eight normozoospermic men were collected by masturbation in three fractions after 3–5 days of sexual abstinence. Analyses of sperm motility by computer-assisted sperm analysis (CASA-Mot), and of sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence were performed. Clustering and discriminant procedures were performed to identify sperm subpopulations in the kinematic and morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three kinematic subpopulations (slow with low ALH [35.6% of all motile spermatozoa], with circular trajectories [32.0%], and rapid with high ALH [32.4%]), and three morphometric subpopulations (large-round [33.9% of all spermatozoa], elongated [32.0%], and small [34.10%]). The distribution of kinematic sperm subpopulations was different among ejaculate fractions (P < 0.001), with higher percentages of spermatozoa exhibiting slow movements with low ALH in the second and third portions, and with a more homogeneous distribution of kinematic sperm subpopulations in the first portion. The distribution of morphometric sperm subpopulations was also different among ejaculate fractions (P < 0.001), with more elongated spermatozoa in the first, and of small spermatozoa in the third, portion. It is concluded that important variations in the distribution of kinematic and morphometric sperm subpopulations exist between ejaculate fractions, with possible functional implications. PMID:27624985
Chaotic flows and fast magnetic dynamos
NASA Technical Reports Server (NTRS)
Finn, John M.; Ott, Edward
1988-01-01
The kinematic dynamo problem is considered in the R(m) approaching infinity limit. It is shown that the magnetic field tends to concentrate on a zero volume fractal set; moreover, it displays arbitrarily fine-scaled oscillations between parallel and antiparallel directions. Consideration is given to the relationship between the dynamo growth rate and quantitative measures of chaos, such as the Liapunov element and topological entropy.
NASA Technical Reports Server (NTRS)
Ottino, Julio M.
1991-01-01
Computer flow simulation aided by dynamical systems analysis is used to investigate the kinematics of time-periodic vortex shedding past a two-dimensional circular cylinder in the context of the following general questions: (1) Is a dynamical systems viewpoint useful in the understanding of this and similar problems involving time-periodic shedding behind bluff bodies; and (2) Is it indeed possible, by adopting such a point of view, to complement previous analyses or to understand kinematical aspects of the vortex shedding process that somehow remained hidden in previous approaches. We argue that the answers to these questions are positive. Results are described.
Kinematics and design of a class of parallel manipulators
NASA Astrophysics Data System (ADS)
Hertz, Roger Barry
1998-12-01
This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.
Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
Zhang, Fuhai; Fu, Yili; Zhang, Qinchao; Wang, Shuguo
2015-01-01
Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.
Some aspects of robotics calibration, design and control
NASA Technical Reports Server (NTRS)
Tawfik, Hazem
1990-01-01
The main objective is to introduce techniques in the areas of testing and calibration, design, and control of robotic systems. A statistical technique is described that analyzes a robot's performance and provides quantitative three-dimensional evaluation of its repeatability, accuracy, and linearity. Based on this analysis, a corrective action should be taken to compensate for any existing errors and enhance the robot's overall accuracy and performance. A comparison between robotics simulation software packages that were commercially available (SILMA, IGRIP) and that of Kennedy Space Center (ROBSIM) is also included. These computer codes simulate the kinematics and dynamics patterns of various robot arm geometries to help the design engineer in sizing and building the robot manipulator and control system. A brief discussion on an adaptive control algorithm is provided.
Kinematics of prehension and pointing movements in C6 quadriplegic patients.
Laffont, I; Briand, E; Dizien, O; Combeaud, M; Bussel, B; Revol, M; Roby-Brami, A
2000-06-01
C6 quadriplegic patients lack voluntary control of their triceps muscle but can still perform reaching movements to grasp objects or point to targets. The present study documents the kinematic properties of reaching in these patients. We investigated the kinematics of prehension and pointing movements in four quadriplegic patients and five control subjects. Prehension and pointing movements were recorded for each subject using various object positions (ie different directions and distances from the subject). The 3D motion was analyzed with Fastrack Polhemus sensors. During prehension tasks the velocity profile of control subjects showed two peaks (go and return); the first velocity peak was scaled to the distance of the object. In quadriplegic patients there was a third intermediary peak corresponding to the grasping of the object. The amplitude of the first peak was slightly smaller than in control subjects. Velocity was scaled to the distance of the object, but with a greater dispersion than in control subjects. Total movement time was longer in quadriplegics because of the prolonged grasping phase. There were few differences in the pointing movements of normal and quadriplegic subjects. The scapula contributed more to the reaching phase of both movements in quadriplegic patients. In spite of some quantitative differences, the kinematics of the hand during reaching and pointing in quadriplegic patients are surprisingly similar to those of control subjects. Spinal Cord (2000) 38, 354 - 362.
Variations in Kinematics during Clinical Gait Analysis in Stroke Patients
Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Bonnyaud, Céline; Bensmail, Djamel; Zory, Raphael
2013-01-01
In addition to changes in spatio-temporal and kinematic parameters, patients with stroke exhibit fear of falling as well as fatigability during gait. These changes could compromise interpretation of data from gait analysis. The aim of this study was to determine if the gait of hemiplegic patients changes significantly over successive gait trials. Forty two stroke patients and twenty healthy subjects performed 9 gait trials during a gait analysis session. The mean and variability of spatio-temporal and kinematic joint parameters were analyzed during 3 groups of consecutive gait trials (1–3, 4–6 and 7–9). Principal component analysis was used to reduce the number of variables from the joint kinematic waveforms and to identify the parts of the gait cycle which changed during the gait analysis session. The results showed that i) spontaneous gait velocity and the other spatio-temporal parameters significantly increased, and ii) gait variability decreased, over the last 6 gait trials compared to the first 3, for hemiplegic patients but not healthy subjects. Principal component analysis revealed changes in the sagittal waveforms of the hip, knee and ankle for hemiplegic patients after the first 3 gait trials. These results suggest that at the beginning of the gait analysis session, stroke patients exhibited phase of adaptation,characterized by a “cautious gait” but no fatigue was observed. PMID:23799100
Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones.
Roldan-Jimenez, Cristina; Cuesta-Vargas, Antonio; Bennett, Paul
2015-05-20
In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient. ©Cristina Roldan-Jimenez, Antonio Cuesta-Vargas, Paul Bennett. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.05.2015.
Kinematic analysis of a posterior-stabilized knee prosthesis.
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-20
The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.
ERIC Educational Resources Information Center
Folker, Joanne E.; Murdoch, Bruce E.; Cahill, Louise M.; Delatycki, Martin B.; Corben, Louise A.; Vogel, Adam P.
2011-01-01
Articulatory kinematics were investigated using electromagnetic articulography (EMA) in four dysarthric speakers with Friedreich's ataxia (FRDA). Specifically, tongue-tip and tongue-back movements were recorded by the AG-200 EMA system during production of the consonants t and k as produced within a sentence utterance and during a rapid syllable…
Held, Jeremia P O; Klaassen, Bart; Eenhoorn, Albert; van Beijnum, Bert-Jan F; Buurke, Jaap H; Veltink, Peter H; Luft, Andreas R
2018-01-01
Upper-limb impairments in stroke patients are usually measured in clinical setting using standard clinical assessment. In addition, kinematic analysis using opto-electronic systems has been used in the laboratory setting to map arm recovery. Such kinematic measurements cannot capture the actual function of the upper extremity in daily life. The aim of this study is to longitudinally explore the complementarity of post-stroke upper-limb recovery measured by standard clinical assessments and daily-life recorded kinematics. The study was designed as an observational, single-group study to evaluate rehabilitation progress in a clinical and home environment, with a full-body sensor system in stroke patients. Kinematic data were recorded with a full-body motion capture suit during clinical assessment and self-directed activities of daily living. The measurements were performed at three time points for 3 h: (1) 2 weeks before discharge of the rehabilitation clinic, (2) right after discharge, and (3) 4 weeks after discharge. The kinematic analysis of reaching movements uses the position and orientation of each body segment to derive the joint angles. Newly developed metrics for classifying activity and quality of upper extremity movement were applied. The data of four stroke patients (three mildly impaired, one sever impaired) were included in this study. The arm motor function assessment improved during the inpatient rehabilitation, but declined in the first 4 weeks after discharge. A change in the data (kinematics and new metrics) from the daily-life recording was seen in in all patients. Despite this worsening patients increased the number of reaches they performed during daily life in their home environment. It is feasible to measure arm kinematics using Inertial Measurement Unit sensors during daily life in stroke patients at the different stages of rehabilitation. Our results from the daily-life recordings complemented the data from the clinical assessments and illustrate the potential to identify stroke patient characteristics, based on kinematics, reaching counts, and work area. https://clinicaltrials.gov, identifier NCT02118363.
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices
Best, Matthew D.
2017-01-01
Classically, it has been hypothesized that reach-to-grasp movements arise from two discrete parietofrontal cortical networks. As part of these networks, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. Recent studies have shown that such a strict delineation of function along anatomical boundaries is unlikely, partly because reaching to different locations can alter distal hand kinematics and grasping different objects can affect kinematics of the proximal arm. Here, we used chronically implanted multielectrode arrays to record unit-spiking activity in both PMd and PMv simultaneously while rhesus macaques engaged in a reach-to-grasp task. Generalized linear models were used to predict the spiking activity of cells in both areas as a function of different kinematic parameters, as well as spike history. To account for the influence of reaching on hand kinematics and vice versa, we applied demixed principal components analysis to define kinematics synergies that maximized variance across either different object locations or grip types. We found that single cells in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that this classical division of reach and grasp in PMd and PMv, respectively, does not accurately reflect the encoding preferences of cells in those areas. SIGNIFICANCE STATEMENT For reach-to-grasp movements, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. We recorded unit-spiking activity in PMd and PMv simultaneously while macaques performed a reach-to-grasp task. We modeled the spiking activity of neurons as a function of kinematic parameters and spike history. We applied demixed principal components analysis to define kinematics synergies. We found that single units in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that the division of reach and grasp in PMd and PMv, respectively, cannot be made based on their encoding properties. PMID:28077725
Kozono, Naoya; Okada, Takamitsu; Takeuchi, Naohide; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Miake, Go; Nakanishi, Yoshitaka; Iwamoto, Yukihide
2017-07-01
The purpose of this study was to evaluate the kinematics of healthy shoulders during dynamic full axial rotation and scapular plane full abduction using three-dimensional (3D)-to-two-dimensional (2D) model-to-image registration techniques. Dynamic glenohumeral kinematics during axial rotation and scapular plane abduction were analysed in 10 healthy participants. Continuous radiographic images of axial rotation and scapular plane abduction were taken using a flat panel radiographic detector. The participants received a computed tomography scan to generate virtual digitally reconstructed radiographs. The density-based digitally reconstructed radiographs were then compared with the serial radiographic images acquired using image correlations. These 3D-to-2D model-to-image registration techniques determined the 3D positions and orientations of the humerus and scapula during dynamic full axial rotation and scapular plane full abduction. The humeral head centre translated an average of 2.5 ± 3.1 mm posteriorly, and 1.4 ± 1.0 mm superiorly in the early phase, then an average of 2.0 ± 0.8 mm inferiorly in the late phase during external rotation motion. The glenohumeral external rotation angle had a significant effect on the anterior/posterior (A/P) and superior/inferior (S/I) translation of the humeral head centre (both p < 0.05). 33.6 ± 15.6° of glenohumeral external rotation occurred during scapular plane abduction. The humeral head centre translated an average of 0.6 ± 0.9 mm superiorly in the early phase, then 1.7 ± 2.6 mm inferiorly in the late phase, and translated an average of 0.4 ± 0.5 mm medially in the early phase, then 1.6 ± 1.0 mm laterally in the late phase during scapular plane abduction. The humeral abduction angle had a significant effect on the S/I and lateral/medial (L/M) translation of the humeral head centre (both p < 0.05). This study investigated 3D translations of the humerus relative to the scapula: during scapular plane full abduction, the humerus rotated 33.6° externally relative to the scapula, and during external rotation motion in the adducted position, the humeral head centre translated an average of 2.5 mm posteriorly. Kinematic data will provide important insights into evaluating the kinematics of pathological shoulders. For clinical relevance, quantitative assessment of dynamic healthy shoulder kinematics might be a physiological indicator for the assessment of pathological shoulders.
Kinematic analysis of hip and knee rotation and other contributors to ballet turnout.
Quanbeck, Amy E; Russell, Jeffrey A; Handley, Sara C; Quanbeck, Deborah S
2017-02-01
Turnout, or external rotation (ER) of the lower extremities, is essential in ballet. The purpose of this study was to utilise physical examination and a biomechanical method for obtaining functional kinematic data using hip and knee joint centres to identify the relative turnout contributions from hip rotation, femoral anteversion, knee rotation, tibial torsion, and other sources. Ten female dancers received a lower extremity alignment assessment, including passive hip rotation, femoral anteversion, tibial torsion, weightbearing foot alignment, and Beighton hypermobility score. Next, turnout was assessed using plantar pressure plots and three-dimensional motion analysis; participants performed turnout to ballet first position on both a plantar pressure mat and friction-reducing discs. A retro-reflective functional marker motion capture system mapped the lower extremities and hip and knee joint centres. Mean total turnout was 129±15.7° via plantar pressure plots and 135±17.8° via kinematics. Bilateral hip ER during turnout was 49±10.2° (36% of total turnout). Bilateral knee ER during turnout was 41±5.9° (32% of total turnout). Hip ER contribution to total turnout measured kinematically was less than expected compared to other studies, where hip ER was determined without functional kinematic data. Knee ER contributed substantially more turnout than expected or previously reported. This analysis method allows precise assessment of turnout contributors.
Soler, C; García, A; Contell, J; Segervall, J; Sancho, M
2014-08-01
Over recent years, technological advances have brought innovation in assisted reproduction to the agriculture. Fox species are of great economical interest in some countries, but their semen characteristics have not been studied enough. To advance the knowledge of function of fox spermatozoa, five samples were obtained by masturbation, in the breeding season. Kinetic analysis was performed using ISAS® v1 system. Usual kinematic parameters (VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF) were considered. To establish the standardization for the analysis of samples, the minimum number of cells to analyse and the minimum number of fields to capture were defined. In the second step, the presence of subpopulations in blue fox semen was analysed. The minimum number of cells to test was 30, because kinematic parameters remained constant along the groups of analysis. Also, the effectiveness of ISAS® D4C20 counting chamber was studied, showing that the first five squares presented equivalent results, while in the squares six and seven, the kinematic parameters showed a reduction in all of them, but not in the concentration or motility percentage. Kinematic variables were grouped into two principal components (PC). A linear movement characterized PC1, while PC2 showed an oscillatory movement. Three subpopulations were found, varying in structure among different animals. © 2014 Blackwell Verlag GmbH.
Kinematic analysis of crank -cam mechanism of process equipment
NASA Astrophysics Data System (ADS)
Podgornyj, Yu I.; Skeeba, V. Yu; Martynova, T. G.; Pechorkina, N. S.; Skeeba, P. Yu
2018-03-01
This article discusses how to define the kinematic parameters of a crank-cam mechanism. Using the mechanism design, the authors have developed a calculation model and a calculation algorithm that allowed the definition of kinematic parameters of the mechanism, including crank displacements, angular velocities and acceleration, as well as driven link (rocker arm) angular speeds and acceleration. All calculations were performed using the Mathcad mathematical package. The results of the calculations are reported as numerical values.
Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements
NASA Astrophysics Data System (ADS)
Ulrich, Thomas
2013-08-01
Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.
Generated spiral bevel gears: Optimal machine-tool settings and tooth contact analysis
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Tsung, W. J.; Coy, J. J.; Heine, C.
1985-01-01
Geometry and kinematic errors were studied for Gleason generated spiral bevel gears. A new method was devised for choosing optimal machine settings. These settings provide zero kinematic errors and an improved bearing contact. The kinematic errors are a major source of noise and vibration in spiral bevel gears. The improved bearing contact gives improved conditions for lubrication. A computer program for tooth contact analysis was developed, and thereby the new generation process was confirmed. The new process is governed by the requirement that during the generation process there is directional constancy of the common normal of the contacting surfaces for generator and generated surfaces of pinion and gear.
Estimating net joint torques from kinesiological data using optimal linear system theory.
Runge, C F; Zajac, F E; Allum, J H; Risher, D W; Bryson, A E; Honegger, F
1995-12-01
Net joint torques (NJT) are frequently computed to provide insights into the motor control of dynamic biomechanical systems. An inverse dynamics approach is almost always used, whereby the NJT are computed from 1) kinematic measurements (e.g., position of the segments), 2) kinetic measurements (e.g., ground reaction forces) that are, in effect, constraints defining unmeasured kinematic quantities based on a dynamic segmental model, and 3) numerical differentiation of the measured kinematics to estimate velocities and accelerations that are, in effect, additional constraints. Due to errors in the measurements, the segmental model, and the differentiation process, estimated NJT rarely produce the observed movement in a forward simulation when the dynamics of the segmental system are inherently unstable (e.g., human walking). Forward dynamic simulations are, however, essential to studies of muscle coordination. We have developed an alternative approach, using the linear quadratic follower (LQF) algorithm, which computes the NJT such that a stable simulation of the observed movement is produced and the measurements are replicated as well as possible. The LQF algorithm does not employ constraints depending on explicit differentiation of the kinematic data, but rather employs those depending on specification of a cost function, based on quantitative assumptions about data confidence. We illustrate the usefulness of the LQF approach by using it to estimate NJT exerted by standing humans perturbed by support-surface movements. We show that unless the number of kinematic and force variables recorded is sufficiently high, the confidence that can be placed in the estimates of the NJT, obtained by any method (e.g., LQF, or the inverse dynamics approach), may be unsatisfactorily low.
Daver, Guillaume; Berillon, Gilles; Grimaud-Hervé, Dominique
2012-01-01
The purpose of this study is to provide new data on carpal kinematics in primates in order to deepen our understanding of the relationships between wrist morphology and function. To that end, we provide preliminary data on carpal kinematics in seven species of quadrupedal monkeys that have not been previously investigated in this regard (cercopithecoids, n = 4; ceboids, n = 3). We radiographed wrists from cadavers at their maximum radial and ulnar deviations, as well as at maximum flexion and extension. We took angular measurements to quantify the contribution of the mobility of the two main wrist joints (antebrachiocarpal and midcarpal) with respect to total wrist mobility. We also recorded qualitative observations. Our quantitative results show few clear differences among quadrupedal monkeys for radioulnar deviation and flexion–extension: all the primates studied exhibit a greater midcarpal mobility (approximately 54–83% of the total range of motion) than antebrachiocarpal mobility; however, we identified two patterns of carpal kinematics that show the functional impact of previously recognised morphological variations in quadrupedal monkeys. Firstly, qualitative results show that the partition that divides the proximal joint of the wrist in ceboids results in less mobility and more stability of the ulnar part of the wrist than is seen in cercopithecoids. Secondly, we show that the olive baboon specimen (Papio anubis) is characterised by limited antebrachiocarpal mobility for extension; this effect is likely the result of a radial process that projects on the scaphoid notch, as well as an intraarticular meniscus. Because of these close relationships between carpal kinematics and morphology in quadrupedal monkeys, we hypothesise that, to some extent, these functional tendencies are related to their locomotor hand postures. PMID:22050662
NASA Astrophysics Data System (ADS)
Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.
2014-12-01
One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.
Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.
Macaulay, Charles A J; Katz, Larry; Stergiou, Pro; Stefanyshyn, Darren; Tomaghelli, Luciano
2017-12-01
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents' net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (P < 0.001) and underhand (P < 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (P = 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.
O'Reilly, Christian; Plamondon, Réjean; Landou, Mohamed K; Stemmer, Brigitte
2013-01-01
This article presents an exploratory study investigating the possibility of predicting the time occurrence of a motor event related potential (ERP) from a kinematic analysis of human movements. Although the response-locked motor potential may link the ERP components to the recorded response, to our knowledge no previous attempt has been made to predict a priori (i.e. before any contact with the electroencephalographic data) the time occurrence of an ERP component based only on the modeling of an overt response. The proposed analysis relies on the delta-lognormal modeling of velocity, as proposed by the kinematic theory of rapid human movement used in several studies of motor control. Although some methodological aspects of this technique still need to be fine-tuned, the initial results showed that the model-based kinematic analysis allowed the prediction of the time occurrence of a motor command ERP in most participants in the experiment. The average map of the motor command ERPs showed that this signal was stronger in electrodes close to the contra-lateral motor area (Fz, FCz, FC1, and FC3). These results seem to support the claims made by the kinematic theory that a motor command is emitted at time t(0), the time reference parameter of the model. This article proposes a new time marker directly associated with a cerebral event (i.e. the emission of a motor command) that can be used for the development of new data analysis methodologies and for the elaboration of new experimental protocols based on ERP. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Jarque-Bou, N; Gracia-Ibáñez, V; Sancho-Bru, J L; Vergara, M; Pérez-González, A; Andrés, F J
2016-09-01
The kinematic analysis of human grasping is challenging because of the high number of degrees of freedom involved. The use of principal component and factorial analyses is proposed in the present study to reduce the hand kinematics dimensionality in the analysis of posture for ergonomic purposes, allowing for a comprehensive study without losing accuracy while also enabling velocity and acceleration analyses to be performed. A laboratory study was designed to analyse the effect of weight and diameter in the grasping posture for cylinders. This study measured the hand posture from six subjects when transporting cylinders of different weights and diameters with precision and power grasps. The hand posture was measured using a Vicon(®) motion-tracking system, and the principal component analysis was applied to reduce the kinematics dimensionality. Different ANOVAs were performed on the reduced kinematic variables to check the effect of weight and diameter of the cylinders, as well as that of the subject. The results show that the original twenty-three degrees of freedom of the hand were reduced to five, which were identified as digit arching, closeness, palmar arching, finger adduction and thumb opposition. Both cylinder diameter and weight significantly affected the precision grasping posture: diameter affects closeness, palmar arching and opposition, while weight affects digit arching, palmar arching and closeness. The power-grasping posture was mainly affected by the cylinder diameter, through digit arching, closeness and opposition. The grasping posture was largely affected by the subject factor and this effect couldn't be attributed only to hand size. In conclusion, this kinematic reduction allowed identifying the effect of the diameter and weight of the cylinders in a comprehensive way, being diameter more important than weight. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sinclair, Jonathan; Taylor, Paul J
2014-10-01
Musculoskeletal injuries in the lower extremities are common in military recruits. Army boots have frequently been cited as a potential mechanism behind these high injury rates. In response to this, the British Army introduced new footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), which are issued to each new recruit in an attempt to reduce the incidence of these injuries. The aim of the current investigation was to examine the kinetics and kinematic of the PT-03 and PT1000 footwear in relation to conventional army boots. Thirteen participants ran at 4.0 m·s in each footwear condition. Three-dimensional kinematics from the hip, knee, and ankle were measured using an 8-camera motion analysis system. In addition, simultaneous ground reaction forces were obtained. Kinetic parameters were obtained alongside joint kinematics and compared using repeated-measures analyses of variance. The kinetic analysis revealed that impact parameters were significantly greater when running in the army boot compared with the PT-03 and PT1000. The kinematic analysis indicated that, in comparison with the PT-03 and PT1000, running in army boots was associated with significantly greater eversion and tibial internal rotation. It was also found that when running in the PT-03 footwear, participants exhibited significantly greater hip adduction and knee abduction compared with the army boots and PT1000. The results of this study suggest that the army boots and PT-03 footwear are associated with kinetic and kinematic parameters that have been linked to the etiology of injury; thus, it is recommended that the PT1000 footwear be adopted for running exercises.
D2 Delta Robot Structural Design and Kinematics Analysis
NASA Astrophysics Data System (ADS)
Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai
2017-12-01
In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.
NASA Technical Reports Server (NTRS)
Angelaki, Dora E.
2003-01-01
Previous studies have reported that the translational vestibuloocular reflex (TVOR) follows a three-dimensional (3D) kinematic behavior that is more similar to visually guided eye movements, like pursuit, rather than the rotational VOR (RVOR). Accordingly, TVOR rotation axes tilted with eye position toward an eye-fixed reference frame rather than staying relatively fixed in the head like in the RVOR. This difference arises because, contrary to the RVOR where peripheral image stability is functionally important, the TVOR like pursuit and saccades cares to stabilize images on the fovea. During most natural head and body movements, both VORs are simultaneously activated. In the present study, we have investigated in rhesus monkeys the 3D kinematics of the combined VOR during yaw rotation about eccentric axes. The experiments were motivated by and quantitatively compared with the predictions of two distinct hypotheses. According to the first (fixed-rule) hypothesis, an eye-position-dependent torsion is computed downstream of a site for RVOR/TVOR convergence, and the combined VOR axis would tilt through an angle that is proportional to gaze angle and independent of the relative RVOR/TVOR contributions to the total eye movement. This hypothesis would be consistent with the recently postulated mechanical constraints imposed by extraocular muscle pulleys. According to the second (image-stabilization) hypothesis, an eye-position-dependent torsion is computed separately for the RVOR and the TVOR components, implying a processing that takes place upstream of a site for RVOR/TVOR convergence. The latter hypothesis is based on the functional requirement that the 3D kinematics of the combined VOR should be governed by the need to keep images stable on the fovea with slip on the peripheral retina being dependent on the different functional goals of the two VORs. In contrast to the fixed-rule hypothesis, the data demonstrated a variable eye-position-dependent torsion for the combined VOR that was different for synergistic versus antagonistic RVOR/TVOR interactions. Furthermore, not only were the eye-velocity tilt slopes of the combined VOR as much as 10 times larger than what would be expected based on extraocular muscle pulley location, but also eye velocity during antagonistic RVOR/TVOR combinations often tilted opposite to gaze. These results are qualitatively and quantitatively consistent with the image-stabilization hypothesis, suggesting that the eye-position-dependent torsion is computed separately for the RVOR and the TVOR and that the 3D kinematics of the combined VOR are dependent on functional rather than mechanical constraints.
NASA Astrophysics Data System (ADS)
Hibert, C.; Stark, C. P.; Ekstrom, G.
2014-12-01
Landslide failures on the scale of mountains are spectacular, dangerous, and spontaneous, making direct observations hard to obtain. Measurement of their dynamic properties during runout is a high research priority, but a logistical and technical challenge. Seismology has begun to help in several important ways. Taking advantage of broadband seismic stations, recent advances now allow: (i) the seismic detection and location of large landslides in near-real-time, even for events in very remote areas that may have remain undetected, such as the 2014 Mt La Perouse supraglacial failure in Alaska; (ii) inversion of long-period waves generated by large landslides to yield an estimate of the forces imparted by the bulk accelerating mass; (iii) inference of the landslide mass, its center-of-mass velocity over time, and its trajectory.Key questions persist, such as: What can the short-period seismic data tell us about the high-frequency impacts taking place within the granular flow and along its boundaries with the underlying bedrock? And how does this seismicity relate to the bulk acceleration of the landslide and the long-period seismicity generated by it?Our recent work on the joint analysis of short- and long-period seismic signals generated by past and recent events, such as the Bingham Canyon Mine and the Oso-Steelhead landslides, provides new insights to tackle these issues. Qualitative comparison between short-period signal features and kinematic parameters inferred from long-period surface wave inversion helps to refine interpretation of the source dynamics and to understand the different mechanisms for the origin of the short-period wave radiation. Our new results also suggest that quantitative relationships can be derived from this joint analysis, in particular between the short-period seismic signal envelope and the inferred momentum of the center-of-mass. In the future, these quantitative relationships may help to constrain and calibrate parameters used in inversion or simulation of long-period waves generated by landslides. Relating the center-of-mass dynamics to the short-period seismic signal might also yield a new means to estimate kinematic parameters for the smaller events that generate too weak long-period seismic waves to allow inversion or simulation of the seismic source.
Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C.; Hutchinson, I. H.
The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. Themore » behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”.« less
An Independent and Coordinated Criterion for Kinematic Aircraft Maneuvers
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.; Hagen, George
2014-01-01
This paper proposes a mathematical definition of an aircraft-separation criterion for kinematic-based horizontal maneuvers. It has been formally proved that kinematic maneu- vers that satisfy the new criterion are independent and coordinated for repulsiveness, i.e., the distance at closest point of approach increases whether one or both aircraft maneuver according to the criterion. The proposed criterion is currently used in NASA's Airborne Coordinated Resolution and Detection (ACCoRD) set of tools for the design and analysis of separation assurance systems.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
Lamola, Giuseppe; Venturi, Martina; Martelli, Dario; Iacopi, Elisabetta; Fanciullacci, Chiara; Coppelli, Alberto; Rossi, Bruno; Piaggesi, Alberto; Chisari, Carmelo
2015-11-09
Forefoot ulcers (FU) are one of the most disabling and relevant chronic complications of diabetes mellitus (DM). In recent years there is emerging awareness that a better understanding of the biomechanical factors underlying the diabetic ulcer could lead to improve the management of the disease, with significant socio-economic impacts. Our purpose was to try to detect early biomechanical factors associated with disease progression. Thirty subjects (M/F: 22/8; mean age ± SD: 61,84 ± 10 years) with diagnosis of type II DM were included. The participants were divided into 3 groups (10 subjects per group) according to the stage of evolution of the disease: Group 1, subjects with newly diagnosed type II DM, without clinical or instrumental diabetic peripheral neuropathy (DPN) nor FU (group called "DM"); Group 2, with DPN but without FU (group called "DPN"); Group 3, with DPN and FU (group called "DNU"). All subjects underwent 3-D Gait Analysis during walking at self-selected speed, measuring spatio-temporal, kinematic and kinetic parameters and focusing on ankle and foot joints. The comparative analysis of values between groups was performed using 1-way ANOVA. We also investigated group to group differences with Tukey HSD test. The results taken into consideration were those with a significance of P < 0,05. 95 % confidence interval was also calculated. A progressive and significant trend of reduction of ROM in flexion-extension of the metatarso-phalangeal joint (P = 0.0038) and increasing of step width (P = 0.0265) with the advance of the disease was evident, with a statistically significant difference comparing subjects with recently diagnosed diabetes mellitus and subjects with diabetic neuropathy and foot ulcer (P = 0.0048 for ROM and P = 0.0248 for step width at Tukey's test). The results provide evidence that foot segmental kinematics, along with step width, can be proposed as simple and clear indicators of disease progression. This can be the starting point for planning more targeted strategies to prevent the occurrence and the recurrence of a FU in diabetic subjects.
Smartphones as Integrated Kinematic and Dynamic Sensors for Amusement Park Physics Applications
NASA Astrophysics Data System (ADS)
Peterson, Stephanie; Dennison, J. R.
2010-10-01
USU has hosted Physics Day at Lagoon and has attracted more than 120,000 secondary educators and students over 21 years. During this educational day, students explore basic physics concepts and apply their classroom content outdoors, in real world applications. As part of the event, USU's Physics Department provides curriculum to be used at Lagoon, in similar outside venues, and in the classroom. One such educational instrument, which is a primary focus of this work, is student workbooks filled with activities ranging from very simple to more advanced topics. Workbooks cover the properties of waves, relative velocity, and acceleration, topics which have historically challenged students and future topics include kinematics, energy, and forces. The topics were selected based on requests from teachers throughout the Intermountain Region and identified deficiencies in student performance on core curriculum assessments. An innovative approach is to identify physical application of iPhone and Android smartphone software technologies, which make use of dynamic and kinematic sensors. These technologies will allow students to realize their ability to do quantitative physics calculations anywhere, anytime; a smart device which is highly salable to today's teenage learners. This also provides an exciting approach to more fully engage students in learning physics concepts.
Digital Filtering of Three-Dimensional Lower Extremity Kinematics: an Assessment
Sinclair, Jonathan; Taylor, Paul John; Hobbs, Sarah Jane
2013-01-01
Errors in kinematic data are referred to as noise and are an undesirable portion of any waveform. Noise is typically removed using a low-pass filter which removes the high frequency components of the signal. The selection of an optimal frequency cut-off is very important when processing kinematic information and a number of techniques exists for the determination of an optimal frequency cut-off. Despite the importance of cut-off frequency to the efficacy of kinematic analyses there is currently a paucity of research examining the influence of different cut-off frequencies on the resultant 3-D kinematic waveforms and discrete parameters. Twenty participants ran at 4.0 m•s−1 as lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. The data were filtered at a range of cut-off frequencies and the discrete kinematic parameters were examined using repeated measures ANOVA’s. The similarity between the raw and filtered waveforms were examined using intra-class correlations. The results show that the cut-off frequency has a significant influence on the discrete kinematic measure across displacement and derivative information in all three planes of rotation. Furthermore, it was also revealed that as the cut-off frequency decreased the attenuation of the kinematic waveforms became more pronounced, particularly in the coronal and transverse planes at the second derivative. In conclusion, this investigation provides new information regarding the influence of digital filtering on lower extremity kinematics and re-emphasizes the importance of selecting the correct cut-off frequency. PMID:24511338
Handwriting Movement Kinematics for Quantifying EPS in Patients Treated with Atypical Antipsychotics
Caligiuri, Michael P.; Teulings, Hans-Leo; Dean, Charles E.; Niculescu, Alexander B.; Lohr, James B.
2009-01-01
Ongoing monitoring of neuroleptic-induced extrapyramidal side effects (EPS) is important to maximize treatment outcome, improve medication adherence and reduce re-hospitalization. Traditional approaches for assessing EPS such as parkinsonism, tardive akathisia, or dyskinesia rely upon clinical ratings. However, these observer-based EPS severity ratings can be unreliable and are subject to examiner bias. In contrast, quantitative instrumental methods are less subject to bias. Most instrumental methods have only limited clinical utility because of their complexity and costs. This paper describes an easy-to-use instrumental approach based on handwriting movements for quantifying EPS. Here, we present findings from psychiatric patients treated with atypical (second generation) antipsychotics. The handwriting task consisted of a sentence written several times within a 2 cm vertical boundary at a comfortable speed using an inkless pen and digitizing tablet. Kinematic variables including movement duration, peak vertical velocity and the number of acceleration peaks, and average normalized jerk (a measure of smoothness) for each up or down stroke and their submovements were analyzed. Results from 59 psychosis patients and 46 healthy comparison subjects revealed significant slowing and dysfluency in patients compared to controls. We observed differences across medications and daily dose. These findings support the ecological validity of handwriting movement analysis as an objective behavioral biomarker for quantifying the effects of antipsychotic medication and dose on the motor system. PMID:20381875
Tearing mode dynamics and locking in the presence of external magnetic perturbations
NASA Astrophysics Data System (ADS)
Fridström, R.; Munaretto, S.; Frassinetti, L.; Chapman, B. E.; Brunsell, P. R.; Sarff, J. S.
2016-06-01
In normal operation, Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch plasmas exhibit several rotating tearing modes (TMs). Application of a resonant magnetic perturbation (RMP) results in braking of mode rotation and, if the perturbation amplitude is sufficiently high, in a wall-locked state. The coils that produce the magnetic perturbation in MST give rise to RMPs with several toroidal harmonics. As a result, simultaneous deceleration of all modes is observed. The measured TM dynamics is shown to be in qualitative agreement with a magnetohydrodynamical model of the RMP interaction with the TM [R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993)] adapted to MST. To correctly model the TM dynamics, the electromagnetic torque acting on several TMs is included. Quantitative agreement of the TM slowing-down time was obtained for a kinematic viscosity in the order of νki n≈10 -20 m2/s. Analysis of discharges with different plasma densities shows an increase of the locking threshold with increasing density. Modeling results show good agreement with the experimental trend, assuming a density-independent kinematic viscosity. Comparison of the viscosity estimates in this paper to those made previously with other techniques in MST plasmas suggests the possibility that the RMP technique may allow for estimates of the viscosity over a broad range of plasmas in MST and other devices.
Khalaf, K A; Parnianpour, M; Sparto, P J; Barin, K
1999-01-01
In any quantitative gait or occupational biomechanics investigation, the quantification of the different kinematic, kinetic, and electromyographic parameters is essential towards assessment of functional capacity and development of a biomechanical profile of the task demands. In the current study, the authors presented a methodology for using inferential statistics to evaluate the effect of lift characteristics on phase-dependent and phase-independent variability in performance. Using a database of kinematic and kinetic profiles obtained from a manual lifting study, the phase-dependent effects of lift characteristics: box mass (load), mode (technique of lift), and speed (frequency of lift) were investigated through the use of analysis of variance (ANOVA) techniques, which recognize the vectorial constitution of the profiles. In addition, the Karhunen-Loeve Expansion (KLE) feature extraction method was used for representing the lifting patterns of measured joint angular position, velocity, acceleration, and net muscular torque profiles obtained from a 2-D biomechanical lifting model in order to study the phase-independent effects. In comparison to traditional descriptive statistical analyses currently used in various occupational biomechanics experimental investigations, this method allows the significant information content of the time varying signal to be captured, enhancing the sensitivity of subsequent hypothesis testing procedures. The application of this technique to MMH investigations allows identification of the lift characteristics that dominate the variability of task demands, hence aiding in the design and assessment of ergonomic solutions.
Xiao, Huapan; Chen, Zhi; Wang, Hairong; Wang, Jiuhong; Zhu, Nan
2018-02-19
Based on micro-indentation mechanics and kinematics of grinding processes, theoretical formulas are deduced to calculate surface roughness (SR) and subsurface damage (SSD) depth. The SRs and SSD depths of a series of fused silica samples, which are prepared under different grinding parameters, are measured. By experimental and theoretical analysis, the relationship between SR and SSD depth is discussed. The effect of grinding parameters on SR and SSD depth is investigated quantitatively. The results show that SR and SSD depth decrease with the increase of wheel speed or the decrease of feed speed as well as cutting depth. The interaction effect between wheel speed and feed speed should be emphasized greatly. Furthermore, a relationship model between SSD depth and grinding parameters is established, which could be employed to evaluate SSD depth efficiently.
NASA Astrophysics Data System (ADS)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
Integrating concepts and skills: Slope and kinematics graphs
NASA Astrophysics Data System (ADS)
Tonelli, Edward P., Jr.
The concept of force is a foundational idea in physics. To predict the results of applying forces to objects, a student must be able to interpret data representing changes in distance, time, speed, and acceleration. Comprehension of kinematics concepts requires students to interpret motion graphs, where rates of change are represented as slopes of line segments. Studies have shown that majorities of students who show proficiency with mathematical concepts fail accurately to interpret motion graphs. The primary aim of this study was to examine how students apply their knowledge of slope when interpreting kinematics graphs. To answer the research questions a mixed methods research design, which included a survey and interviews, was adopted. Ninety eight (N=98) high school students completed surveys which were quantitatively analyzed along with qualitative information collected from interviews of students (N=15) and teachers ( N=2). The study showed that students who recalled methods for calculating slopes and speeds calculated slopes accurately, but calculated speeds inaccurately. When comparing the slopes and speeds, most students resorted to calculating instead of visual inspection. Most students recalled and applied memorized rules. Students who calculated slopes and speeds inaccurately failed to recall methods of calculating slopes and speeds, but when comparing speeds, these students connected the concepts of distance and time to the line segments and the rates of change they represented. This study's findings will likely help mathematics and science educators to better assist their students to apply their knowledge of the definition of slope and skills in kinematics concepts.
Brunel, T; Lobet, S; Deschamps, K; Hermans, C; Peerlinck, K; Vandesande, J; Pialat, J-B
2018-01-01
To assess the reliability of the IPSG MRI scale for tibiotalar (TTJ) and subtalar joint (STJ) changes in young haemophilic patients, correlating MRI findings with functional scores and 3D-rearfoot kinematics. A total of 37 haemophilic patients underwent bilateral MRI of the footankle, clinical evaluation and quantitative assessment of their 3D-rearfoot kinematics during walking. TTJ and STJ soft tissues were assessed twice along with osteochondral changes by two radiologists using the IPSG MRI scale. Inter- and intra-observer reproducibility of MRI scoring were tested by means of kappa statistics. Correlational analyses were performed between MRI findings and the Haemophilia Joint Health Score 2.1 (HJHS) and 3D-rearfoot kinematic data. The intra-reader reliability of MRI scoring was good to excellent (Kappa: 0.62-1), whereas the inter-reader reliability was moderate to good (Kappa: 0.54-0.79). Weak yet significant correlations were found between the frontal plane rearfoot range of motion (ROM) during loading response of gait and STJ score, as well as between frontal plane rearfoot ROM during the terminal stance phase and the rearfoot osteochondral lesions. The IPSG score appears applicable to not only the TTJ but also the STJ. Contrary to TTJ lesions, those of the STJ do not correlate with the HJHS but do with 3D-rearfoot kinematic data. © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This report presents results from the research grant entitled Active Control of Robot Manipulators, funded by the Goddard Space Flight Center, under Grant NAG5-780, for the period July 1, 1988 to January 1, 1989. An analysis is presented of a 6 degree-of-freedom robot end-effector built to study telerobotic assembly of NASA hardware in space. Since the end-effector is required to perform high precision motion in a limited workspace, closed-kinematic mechanisms are chosen for its design. A closed-form solution is obtained for the inverse kinematic problem and an iterative procedure employing Newton-Raphson method is proposed to solve the forward kinematic problem. A study of the end-effector workspace results in a general procedure for the workspace determination based on link constraints. Computer simulation results are presented.
NASA Astrophysics Data System (ADS)
Chinnasee, Chamnan; Nadzalan, Ali Md; Ikhwan Mohamad, Nur; Sazili, Abdul Hafiz Ahmad; Hemapandha, Witthaya; Azizuddin Khan, Thariq Khan; Pimjan, Luckhana; Tan, Kevin
2018-05-01
This study was conducted to determine and compare the kinematics of knee strike in MuayThai between dominant and non-dominant lower limb. Ten MuayThai beginners (mean age = 20 ± 1 years old) with less than one week experiences in MuayThai training were recruited and were asked to perform three trials of knee strikes for each leg (dominant and non-dominant). Joint angles and angular velocity of the movement were assessed for each trial. Repeated measure multivariate analyses of variances (MANOVA) were performed to compare the kinematics data between the dominant and non-dominant lower limb. Results showed no significant differences existed in all the joint kinematics examined between dominant and non-dominant lower limb. As the conclusion, MuayThai beginners demonstrated no differences of joint kinematics during knee strike between dominant and non-dominant lower limb.
Does the intention to communicate affect action kinematics?
Sartori, Luisa; Becchio, Cristina; Bara, Bruno G; Castiello, Umberto
2009-09-01
The aim of the present study was to investigate the effects of communicative intention on action. In Experiment 1 participants were requested to reach towards an object, grasp it, and either simply lift it (individual condition) or lift it with the intent to communicate a meaning to a partner (communicative condition). Movement kinematics were recorded using a three-dimensional motion analysis system. The results indicate that kinematics was sensitive to communicative intention. Although the to-be-grasped object remained the same, movements performed for the 'communicative' condition were characterized by a kinematic pattern which differed from those obtained for the 'individual' condition. These findings were confirmed in a subsequent experiment in which the communicative condition was compared to a control condition, in which the communicative exchange was prevented. Results are discussed in terms of cognitive pragmatics and current knowledge on how social behavior shapes action kinematics.
Constrained posture in dentistry - a kinematic analysis of dentists.
Ohlendorf, Daniela; Erbe, Christina; Nowak, Jennifer; Hauck, Imke; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A
2017-07-05
How a dentist works, such as the patterns of movements performed daily, is also largely affected by the workstation Dental tasks are often executed in awkward body positions, thereby causing a very high degree of strain on the corresponding muscles. The objective of this study is to detect those dental tasks, during which awkward postures occur most frequently. The isolated analysis of static postures will examine the duration for which these postures are maintained during the corresponding dental, respectively non-dental, activities. 21 (11f/10 m) dentists (age: 40.1 ± 10.4 years) participated in this study. An average dental workday was collected for every subject. To collect kinematic data of all activities, the CUELA system was used. Parallel to the kinematic examination, a detailed computer-based task analysis was conducted. Afterwards, both data sets were synchronized based on the chronological order of the postures assumed in the trunk and the head region. All tasks performed were assigned to the categories "treatment" (I), "office" (II) and "other activities" (III). The angle values of each body region (evaluation parameter) were examined and assessed corresponding to ergonomic standards. Moreover, this study placed a particular focus on static positions, which are held statically for 4 s and longer. For "treatment" (I), the entire head and trunk area is anteriorly tilted while the back is twisted to the right, in (II) and (III) the back is anteriorly tilted and twisted to the right (non-neutral position). Static positions in (I) last for 4-10s, static postures (approx. 60%) can be observed while in (II) and (III) in the back area static positions for more than 30 s are most common. Moreover, in (II) the back is twisted to the right for more than 60 s in 26.8%. Awkward positions are a major part of a dentists' work. This mainly pertains to static positions of the trunk and head in contrast to "office work." These insights facilitate the quantitative description of the dentist profession with regard to the related physical load along with the health hazards to the musculoskeletal system. Moreover, the results allow for a selective extraction of the most unfavorable static body positions that dentists assume for each of the activities performed.
Williams, Grace; Sarig-Bahat, Hilla; Williams, Katrina; Tyrrell, Ryan; Treleaven, Julia
2017-01-01
Research has consistently shown cervical kinematic impairments in subjects with persistent neck pain (NP). It could be reasoned that those with vestibular pathology (VP) may also have altered kinematics since vestibular stimulation via head movement can cause dizziness and visual disturbances. However, this has not been examined to date. This pilot study investigated changes in cervical kinematics between asymptomatic control, NP and VP subjects using a Virtual Reality (VR) system. It was hypothesised that there would be altered kinematics in VP subjects, which might be associated with dizziness and visual symptoms. Pilot cross sectional observational study. Twenty control, 14 VP and 20 NP subjects. Not applicable. Measures included questionnaires (neck disability index, pain on movement, dizziness and pain intensity, visual disturbances) and cervical kinematics (range, peak and mean velocity, smoothness, symmetry, and accuracy of cervical motion) using a virtual reality system. Results revealed significantly decreased mean velocity and symmetry of motion in both planes in those with NP but no differences in accuracy or range of motion. No significant differences were seen between VP subjects and asymptomatic controls. However, correlation analysis showed some moderate correlations between dizziness to selected kinematics in both the NP and the VP groups. These results support that cervical kinematics are altered in NP patients, with velocity most affected. There is potential for VP subjects to also have altered kinematics, especially those who experience dizziness. More research is required.
Recent software developments for biomechanical assessment
NASA Astrophysics Data System (ADS)
Greaves, John O. B.
1990-08-01
While much of the software developed in research laboratories is narrow in focus and suited for a specific experiment, some of it is broad enough and of high enough quality to be useful to others in solving similar problems. Several biomechanical assessment packages are now beginning to emerge, including: * 3D research biomechanics (5- and 6-DOF) with kinematics, kinetics, 32-channel analog data subsystem, and project management. * 3D full-body gait analysis with kinematics, kinetics, EMG charts, and force plate charts. * 2D dynamic rear-foot assessment. * 2D occupational biomechanics lifting task and personnel assessments. * 2D dynamic gait analysis. * Multiple 2D dynamic spine assessments. * 2D sport and biomechanics assessments with kinematics and kinetics. * 2D and 3D equine gait assessments.
Chehab, E F; Andriacchi, T P; Favre, J
2017-06-14
The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delahunt, Eamonn; Chawke, Mark; Kelleher, Judy; Murphy, Katie; Prendiville, Anna; Sweeny, Lauren; Patterson, Matt
2013-01-01
Context: Deficits in lower limb kinematics and postural stability are predisposing factors to the development of knee ligamentous injury. The extent to which these deficits are present after anterior cruciate ligament (ACL) reconstruction is still largely unknown. The primary hypothesis of the present study was that female athletes who have undergone ACL reconstruction and who have returned to sport participation would exhibit deficits in dynamic postural stability as well as deficiencies in hip- and knee-joint kinematics when compared with an age-, activity-, and sex-matched uninjured control group. Objective: To investigate dynamic postural stability as quantified by the Star Excursion Balance Test (SEBT) and simultaneous hip- and knee-joint kinematic profiles in female athletes who have undergone ACL reconstruction. Design: Descriptive laboratory study. Setting: University motion-analysis laboratory. Patients or Other Participants: Fourteen female athletes who had previously undergone ACL reconstruction (ACL-R) and 17 age- and sex-matched uninjured controls. Intervention(s): Each participant performed 3 trials of the anterior, posterior-medial, and posterior-lateral directional components of the SEBT. Main Outcome Measure(s): Reach distances for each directional component were quantified and expressed as a percentage of leg length. Simultaneous hip- and knee-joint kinematic profiles were recorded using a motion-analysis system. Results: The ACL-R group had decreased reach distances on the posterior-medial (P < .01) and posterior-lateral (P < .01) directional components of the SEBT. During performance of the directional components of the SEBT, ACL-R participants demonstrated altered hip-joint frontal-, sagittal-, and transverse-plane kinematic profiles (P < .05), as well as altered knee-joint sagittal-plane kinematic profiles (P < .05). Conclusions: Deficits in dynamic postural stability and concomitant altered hip- and knee-joint kinematics are present after ACL reconstruction and return to competitive activity. The extent to which these deficits influence potential future injury is worthy of investigation. PMID:23672381
Kinematic Analysis of a Posterior-stabilized Knee Prosthesis
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-01
Background: The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0–135° flexion. Results: Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, “rollback” compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis. PMID:25591565
Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH)
NASA Astrophysics Data System (ADS)
Weber, Samuel; Beutel, Jan; Faillettaz, Jérome; Hasler, Andreas; Krautblatter, Michael; Vieli, Andreas
2017-02-01
Understanding rock slope kinematics in steep, fractured bedrock permafrost is a challenging task. Recent laboratory studies have provided enhanced understanding of rock fatigue and fracturing in cold environments but were not successfully confirmed by field studies. This study presents a unique time series of fracture kinematics, rock temperatures and environmental conditions at 3500 m a. s. l. on the steep, strongly fractured Hörnligrat of the Matterhorn (Swiss Alps). Thanks to 8 years of continuous data, the longer-term evolution of fracture kinematics in permafrost can be analyzed with an unprecedented level of detail. Evidence for common trends in spatiotemporal pattern of fracture kinematics could be found: a partly reversible seasonal movement can be observed at all locations, with variable amplitudes. In the wider context of rock slope stability assessment, we propose separating reversible (elastic) components of fracture kinematics, caused by thermoelastic strains, from the irreversible (plastic) component due to other processes. A regression analysis between temperature and fracture displacement shows that all instrumented fractures exhibit reversible displacements that dominate fracture kinematics in winter. Furthermore, removing this reversible component from the observed displacement enables us to quantify the irreversible component. From this, a new metric - termed index of irreversibility - is proposed to quantify relative irreversibility of fracture kinematics. This new index can identify periods when fracture displacements are dominated by irreversible processes. For many sensors, irreversible enhanced fracture displacement is observed in summer and its initiation coincides with the onset of positive rock temperatures. This likely indicates thawing-related processes, such as meltwater percolation into fractures, as a forcing mechanism for irreversible displacements. For a few instrumented fractures, irreversible displacements were found at the onset of the freezing period, suggesting that cryogenic processes act as a driving factor through increasing ice pressure. The proposed analysis provides a tool for investigating and better understanding processes related to irreversible kinematics.
Centen, Andrew; Lowrey, Catherine R; Scott, Stephen H; Yeh, Ting-Ting; Mochizuki, George
2017-06-19
Spasticity is a common sequela of stroke. Traditional assessment methods include relatively coarse scales that may not capture all characteristics of elevated muscle tone. Thus, the aim of this study was to develop a tool to quantitatively assess post-stroke spasticity in the upper extremity. Ninety-six healthy individuals and 46 individuals with stroke participated in this study. The kinematic assessment of passive stretch (KAPS) protocol consisted of passive elbow stretch in flexion and extension across an 80° range in 5 movement durations. Seven parameters were identified and assessed to characterize spasticity (peak velocity, final angle, creep (or release), between-arm peak velocity difference, between-arm final angle, between-arm creep, and between-arm catch angle). The fastest movement duration (600 ms) was most effective at identifying impairment in each parameter associated with spasticity. A decrease in peak velocity during passive stretch between the affected and unaffected limb was most effective at identifying individuals as impaired. Spasticity was also associated with a decreased passive range (final angle) and a classic 'catch and release' as seen through between-arm catch and creep metrics. The KAPS protocol and robotic technology can provide a sensitive and quantitative assessment of post-stroke elbow spasticity not currently attainable through traditional measures.
The relationship between foot posture and lower limb kinematics during walking: A systematic review.
Buldt, Andrew K; Murley, George S; Butterworth, Paul; Levinger, Pazit; Menz, Hylton B; Landorf, Karl B
2013-07-01
Variations in foot posture, such as pes planus (low-arched foot) or pes cavus (high-arched foot), are thought to be an intrinsic risk factor for injury due to altered motion of the lower extremity. Hence, the aim of this systematic review was to investigate the relationship between foot posture and lower limb kinematics during walking. A systematic database search of MEDLINE, CINAHL, SPORTDiscus, Embase and Inspec was undertaken in March 2012. Two independent reviewers applied predetermined inclusion criteria to selected articles for review and selected articles were assessed for quality. Articles were then grouped into two broad categories: (i) those comparing mean kinematic parameters between different foot postures, and (ii) those examining associations between foot posture and kinematics using correlation analysis. A final selection of 12 articles was reviewed. Meta-analysis was not conducted due to heterogeneity between studies. Selected articles primarily focused on comparing planus and normal foot postures. Five articles compared kinematic parameters between different foot postures - there was some evidence for increased motion in planus feet, but this was limited by small effect sizes. Seven articles investigated associations between foot posture and kinematics - there was evidence that increasing planus foot posture was positively associated with increased frontal plane motion of the rearfoot. The body of literature provides some evidence of a relationship between pes planus and increased lower limb motion during gait, however this was not conclusive due to heterogeneity between studies and small effect sizes. Copyright © 2013 Elsevier B.V. All rights reserved.
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P
2016-01-01
Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis
Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.
2016-01-01
Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846
Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor
NASA Astrophysics Data System (ADS)
Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang
2017-01-01
In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.
Kinematical analysis of handwriting movements in depressed patients.
Mergl, R; Juckel, G; Rihl, J; Henkel, V; Karner, M; Tigges, P; Schröter, A; Hegerl, U
2004-05-01
Motor disturbances are a relevant aspect of depression. Kinematical analysis of movements can be applied to explore which type of motor dysfunction is associated with depression. We hypothesized that depressed patients draw and write significantly slower than controls and that motor disturbances become more pronounced under bi-manual demands. We examined 37 depressed patients and 37 healthy controls using a digitizing graphic tablet and subsequent kinematical analysis of handwriting and rapid drawing movements. Depressed patients performed drawing with significantly less regular velocity than controls (P < 0.001), but normal velocity. Motor differences between patients and controls did not increase under bi-manual demands. Handwriting of patients was abnormally slow (P = 0.04). Irregular patterns of velocity peaks in depressed patients point to basal ganglia dysfunction and/or deficient activity of the sensorimotor cortex and the supplementary motor area as a possible substrate of hand-motor disturbances in depression.
The Kinematic Analysis of Flat Leverage Mechanism of the Third Class
NASA Astrophysics Data System (ADS)
Zhauyt, A.; Mamatova, G.; Abdugaliyeva, G.; Alipov, K.; Sakenova, A.; Alimbetov, A.
2017-10-01
It is necessary to make link mechanisms calculation to the strength at designing of flat link mechanisms of high class after definition of block diagrams and link linear sizes i.e. it is rationally to choose their forms and to determine the section sizes. The algorithm of the definition of dimension of link mechanism lengths of high classes (MHC) and their metric parameters at successive approach is offered in this work. It this paper educational and research software named GIM is presented. This software has been developed with the aim of approaching the difficulties students usually encounter when facing up to kinematic analysis of mechanisms. A deep understanding of the kinematic analysis is necessary to go a step further into design and synthesis of mechanisms. In order to support and complement the theoretical lectures, GIM software is used during the practical exercises, serving as an educational complementary tool reinforcing the knowledge acquired by the students.
Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis
NASA Astrophysics Data System (ADS)
Arendra, A.; Akhmad, S.
2018-01-01
This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly
NASA Astrophysics Data System (ADS)
Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun
2018-06-01
This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.
Habechian, Fernanda Assis Paes; Rosa, Dayana Patricia; Haik, Melina Nevoeiro; Camargo, Paula Rezende
2016-10-01
Recently, it has been suggested that sex may influence scapular kinematics. A more comprehensive analysis of the scapular kinematics in children and adults, including sex as a factor, will help to understand if differences between sexes are present since childhood. The purpose of this study was to compare scapular kinematics between sex in children and adults during elevation of the arm. One-hundred and sixteen asymptomatic adults (58 men and 58 women) and 53 children (28 boys and 25 girls) participated in the study. Three-dimensional scapular kinematics during elevation of the arm were obtained using an electromagnetic tracking device. Women had a more upwardly rotated scapula in the nondominant side (P < .05), with large effects and a more anteriorly tilted position at 60°, 90°, and 120° of arm elevation in the dominant side, and at 90° and 120° in the nondominant side (P < .05) with moderate effects when compared with men. Differences between sexes were not found in the children (P > .05). In conclusion, sex seems to influence scapular kinematics in adulthood, but not in childhood.
2008-06-01
and H. Seraji , “Kinematic analysis of 7 DOF manipulators,” Int. Journal of Robotics Research, vol. 11, no. 5, pp. 469–481, 1992. [9] D. Lawrence...Force/torque Sensor Read joint Angle Forward kinematics Impedance controller Patient Fe Fs ix∆ Xd Xc diθ ciθ riθ P&O Proc. of SPIE Vol
Advances in the Visualization and Analysis of Boundary Layer Flow in Swimming Fish
2005-02-01
caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon ( Oncorhynchus nerka ) at steady swimming speeds. J. Exp. Biol...caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon ( Oncorhynchus nerka ) at steady swimming speeds. J. Exp. Biol
Inertial Sensor Based Analysis of Lie-to-Stand Transfers in Younger and Older Adults
Schwickert, Lars; Boos, Ronald; Klenk, Jochen; Bourke, Alan; Becker, Clemens; Zijlstra, Wiebren
2016-01-01
Many older adults lack the capacity to stand up again after a fall. Therefore, to analyse falls it is relevant to understand recovery patterns, including successful and failed attempts to get up from the floor in general. This study analysed different kinematic features of standing up from the floor. We used inertial sensors to describe the kinematics of lie-to-stand transfer patterns of younger and healthy older adults. Fourteen younger (20–50 years of age, 50% men) and 10 healthy older community dwellers (≥60 years; 50% men) conducted four lie-to-stand transfers from different initial lying postures. The analysed temporal, kinematic, and elliptic fitting complexity measures of transfer performance were significantly different between younger and older subjects (i.e., transfer duration, angular velocity (RMS), maximum vertical acceleration, maximum vertical velocity, smoothness, fluency, ellipse width, angle between ellipses). These results show the feasibility and potential of analysing kinematic features to describe the lie-to-stand transfer performance, to help design interventions and detection approaches to prevent long lies after falls. It is possible to describe age-related differences in lie-to-stand transfer performance using inertial sensors. The kinematic analysis remains to be tested on patterns after real-world falls. PMID:27529249
Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals
Zhang, Qin; Liu, Runfeng; Chen, Wenbin; Xiong, Caihua
2017-01-01
In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. PMID:28611573
Eltoukhy, Moataz; Kelly, Adam; Kim, Chang-Young; Jun, Hyung-Pil; Campbell, Richard; Kuenze, Christopher
2016-01-01
Cost effective, quantifiable assessment of lower extremity movement represents potential improvement over standard tools for evaluation of injury risk. Ten healthy participants completed three trials of a drop jump, overhead squat, and single leg squat task. Peak hip and knee kinematics were assessed using an 8 camera BTS Smart 7000DX motion analysis system and the Microsoft Kinect® camera system. The agreement and consistency between both uncorrected and correct Kinect kinematic variables and the BTS camera system were assessed using interclass correlations coefficients. Peak sagittal plane kinematics measured using the Microsoft Kinect® camera system explained a significant amount of variance [Range(hip) = 43.5-62.8%; Range(knee) = 67.5-89.6%] in peak kinematics measured using the BTS camera system. Across tasks, peak knee flexion angle and peak hip flexion were found to be consistent and in agreement when the Microsoft Kinect® camera system was directly compared to the BTS camera system but these values were improved following application of a corrective factor. The Microsoft Kinect® may not be an appropriate surrogate for traditional motion analysis technology, but it may have potential applications as a real-time feedback tool in pathological or high injury risk populations.
The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.
van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth
2017-09-01
The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.
Ryu, Ju Seok; Park, Donghwi; Oh, Yoongul; Lee, Seok Tae; Kang, Jin Young
2016-01-01
Background/Aims The purpose of this study was to develop new parameters of high-resolution manometry (HRM) and to applicate these to quantify the effect of bolus volume and texture on pharyngeal swallowing. Methods Ten healthy subjects prospectively swallowed dry, thin fluid 2 mL, thin fluid 5 mL, thin fluid 10 mL, and drinking twice to compare effects of bolus volume. To compare effect of texture, subjects swallowed thin fluid 5 mL, yogurt 5 mL, and bread twice. A 32-sensor HRM catheter and BioVIEW ANALYSIS software were used for data collection and analysis. HRM data were synchronized with kinematic analysis of videofluoroscopic swallowing study (VFSS) using epiglottis tilting. Results Linear correlation analysis for volume showed significant correlation for area of velopharynx, duration of velopharynx, pre-upper esophageal sphincter (UES) maximal pressure, minimal UES pressure, UES activity time, and nadir UES duration. In the correlation with texture, all parameters were not significantly different. The contraction of the velopharynx was faster than laryngeal elevation. The durations of UES relaxation was shorter in the kinematic analysis than HRM. Conclusions The bolus volume was shown to have significant effect on pharyngeal pressure and timing, but the texture did not show any effect on pharyngeal swallowing. The parameters of HRM were more sensitive than those of kinematic analysis. As the parameters of HRM are based on precise anatomic structure and the kinematic analysis reflects the actions of multiple anatomic structures, HRM and VFSS should be used according to their purposes. PMID:26598598
Howell, Stephen M; Hodapp, Esther E; Vernace, Joseph V; Hull, Maury L; Meade, Thomas D
2013-10-01
Tibiofemoral contact kinematics or knee implant motions have a direct influence on patient function and implant longevity and should be evaluated for any new alignment technique such as kinematically aligned total knee arthroplasty (TKA). Edge loading of the tibial liner and external rotation (reverse of normal) and adduction of the tibial component on the femoral component are undesirable contact kinematics that should be minimized. Accordingly, this study determined whether the overall prevalence of undesirable contact kinematics during standing, mid kneeling near 90 degrees and full kneeling with kinematically aligned TKA are minimal and not different between groups of consecutive patients treated by different surgeons. Three surgeons were asked to perform cemented, kinematically aligned TKA with patient-specific guides in a consecutive series of patients with their preferred cruciate-retaining (CR) implant. In vivo tibiofemoral contact positions were obtained using a 3- to 2-dimensional image registration technique in 69 subjects (Vanguard CR-TKA N = 22, and Triathlon CR-TKA N = 47). Anterior or posterior edge loading of the tibial liner was not observed. The overall prevalence of external rotation of the tibial component on the femoral component of 6 % was low and not different between surgeons (n.s.). The overall prevalence of adduction of the tibial component on the femoral component of 4 % was low and not different between surgeons (n.s.). Kinematically aligned TKA minimized the undesirable contact kinematics of edge loading of the tibial liner, and external rotation and adduction of the tibial component on the femoral component during standing and kneeling, which suggests an optimistic prognosis for durable long-term function. III.
Superposed ruptile deformational events revealed by field and VOM structural analysis
NASA Astrophysics Data System (ADS)
Kumaira, Sissa; Guadagnin, Felipe; Keller Lautert, Maiara
2017-04-01
Virtual outcrop models (VOM) is becoming an important application in the analysis of geological structures due to the possibility of obtaining the geometry and in some cases kinematic aspects of analyzed structures in a tridimensional photorealistic space. These data are used to gain quantitative information on the deformational features which coupled with numeric models can assist in understands deformational processes. Old basement units commonly register superposed deformational events either ductile or ruptile along its evolution. The Porongos Belt, located at southern Brazil, have a complex deformational history registering at least five ductile and ruptile deformational events. In this study, we presents a structural analysis of a quarry in the Porongos Belt, coupling field and VOM structural information to understand process involved in the last two deformational events. Field information was acquired using traditional structural methods for analysis of ruptile structures, such as the descriptions, drawings, acquisition of orientation vectors and kinematic analysis. VOM was created from the image-based modeling method through photogrammetric data acquisition and orthorectification. Photogrammetric data acquisition was acquired using Sony a3500 camera and a total of 128 photographs were taken from ca. 10-20 m from the outcrop in different orientations. Thirty two control point coordinates were acquired using a combination of RTK dGPS surveying and total station work, providing a precision of few millimeters for x, y and z. Photographs were imported into the Photo Scan software to create a 3D dense point cloud from structure from-motion algorithm, which were triangulated and textured to generate the VOM. VOM was georreferenced (oriented and scaled) using the ground control points, and later analyzed in OpenPlot software to extract structural information. Data was imported in Wintensor software to obtain tensor orientations, and Move software to process and interpret geometrical and kinematic data. Planar and linear structural orientations and kinematic indicators revealed superposition of three deformational events: i) compressive, ii) transtensional, and iii) extensional paleostress regimes. The compressive regime was related to a radial to pure compression with N-S horizontal maximum compression vector. This stress regime corresponds mainly to the development of dextral tension fractures and NE-SW reverse faults. The transtensional regime has NW-SE sub-horizontal extension, NE-SW horizontal compressional, and sub-vertical intermediate tensors, generating mainly shear fractures by reactivation of the metamorphic foliation (anisotropy), NE-SW reverse faults and NE-vertical veins and gashes. The extensional regime of strike-slip type presents a NE-SW sub-horizontal extension and NW-SE trending sub-vertical maximum compression vector. Structures related to this regime are sub-vertical tension gashes, conjugate fractures and NW-SE normal faults. Cross-cutting relations show that compression was followed by transtension, which reactivate the ductile foliation, and in the last stage, extension dominated. Most important findings show that: i) local stress fields can modify expected geometry and ii) anisotropy developed by previous structures control the nucleation of new fractures and reactivations. Use of field data integrated in a VOM has great potential as analogues for structured reservoirs.
NASA Astrophysics Data System (ADS)
Khusainov, R.; Klimchik, A.; Magid, E.
2017-01-01
The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.
[Kinematic movement analyses and their application in psychiatry].
Juckel, Georg; Mergl, Roland; Hegerl, Ulrich
2005-04-01
There is a long tradition to develop valid instruments for the exact assessment of psycho-motor dysfunctions in psychiatry. However, progress is hampered by the complexity of emotionally driven movements in psychiatric patients. Methods used up to now either remains unspecific due to only qualitative measurements or focus on the neurophysiological aspects too much. Thus, the results accomplished so far are only very general unspecific concerning different groups of psychiatric patients. In this paper, two own methods are presented which are aimed to avoid the two poles above mentioned. Kinematic analyses of facial expressions as well as handwriting movements provide quantitative and quite specific informations about psycho-motor dysfunctions of psychiatric patients and the effects of psychotropic substances. Thus, these methods are well suitable for relating them to other neurobiological parameters in order to contribute to the pathophysiological understanding of psycho-motor symptoms in psychiatric patients.
Casellato, Claudia; Zorzi, Giovanna; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Nardocci, Nardo
2011-07-01
The aim of this study was to provide a quantitative assessment of pure dystonia in a group of children. Kinematic and muscular characteristics of unconstrained movements of the upper limb, reaching and writing, were investigated. During reaching, the distinguishing factors of dystonic movement were reduced velocity, loss of muscular activation focalization, and impairment of rest-movement modulation. Muscular parameters were able to linearly discriminate the different levels of severity. These results support the hypothesis that basal ganglia dysfunction is responsible for compromising the motor activity focusing. The handwriting movement revealed that the kinematic coordination was altered depending on dystonia severity scores. The 2 protocols revealed themselves feasible and sensitive for detecting even local and subclinical signs. Hence, this work provides a contribution toward a reliable assessment of pure dystonia, crucial for clinical characterization of patients and evaluation of the different treatment options.
Preliminary study of rib articulated model based on dynamic fluoroscopy images
NASA Astrophysics Data System (ADS)
Villard, Pierre-Frederic; Escamilla, Pierre; Kerrien, Erwan; Gorges, Sebastien; Trousset, Yves; Berger, Marie-Odile
2014-03-01
We present in this paper a preliminary study of rib motion tracking during Interventional Radiology (IR) fluoroscopy guided procedures. It consists in providing a physician with moving rib three-dimensional (3D) models projected in the fluoroscopy plane during a treatment. The strategy is to help to quickly recognize the target and the no-go areas i.e. the tumor and the organs to avoid. The method consists in i) elaborating a kinematic model of each rib from a preoperative computerized tomography (CT) scan, ii) processing the on-line fluoroscopy image and iii) optimizing the parameters of the kinematic law such as the transformed 3D rib projected on the medical image plane fit well with the previously processed image. The results show a visually good rib tracking that has been quantitatively validated by showing a periodic motion as well as a good synchronism between ribs.
Childers, W Lee; Kogler, Géza F
2014-01-01
People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p = 0.05. The CRANK condition reduced hip and knee ROM in the amputated limb compared with the control condition. There were no differences in joint kinematics between the contralateral and amputated limbs during the CRANK condition. Pedaling asymmetries did not differ and were 23.0% +/= 9.8% and 23.2% +/= 12% for the control and CRANK conditions, respectively. Our results suggest that minimizing kinematic asymmetries does not relate to kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.
NASA Astrophysics Data System (ADS)
Nevitt, Johanna M.; Pollard, David D.; Warren, Jessica M.
2014-03-01
Rock deformation often is investigated using kinematic and/or mechanical models. Here we provide a direct comparison of these modeling techniques in the context of a deformed dike within a meter-scale contractional fault step. The kinematic models consider two possible shear plane orientations and various modes of deformation (simple shear, transtension, transpression), while the mechanical model uses the finite element method and assumes elastoplastic constitutive behavior. The results for the kinematic and mechanical models are directly compared using the modeled maximum and minimum principal stretches. The kinematic analysis indicates that the contractional step may be classified as either transtensional or transpressional depending on the modeled shear plane orientation, suggesting that these terms may be inappropriate descriptors of step-related deformation. While the kinematic models do an acceptable job of depicting the change in dike shape and orientation, they are restricted to a prescribed homogeneous deformation. In contrast, the mechanical model allows for heterogeneous deformation within the step to accurately represent the deformation. The ability to characterize heterogeneous deformation and include fault slip - not as a prescription, but as a solution to the governing equations of motion - represents a significant advantage of the mechanical model over the kinematic models.
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-05-13
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.
Motion capability analysis of a quadruped robot as a parallel manipulator
NASA Astrophysics Data System (ADS)
Yu, Jingjun; Lu, Dengfeng; Zhang, Zhongxiang; Pei, Xu
2014-12-01
This paper presents the forward and inverse displacement analysis of a quadruped robot MANA as a parallel manipulator in quadruple stance phase, which is used to obtain the workspace and control the motion of the body. The robot MANA designed on the basis of the structure of quadruped mammal is able to not only walk and turn in the uneven terrain, but also accomplish various manipulating tasks as a parallel manipulator in quadruple stance phase. The latter will be the focus of this paper, however. For this purpose, the leg kinematics is primarily analyzed, which lays the foundation on the gait planning in terms of locomotion and body kinematics analysis as a parallel manipulator. When all four feet of the robot contact on the ground, by assuming there is no slipping at the feet, each contacting point is treated as a passive spherical joint and the kinematic model of parallel manipulator is established. The method for choosing six non-redundant actuated joints for the parallel manipulator from all twelve optional joints is elaborated. The inverse and forward displacement analysis of the parallel manipulator is carried out using the method of coordinate transformation. Finally, based on the inverse and forward kinematic model, two issues on obtaining the reachable workspace of parallel manipulator and planning the motion of the body are implemented and verified by ADAMS simulation.
Computer-based analysis of general movements reveals stereotypies predicting cerebral palsy.
Philippi, Heike; Karch, Dominik; Kang, Keun-Sun; Wochner, Katarzyna; Pietz, Joachim; Dickhaus, Hartmut; Hadders-Algra, Mijna
2014-10-01
To evaluate a kinematic paradigm of automatic general movements analysis in comparison to clinical assessment in 3-month-old infants and its prediction for neurodevelopmental outcome. Preterm infants at high risk (n=49; 26 males, 23 females) and term infants at low risk (n=18; eight males, 10 females) of developmental impairment were recruited from hospitals around Heidelberg, Germany. Kinematic analysis of general movements by magnet tracking and clinical video-based assessment of general movements were performed at 3 months of age. Neurodevelopmental outcome was evaluated at 2 years. By comparing the general movements of small samples of children with and without cerebral palsy (CP), we developed a kinematic paradigm typical for infants at risk of developing CP. We tested the validity of this paradigm as a tool to predict CP and neurodevelopmental impairment. Clinical assessment correctly identified almost all infants with neurodevelopmental impairment including CP, but did not predict if the infant would be affected by CP or not. The kinematic analysis, in particular the stereotypy score of arm movements, was an excellent predictor of CP, whereas stereotyped repetitive movements of the legs predicted any neurodevelopmental impairment. The automatic assessment of the stereotypy score by magnet tracking in 3-month-old spontaneously moving infants at high risk of developmental abnormalities allowed a valid detection of infants affected and unaffected by CP. © 2014 Mac Keith Press.
Impact of beam-beam effects on precision luminosity measurements at the ILC
NASA Astrophysics Data System (ADS)
Rimbault, C.; Bambade, P.; Mönig, K.; Schulte, D.
2007-09-01
In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.
Graphs in Kinematics--A Need for Adherence to Principles of Algebraic Functions
ERIC Educational Resources Information Center
Sokolowski, Andrzej
2017-01-01
Graphs in physics are central to the analysis of phenomena and to learning about a system's behavior. The ways students handle graphs are frequently researched. Students' misconceptions are highlighted, and methods of improvement suggested. While kinematics graphs are to represent a real motion, they are also algebraic entities that must satisfy…
LACEwING: A New Moving Group Analysis Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedel, Adric R.; Blunt, Sarah C.; Faherty, Jacqueline K.
We present a new nearby young moving group (NYMG) kinematic membership analysis code, LocAting Constituent mEmbers In Nearby Groups (LACEwING), a new Catalog of Suspected Nearby Young Stars, a new list of bona fide members of moving groups, and a kinematic traceback code. LACEwING is a convergence-style algorithm with carefully vetted membership statistics based on a large numerical simulation of the Solar Neighborhood. Given spatial and kinematic information on stars, LACEwING calculates membership probabilities in 13 NYMGs and three open clusters within 100 pc. In addition to describing the inputs, methods, and products of the code, we provide comparisons ofmore » LACEwING to other popular kinematic moving group membership identification codes. As a proof of concept, we use LACEwING to reconsider the membership of 930 stellar systems in the Solar Neighborhood (within 100 pc) that have reported measurable lithium equivalent widths. We quantify the evidence in support of a population of young stars not attached to any NYMGs, which is a possible sign of new as-yet-undiscovered groups or of a field population of young stars.« less
Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki
2014-04-01
Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.
Multi-segment foot landing kinematics in subjects with chronic ankle instability.
De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip
2015-07-01
Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of three-dimensional multi-segmental foot models used in clinical gait laboratories.
Nicholson, Kristen; Church, Chris; Takata, Colton; Niiler, Tim; Chen, Brian Po-Jung; Lennon, Nancy; Sees, Julie P; Henley, John; Miller, Freeman
2018-05-16
Many skin-mounted three-dimensional multi-segmented foot models are currently in use for gait analysis. Evidence regarding the repeatability of models, including between trial and between assessors, is mixed, and there are no between model comparisons of kinematic results. This study explores differences in kinematics and repeatability between five three-dimensional multi-segmented foot models. The five models include duPont, Heidelberg, Oxford Child, Leardini, and Utah. Hind foot, forefoot, and hallux angles were calculated with each model for ten individuals. Two physical therapists applied markers three times to each individual to assess within and between therapist variability. Standard deviations were used to evaluate marker placement variability. Locally weighted regression smoothing with alpha-adjusted serial T tests analysis was used to assess kinematic similarities. All five models had similar variability, however, the Leardini model showed high standard deviations in plantarflexion/dorsiflexion angles. P-value curves for the gait cycle were used to assess kinematic similarities. The duPont and Oxford models had the most similar kinematics. All models demonstrated similar marker placement variability. Lower variability was noted in the sagittal and coronal planes compared to rotation in the transverse plane, suggesting a higher minimal detectable change when clinically considering rotation and a need for additional research. Between the five models, the duPont and Oxford shared the most kinematic similarities. While patterns of movement were very similar between all models, offsets were often present and need to be considered when evaluating published data. Copyright © 2018 Elsevier B.V. All rights reserved.
Gonçalves, Glaucia Helena; Selistre, Luiz Fernando Approbato; Petrella, Marina; Mattiello, Stela Márcia
2017-03-01
Individuals with knee osteoarthritis (OA) generally demonstrate great difficulty in ascending stairs. The strategies and compensations used by these individuals in stair activities have not been fully established. The purpose of this study was to investigate the joint kinematics of the pelvis, hip, knee and ankle throughout the gait cycle, in the sagittal and frontal planes, in individuals with mild and moderate knee OA, during an ascending stairs task. Thirty-one individuals with knee OA and 19 controls were subjected to clinical and radiographic analysis, divided into three groups: control, mild knee OA, and moderate knee OA. Participants answered a self-reported questionnaire, carried out performance-based tests, and their kinematic data were recorded during an ascending stairs task using an eight-camera Qualisys 3D-Motion analysis system. The individuals with moderate degrees of knee OA demonstrated kinematic alterations in the pelvis, hip, knee, and ankle in the sagittal plane. The individuals with mild degrees of knee OA demonstrated kinematic alterations of the hip in the frontal plane, and kinematic alterations of the ankle in the sagittal plane. The ascending stairs task allowed verification of meaningful information regarding gait strategies used by individuals with mild and moderate knee OA. The strategies of these two groups of individuals are different for this task, although more pronounced in individuals with moderate knee OA. The findings should be taken into account in the development of rehabilitation programs. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Kristin D.; Ben-Abraham, Ephraim I.; Magnuson, Dixon J.; Camp, Jon J.; Berglund, Lawrence J.; An, Kai-Nan; Bronfort, Gert; Gay, Ralph E.
2016-01-01
Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion–extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar–sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2–S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17–0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion–extension are likely robust, even when patient alignment is not perfect. PMID:26974192
The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies
NASA Astrophysics Data System (ADS)
Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.
2018-04-01
We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan future multiband, high-resolution observations on high-redshift star-forming and quiescent galaxies with next-generation facilities.
Rose, Michael; Curtze, Carolin; O'Sullivan, Joseph; El-Gohary, Mahmoud; Crawford, Dennis; Friess, Darin; Brady, Jacqueline M
2017-12-01
To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P = .03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P = .03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern-based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Zhao, Kristin D; Ben-Abraham, Ephraim I; Magnuson, Dixon J; Camp, Jon J; Berglund, Lawrence J; An, Kai-Nan; Bronfort, Gert; Gay, Ralph E
2016-05-01
Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion-extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar-sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2-S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17-0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion-extension are likely robust, even when patient alignment is not perfect.
Gorwa, Joanna; Dworak, Lechosław B.; Michnik, Robert; Jurkojć, Jacek
2014-01-01
Background This paper presents a case study of kinematic analysis of the modern dance movement known as the “stag jump”. Detailed analysis of the kinematic structure of this movement as performed by the dancers, accompanied by measurements of impact forces during landing, will allow the authors to determine, in subsequent model-based research phases, the forces acting in knee joints of the lower landing limb. Material/Methods Two professional modern dancers participated in the study: a male and a female. The study consisted in recording the values of ground reaction and body motion, and then determining and analyzing kinematic parameters of performed movements. Results The results of measurement of joint angles in the landing lower limb, pelvis, and foot position in relation to the ground, as well as the level of vertical components of ground reaction, provided insight into the loading response phase of the “stag jump”. The measurements and obtained results show differences between the man and woman in ground reactions and kinematic quantities. Conclusions The results obtained during the research may be used in the development and teaching of dancing movements. Training sessions, carried out in the biomechanical laboratory, with active participation of dancing teachers, could form a basis for a prevention model of injuries and physical overloads occurring within this occupational group. Primary differences in the “stag jump” performance technique probably result from the different educational path the man and the woman went through. PMID:24971626
NASA Astrophysics Data System (ADS)
Carrera; Valvano; Kulikov
2018-01-01
In this work, a new class of finite elements for the analysis of composite and sandwich shells embedding piezoelectric skins and patches is proposed. The main idea of models coupling is developed by presenting the concept of nodal dependent kinematics where the same finite element can present at each node a different approximation of the main unknowns by setting a node-wise through-the-thickness approximation base. In a global/local approach scenario, the computational costs can be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain where the resulting strain and stress states, and their electro-mechanical coupling present a complex distribution. Several numerical investigations are carried out to validate the accuracy and efficiency of the present shell element. An accurate representation of mechanical stresses and electric displacements in localized zones is possible with reduction of the computational costs if an accurate distribution of the higher-order kinematic capabilities is performed. On the contrary, the accuracy of the solution in terms of mechanical displacements and electric potential values depends on the global approximation over the whole structure. The efficacy of the present node-dependent variable kinematic models, thus, depends on the characteristics of the problem under consideration as well as on the required analysis type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuti, L.; Sartoris, B.; Borgani, S.
We perform a maximum likelihood kinematic analysis of the two dynamically relaxed galaxy clusters MACS J1206.2-0847 at z =0.44 and RXC J2248.7-4431 at z =0.35 to determine the total mass profile in modified gravity models, using a modified version of the MAMPOSSt code of Mamon, Biviano and Bou and apos;e. Our work is based on the kinematic and lensing mass profiles derived using the data from the Cluster Lensing And Supernova survey with Hubble (hereafter CLASH) and the spectroscopic follow-up with the Very Large Telescope (hereafter CLASH-VLT). We assume a spherical Navarro-Frenk-White (NFW hereafter) profile in order to obtain amore » constraint on the fifth force interaction range λ for models in which the dependence of this parameter on the environment is negligible at the scale considered (i.e. λ= const ) and fixing the fifth force strength to the value predicted in f (R) gravity. We then use information from lensing analysis to put a prior on the other NFW free parameters. In the case of MACSJ 1206 the joint kinematic+lensing analysis leads to an upper limit on the effective interaction range λ≤1.61 mpc at Δχ{sup 2}=2.71 on the marginalized distribution. For RXJ 2248 instead a possible tension with the ΛCDM model appears when adding lensing information, with a lower limit λ≥0.14 mpc at Δχ{sup 2}=2.71. This is consequence of the slight difference between the lensing and kinematic data, appearing in GR for this cluster, that could in principle be explained in terms of modifications of gravity. We discuss the impact of systematics and the limits of our analysis as well as future improvements of the results obtained. This work has interesting implications in view of upcoming and future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass reconstruction for a large number of galaxy clusters.« less
Aslam, H; Schneiders, A; Perret, M; Weinbauer, G F; Hodges, J K
2002-02-01
Germ cell production and organization of the testicular epithelium in a prosimian species, the grey mouse lemur, Microcebus murinus, was investigated to extend knowledge of comparative primate spermatogenesis. In addition, semen samples collected from adult male lemurs (body weight 53-92 g; n = 16) by rectal probe electroejaculation were evaluated using computer-assisted morphometric and kinematic analysis of spermatozoa. Epididymidal spermatozoa were collected from six animals after hemicastration; the testes were weighed and prepared for stereological analysis and flow cytometry. The relative testis mass (as a percentage of body weight) ranged between 1.17 and 5.6%. Twelve stages of testicular seminiferous epithelium as described for macaques were applied and only a single stage was observed in most of the seminiferous tubule cross-sections. On average (mean SD), a single testis contained 1870 +/- 829 x 10(6) germ cells and 35 +/- 12 x 10(6) Sertoli cells. Germ cell ratios (preleptotene:type B spermatogonia = 2, round spermatid:pachytene = 3; elongated spermatid:round spermatids = 1) indicated high spermatogenic efficacy. Sperm head dimensions and tail lengths of the ejaculated and epididymidal spermatozoa were similar. Percentages of defects (neck/mid-piece and tail) were low ( 10%) and similar for ejaculated and epididymidal spermatozoa. Spermatozoa were highly motile, characterized by extensive lateral head displacement, but relatively low progressive motility. In conclusion, the grey mouse lemur has unusually large testes with a highly efficient spermatogenic process and large sperm output. These features, together with the high proportion of morphologically normal and highly motile spermatozoa in the ejaculates, indicate that Microcebus murinus is a species in which sperm competition after ejaculation is likely to occur. The predominantly single spermatogenic stage system seems to be an ancestral feature among primates.
Effect of body mass index on hemiparetic gait.
Sheffler, Lynne R; Bailey, Stephanie Nogan; Gunzler, Douglas; Chae, John
2014-10-01
To evaluate the relationship between body mass index (BMI) and spatiotemporal, kinematic, and kinetic gait parameters in chronic hemiparetic stroke survivors. Secondary analysis of data collected in a randomized controlled trial comparing two 12-week ambulation training treatments. Academic medical center. Chronic hemiparetic stroke survivors (N = 108, >3 months poststroke) Linear regression analyses were performed of BMI, and selected pretreatment gait parameters were recorded using quantitative gait analysis. Spatiotemporal, kinematic, and kinetic gait parameters. A series of linear regression models that controlled for age, gender, stroke type (ischemic versus hemorrhagic), interval poststroke, level of motor impairment (Fugl-Meyer score), and walking speed found BMI to be positively associated with step width (m) (β = 0.364, P < .001), positively associated with peak hip abduction angle of the nonparetic limb during stance (deg) (β = 0.177, P = .040), negatively associated with ankle dorsiflexion angle at initial contact of the paretic limb (deg) (β = -0.222, P = .023), and negatively associated with peak ankle power at push-off (W/kg) of the paretic limb (W/kg)(β = -0.142, P = .026). When walking at a similar speed, chronic hemiparetic stroke subjects with a higher BMI demonstrated greater step width, greater hip hiking of the paretic lower limb, less paretic limb dorsiflexion at initial contact, and less paretic ankle power at push-off as compared to stroke subjects with a lower BMI and similar level of motor impairment. Further studies are necessary to determine the clinical relevance of these findings with respect to rehabilitation strategies for gait dysfunction in hemiparetic patients with higher BMIs. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail
NASA Astrophysics Data System (ADS)
Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.
2011-11-01
We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.
Goto, Akira; Moritomo, Hisao; Itohara, Tomonobu; Watanabe, Tetsu; Sugamoto, Kazuomi
2009-05-01
It is difficult to determine the kinematics of the subtalar joint because of its anatomical and functional complexity. The purpose of the study was to clarify the 3D kinematics of the subtalar joint in vivo. Subjects were four healthy female volunteers. Magnetic resonance imaging (MRI) sequences were acquired in seven positions during dorsi-plantarflexion (DPF) and in 10 positions during inversion-eversion (IE) at intervals of 10 degrees. MRI data of the talus and calcaneus in the neutral position were superimposed on images of the other positions using voxel-based registration, and relative motions and axes of rotation were visualized and quantitatively calculated. The calcaneus always rotated from dorsolateral to medioplantar during DPF and IE, and the motion plane was very similar to that of the entire foot in IE. The axes of rotation of the calcaneus relative to the talus during DPF and IE had a very close spatial relationship, running obliquely from antero-dorso-medial to postero-planto-lateral and penetrating the talar neck. The rotation angle around each of these calcaneal axes tended to be greater in IE (20 degrees +/- 2 degrees) than in DPF (16 degrees +/- 3 degrees). In DPF, motion of the calcaneus relative to the talus occurred predominantly around maximum dorsiflexion and plantarflexion, with little movement observed at intermediate positions. During IE, the calcaneus exhibited uninterrupted motion related to foot movement. The subtalar joint is essentially a uniaxial joint with a motion plane almost identical to that of IE of the entire foot. Knowledge of normal subtalar kinematics may be helpful when evaluating pathologic conditions.
NASA Astrophysics Data System (ADS)
Nguyen, Van Xo; Golikov, N. S.
2018-05-01
The structure and kinematics of the two-mass GZS vibratory feeder operation are considered. It is established that the movement of the material's particles on the feeder surface determines its capacity. The development and analysis of the mathematical model of material's particle movement on the two-mass GZS vibratory feeder surface are shown. The results of Matlab optimization of material particles velocity function are given that allows setting rational kinematics of the feeder.
Would you like to play together? Adults' attachment and the mirror game.
Feniger-Schaal, Rinat; Noy, Lior; Hart, Yuval; Koren-Karie, Nina; Mayo, Avraham E; Alon, Uri
2016-01-01
Why is it easy for some people to play together and difficult for others? In this interdisciplinary pilot study, we looked at dyadic interaction in motion as a paradigm to explore the expression of attachment in adulthood. We used a device that gives simple, quantitative and automated indicators for the quality of interaction while playing the mirror game. Forty-seven participants played the mirror game with the same gender-matched expert players. In addition, participants were interviewed on the Adult Attachment Interview to assess their quality of attachment. Using high resolution kinematic measures, we found that secure attachment was correlated with high complexity of the game and low synchrony compared to insecure attachment. The findings suggest that security of attachment is related to a more exploratory and less rigid game than insecure-dismissing attachment. These preliminary findings imply that high resolution analysis of simple movement interaction could carry information about attachment behavior.
Elastic instability in stratified core annular flow.
Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie
2011-06-01
We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.
Beil, Jonas; Marquardt, Charlotte; Asfour, Tamim
2017-07-01
Kinematic compatibility is of paramount importance in wearable robotic and exoskeleton design. Misalignments between exoskeletons and anatomical joints of the human body result in interaction forces which make wearing the exoskeleton uncomfortable and even dangerous for the human. In this paper we present a kinematically compatible design of an exoskeleton hip to reduce kinematic incompatibilities, so called macro- and micro-misalignments, between the human's and exoskeleton's joint axes, which are caused by inter-subject variability and articulation. The resulting design consists of five revolute, three prismatic and one ball joint. Design parameters such as range of motion and joint velocities are calculated based on the analysis of human motion data acquired by motion capture systems. We show that the resulting design is capable of self-aligning to the human hip joint in all three anatomical planes during operation and can be adapted along the dorsoventral and mediolateral axis prior to operation. Calculation of the forward kinematics and FEM-simulation considering kinematic and musculoskeletal constraints proved sufficient mobility and stiffness of the system regarding the range of motion, angular velocity and torque admissibility needed to provide 50 % assistance for an 80 kg person.
Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.
2016-01-01
Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042
NASA Technical Reports Server (NTRS)
Changizi, Koorosh
1989-01-01
A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
Freezing degrees of freedom under stress: kinematic evidence of constrained movement strategies.
Higuchi, Takahiro; Imanaka, Kuniyasu; Hatayama, Toshiteru
2002-12-01
The present study investigated the effect of psychological stress imposed on movement kinematics in a computer-simulated batting task involving a backward and forward swing of the forearm. The psychological stress was imposed by a mild electric stimulus following poor performance. Fourteen participants hit a moving ball with a horizontal lever and aimed at a distant target with as much accuracy as possible. The kinematic characteristics appearing under stress were delay of movement initiation, small amplitude of movement and low variability of spatial kinematic events between trials. These features were also found in previous studies in which the experimental task required high accuracy. The characteristic kinematics evident in the present study suggested that the movement strategies adopted by the stressed participants were similar to those that appear under high accuracy demand. Moreover, a correlation analysis between the onset times of kinematic events revealed that temporally consistent movements were reproduced under stress. Taken together, the present findings demonstrated that, under psychological stress, movement strategies tend to shift toward the production of more constrained trajectories, as is seen under conditions of high accuracy demand, even though the difficulty of the task itself does not change. Copyright 2002 Elsevier Science B.V.
The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model
van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth
2017-01-01
Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109
Sinclair, Jonathan; McCarthy, Derek; Bentley, Ian; Hurst, Howard Thomas; Atkins, Stephen
2015-01-01
The barbell back squat is commonly used by athletes participating in resistance training. The barbell squat is typically performed using standard athletic shoes, or specially designed weightlifting footwear, although there are now a large number of athletes who prefer to squat barefoot or in barefoot-inspired footwear. This study aimed to determine how these footwear influence 3-D kinematics and muscle activation potentials during the barbell back squat. Fourteen experienced male participants completed squats at 70% 1 rep max in each footwear condition. 3-D kinematics from the torso, hip, knee and ankle were measured using an eight-camera motion analysis system. In addition, electromyographical (EMG) measurements were obtained from the rectus femoris, tibialis anterior, gastrocnemius, erector spinae and biceps femoris muscles. EMG parameters and joint kinematics were compared between footwear using repeated-measures analyses of variance. Participants were also asked to subjectively rate which footwear they preferred when performing their squat lifts; this was examined a chi-squared test. The kinematic analysis indicated that, in comparison to barefoot the running shoe was associated with increased squat depth, knee flexion and rectus femoris activation. The chi-squared test was significant and showed that participants preferred to squat barefoot. This study supports anecdotal evidence of athletes who prefer to train barefoot or in barefoot-inspired footwear although no biomechanical evidence was found to support this notion.
How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.
Mantovani, Giulia; Lamontagne, Mario
2017-04-01
The choice of marker set is a source of variability in motion analysis. Studies exist which assess the performance of marker sets when direct kinematics is used, but these results cannot be extrapolated to the inverse kinematic framework. Therefore, the purpose of this study was to examine the sensitivity of kinematic outcomes to inter-marker set variability in an inverse kinematic framework. The compared marker sets were plug-in-gait, University of Ottawa motion analysis model and a three-marker-cluster marker set. Walking trials of 12 participants were processed in opensim. The coefficient of multiple correlations was very good for sagittal (>0.99) and transverse (>0.92) plane angles, but worsened for the transverse plane (0.72). Absolute reliability indices are also provided for comparison among studies: minimum detectable change values ranged from 3 deg for the hip sagittal range of motion to 16.6 deg of the hip transverse range of motion. Ranges of motion of hip and knee abduction/adduction angles and hip and ankle rotations were significantly different among the three marker configurations (P < 0.001), with plug-in-gait producing larger ranges of motion. Although the same model was used for all the marker sets, the resulting minimum detectable changes were high and clinically relevant, which warns for caution when comparing studies that use different marker configurations, especially if they differ in the joint-defining markers.
Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
Discher, D E; Mohandas, N
1996-01-01
Maps of fluorescing red cell membrane components on a pipette-aspirated projection are quantitated in an effort to elucidate and unify the heterogeneous kinematics of deformation. Transient gradients of diffusing fluorescent lipid first demonstrate the fluidity of an otherwise uniform-density bilayer and corroborate a "universal" calibration scale for relative surface density. A steep but smooth and stable gradient in the densities of the skeleton components spectrin, actin, and protein 4.1 is used to estimate large elastic strains along the aspirated skeleton. The deformation fields are argued to be an unhindered response to loading in the surface normal direction. Density maps intermediate to those of the compressible skeleton and fluid bilayer are exhibited by particular transmembrane proteins (e.g., Band 3) and yield estimates for the skeleton-connected fractions. Such connected proteins appear to occupy a significant proportion of the undeformed membrane surface and can lead to steric exclusion of unconnected integral membrane proteins from regions of network condensation. Consistent with membrane repatterning kinematics in reversible deformation, final vesiculation of the projection tip produces a cell fragment concentrated in freely diffusing proteins but depleted of skeleton. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:8889146
Su, Yi-Huang; Keller, Peter E
2018-01-29
Motor simulation has been implicated in how musicians anticipate the rhythm of another musician's action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2) whether music training modulated simulation efficiency, and (3) what cues were relevant for simulating the dance rhythm. Participants were first recorded dancing the basic Charleston steps paced by a metronome, and later in a synchronization task they tapped to the rhythm of their own point-light dance stimuli, stimuli of another physically matched participant or one matched in movement kinematics, and a quantitative average across individuals. Results indicated that, while there was no overall "self advantage" and synchronization was generally most stable with the least variable (averaged) stimuli, motor simulation was driven-indicated by high tap-beat variability correlations-by familiar movement kinematics rather than morphological features. Furthermore, music training facilitated simulation, such that musicians outperformed non-musicians when synchronizing with others' movements but not with their own movements. These findings support action simulation as underlying synchronization in dance, linking action observation and rhythm processing in a common motor framework.
Dynamic simulation of road vehicle door window regulator mechanism of cross arm type
NASA Astrophysics Data System (ADS)
Miklos, I. Zs; Miklos, C.; Alic, C.
2017-01-01
The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.
Sheehan, Frances T; Borotikar, Bhushan S; Behnam, Abrahm J; Alter, Katharine E
2012-07-01
A potential source of patellofemoral pain, one of the most common problems of the knee, is believed to be altered patellofemoral kinematics due to a force imbalance around the knee. Although no definitive etiology for this imbalance has been found, a weak vastus medialis is considered a primary factor. Therefore, this study's purpose was to determine how the loss of vastus medialis obliquus force alters three-dimensional in vivo knee joint kinematics during a volitional extension task. Eighteen asymptomatic female subjects with no history of knee pain or pathology participated in this IRB approved study. Patellofemoral and tibiofemoral kinematics were derived from velocity data acquired using dynamic cine-phase contrast MRI. The same kinematics were then acquired immediately after administering a motor branch block to the vastus medialis obliquus using 3-5ml of 1% lidocaine. A repeated measures analysis of variance was used to test the null hypothesis that the post- and pre-injection kinematics were no different. The null hypothesis was rejected for patellofemoral lateral shift (P=0.003, max change=1.8mm, standard deviation=1.7mm), tibiofemoral lateral shift (P<0.001, max change=2.1mm, standard deviation=2.9mm), and tibiofemoral external rotation (P<0.001, max change=3.7°, standard deviation=4.4°). The loss of vastus medialis obliquus function produced kinematic changes that mirrored the axial plane kinematics seen in individuals with patellofemoral pain, but could not account for the full extent of these changes. Thus, vastus medialis weakness is likely a major factor in, but not the sole source of, altered patellofemoral kinematics in such individuals. Published by Elsevier Ltd.
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
Influence of vein fabric on strain distribution and fold kinematics
NASA Astrophysics Data System (ADS)
Torremans, Koen; Muchez, Philippe; Sintubin, Manuel
2014-05-01
Abundant pre-folding, bedding-parallel fibrous dolomite veins in shale are found associated with the Nkana-Mindola stratiform Cu-Co deposit in the Central African Copperbelt, Zambia. These monomineralic veins extend for several meters along strike, with a fibrous infill orthogonal to low-tortuosity vein walls. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. Subsequently, these veins were folded. In this study, we aim to constrain the kinematic fold mechanism by which strain is accommodated in these veins, estimate paleorheology at time of deformation and investigate the influence of vein fabric on deformation during folding. Finally, the influence of the deformation on known metallogenetic stages is assessed. Various deformation styles are observed, ultimately related to vein attitude across tight to close lower-order, hectometre-scale folds. In fold hinges, at low to average dips, veins are (poly-)harmonically to disharmonically folded as parasitic folds in single or multilayer systems. With increasing distance from the fold hinge, parasitic fold amplitude decreases and asymmetry increases. At high dips in the limbs, low-displacement duplication thrusts of veins at low angles to bedding are abundant. Slickenfibres and slickenlines are sub-perpendicular to fold hinges and shallow-dipping slickenfibre-step lineations are parallel to local fold hinge lines. A dip isogon analysis of reconstructed fold geometries prior to homogeneous shortening reveals type 1B parallel folds for the veins and type 1C for the matrix. Two main deformation mechanisms are identified in folded veins. Firstly, undulatory extinction, subgrains and fluid inclusions planes parallel the fibre long axis, with deformation intensity increasing away from the fold hinges, indicate intracrystalline strain accumulation. Secondly, intergranular deformation through bookshelf rotation of fibres, via collective parallel rotation of fibres and shearing along fibre grain boundaries, is clearly observed under cathodoluminescence. We analysed the internal strain distribution by quantifying simple shear strain caused by deflection of the initially orthogonal fibres relative to layer inclination at a given position across the fold. Shear angle, and thus shear strain, steadily increases towards the limbs away from the fold hinge. Comparison of observed shear strain to theoretical distribution for kinematic mechanisms, amongst other lines of evidence, clearly points to pure flexural flow followed by homogeneous shortening. As flexural flow is not the expected kinematic folding mechanism for competent layers in an incompetent shale matrix, our analysis shows that the internal vein fabric in these dolomite veins can exhibit a first-order influence on folding mechanisms. In addition, quantitative analysis shows that these veins acted as rigid objects with high viscosity contrast relative to the incompetent carbonaceous shale, rather than as semi-passive markers. Later folding-related syn-orogenic veins, intensely mineralised with Cu-Co sulphides, are strongly related to deformation of these pre-folding veins. The high viscosity contrast created by the pre-folding fibrous dolomite veins was therefore essential in creating transient permeability for subsequent mineralising stages in the veining history.
Kinematic Measurements from YouTube Videos
ERIC Educational Resources Information Center
Ruiz, Michael J.
2009-01-01
Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…
Motor Planning and Control in Autism. A Kinematic Analysis of Preschool Children
ERIC Educational Resources Information Center
Forti, Sara; Valli, Angela; Perego, Paolo; Nobile, Maria; Crippa, Alessandro; Molteni, Massimo
2011-01-01
Kinematic recordings in a reach and drop task were compared between 12 preschool children with autism without mental retardation and 12 gender and age-matched normally developing children. Our aim was to investigate whether motor anomalies in autism may depend more on a planning ability dysfunction or on a motor control deficit. Planning and…
3D-printed upper limb prostheses: a review.
Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul
2017-04-01
This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.
Kinematical Comparison Analysis on the Discus Athletes Throwing Techniques Based on Data Project
NASA Astrophysics Data System (ADS)
Junming, Li; Jihe, Zhou; Ting, Long
2017-09-01
In the discus final site of throwing event series game of China’s track and field sport in April, 2015, three dimensional camera analytical method which is an application of kinematical data project was used on female discus athletes’ discus throwing technology. And analysis was made for the top four discus throwers’ last exertion action, related kinematics parameter was thus obtained. Analysis results show that: first, Lu Xiaoxin behaves better in body twist tight effect when it is left foot on the ground and in capacity of beyond devices, followed by Su Xinyue and Tan Jian, with Feng Bin relatively weaker; second, our athletes’ discus shots speed is to be upgraded compared with world excellent female discus athletes; third, discus is left slightly earlier, with Tan Jian throwing in a reasonable angle, Feng Bin, Lu Xiaoxin in a larger angle, and Sue Xinyue in a smaller angle. Feng bin has a higher height of release, followed by Lu Xiaoxin and Tan jian.
Human movement analysis using stereophotogrammetry. Part 1: theoretical background.
Cappozzo, Aurelio; Della Croce, Ugo; Leardini, Alberto; Chiari, Lorenzo
2005-02-01
This paper sets the stage for a series of reviews dealing with the problems associated with the reconstruction and analysis of in vivo skeletal system kinematics using optoelectronic stereophotogrammetric data. Instantaneous bone position and orientation and joint kinematic variable estimations are addressed in the framework of rigid body mechanics. The conceptual background to these exercises is discussed. Focus is placed on the experimental and analytical problem of merging the information relative to movement and that relative to the morphology of the anatomical body parts of interest. The various global and local frames that may be used in this context are defined. Common anatomical and mathematical conventions that can be used to describe joint kinematics are illustrated in a comparative fashion. The authors believe that an effort to systematize the different theoretical and experimental approaches to the problems involved and related nomenclatures, as currently reported in the literature, is needed to facilitate data and knowledge sharing, and to provide renewed momentum for the advancement of human movement analysis.
Symons, J E; Garcia, T C; Stover, S M
2014-03-01
The effect of racetrack surface (dirt or synthetic) on distal hindlimb kinematics of racehorses running at competition speeds is not known. To compare distal hindlimb and hoof kinematics during stance of breezing (unrestrained gallop) racehorses between dirt and synthetic surfaces. Two-dimensional kinematic video analysis of 5 Thoroughbred racehorses galloping at high speeds (12-17 m/s) on a dirt racetrack and a synthetic racetrack. The positions of kinematic markers applied to the left hindlimb were recorded at 500 Hz. Position, velocity and acceleration of joint angles and hoof translation during stance were calculated in the sagittal plane. Peak translational and angular kinematic values were compared between the dirt and synthetic race surfaces using mixed model analyses of covariance. Maximum and heel-strike metatarsophalangeal (fetlock) angles were greater (P<0.05) on the dirt surface than on the synthetic surface. Maximum fetlock angle occurred earlier during stance on the dirt surface (P<0.05). Greater horizontal displacement of the heel during slide occurred on the dirt surface (P<0.05). During high-speed gallop, hindlimb fetlock hyperextension and horizontal hoof slide are greater on a dirt surface than on a synthetic surface. Synthetic race surfaces may mitigate risk of injury to hindlimb fetlock structures by reducing fetlock hyperextension and associated strains in fetlock support structures. Differences in hoof slide may contribute to different distal hindlimb kinematics between surfaces. © 2013 EVJ Ltd.
Mechanism of unpinning spirals by a series of stimuli
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhang, Hong
2014-06-01
Antitachycardia pacing (ATP) is widely used to terminate tachycardia before it proceeds to lethal fibrillation. The important prerequisite for successful ATP is unpinning of the spirals anchored to the obstacle by a series of stimuli. Here, to understand the mechanism of unpinning spirals by ATP, we propose a theoretical explanation based on a nonlinear eikonal relation and a kinematical model. The theoretical results are quantitatively consistent with the numerical simulations in both weak and high excitabilities.
Reliability of four models for clinical gait analysis.
Kainz, Hans; Graham, David; Edwards, Julie; Walsh, Henry P J; Maine, Sheanna; Boyd, Roslyn N; Lloyd, David G; Modenese, Luca; Carty, Christopher P
2017-05-01
Three-dimensional gait analysis (3DGA) has become a common clinical tool for treatment planning in children with cerebral palsy (CP). Many clinical gait laboratories use the conventional gait analysis model (e.g. Plug-in-Gait model), which uses Direct Kinematics (DK) for joint kinematic calculations, whereas, musculoskeletal models, mainly used for research, use Inverse Kinematics (IK). Musculoskeletal IK models have the advantage of enabling additional analyses which might improve the clinical decision-making in children with CP. Before any new model can be used in a clinical setting, its reliability has to be evaluated and compared to a commonly used clinical gait model (e.g. Plug-in-Gait model) which was the purpose of this study. Two testers performed 3DGA in eleven CP and seven typically developing participants on two occasions. Intra- and inter-tester standard deviations (SD) and standard error of measurement (SEM) were used to compare the reliability of two DK models (Plug-in-Gait and a six degrees-of-freedom model solved using Vicon software) and two IK models (two modifications of 'gait2392' solved using OpenSim). All models showed good reliability (mean SEM of 3.0° over all analysed models and joint angles). Variations in joint kinetics were less in typically developed than in CP participants. The modified 'gait2392' model which included all the joint rotations commonly reported in clinical 3DGA, showed reasonable reliable joint kinematic and kinetic estimates, and allows additional musculoskeletal analysis on surgically adjustable parameters, e.g. muscle-tendon lengths, and, therefore, is a suitable model for clinical gait analysis. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans.
Mowrey, William R; Bennett, Jessica R; Portman, Douglas S
2014-01-29
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.
Caligiuri, Michael P.; Teulings, Hans-Leo; Dean, Charles E.; Niculescu, Alexander B.; Lohr, James
2009-01-01
Epidemiologic studies indicate that nearly 60% of schizophrenia (SZ) patients treated with conventional antipsychotic drugs develop extrapyramidal side effects (EPS) such as parkinsonism and tardive dyskinesia. Although the prevalence of EPS has decreased due to the newer antipsychotics, EPS continue to limit the effectiveness of these medicines. Ongoing monitoring of EPS is likely to improve treatment outcome or compliance and reduce the frequency of re-hospitalization. A quantitative analysis of handwriting kinematics was used to evaluate effects of antipsychotic medication type and dose in schizophrenia patients. Twenty-seven schizophrenia patients treated with risperidone, six schizophrenia patients who received no antipsychotic medication and 46 healthy comparison participants were enrolled. Participants performed a 20-minute handwriting task consisting of loops of various sizes and a sentence. Data were captured and analyzed using MovAlyzeR software. Results indicated that risperidone-treated participants exhibited significantly more dysfluent handwriting movements than either healthy or untreated SZ participants. Risperidone-treated participants exhibited lower movement velocities during production of simple loops compared to unmedicated patients. Handwriting dysfluency during sentence writing increased with dose. A 3-factor model consisting of kinematic variables derived from sentence writing accounted for 83% (r = .91) of the variability in medication dose. In contrast, we found no association between observer-based EPS severity ratings and medication dose. These findings support the importance of handwriting-based measures to monitor EPS in medicated schizophrenia patients. PMID:19692133
Distributed Effects of Biological Sex Define Sex-Typical Motor Behavior in Caenorhabditis elegans
Mowrey, William R.; Bennett, Jessica R.
2014-01-01
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology. PMID:24478342
NASA Astrophysics Data System (ADS)
Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.
2017-12-01
We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.
Hernandez, Alejandra; Gross, Karlie; Gombatto, Sara
2017-08-01
When functional movements are impaired in people with low back pain, they may be a contributing factor to chronicity and recurrence. The purpose of the current study was to examine lumbar spine, pelvis, and lower extremity kinematics during a step down functional task between people with and without a history of low back pain. A 3-dimensional motion capture system was used to analyze kinematics during a step down task. Total excursion of the lumbar spine, pelvis, and lower extremity segments in each plane were calculated from the start to end of the task. Separate analysis of variance tests (α=0.05) were conducted to determine the effect of independent variables of group and plane on lumbar spine, pelvis, and lower extremity kinematics. An exploratory analysis was conducted to examine kinematic differences among movement-based low back pain subgroups. Subjects with low back pain displayed less lumbar spine movement than controls across all three planes of movement (P-values=0.001-0.043). This group difference was most pronounced in the sagittal plane. For the lower extremity, subjects with low back pain displayed more frontal and axial plane knee movement than controls (P-values=0.001). There were no significant differences in kinematics among movement-based low back pain subgroups. People with low back pain displayed less lumbar region movement in the sagittal plane and more off-plane knee movements than the control group during a step down task. Clinicians can use this information when assessing lumbar spine and lower extremity movement during functional tasks, with the goal of developing movement-based interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin
2014-10-01
There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Wada, Keizo; Hamada, Daisuke; Tamaki, Shunsuke; Higashino, Kosaku; Fukui, Yoshihiro; Sairyo, Koichi
2017-01-01
Previous studies suggested that changes in kinematics in total knee arthroplasty (TKA) affected satisfaction level. The aim of this cadaveric study was to evaluate the effect of medial collateral ligament (MCL) release by multiple needle puncture on knee rotational kinematics in posterior-stabilized TKA. Six fresh, frozen cadaveric knees were included in this study. All TKA procedures were performed with an image-free navigation system using a 10-mm polyethylene insert. Tibial internal rotation was assessed to evaluate intraoperative knee kinematics. Multiple needle puncturing was performed 5, 10, and 15 times for the hard portion of the MCL at 90° knee flexion. Kinematic analysis was performed after every 5 punctures. After performing 15 punctures, a 14-mm polyethylene insert was inserted, and kinematic analysis was performed. The tibial internal rotation angle at maximum knee flexion without multiple needle puncturing was significantly larger (9.42°) than that after 15 punctures (3°). Negative correlation (Pearson r = -0.715, P < .001) between tibial internal rotation angle at maximum knee flexion and frequency of puncture was observed. The tibial internal rotation angle with a 14-mm insert was significantly larger (7.25°) compared with the angle after 15 punctures. Tibial internal rotation during knee flexion was reduced by extensive MCL release using multiple needle puncturing and was recovered by increasing of medial tightness. From the point of view of knee kinematics, medial tightness should be allowed to maintain the internal rotation angle of the tibia during knee flexion which might lead to patient satisfaction. Copyright © 2016 Elsevier Inc. All rights reserved.
A Three-Dimensional Kinematic and Kinetic Study of the College-Level Female Softball Swing
Milanovich, Monica; Nesbit, Steven M.
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key Points The female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing. The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter. Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two. PMID:24570623
The Envelope of Physiological Motion of the First Carpometacarpal Joint
Crisco, Joseph J.; Patel, Tarpit; Halilaj, Eni; Moore, Douglas C.
2015-01-01
Much of the hand's functional capacity is due to the versatility of the motions at the thumb carpometacarpal (CMC) joint, which are presently incompletely defined. The aim of this study was to develop a mathematical model to completely describe the envelope of physiological motion of the thumb CMC joint and then to examine if there were differences in the kinematic envelope between women and men. In vivo kinematics of the first metacarpal with respect to the trapezium were computed from computed tomography (CT) volume images of 44 subjects (20M, 24F, 40.3 ± 17.7 yr) with no signs of CMC joint pathology. Kinematics of the first metacarpal were described with respect to the trapezium using helical axis of motion (HAM) variables and then modeled with discrete Fourier analysis. Each HAM variable was fit in a cyclic domain as a function of screw axis orientation in the trapezial articular plane; the RMSE of the fits was 14.5 deg, 1.4 mm, and 0.8 mm for the elevation, location, and translation, respectively. After normalizing for the larger bone size in men, no differences in the kinematic variables between sexes could be identified. Analysis of the kinematic data also revealed notable coupling of the primary rotations of the thumb with translation and internal and external rotations. This study advances our basic understanding of thumb CMC joint function and provides a complete description of the CMC joint for incorporation into future models of hand function. From a clinical perspective, our findings provide a basis for evaluating CMC pathology, especially the mechanically mediated aspects of osteoarthritis (OA), and should be used to inform artificial joint design, where accurate replication of kinematics is essential for long-term success. PMID:26201612
Nüesch, Corina; Roos, Elena; Pagenstert, Geert; Mündermann, Annegret
2017-05-24
Inertial sensor systems are becoming increasingly popular for gait analysis because their use is simple and time efficient. This study aimed to compare joint kinematics measured by the inertial sensor system RehaGait® with those of an optoelectronic system (Vicon®) for treadmill walking and running. Additionally, the test re-test repeatability of kinematic waveforms and discrete parameters for the RehaGait® was investigated. Twenty healthy runners participated in this study. Inertial sensors and reflective markers (PlugIn Gait) were attached according to respective guidelines. The two systems were started manually at the same time. Twenty consecutive strides for walking and running were recorded and each software calculated sagittal plane ankle, knee and hip kinematics. Measurements were repeated after 20min. Ensemble means were analyzed calculating coefficients of multiple correlation for waveforms and root mean square errors (RMSE) for waveforms and discrete parameters. After correcting the offset between waveforms, the two systems/models showed good agreement with coefficients of multiple correlation above 0.950 for walking and running. RMSE of the waveforms were below 5° for walking and below 8° for running. RMSE for ranges of motion were between 4° and 9° for walking and running. Repeatability analysis of waveforms showed very good to excellent coefficients of multiple correlation (>0.937) and RMSE of 3° for walking and 3-7° for running. These results indicate that in healthy subjects sagittal plane joint kinematics measured with the RehaGait® are comparable to those using a Vicon® system/model and that the measured kinematics have a good repeatability, especially for walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan
2017-01-01
This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations - SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans.
Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan
2017-01-01
This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations – SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans. PMID:27751987
A three-dimensional kinematic and kinetic study of the college-level female softball swing.
Milanovich, Monica; Nesbit, Steven M
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key PointsThe female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities.The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing.The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter.Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two.
Hall, Michelle; Bennell, Kim L; Beavers, Daniel P; Wrigley, Tim V; DeVita, Paul; Messier, Stephen P
2018-04-27
Pain is a cardinal symptom of knee osteoarthritis (OA) and although conservative treatments such as exercise and diet related interventions can reduce pain, effects are modest and can be improved. Frontal plane knee joint motion has been associated with knee pain, and is suggested as a patient-specific characteristic on which to tailor interventions. Does the association between baseline frontal plane knee joint kinematics and pain-relief differ among overweight and obese people with knee OA who underwent an intervention from the Intensive Diet and Exercise for Arthritis (IDEA) clinical trial: diet-only, exercise-only, and combined diet and exercise intervention? 323 participants with knee OA were included in the analysis (77% females; 66 ± 6 years; 33.5 ± 3.7 kg/m 2 ). At baseline, frontal plane knee joint kinematics during walking were measured using 3-dimensional gait analysis and characterised as peak varus-valgus knee angle, peak varus-valgus excursion, and peak varus angular velocity. Pain was assessed at baseline and 18-month follow-up using the Western Ontario and McMaster Universities Osteoarthritis Index pain subscale. Linear regressions were performed unadjusted and adjusted for covariates to determine if the associations between baseline frontal plane knee joint kinematics and 18-month change in pain differed according to intervention. The interaction terms between the intervention and measures of frontal plane knee joint kinematics were not statistically significant (all P ≥ 0.05). We found no evidence to suggest that 18-months of either exercise, diet, or a combination of diet and exercise could be more effective than the other to improve pain based on frontal plane measures of knee kinematics. Copyright © 2018. Published by Elsevier B.V.
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Kinematic and ground reaction force accommodation during weighted walking.
James, C Roger; Atkins, Lee T; Yang, Hyung Suk; Dufek, Janet S; Bates, Barry T
2015-12-01
Weighted walking is a functional activity common in daily life and can influence risks for musculoskeletal loading, injury and falling. Much information exists about weighted walking during military, occupational and recreational tasks, but less is known about strategies used to accommodate to weight carriage typical in daily life. The purposes of the study were to examine the effects of weight carriage on kinematics and peak ground reaction force (GRF) during walking, and explore relationships between these variables. Twenty subjects walked on a treadmill while carrying 0, 44.5 and 89 N weights in front of the body. Peak GRF, sagittal plane joint/segment angular kinematics, stride length and center of mass (COM) vertical displacement were measured. Changes in peak GRF and displacement variables between weight conditions represented accommodation. Effects of weight carriage were tested using analysis of variance. Relationships between peak GRF and kinematic accommodation variables were examined using correlation and regression. Subjects were classified into sub-groups based on peak GRF responses and the correlation analysis was repeated. Weight carriage increased peak GRF by an amount greater than the weight carried, decreased stride length, increased vertical COM displacement, and resulted in a more extended and upright posture, with less hip and trunk displacement during weight acceptance. A GRF increase was associated with decreases in hip extension (|r|=.53, p=.020) and thigh anterior rotation (|r|=.57, p=.009) displacements, and an increase in foot anterior rotation displacement (|r|=.58, p=.008). Sub-group analysis revealed that greater GRF increases were associated with changes at multiple sites, while lesser GRF increases were associated with changes in foot and trunk displacement. Weight carriage affected walking kinematics and revealed different accommodation strategies that could have implications for loading and stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Reliability of a Qualitative Video Analysis for Running.
Pipkin, Andrew; Kotecki, Kristy; Hetzel, Scott; Heiderscheit, Bryan
2016-07-01
Study Design Reliability study. Background Video analysis of running gait is frequently performed in orthopaedic and sports medicine practices to assess biomechanical factors that may contribute to injury. However, the reliability of a whole-body assessment has not been determined. Objective To determine the intrarater and interrater reliability of the qualitative assessment of specific running kinematics from a 2-dimensional video. Methods Running-gait analysis was performed on videos recorded from 15 individuals (8 male, 7 female) running at a self-selected pace (3.17 ± 0.40 m/s, 8:28 ± 1:04 min/mi) using a high-speed camera (120 frames per second). These videos were independently rated on 2 occasions by 3 experienced physical therapists using a standardized qualitative assessment. Fifteen sagittal and frontal plane kinematic variables were rated on a 3- or 5-point categorical scale at specific events of the gait cycle, including initial contact (n = 3) and midstance (n = 9), or across the full gait cycle (n = 3). The video frame number corresponding to each gait event was also recorded. Intrarater and interrater reliability values were calculated for gait-event detection (intraclass correlation coefficient [ICC] and standard error of measurement [SEM]) and the individual kinematic variables (weighted kappa [κw]). Results Gait-event detection was highly reproducible within raters (ICC = 0.94-1.00; SEM, 0.3-1.0 frames) and between raters (ICC = 0.77-1.00; SEM, 0.4-1.9 frames). Eleven of the 15 kinematic variables demonstrated substantial (κw = 0.60-0.799) or excellent (κw>0.80) intrarater agreement, with the exception of foot-to-center-of-mass position (κw = 0.59), forefoot position (κw = 0.58), ankle dorsiflexion at midstance (κw = 0.49), and center-of-mass vertical excursion (κw = 0.36). Interrater agreement for the kinematic measures varied more widely (κw = 0.00-0.85), with 5 variables showing substantial or excellent reliability. Conclusion The qualitative assessment of specific kinematic measures during running can be reliably performed with the use of a high-speed video camera. Detection of specific gait events was highly reproducible, as were common kinematic variables such as rearfoot position, foot-strike pattern, tibial inclination angle, knee flexion angle, and forward trunk lean. Other variables should be used with caution. J Orthop Sports Phys Ther 2016;46(7):556-561. Epub 6 Jun 2016. doi:10.2519/jospt.2016.6280.
ERIC Educational Resources Information Center
Campione, Giovanna Cristina; Piazza, Caterina; Villa, Laura; Molteni, Massimo
2016-01-01
The study was aimed at better clarifying whether action execution impairment in autism depends mainly on disruptions either in feedforward mechanisms or in feedback-based control processes supporting motor execution. To this purpose, we analyzed prehension movement kinematics in 4- and 5-year-old children with autism and in peers with typical…
Constrained Kinematics of ICMEs from Multi-point in Situ and Heliospheric Imaging Data
NASA Astrophysics Data System (ADS)
Rollett, T.; Temmer, M.; Moestl, C.; Veronig, A. M.; Lugaz, N.; Vrsnak, B.; Farrugia, C. J.; Amerstorfer, U.
2013-12-01
The constrained harmonic mean (CHM) method is used to calculate the direction of motion of ICMEs and their kinematical profiles. Combining single spacecraft white-light observations from STEREO/HI with supplementary in situ data, it is possible to derive the propagation speed varying with heliocentric distance. This is a big advantage against other single-viewpoint methods, i.e. fitting methods, which assume a constant propagation speed. We show two different applications for the CHM method: first, an analysis of the interaction between the solar wind and ICMEs, and second, the interaction between two ICMEs. For analyzing interaction processes it is crucial to use a method that has the ability to investigate the corresponding effects on ICME kinematics. Additionally, we show the analysis of an outstanding fast ICME event of March 2012, which was detected in situ by Venus Express, Messenger and Wind and also observed by STEREO-A/HI. Due to these multiple in situ measurements it was possible to constrain the ICME kinematics by three different boundary values. These studies are fundamental in order to deepen the understanding of ICME evolution and to enhance existing forecasting methods. This work has received funding from the European Commission FP7 Project COMESEP (263252).
Initial proposition of kinematics model for selected karate actions analysis
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Koptyra, Katarzyna; Ogiela, Marek R.
2017-03-01
The motivation for this paper is to initially propose and evaluate two new kinematics models that were developed to describe motion capture (MoCap) data of karate techniques. We decided to develop this novel proposition to create the model that is capable to handle actions description both from multimedia and professional MoCap hardware. For the evaluation purpose we have used 25-joints data with karate techniques recordings acquired with Kinect version 2. It is consisted of MoCap recordings of two professional sport (black belt) instructors and masters of Oyama Karate. We have selected following actions for initial analysis: left-handed furi-uchi punch, right leg hiza-geri kick, right leg yoko-geri kick and left-handed jodan-uke block. Basing on evaluation we made we can conclude that both proposed kinematics models seems to be convenient method for karate actions description. From two proposed variables models it seems that global might be more useful for further usage. We think that because in case of considered punches variables seems to be less correlated and they might also be easier to interpret because of single reference coordinate system. Also principal components analysis proved to be reliable way to examine the quality of kinematics models and with the plot of the variable in principal components space we can nicely present the dependences between variables.
Meshless analysis of shear deformable shells: the linear model
NASA Astrophysics Data System (ADS)
Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.
2013-10-01
This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
A musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. Musculotendon parameters and the skeletal geometry were determined for the musculoskeletal model in the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing both isometric and ballistic elbow joint complex movements. In general, the model predicted kinematic and muscle excitation patterns similar to what was experimentally measured.
Rotating stellar populations in the Fornax dSph galaxy
NASA Astrophysics Data System (ADS)
del Pino, Andrés; Aparicio, Antonio; Hidalgo, Sebastian L.; Łokas, Ewa L.
2017-03-01
We present a novel analysis of the internal kinematics of the Fornax dwarf spheroidal galaxy. Our results are based on the largest sample of spectroscopic data for Fornax stars presently available (>2500 stars), for which we have chemical and kinematic information. We introduce new software, BEACON, designed to detect chemo-kinematic patterns among stars of different stellar populations using their metallicity and velocity along the line of sight. Applying BEACON to Fornax, we have detected non-negligible rotation signals around main optical axes of the galaxy, characteristic for a triaxial system partially supported by rotation. The dominant rotation pattern is relatively strong (∼12 km s-1), but the galaxy also shows additional weaker albeit complex rotation patterns. Using the information available from the star formation history of Fornax, we have also derived the average age of the different chemo-kinematic components found by BEACON, which has allowed us to obtain its kinematic history. Our results point to a possible major merger suffered by Fornax at redshift z ∼ 1, in agreement with the previous works.
The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters.
Birrell, Stewart A; Haslam, Roger A
2009-10-01
The 3-D gait analysis of military load carriage is not well represented, if at all, within the available literature. This study collected 3-D lower limb kinematics and spatiotemporal parameters in order to assess the subsequent impact of carrying loads in a backpack of up to 32 kg. Results showed the addition of load significantly decreased the range of motion of flexion/extension of the knee and pelvic rotation. Also seen were increases in adduction/abduction and rotation of the hip and pelvis tilt. No changes to ankle kinematics were observed. Alterations to the spatiotemporal parameters of gait were also of considerable interest, namely, an increase in double support and a decrease in preferred stride length as carried load increased. Analysing kinematics during military or recreational load carriage broadens the knowledge regarding the development of exercise-related injuries, while helping to inform the human-centred design process for future load carrying systems. The importance of this study is that limited available research has investigated 3-D lower limb joint kinematics when carrying loads.
Pelvic kinematic method for determining vertical jump height.
Chiu, Loren Z F; Salem, George J
2010-11-01
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.
A three-dimensional kinematic analysis of tongue flicking in Python molurus.
de Groot, Jurriaan H; van der Sluijs, Inke; Snelderwaard, Peter Ch; van Leeuwen, Johan L
2004-02-01
The forked snake tongue is a muscular organ without hard skeletal support. A functional interpretation of the variable arrangement of the intrinsic muscles along the tongue requires a quantitative analysis of the motion performance during tongue protrusion and flicking. Therefore, high-speed fluoroscopy and high-speed stereo photogrammetry were used to analyse the three-dimensional shape changes of the tongue in Python molurus bivittatus (Boidae). The posterior protruding part of the tongue elongated up to 130% while the flicking anterior portion elongated maximally 60%. The differences in tongue strains relate to the absence or presence, respectively, of longitudinal muscle fibres in the peripheral tongue. Maximum overall protrusion velocity (4.3 m s(-1)) occurred initially when the tongue tip left the mouth. Maximum tongue length of approximately 0.01 body length (20 mm) was reached during the first tongue flick. These observations are discussed within the scope of the biomechanical constraints of hydrostatic tongue protrusion: a negative forward pressure gradient, longitudinal tongue compliance and axial tongue stiffness. The three-dimensional deformation varied along the tongue with a mean curvature of 0.06 mm(-1) and a maximum value of 0.5 mm(-1). At the basis of the anterior forked portion of the tongue tips, extreme curvatures up to 2.0 mm(-1) were observed. These quantitative results support previously proposed inferences about a hydrostatic elongation mechanism and may serve to evaluate future dynamic models of tongue flicking.
Fundamentals of Structural Geology
NASA Astrophysics Data System (ADS)
Pollard, David D.; Fletcher, Raymond C.
2005-09-01
Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors
Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong
2015-01-01
Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Kinematic Evolution of Simulated Star-Forming Galaxies
NASA Technical Reports Server (NTRS)
Kassin, Susan A.; Brooks, Alyson; Governato, Fabio; Weiner, Benjamin J.; Gardner, Jonathan P.
2014-01-01
Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last approximately 8 billion years since z = 1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma(sub g)) and increase in ordered rotation (V(sub rot)) with time. The slopes of the relations between both sigma(sub g) and V(sub rot) with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.
Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners.
Mündermann, Anne; Nigg, Benno M; Humble, R Neil; Stefanyshyn, Darren J
2003-10-01
The purpose of this study was to determine the relationship between differences in comfort and changes in lower extremity kinematic and kinetic variables and muscle activity in response to foot orthoses. Twenty-one recreational runners volunteered for this study. Three orthotic conditions (posting, custom-molding, and posting and custom-molding) were compared with a control (flat) insert. Lower extremity kinematic, kinetic, and EMG data were collected for 108 trials per subject and condition in nine sessions per subject for overground running at 4 m.s-1. Comfort for all orthotic conditions was assessed in each session using a visual analog scale. The statistical tests used included repeated measures ANOVA, linear regression analysis, and discriminant analysis (alpha = 0.05). Comfort ratings were significantly different between orthotic conditions and the control condition ([lower, upper] confidence limits; posting: [-3.1, -0.8]; molding: [0.4, 3.4]; and posting and molding: [-1.1, 1.9]); 34.9% of differences in comfort were explained by changes in 15 kinematic, kinetic, and EMG variables. The 15 kinematic, kinetic, and EMG variables that partially explained differences in comfort classified 75.0% of cases correctly to the corresponding orthotic condition. In general, comfort is an important and relevant feature of foot orthoses. Evaluations of foot orthoses using comfort do not only reflect subjective perceptions but also differences in functional biomechanical variables. Future research should focus on defining the relationship between comfort and biomechanical variables for material modifications of footwear, different modes of locomotion, and the general population.
Chen, Qingshan; Lazennec, Jean Yves; Guyen, Olivier; Kinbrum, Amy; Berry, Daniel J; An, Kai-Nan
2005-07-01
Tripolar total hip arthroplasty (THA) prosthesis had been suggested as a method to reduce the occurrence of hip dislocation and microseparation. Precisely measuring the motion of the intermediate component in vitro would provide fundamental knowledge for understanding its mechanism. The present study validates the accuracy and repeatability of a three-dimensional motion analysis system to quantitatively measure the relative motion of the intermediate component of tripolar total hip arthroplasty prostheses. Static and dynamic validations of the system were made by comparing the measurement to that of a potentiometer. Differences between the mean system-calculated angle and the angle measured by the potentiometer were within +/-1 degrees . The mean within-trial variability was less than 1 degrees . The mean slope was 0.9-1.02 for different angular velocities. The dynamic noise was within 1 degrees . The system was then applied to measure the relative motion of an eccentric THA prosthesis. The study shows that this motion analysis system provides an accurate and practical method for measuring the relative motion of the tripolar THA prosthesis in vitro, a necessary first step towards the understanding of its in vivo kinematics.
A Development of Force Plate for Biomechanics Analysis of Standing and Walking
NASA Astrophysics Data System (ADS)
Wardoyo, S.; Hutajulu, P. T.; Togibasa, O.
2016-08-01
Force plates are known as an excellent teaching aid to demonstrate the kinematics and dynamics of motion and commonly used in biomechanics laboratories to measure ground forces involved in the motion of human. It is consist of a metal plate with sensors attached to give an electrical output proportional to the force on the plate. Moreover, force plates are useful for examining the kinetic characteristics of an athlete's movement. They provide information about the external forces involved in movement that can aid a coach or sports scientist to quantitatively evaluate the athlete's skill development. In this study, we develop our prototype of force plate with less than 100,- simply by using flexible force transducer attached inside rubber matt, in the form of square blocks (dimension: 250 mm × 150 mm × 10 mm), with maximum load up to 60 kg. The handmade force plate was tested by applying biomechanics analysis for standing and walking. The testing was done on Experimental Soccer Courses’ students at the Department of Physical Education, Health and Recreation, University of Cenderawasih. The design of the force plate system together with biomechanics analysis will be discussed.
Effects of Repeated Treadmill Testing and Electrical Stimulation on Post-Stroke Gait Kinematics
Awad, Louis N.; Kesar, Trisha M.; Reisman, Darcy; Binder-Macleod, Stuart A.
2012-01-01
Improvements in task performance due to repeated testing have previously been documented in healthy and patient populations. The existence of a similar change in performance due to repeated testing has not been previously investigated at the level of gait kinematics in the post-stroke population. The presence of such changes may define the number of testing sessions necessary for measuring a stable baseline of pre-training gait performance, which is a necessary prerequisite for determining the effectiveness of gait interventions. Considering the emergence of treadmills as a popular tool for gait evaluation and retraining and the common addition of functional electrical stimulation (FES) to gait retraining protocols, the stability of gait kinematics during the repeated testing of post-stroke individuals on a treadmill, either with or without FES, needs to be determined. Nine individuals (age: 58.1 +/− 7.3 years), with hemi-paresis secondary to a stroke (onset: 7.3 +/− 6.0 years) participated in this study. An 8-camera motion analysis system was used to measure sagittal plane knee and ankle joint kinematics. Gait kinematics were compared across two (N=9) and five (N=5) testing sessions. No consistent changes in knee or ankle kinematics were observed during repeated testing. These findings indicate that clinicians and researchers may not need to spend valuable time and resources performing multiple testing and acclimatization sessions when assessing baseline gait kinematics in the post-stroke population for use in determining the effectiveness of gait interventions. PMID:22796242
Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map
Cai, Miaomiao; Chen, Wen; Dong, Danan; Song, Le; Wang, Minghua; Wang, Zhiren; Zhou, Feng; Zheng, Zhengqi; Yu, Chao
2016-01-01
Multipath hemispherical map (MHM) is a kind of multipath mitigation approach that takes advantage of the spatial repeatability of the multipath effect under an unchanged environment. This approach is not only suitable for static environments, but also for some kinematic platforms, such as a moving ship and airplane, where the dominant multipath effects come from the platform itself and the multipath effects from the surrounding environment are considered minor or negligible. Previous studies have verified the feasibility of the MHM approach in static environments. In this study, we expanded the MHM approach to a kinematic shipborne environment. Both static and kinematic tests were carried out to demonstrate the feasibility of the MHM approach. The results indicate that, after MHM multipath mitigation, the root mean square (RMS) of baseline length deviations are reduced by 10.47% and 10.57%, and the RMS of residual values are reduced by 39.89% and 21.91% for the static and kinematic tests, respectively. Power spectrum analysis has shown that the MHM approach is more effective in mitigating multipath in low-frequency bands; the high-frequency multipath effects still exist, and are indistinguishable from observation noise. Taking the observation noise into account, the residual reductions increase to 41.68% and 24.51% in static and kinematic tests, respectively. To further improve the performance of MHM for kinematic platforms, we also analyzed the influence of spatial coverage and resolution on residual reduction. PMID:27754322
Kinematic parameters that influence the aesthetic perception of beauty in contemporary dance.
Torrents, Carlota; Castañer, Marta; Jofre, Toni; Morey, Gaspar; Reverter, Ferran
2013-01-01
Some experiments have stablished that certain kinematic parameters can influence the subjective aesthetic perception of the dance audience. Neave, McCarty, Freynik, Caplan, Hönekopp, and Fink (2010, Biology Letters 7 221-224) reported eleven movement parameters in non-expert male dancers, showing a significant positive correlation with perceived dance quality. We aim to identify some of the kinematic parameters of expert dancers' movements that influence the subjective aesthetic perception of observers in relation to specific skills of contemporary dance. Four experienced contemporary dancers performed three repetitions of four dance-related motor skills. Motion was captured by a VICON-MX system. The resulting 48 animations were viewed by 108 observers. The observers judged beauty using a semantic differential. The data were then subjected to multiple factor analysis. The results suggested that there were strong associations between higher beauty scores and certain kinematic parameters, especially those related to amplitude of movement.
River channel bars and dunes - Theory of kinematic waves
Langbein, Walter Basil; Leopold, Luna Bergere
1968-01-01
A kinematic wave is a grouping cf moving objects in zones along a flow path and through which the objects pass. These concentrations may be characterized by a simple relation between the speed of the moving objects and their spacing as a result of interaction between them.Vehicular traffic has long been known to have such properties. Data are introduced to show that beads carried by flowing water in a narrow flume behave in an analogous way. The flux or transport of objects in a single lane of traffic is greatest when the objects are spaced about two diameters apart; beads in a single-lane flume as well as highway traffic conform to this property.By considering the sand in a pipe or flume to a depth affected by dune movement, it is shown that flux-concentration curves similar to the previously known cases can be constructed from experimental data. From the kinematic point of view, concentration of particles in dunes and other wave bed forms results when particles in transport become more numerous or closely spaced and interact to reduce the effectiveness of the ambient water to move them.Field observations over a 5-year period are reported in which individual rocks were painted for identification and placed at various spacings on the bed of ephemeral stream in New Mexico, to study the effect of storm flows on rock movement. The data on about 14,000 rocks so observed show the effect of variable spacing which is quantitatively as well as qualitatively comparable to the spacing effect on small glass beads in a flume. Dunes and gravel bars may be considered kinematic waves caused by particle interaction, and certain of their properties can be related to the characteristics of the flux-concentration curve.
NASA Astrophysics Data System (ADS)
Erbello, Asfaw; Corti, Giacomo; Sani, Federico; Kidane, Tesfaye
2016-04-01
The Main Ethiopian Rift (MER), at the northern termination of the East African Rift, is an ideal locale where to get insights into the long-term motion between Nubia and Somalia. The rift is indeed one of the few places along the plate boundary where the deformation is narrow: its evolution is thus strictly related to the kinematics of the two major plates, whereas south of the Turkana depression a two-plate model for the EARS is too simplistic as extension occurs both along the Western and Eastern branches and different microplates are present between the two major plates. Despite its importance, the kinematics responsible for development and evolution of the MER is still a matter of debate: indeed, whereas the Quaternary-present kinematics of rifting is rather well constrained, the plate kinematics driving the initial, Mio-Pliocene stages of extension is still not clear, and different hypothesis have been put forward, including: polyphase rifting, with a change in direction of extension from NW-SE extension to E-W extension; constant Miocene-recent NW-SE extension; constant Miocene-recent NE-SW extension; constant, post-11 Ma extension consistent with the GPS-derived kinematics (i.e., roughly E-W to ESE-WNW). To shed additional light on this controversy and to test these different hypothesis, in this contribution we use new crustal-scale analogue models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The extension direction is indeed one of the most important parameters controlling the architecture of continental rifts and the relative abundance and orientation of different fault sets that develop during oblique rifting is typically a function of the angle between the extension direction and the orthogonal to the rift trend (i.e., the obliquity angle). Since the trend of the MER varies along strike, and consequently it is characterized by a variable obliquity angle (i.e., kinematics) along its length, the analysis of fault architecture and its variations are able to provide significant insights into the plate kinematics responsible for rift development and evolution. Our models thus reproduce the overall geometry of the ~600km-long MER with its along-strike variation in orientation to test the above-described hypothesis of rift evolution. Analysis of model results in terms of statistics of fault length and orientation, and deformation architecture and its comparison with the MER suggests that rift has likely developed under a constant, post-11 Ma extension oriented roughly E-W (N97.5°E), consistent with recent plate kinematics models.
Hébert-Losier, Kim; Pini, Alessia; Vantini, Simone; Strandberg, Johan; Abramowicz, Konrad; Schelin, Lina; Häger, Charlotte K
2015-12-01
Despite interventions, anterior cruciate ligament ruptures can cause long-term deficits. To assist in identifying and treating deficiencies, 3D-motion analysis is used for objectivizing data. Conventional statistics are commonly employed to analyze kinematics, reducing continuous data series to discrete variables. Conversely, functional data analysis considers the entire data series. Here, we employ functional data analysis to examine and compare the entire time-domain of knee-kinematic curves from one-leg hops between and within three groups. All subjects (n=95) were part of a long-term follow-up study involving anterior cruciate ligament ruptures treated ~20 years ago conservatively with physiotherapy only or with reconstructive surgery and physiotherapy, and matched knee-healthy controls. Between-group differences (injured leg, treated groups; non-dominant leg, controls) were identified during the take-off and landing phases, and in the sagittal (flexion/extension) rather than coronal (abduction/adduction) and transverse (internal/external) planes. Overall, surgical and control groups demonstrated comparable knee-kinematic curves. However, compared to controls, the physiotherapy-only group exhibited less flexion during the take-off (0-55% of the normalized phase) and landing (44-73%) phase. Between-leg differences were absent in controls and the surgically treated group, but observed during the flight (4-22%, injured leg>flexion) and the landing (57-85%, injured leg
ERIC Educational Resources Information Center
Eshach, Haim
2010-01-01
One essential skill that students who learn physics should possess is the ability to create and interpret kinematic graphs. However, it is well documented in the literature that students show lack of competence in these abilities. They have problems in connecting graphs and physics concepts, as well as graphs and the real world. The present paper…
Simultaneous estimation of human and exoskeleton motion: A simplified protocol.
Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L
2017-07-01
Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.
Estimating anatomical wrist joint motion with a robotic exoskeleton.
Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K
2017-07-01
Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.
Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
Ding, W L; Zheng, Y Z; Su, Y P; Li, X L
2018-04-19
To help patients with disabilities of the arm and shoulder recover the accuracy and stability of movements, a novel and simple virtual rehabilitation and evaluation system called the Kine-VRES system was developed using Microsoft Kinect. First, several movements and virtual tasks were designed to increase the coordination, control and speed of the arm movements. The movements of the patients were then captured using the Kinect sensor, and kinematics-based interaction and real-time feedback were integrated into the system to enhance the motivation and self-confidence of the patient. Finally, a quantitative evaluation method of upper limb movements was provided using the recorded kinematics during hand-to-hand movement. A preliminary study of this rehabilitation system indicates that the shoulder movements of two participants with ataxia became smoother after three weeks of training (one hour per day). This case study demonstrated the effectiveness of the designed system, which could be promising for the rehabilitation of patients with upper limb disorders.
Stability basin estimates fall risk from observed kinematics, demonstrated on the Sit-to-Stand task.
Shia, Victor; Moore, Talia Yuki; Holmes, Patrick; Bajcsy, Ruzena; Vasudevan, Ram
2018-04-27
The ability to quantitatively measure stability is essential to ensuring the safety of locomoting systems. While the response to perturbation directly reflects the stability of a motion, this experimental method puts human subjects at risk. Unfortunately, existing indirect methods for estimating stability from unperturbed motion have been shown to have limited predictive power. This paper leverages recent advances in dynamical systems theory to accurately estimate the stability of human motion without requiring perturbation. This approach relies on kinematic observations of a nominal Sit-to-Stand motion to construct an individual-specific dynamic model, input bounds, and feedback control that are then used to compute the set of perturbations from which the model can recover. This set, referred to as the stability basin, was computed for 14 individuals, and was able to successfully differentiate between less and more stable Sit-to-Stand strategies for each individual with greater accuracy than existing methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Forward kinematic analysis of in-vivo robot for stomach biopsy.
Sutar, Mihir Kumar; Pathak, P M; Sharma, A K; Mehta, N K; Gupta, V K
2013-09-01
The introduction of robotic medical assistance in biopsy and stomach cavity exploration is one of the most important milestones in the field of medical science. The research is still in its infancy and many issues like limitations in dexterity, control, and abdominal cavity vision are the main concerns of many researchers around the globe. This paper presents the design aspects and the kinematic analysis of a 4 degrees of freedom (DOF) hyper-redundant in-vivo robot for stomach biopsy. The proposed robot will be inserted through the tool channel of a conventional 4-DOF endoscope and this will increase the dexterity and ease in reaching the furthest parts of the stomach beyond the duodenum. Unlike the traditional biopsy tool, the present design will enhance dexterity due to its 4 DOF in addition to the endoscope's DOF. The endoscope will be positioned at the entrance to the stomach in the esophagus and the robot will move to the desired position inside the stomach for biopsy and exploration. The current robot is wire-actuated and possesses better maneuverability. The forward kinematic analysis of the proposed robot is presented in this paper.
Oblique collision and deformation partitioning in the SW Iberian Variscides
NASA Astrophysics Data System (ADS)
Pérez-Cáceres, Irene; Simancas, José Fernando; Martínez Poyatos, David; Azor, Antonio; González Lodeiro, Francisco
2016-05-01
Different transpressional scenarios have been proposed to relate kinematics and complex deformation patterns. We apply the most suitable of them to the Variscan orogeny in SW Iberia, which is characterized by a number of successive left-lateral transpressional structures developed in the Devonian to Carboniferous period. These structures resulted from the oblique convergence between three continental terranes (Central Iberian Zone, Ossa-Morena Zone and South Portuguese Zone), whose amalgamation gave way to both intense shearing at the suture-like contacts and transpressional deformation of the continental pieces in-between, thus showing strain partitioning in space and time. We have quantified the kinematics of the collisional convergence by using the available data on folding, shearing and faulting patterns, as well as tectonic fabrics and finite strain measurements. Given the uncertainties regarding the data and the boundary conditions modeled, our results must be considered as a semi-quantitative approximation to the issue, though very significant from a regional point of view. The total collisional convergence surpasses 1000 km, most of them corresponding to left-lateral displacement parallel to terrane boundaries. The average vector of convergence is oriented E-W (present-day coordinates), thus reasserting the left-lateral oblique collision in SW Iberia, in contrast with the dextral component that prevailed elsewhere in the Variscan orogen. This particular kinematics of SW Iberia is understood in the context of an Avalonian plate salient currently represented by the South Portuguese Zone.
Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
Li, Chengyu; Dong, Haibo
2017-02-03
This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.
Kinematics of the symbiotic system R Aqr
NASA Astrophysics Data System (ADS)
Navarro, S.; Corral, L. J.; Steffen, W.
2014-04-01
We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.
Electromyographic and Joint Kinematic Patterns in Runner's Dystonia.
Ahmad, Omar F; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin; Alter, Katharine
2018-04-20
Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described.
Electromyographic and Joint Kinematic Patterns in Runner’s Dystonia
Ahmad, Omar F.; Ghosh, Pritha; Stanley, Christopher; Karp, Barbara; Hallett, Mark; Lungu, Codrin
2018-01-01
Runner’s dystonia (RD) is a task-specific focal dystonia of the lower limbs that occurs when running. In this retrospective case series, we present surface electromyography (EMG) and joint kinematic data from thirteen patients with RD who underwent instrumented gait analysis (IGA) at the Functional and Biomechanics Laboratory at the National Institutes of Health. Four cases of RD are described in greater detail to demonstrate the potential utility of EMG with kinematic studies to identify dystonic muscle groups in RD. In these cases, the methodology for muscle selection for botulinum toxin therapy and the therapeutic response is discussed. Lateral heel whip, a proposed novel presentation of lower-limb dystonia, is also described. PMID:29677101
NASA Astrophysics Data System (ADS)
Shvelidze, T. D.; Malyuto, V. D.
Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for 333 stars in four areas. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre and the main meridional section of the Galaxy. The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.
NASA Astrophysics Data System (ADS)
Hassan, Siti Nor Habibah; Yusof, Ahmad Anas; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie; Nik, Wan Mohd Norsani Wan
2015-05-01
In promoting energy saving and sustainability, this paper presents research development of water hydraulics manipulator test rig for underwater application. Kinematic analysis of the manipulator has been studied in order to identify the workspace of the fabricated manipulator. The workspace is important as it will define the working area suitable to be developed on the test rig, in order to study the effectiveness of using water hydraulics system for underwater manipulation application. Underwater manipulator that has the ability to utilize the surrounding sea water itself as the power and energy carrier should have better advantages over sustainability and performance.
Kinematic simulation and analysis of robot based on MATLAB
NASA Astrophysics Data System (ADS)
Liao, Shuhua; Li, Jiong
2018-03-01
The history of industrial automation is characterized by quick update technology, however, without a doubt, the industrial robot is a kind of special equipment. With the help of MATLAB matrix and drawing capacity in the MATLAB environment each link coordinate system set up by using the d-h parameters method and equation of motion of the structure. Robotics, Toolbox programming Toolbox and GUIDE to the joint application is the analysis of inverse kinematics and path planning and simulation, preliminary solve the problem of college students the car mechanical arm positioning theory, so as to achieve the aim of reservation.
NASA Technical Reports Server (NTRS)
Sun, D. C.; Yuan, Qin
1994-01-01
The first phase of the study of the performance of a wormgear transmission is reported. In this phase the work included the selection of a double-enveloping wormgear type, and its dimensions, suitable for use in helicopter transmissions; the 3-D graphics representation of the selected wormgear using the I-DEAS software; the analysis of the kinematics of meshing; the analysis of load sharing among the meshing teeth; and the implementation of the analyses in a computer program. The report describes the analyses, their results, and the use of the computer programs.
Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.
Unmanned Systems: A Lab Based Robotic Arm for Grasping Phase II
2016-12-01
Leap Motion Controller, inverse kinematics, DH parameters. 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...robotic actuator. Inverse kinematics and Denavit-Hartenberg (DH) parameters will be briefly explained. A. POSITION ANALYSIS According to [3] and... inverse kinematic” method and allows us to calculate the actuator’s position in order to move the robot’s end effector to a specific point in space
Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease.
Drotár, Peter; Mekyska, Jiří; Rektorová, Irena; Masarová, Lucia; Smékal, Zdeněk; Faundez-Zanuy, Marcos
2016-02-01
We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.
Teixeira, Fernando Borge; Ramalho Júnior, Amancio; Morais Filho, Mauro César de; Speciali, Danielli Souza; Kawamura, Catia Miyuki; Lopes, José Augusto Fernandes; Blumetti, Francesco Camara
2018-01-01
Objective To evaluate the correlation between physical examination data concerning hip rotation and tibial torsion with transverse plane kinematics in children with cerebral palsy; and to determine which time points and events of the gait cycle present higher correlation with physical examination findings. Methods A total of 195 children with cerebral palsy seen at two gait laboratories from 2008 and 2016 were included in this study. Physical examination measurements included internal hip rotation, external hip rotation, mid-point hip rotation and the transmalleolar axis angle. Six kinematic parameters were selected for each segment to assess hip rotation and shank-based foot rotation. Correlations between physical examination and kinematic measures were analyzed by Spearman correlation coefficients, and a significance level of 5% was considered. Results Comparing physical examination measurements of hip rotation and hip kinematics, we found moderate to strong correlations for all variables (p<0.001). The highest coefficients were seen between the mid-point hip rotation on physical examination and hip rotation kinematics (rho range: 0.48-0.61). Moderate correlations were also found between the transmalleolar axis angle measurement on physical examination and foot rotation kinematics (rho range 0.44-0.56; p<0.001). Conclusion These findings may have clinical implications in the assessment and management of transverse plane gait deviations in children with cerebral palsy.
Pasternak, Braulio; Sousa Neto, Manoel Damião de; Dionísio, Valdeci Carlos; Pécora, Jesus Djalma; Silva, Ricardo Gariba
2012-02-01
This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.
Erdag, Deniz
2017-01-01
The aim of this study was to investigate the possible kinematic and muscular activity changes with maximal loading during squat maneuver. Fourteen healthy male individuals, who were experienced at performing squats, participated in this study. Each subject performed squats with 80%, 90%, and 100% of the previously established 1 repetition maximum (1RM). Electromyographic (EMG) activities were measured for the vastus lateralis, vastus medialis, rectus femoris, semitendinosus, biceps femoris, gluteus maximus, and erector spinae by using an 8-channel dual-mode portable EMG and physiological signal data acquisition system (Myomonitor IV, Delsys Inc., Boston, MA, USA). Kinematical data were analyzed by using saSuite 2D kinematical analysis program. Data were analyzed with repeated measures analysis of variance (p < 0.05). Overall muscle activities increased with increasing loads, but significant increases were seen only for vastus medialis and gluteus maximus during 90% and 100% of 1RM compared to 80% while there was no significant difference between 90% and 100% for any muscle. The movement pattern in the hip joint changed with an increase in forward lean during maximal loading. Results may suggest that maximal loading during squat may not be necessary for focusing on knee extensor improvement and may increase the lumbar injury risk. PMID:28546738
PASTERNAK-JÚNIOR, Braulio; de SOUSA NETO, Manoel Damião; DIONÍSIO, Valdeci Carlos; PÉCORA, Jesus Djalma; SILVA, Ricardo Gariba
2012-01-01
Objective This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques. PMID:22437679
NASA Astrophysics Data System (ADS)
Wang, Liping; Jiang, Yao; Li, Tiemin
2014-09-01
Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.
Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume
2015-06-01
Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koblbauer, Ian F; van Schooten, Kimberley S; Verhagen, Evert A; van Dieën, Jaap H
2014-07-01
This study aimed to investigate kinematic changes experienced during running-induced fatigue. Further, the study examined relations between kinematic changes and core endurance. Repeated measures and correlation. Seventeen novice runners participated in a running-induced fatigue protocol and underwent core endurance assessment. Participants ran at a steady state corresponding to an intensity of 13 on the Borg scale and continued until 2min after a Borg score of 17 or 90% of maximum heart rate was reached. Kinematic data were analyzed for the lower extremities and trunk throughout a running protocol and, on separate days, core endurance measures were recorded. Changes in pre- and post-fatigue running kinematics and their relations with core endurance measures were analyzed. Analysis of peak joint angles revealed significant increases in trunk flexion (4°), decreases in trunk extension (3°), and increases in non-dominant ankle eversion (1.6°) as a result of running-induced fatigue. Post-fatigue increased trunk flexion changes displayed a strong to moderate positive relation with trunk extensor core endurance measures, in contrast to expected negative relations. Novice runners displayed an overall increase in trunk inclination and increased ankle eversion peak angles when fatigued utilizing a running-induced fatigue protocol. As most pronounced changes were found for the trunk, trunk kinematics appear to be significantly affected during fatigued running and should not be overlooked. Core endurance measures displayed unexpected relations with running kinematics and require further investigation to determine the significance of these relations. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Hoch, Matthew C; Gaven, Stacey L; Weinhandl, Joshua T
2016-06-01
The Star Excursion Balance Test has identified dynamic postural control deficits in individuals with chronic ankle instability. While kinematic predictors of Star Excursion Balance Test performance have been evaluated in healthy individuals, this has not been thoroughly examined in individuals with chronic ankle instability. Fifteen individuals with chronic ankle instability completed the anterior reach direction of the Star Excursion Balance Test and weight-bearing dorsiflexion assessments. Maximum reach distances on the Star Excursion Balance Test were measured in cm and normalized to leg length. Three-dimensional trunk, hip, knee, and ankle motion of the stance limb were recorded during each anterior reach trial using a motion capture system. Sagittal, frontal, and transverse plane displacement observed from trial initiation to the point of maximum reach was calculated for each joint or segment and averaged for analysis. Pearson product-moment correlations were performed to examine the relationships between kinematic variables, maximal reach, and weight-bearing dorsiflexion. A backward multiple linear regression model was developed with maximal reach as the criterion variable and kinematic variables as predictors. Frontal plane displacement of the trunk, hip, and ankle and sagittal plane knee displacement were entered into the analysis. The final model (p=0.004) included all three frontal plane variables and explained 81% of the variance in maximal reach. Maximal reach distance and several kinematic variables were significantly related to weight-bearing dorsiflexion. Individuals with chronic ankle instability who demonstrated greater lateral trunk displacement toward the stance limb, hip adduction, and ankle eversion achieved greater maximal reach. Copyright © 2016. Published by Elsevier Ltd.
Sasaki, Shogo; Koga, Hideyuki; Krosshaug, Tron; Kaneko, Satoshi; Fukubayashi, Toru
2015-01-01
The strengths of interpersonal dyads formed by the attacker and defender in one-on-one situations are crucial for performance in team ball sports such as soccer. The purpose of this study was to analyze the kinematics of one-on-one defensive movements in soccer competitions, and determine the relationships between lower limb kinematics and the center of mass translation during cutting actions. Six defensive scenes in which a player was responding to an offender’s dribble attack were selected for analysis. To reconstruct the three-dimensional kinematics of the players, we used a photogrammetric model-based image-matching technique. The hip and knee kinematics were calculated from the matched skeleton model. In addition, the center of mass height was expressed as a ratio of each participant’s body height. The relationships between the center of mass height and the kinematics were determined by the Pearson’s product-moment correlation coefficient. The normalized center of mass height at initial contact was correlated with the vertical center of mass displacement (r = 0.832, p = 0.040) and hip flexion angle at initial contact (r = −0.823, p = 0.044). This suggests that the lower center of mass at initial contact is an important factor to reduce the downwards vertical center of mass translation during defensive cutting actions, and that this is executed primarily through hip flexion. It is therefore recommended that players land with an adequately flexed hip at initial contact during one-on-one cutting actions to minimize the vertical center of mass excursion. PMID:26240644
Tanaka, Yoshihisa; Nakamura, Shinichiro; Kuriyama, Shinichi; Ito, Hiromu; Furu, Moritoshi; Komistek, Richard D; Matsuda, Shuichi
2016-11-01
It is unknown whether a computer simulation with simple models can estimate individual in vivo knee kinematics, although some complex models have predicted the knee kinematics. The purposes of this study are first, to validate the accuracy of the computer simulation with our developed model during a squatting activity in a weight-bearing deep knee bend and then, to analyze the contact area and the contact stress of the tri-condylar implants for individual patients. We compared the anteroposterior (AP) contact positions of medial and lateral condyles calculated by the computer simulation program with the positions measured from the fluoroscopic analysis for three implanted knees. Then the contact area and the stress including the third condyle were calculated individually using finite element (FE) analysis. The motion patterns were similar in the simulation program and the fluoroscopic surveillance. Our developed model could nearly estimate the individual in vivo knee kinematics. The mean and maximum differences of the AP contact positions were 1.0mm and 2.5mm, respectively. At 120° of knee flexion, the contact area at the third condyle was wider than the both condyles. The mean maximum contact stress at the third condyle was lower than the both condyles at 90° and 120° of knee flexion. Individual bone models are required to estimate in vivo knee kinematics in our simple model. The tri-condylar implant seems to be safe for deep flexion activities due to the wide contact area and low contact stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tracking the hyoid bone in videofluoroscopic swallowing studies
NASA Astrophysics Data System (ADS)
Kellen, Patrick M.; Becker, Darci; Reinhardt, Joseph M.; van Daele, Douglas
2008-03-01
Difficulty swallowing, or dysphagia, has become a growing problem. Swallowing complications can lead to malnutrition, dehydration, respiratory infection, and even death. The current gold standard for analyzing and diagnosing dysphagia is the videofluoroscopic barium swallow study. In these studies, a fluoroscope is used to image the patient ingesting barium solutions of different volumes and viscosities. The hyoid bone anchors many key muscles involved in swallowing and plays a key role in the process. Abnormal hyoid bone motion during a swallow can indicate swallowing dysfunction. Currently in clinical settings, hyoid bone motion is assessed qualitatively, which can be subject to intra-rater and inter-rater bias. This paper presents a semi-automatic method for tracking the hyoid bone that makes quantitative analysis feasible. The user defines a template of the hyoid on one frame, and this template is tracked across subsequent frames. The matching phase is optimized by predicting the position of the template based on kinematics. An expert speech pathologist marked the position of the hyoid on each frame of ten studies to serve as the gold standard. Results from performing Bland-Altman analysis at a 95% confidence interval showed a bias of 0.0+/-0.08 pixels in x and -0.08+/-0.09 pixels in y between the manually-defined gold standard and the proposed method. The average Pearson's correlation between the gold standard and the proposed method was 0.987 in x and 0.980 in y. This paper also presents a method for automatically establishing a patient-centric coordinate system for the interpretation of hyoid motion. This coordinate system corrects for upper body patient motion during the study and identifies superior-inferior and anterior-posterior motion components. These tools make the use of quantitative hyoid motion analysis feasible in clinical and research settings.
A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.
Noh, Dong K; Lee, Nam G; You, Joshua H
2014-01-01
This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).
Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël
2016-01-01
The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.
HOUCK, JEFF; NEVILLE, CHRISTOPHER; TOME, JOSHUA; FLEMISTER, ADOLPH
2010-01-01
STUDY DESIGN Experimental laboratory study using a cross-sectional design. OBJECTIVES To compare foot kinematics, using 3-dimensional tracking methods, during a bilateral heel rise between participants with posterior tibial tendon dysfunction (PTTD) and participants with a normal medial longitudinal arch (MLA). BACKGROUND The bilateral heel rise test is commonly used to assess patients with PTTD; however, information about foot kinematics during the test is lacking. METHODS Forty-five individuals volunteered to participate, including 30 patients diagnosed with unilateral stage II PTTD (mean ± SD age, 59.8 ± 11.1 years; body mass index, 29.9 ± 4.8 kg/m2) and 15 controls (mean ± SD age, 56.5 ± 7.7 years; body mass index, 30.6 ± 3.6 kg/m2). Foot kinematic data were collected during a bilateral heel rise task from the calcaneus (hindfoot), first metatarsal, and hallux, using an Optotrak motion analysis system and Motion Monitor software. A 2-way mixed-effects analysis of variance model, with normalized heel height as a covariate, was used to test for significant differences between the normal MLA and PTTD groups. RESULTS The patients in the PTTD group exhibited significantly greater ankle plantar flexion (mean difference between groups, 7.3°; 95% confidence interval [CI]: 5.1° to 9.5°), greater first metatarsal dorsiflexion (mean difference between groups, 9.0°; 95% CI: 3.7° to 14.4°), and less hallux dorsiflexion (mean difference, 6.7°; 95% CI: 1.7° to 11.8°) compared to controls. At peak heel rise, hindfoot inversion was similar (P = .130) between the PTTD and control groups. CONCLUSION Except for hindfoot eversion/inversion, the differences in foot kinematics in participants with stage II PTTD, when compared to the control group, mainly occur as an offset, not an alteration in shape, of the kinematic patterns. PMID:19648723
Houck, Jeff R; Neville, Christopher; Tome, Josh; Flemister, A Samuel
2009-08-01
Experimental laboratory study using a cross-sectional design. To compare foot kinematics, using 3-dimensional tracking methods, during a bilateral heel rise between participants with posterior tibial tendon dysfunction (PTTD) and participants with a normal medial longitudinal arch (MLA). The bilateral heel rise test is commonly used to assess patients with PTTD; however, information about foot kinematics during the test is lacking. Forty-five individuals volunteered to participate, including 30 patients diagnosed with unilateral stage II PTTD (mean +/- SD age, 59.8 +/- 11.1 years; body mass index, 29.9 +/- 4.8 kg/m2) and 15 controls (mean +/- SD age, 56.5 +/- 7.7 years; body mass index, 30.6 +/- 3.6 kg/m2). Foot kinematic data were collected during a bilateral heel rise task from the calcaneus (hindfoot), first metatarsal, and hallux, using an Optotrak motion analysis system and Motion Monitor software. A 2-way mixed-effects analysis of variance model, with normalized heel height as a covariate, was used to test for significant differences between the normal MLA and PTTD groups. The patients in the PTTD group exhibited significantly greater ankle plantar flexion (mean difference between groups, 7.3 degrees ; 95% confidence interval [CI]: 5.1 degrees to 9.5 degrees ), greater first metatarsal dorsiflexion (mean difference between groups, 9.0 degrees ; 95% CI: 3.7 degrees to 14.4 degrees ), and less hallux dorsiflexion (mean difference, 6.7 degrees ; 95% CI: 1.7 degrees to 11.8 degrees ) compared to controls. At peak heel rise, hindfoot inversion was similar (P = .130) between the PTTD and control groups. Except for hindfoot eversion/inversion, the differences in foot kinematics in participants with stage II PTTD, when compared to the control group, mainly occur as an offset, not an alteration in shape, of the kinematic patterns.
Souza, Richard B; Draper, Christie E; Fredericson, Michael; Powers, Christopher M
2010-05-01
Controlled laboratory study using a cross-sectional design. To compare patellofemoral joint kinematics, femoral rotation, and patella rotation between females with patellofemoral pain (PFP) and pain-free controls using weight-bearing kinematic magnetic resonance imaging. Recently, it has been recognized that patellofemoral malalignment may be the result of femoral motion as opposed to patella motion. Fifteen females with PFP and 15 pain-free females between the ages of 18 and 45 years participated in this study. Kinematic imaging of the patellofemoral joint was performed using a vertically open magnetic resonance imaging system. Axial-oblique images were obtained using a fast gradient-echo pulse sequence. Images were acquired at a rate of 1 image per second while subjects performed a single-limb squat. Measures of femur and patella rotation (relative to the image field of view), lateral patella tilt, and lateral patella displacement were made from images obtained at 45 degrees , 30 degrees , 15 degrees , and 0 degrees of knee flexion. Group differences were assessed using a mixed-model analysis of variance with repeated measures. When compared to the control group, females with PFP demonstrated significantly greater lateral patella displacement at all angles evaluated and significantly greater lateral patella tilt at 30 degrees , 15 degrees , and 0 degrees of knee flexion. Similarly, greater medial femoral rotation was observed in the PFP group at 45 degrees , 15 degrees , and 0 degrees of knee flexion when compared to the control group. No group differences in patella rotation were found. Altered patellofemoral joint kinematics in females with PFP appears to be related to excessive medial femoral rotation, as opposed to lateral patella rotation. Our results suggest that the control of femur rotation may be important in restoring normal patellofemoral joint kinematics. J Orthop Sports Phys Ther 2010;40(5):277-285, Epub 12 March 2010. doi:10.2519/jospt.2010.3215.
Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël
2016-01-01
The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586
Heard, B J; Beveridge, J E; Atarod, M; O'Brien, E J; Rolian, C; Frank, C B; Hart, D A; Shrive, N G
2017-05-23
Many patients who undergo anterior cruciate ligament (ACL) reconstructive surgery develop post-traumatic osteoarthritis (PTOA). ACL reconstructive surgery may not fully restore pre-injury joint biomechanics, thereby resulting in further joint damage and contributing to the development of PTOA. In an ovine model of idealized ACL reconstruction (ACL-R), it has been shown that signs of PTOA develop within surgical joints by 20 weeks post-surgery. The aim of the present study was to investigate whether altered kinematics contribute to early PTOA development within ACL-R joints of the ovine injury model by comparing the gait of these surgical animals to the gait of a stable normal control group, and an unstable injury group in which the ACL and medial collateral ligament (MCL) had been transected. Fifteen skeletally mature female sheep were allocated evenly into 3 treatment groups: normal control, ACL-R, and ACL/MCL Tx (each group n = 5). Each animal's gait was recorded at baseline, 4 weeks post injury, and 20 weeks post injury. Principal component analysis (PCA) was used to identify the kinematic patterns that may be discriminant between treatment groups. Results from previous studies were referenced to present the amount of gross PTOA-like changes that occurred in the joints. ACL-R and ACL/MCL transected (Tx) animals developed a similar amount of early PTOA-like changes within the surgical joints, but differed significantly in the amount of kinematic change present at 20 weeks post-surgery. We showed that the stifle joint kinematics of ACL/MCL Tx differed significantly from those of CTRL and the majority of ACL-R animals, while no significant differences in joint kinematic changes were found between ACL-R and CTRL animals. These results suggest that the early PTOA-like changes reported in the ACL-R model cannot be attributed exclusively to post-surgical kinematic changes, and therefore biologic components in the post-injury environment must be contributing significantly to PTOA development.
Knee Proprioception and Strength and Landing Kinematics During a Single-Leg Stop-Jump Task
Nagai, Takashi; Sell, Timothy C; House, Anthony J; Abt, John P; Lephart, Scott M
2013-01-01
Context The importance of the sensorimotor system in maintaining a stable knee joint has been recognized. As individual entities, knee-joint proprioception, landing kinematics, and knee muscles play important roles in functional joint stability. Preventing knee injuries during dynamic tasks requires accurate proprioceptive information and adequate muscular strength. Few investigators have evaluated the relationship between knee proprioception and strength and landing kinematics. Objective To examine the relationship between knee proprioception and strength and landing kinematics. Design Cross-sectional study. Setting University research laboratory. Patients or Other Participants Fifty physically active men (age = 26.4 ± 5.8 years, height = 176.5 ± 8.0 cm, mass = 79.8 ± 16.6 kg). Intervention(s) Three tests were performed. Knee conscious proprioception was evaluated via threshold to detect passive motion (TTDPM). Knee strength was evaluated with a dynamometer. A 3-dimensional biomechanical analysis of a single-legged stop-jump task was used to calculate initial contact (IC) knee-flexion angle and knee-flexion excursion. Main Outcome Measure(s) The TTDPM toward knee flexion and extension, peak knee flexion and extension torque, and IC knee-flexion angle and knee flexion excursion. Linear correlation and stepwise multiple linear regression analyses were used to evaluate the relationships of both proprioception and strength against landing kinematics. The α level was set a priori at .05. Results Enhanced TTDPM and greater knee strength were positively correlated with greater IC knee-flexion angle (r range = 0.281–0.479, P range = .001–.048). The regression analysis revealed that 27.4% of the variance in IC knee-flexion angle could be accounted for by knee-flexion peak torque and TTDPM toward flexion (P = .001). Conclusions The current research highlighted the relationship between knee proprioception and strength and landing kinematics. Individuals with enhanced proprioception and muscular strength had better control of IC knee-flexion angle during a dynamic task. PMID:23672323
Quantitative kinematic analysis within the Khlong Marui shear zone, southern Thailand
NASA Astrophysics Data System (ADS)
Kanjanapayont, Pitsanupong; Grasemann, Bernhard; Edwards, Michael A.; Fritz, Harald
2012-02-01
The NNE trending Khlong Marui shear zone has a strong geomorphic signal with marked fault-strike parallel topographic ridges. The lithologies within the strike-slip zone mainly consist of vertical layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins. The pegmatitic veins concordantly intrude the mylonitic foliation but were sheared at the rims indicating syn-kinematic emplacement. Microstructures and mineral assemblages suggest that the rocks in the area have been metamorphosed at amphibolite facies and low to medium greenschist facies by the first deformation. The Khlong Marui shear zone was deformed under dextral simple shear flow with a small finite strain. The ductile-to-brittle deformation involves a period of exhumation of lenses of higher grade rocks together with low grade fault rocks probably associated with positive flower structures. The final stage brittle deformation is reflected by normal faulting and formation of proto-cataclasites to cataclasites of the original mylonitic meta-sedimentary host rock. Although clear age-constraints are still missing, we use regional relationships to speculate that earlier dextral strike-slip displacement of the Khlong Marui shear zone was related to the West Burma and Shan-Thai collision and subduction along the Sunda Trench in the Late Cretaceous, while the major exhumation period of the ductile lens was tectonically influenced by the early India-Asia collision. The changing stress field has responded by switching from dextral strike-slip to normal faulting in the Khlong Marui shear zone, and is associated with "escape tectonics" arising from the overall India-Asia collision.
Ellingson, Arin M.; Nuckley, David J.
2014-01-01
Although the causes of low back pain are poorly defined and indistinct, degeneration of the intervertebral disc is most often implicated as the origin of pain. The biochemical and mechanical changes associated with degeneration result in the discs’ inability to maintain structure and function, leading to spinal instability and ultimately pain. Traditionally, a clinical exam assessing functional range-of-motion coupled with T2-weighted MRI revealing disc morphology are used to evaluate spinal health; however, these subjective measures fail to correlate well with pain or provide useful patient stratification. Therefore, improved quantification of spinal motion and objective MRI measures of disc health are necessary. An instantaneous helical axis (IHA) approach provides rich temporal three-dimensional data describing the pathway of motion, which is easily visualized. Eighteen cadaveric osteoligamentous lumbar spines (L4-5) from throughout the degenerative spectrum were tested in a pure moment fashion. IHA were calculated for flexion-extension and lateral bending. A correlational study design was used to determine the relationship between disc measurements from quantitative T2* MRI and IHA metrics. Increased instability and out-of-plane rotation with diminished disc health was observed during lateral bending, but not flexion-extension. This new analysis strategy examines the entire pathway of motion, rather than simplifying spinal kinematics to its terminal ends of motion and provides a more sensitive kinematic measurement of disc health. Ultimately, through the use of 3D dynamic fluoroscopy or similar methods, a patient's functional IHA in lateral bending may be measured and used to assess their disc health for diagnosis, progression tracking, and treatment evaluation. PMID:25481221
A Multi-ionic Kinematic Investigation of NGC 595, a Giant Extragalactic H II Region in M33
NASA Astrophysics Data System (ADS)
Lagrois, Dominic; Joncas, Gilles
2009-08-01
Spectro-interferometric observations of the Hα, [O III], and [S II] optical emission lines are combined with radio observations of the 21 cm line in order to obtain a reliable kinematic image of NGC 595, the second largest giant extragalactic H II region in M33. The Hα and [O III] observations reveal that the nebula is exposed to two distinct kinematical regimes. While symmetric, broad velocity profiles dominate a sizeable fraction of the ionized extent, evidence for line splitting is detected in a small region near the most massive stars of the star cluster. A quantitative investigation proposes that two expanding wind-blown bubbles could be held responsible for the observed line splitting. The kinematics of the ionized material presenting one-component velocity profiles likely indicates that Champagne flows are present at the periphery of the molecular component leading to accelerated ionized material in the ambient interstellar medium. In areas not dominated by the photoionization of the molecular clouds, the H+ and S+ material shows a kinematical behavior roughly in agreement with the atomic gas. Mean nonthermal line widths show relatively large, supersonic values especially in [O III]. Models of structure functions indicate that the Hα and [O III] components could be exposed to different turbulent motions which could explain the broadening excess observed for the latter ion. On the full ionized extent of the nebula, the S+ material shows narrower line widths than the two other ions. Combined with the absence of line splitting, these peculiar characteristics indicate that the [S II] component is likely located at the periphery of the nebula and probably does not coexist with Hα and [O III]. The shape of the [S II] structure function is in agreement with a relatively low number of large-scale velocity gradients which partially explains the narrower profiles observed. The mean electron density in the nebula is estimated at 162 ± 106(1σ) cm-3, in agreement with previous studies of similar extragalactic H II regions. We provide the first bidimensional electron density map ever presented for a giant extragalactic nebula.
Dynamic and kinematic strategies for head movement control
NASA Technical Reports Server (NTRS)
Peterson, B. W.; Choi, H.; Hain, T.; Keshner, E.; Peng, G. C.
2001-01-01
This paper describes our analysis of the complex head-neck system using a combination of experimental and modeling approaches. Dynamical analysis of head movements and EMG activation elicited by perturbation of trunk position has examined functional contributions of biomechanically and neurally generated forces in lumped systems with greatly simplified kinematics. This has revealed that visual and voluntary control of neck muscles and the dynamic and static vestibulocollic and cervicocollic reflexes preferentially govern head-neck system state in different frequency domains. It also documents redundant control, which allows the system to compensate for lesions and creates a potential for substantial variability within and between subjects. Kinematic studies have indicated the existence of reciprocal and co-contraction strategies for voluntary force generation, of a vestibulocollic strategy for stabilizing the head during body perturbations and of at least two strategies for voluntary head tracking. Each strategy appears to be executed by a specific muscle synergy that is presumably optimized to efficiently meet the demands of the task.
Research on Robot Pose Control Technology Based on Kinematics Analysis Model
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.
Rosen, Jacob; Brown, Jeffrey D; Barreca, Marco; Chang, Lily; Hannaford, Blake; Sinanan, Mika
2002-01-01
Minimally invasive surgeiy (MIS) involves a multi-dimensional series of tasks requiring a synthesis between visual information and the kinematics and dynamics of the surgical tools. Analysis of these sources of information is a key step in mastering MIS surgery but may also be used to define objective criteria for characterizing surgical performance. The BIueDRAGON is a new system for acquiring the kinematics and the dynamics of two endoscopic tools along with the visual view of the surgical scene. It includes two four-bar mechanisms equipped with position and force torque sensors for measuring the positions and the orientations (P/O) of two endoscopic tools along with the forces and torques applied by the surgeons hands. The methodology of decomposing the surgical task is based on a fully connected, finite-states (28 states) Markov model where each states corresponded to a fundamental tool/tissue interaction based on the tool kinematics and associated with unique F/T signatures. The experimental protocol included seven MIS tasks performed on an animal model (pig) by 30 surgeons at different levels of their residency training. Preliminary analysis of these data showed that major differences between residents at different skill levels were: (i) the types of tool/tissue interactions being used, (ii) the transitions between tool/tissue interactions being applied by each hand, (iii) time spent while perfonning each tool/tissue interaction, (iv) the overall completion time, and (v) the variable F/T magnitudes being applied by the subjects through the endoscopic tools. Systems like surgical robots or virtual reality simulators that inherently measure the kinematics and the dynamics of the surgical tool may benefit from inclusion of the proposed methodology for analysis of efficacy and objective evaluation of surgical skills during training.
Galvin, Catherine R; Perriman, Diana M; Newman, Phillip M; Lynch, Joseph T; Smith, Paul N; Scarvell, Jennie M
2018-05-22
Understanding healthy deep flexion kinematics will inform the design of conservative clinical rehabilitation strategies for knee osteoarthritis and contribute to improved knee prosthesis design. This study is a systematic review and meta-analysis of the kinematic outcomes measured at the healthy tibiofemoral joint during loaded deep knee flexion. A computerised literature search and bibliography review without date restriction identified twelve studies with 164 participants aged 25-61 years in-vivo, and 69-93 years in-vitro. Flexion higher than 120° was achieved by squatting, lunging or kneeling. Measurement technologies in-vivo included radiographs, open MRI and 2D-3D MRI or CT image registration on fluoroscopy. Microscribe was used in-vitro. Outcomes were either six degrees-of-freedom based on femur movement or contact patterns on the tibial plateau. The meta-analysis demonstrated that in-vivo, between 120° and 135° of flexion, the tibia internally rotated (mean difference (MD) = 4.6°, 95% CI 3.55° to 5.64°). Both the medial-femoral-condyle and lateral-femoral-condyle translated posteriorly, (MD = 10.4 mm, 95% CI 6.9 to 13.9 mm) and (MD = 5.55 mm, 95% CI 4.64 to 6.46 mm) respectively. There was some evidence of femoral medial translation (3.8 mm) and adduction (1.9° to 3.3°), together with medial compression (1.7 mm) and lateral distraction (1.9) mm. Across the in-vivo studies, consistent kinematic patterns emerged; despite the various measurement technologies and reference methods. In contrast, in-vivo and in-vitro results were contradictory. This systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 25 February 2017 (registration number: 42017057614). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Brink, Jeffrey S.
2005-01-01
The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.
Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A
2011-11-01
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.
Venkataraman, Vinay; Turaga, Pavan; Baran, Michael; Lehrer, Nicole; Du, Tingfang; Cheng, Long; Rikakis, Thanassis; Wolf, Steven L.
2016-01-01
In this paper, we propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system. We propose a linear combination of non-linear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis. PMID:25438331
Schwarzkopf, Ran; Laster, Scott K; Cross, Michael B; Lenz, Nathaniel M
2016-04-01
Proper ligament tension in flexion with posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The purpose of this study was to determine the effect of varying levels of posterior cruciate ligament (PCL) release on the tibiofemoral kinematics and PCL strain. A computational analysis was performed and varying levels of PCL release were simulated. Tibiofemoral kinematics was evaluated. The maximum PCL strain was determined for each bundle to evaluate the risk of rupture based on the failure strain. The femoral AP position shifted anteriorly as the PCL stiffness was reduced. PCL strain in both bundles increased as stiffness was reduced. The model predicts that the AL bundle should not rupture for a 75% release. Risk of PM bundle rupture is greater than AL bundle. Our findings suggest that a partial PCL release impacts tibiofemoral kinematics and ligament tension and strain. The relationship is dynamic and care should be taken when seeking optimal balance intra-operatively.
Kinematics of reaching and implications for handedness in rhesus monkey infants
Nelson, Eliza L.; Konidaris, George D.; Berthier, Neil E.; Braun, Maurine C.; Novak, Matthew F.S.X.; Suomi, Stephen J.; Novak, Melinda A.
2014-01-01
Kinematic studies of reaching in human infants using two-dimensional (2-D) and three-dimensional (3-D) recordings have complemented behavioral studies of infant handedness by providing additional evidence of early right asymmetries. Right hand reaches have been reported to be straighter and smoother than left hand reaches during the first year. Although reaching has been a popular measure of handedness in primates, there has been no systematic comparison of left and right hand reach kinematics. We investigated reaching in infant rhesus monkeys using the 2-D motion analysis software MaxTRAQ Lite+ (Innovision Systems). Linear mixed-effects models revealed that left hand reaches were smoother, but not straighter, than right hand reaches. An early left bias matches previous findings of a left hand preference for reaching in adult rhesus monkeys. Additional work using this kind of kinematic approach will extend our understanding of primate handedness beyond traditional studies measuring only frequency or bouts of hand use. PMID:22031459
Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality
Rao, Hrishikesh M.; Khanna, Rajan; Zielinski, David J.; Lu, Yvonne; Clements, Jillian M.; Potter, Nicholas D.; Sommer, Marc A.; Kopper, Regis; Appelbaum, Lawrence G.
2018-01-01
Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting. PMID:29467693
Analysis of a closed-kinematic chain robot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1988-01-01
Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.
THE DiskMass SURVEY. III. STELLAR KINEMATICS VIA CROSS-CORRELATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W., E-mail: westfall@astro.rug.nl, E-mail: mab@astro.wisc.edu, E-mail: verheyen@astro.rug.nl
2011-03-15
We describe a new cross-correlation (CC) approach used by our survey to derive stellar kinematics from galaxy-continuum spectroscopy. This approach adopts the formal error analysis derived by Statler, but properly handles spectral masks. Thus, we address the primary concerns regarding application of the CC method to censored data, while maintaining its primary advantage by consolidating kinematic and template-mismatch information toward different regions of the CC function. We identify a systematic error in the nominal CC method of approximately 10% in velocity dispersion incurred by a mistreatment of detector-censored data, which is eliminated by our new method. We derive our approachmore » from first principles, and we use Monte Carlo simulations to demonstrate its efficacy. An identical set of Monte Carlo simulations performed using the well-established penalized-pixel-fitting code of Cappellari and Emsellem compares favorably with the results from our newly implemented software. Finally, we provide a practical demonstration of this software by extracting stellar kinematics from SparsePak spectra of UGC 6918.« less
NASA Astrophysics Data System (ADS)
Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.
2005-09-01
White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.
NASA Astrophysics Data System (ADS)
Sybilska, Agnieszka; Łokas, Ewa Luiza; Fouquet, Sylvain
2017-03-01
We combine high-quality IFU data with a new set of numerical simulations to study low-mass early type galaxies (dEs) in dense environments. Our earlier study of dEs in the Virgo cluster has produced the first large-scale maps of kinematic and stellar population properties of dEs in those environments (Ryś et al. 2013, 2014, 2015). A quantitative discrimination between various (trans)formation processes proposed for these objects is, however, a complex issue, requiring a priori assumptions about the progenitors of galaxies we observe and study today. To bridge this gap between observations and theoretical predictions, we use the expertise gained in the IFU data analysis to look ``through the eye of SAURON'' at our new suite of high-resolution N-body simulations of dEs in the Virgo cluster. Mimicking the observers perspective as closely as possible, we can also indicate the existing instrumental and viewer limitations regarding what we are/are not able to detect as observers.
Kinematic imprints from the bar and spiral structures in the galatic disk
NASA Astrophysics Data System (ADS)
Figueras, F.; Antoja, T.; Valenzuela, O.; Romero-Gómez, M.; Pichardo, B.; Moreno, E.
2011-12-01
At 140 years of the discovery of the moving groups, these stellar streams are emerging as powerful tools to constrain the models for the spiral arms and the Galactic bar in the Gaia era. From the kinematic-age-metallicity analysis in the solar neighbourhood it is now well established that some of these kinematic structures have a dynamical origin, different from the classical cluster disruption hypothesis. Test particle simulations allow us to definitively establish that these local structures can be created by the dynamical resonances of material spiral arms and not exclusively by the Galactic bar. First studies to evaluate the capabilities of the future Gaia data to detect and characterize moving groups at 2-6 kpc from the solar neighborhood are discussed.
Ferrer, Gerald A; Miller, R Matthew; Zlotnicki, Jason P; Tashman, Scott; Irrgang, James J; Musahl, Volker; Debski, Richard E
2018-01-01
Rotator cuff tears are a significant clinical problem, with exercise therapy being a common treatment option for patients. Failure rates of exercise therapy may be due to the failure to improve glenohumeral kinematics. Tears involving the supraspinatus may result in altered glenohumeral kinematics and joint instability for internal/external rotation with the arm at the side because not all muscles used to stabilize the glenohumeral joint are functioning normally. The objective of the study is to assess in vivo glenohumeral kinematic changes for internal/external rotation motions with the arm at the side of patients with a symptomatic full-thickness supraspinatus tear before and after a 12-week exercise therapy programme. Five patients underwent dynamic stereoradiography analysis before and after a 12-week exercise therapy protocol to measure changes in glenohumeral kinematics during transverse plane internal/external rotation with the arm at the side. Patient-reported outcomes and shoulder strength were also evaluated. No patient sought surgery immediately following exercise therapy. Significant improvements in isometric shoulder strength and patient-reported outcomes were observed (p < 0.05). No significant changes in glenohumeral kinematics following physical therapy were found. Isolated supraspinatus tears resulted in increased joint translations compared to healthy controls from the previous literature for internal/external rotation with the arm at the side. Despite satisfactory clinical outcomes following exercise therapy, glenohumeral kinematics did not change. The lack of changes may be due to the motion studied or the focus of current exercise therapy protocols being increasing shoulder strength and restoring range of motion. Current exercise therapy protocols should be adapted to also focus on restoring glenohumeral kinematics to improve joint stability since exercise therapy may have different effects depending on the motions of daily living. Prognostic study, Level II.
Impact of Harness Attachment Point on Kinetics and Kinematics During Sled Towing.
Bentley, Ian; Atkins, Steve J; Edmundson, Christopher J; Metcalfe, John; Sinclair, Jonathan K
2016-03-01
Resisted sprint training is performed in a horizontal direction and involves similar muscles, velocities, and ranges of motion (ROM) to those of normal sprinting. Generally, sleds are attached to the athletes through a lead (3 m) and harness; the most common attachment points are the shoulder or waist. At present, it is not known how the different harness point's impact on the kinematics and kinetics associated with sled towing (ST). The aim of the current investigation was to examine the kinetics and kinematics of shoulder and waist harness attachment points in relation to the acceleration phase of ST. Fourteen trained men completed normal and ST trials, loaded at 10% reduction of sprint velocity. Sagittal plane kinematics from the trunk, hip, knee, and ankle were measured, together with stance phase kinetics (third footstrike). Kinetic and kinematic parameters were compared between harness attachments using one-way repeated-measures analysis of variance. The results indicated that various kinetic differences were present between the normal and ST conditions. Significantly greater net horizontal mean force, net horizontal impulses, propulsive mean force, and propulsive impulses were measured (p < 0.05). Interestingly, the waist harness also led to greater net horizontal impulse when compared with the shoulder attachment (p < 0.001). In kinematic terms, ST conditions significantly increased peak flexion in hip, knee, and ankle joints compared with the normal trials (p < 0.05). Results highlighted that the shoulder harness had a greater impact on trunk and knee joint kinematics when compared with the waist harness (p < 0.05). In summary, waist harnesses seem to be the most suitable attachment point for the acceleration phase of sprinting. Sled towing with these attachments resulted in fewer kinematic alterations and greater net horizontal impulse when compared with the shoulder harness. Future research is necessary in order to explore the long-term adaptations of these acute changes.
An instrumented spatial linkage for measuring knee joint kinematics.
Rosvold, Joshua M; Atarod, Mohammad; Frank, Cyril B; Shrive, Nigel G
2016-01-01
In this study, the design and development of a highly accurate instrumented spatial linkage (ISL) for kinematic analysis of the ovine stifle joint is described. The ovine knee is a promising biomechanical model of the human knee joint. The ISL consists of six digital rotational encoders providing six degrees of freedom (6-DOF) to its motion. The ISL makes use of the complete and parametrically continuous (CPC) kinematic modeling method to describe the kinematic relationship between encoder readings and the relative positions and orientation of its two ends. The CPC method is useful when calibrating the ISL, because a small change in parameters corresponds to a small change in calculated positions and orientations and thus a smaller optimization error, compared to other kinematic models. The ISL is attached rigidly to the femur and the tibia for motion capture, and the CPC kinematic model is then employed to transform the angle sensor readings to relative motion of the two ends of the linkage, and thereby, the stifle joint motion. The positional accuracy for ISL after calibration and optimization was 0.3±0.2mm (mean +/- standard deviation). The ISL was also evaluated dynamically to ensure that accurate results were maintained, and achieved an accuracy of 0.1mm. Compared to the traditional motion capture methods, this system provides increased accuracy, reduced processing time, and ease of use. Future work will be on the application of the ISL to the ovine gait and determination of in vivo joint motions and tissue loads. Accurate measurement of knee joint kinematics is essential in understanding injury mechanisms and development of potential preventive or treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James
2012-01-01
Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819
Leach, R; McNally, Donal; Bashir, Mohamad; Sastry, Priya; Cuerden, Richard; Richens, David; Field, Mark
2012-10-01
The severity and location of injuries resulting from vehicular collisions are normally recorded in Abbreviated Injury Scale (AIS) code; we propose a system to link AIS code to a description of acute aortic syndrome (AAS), thus allowing the hypothesis that aortic injury is progressive with collision kinematics to be tested. Standard AIS codes were matched with a clinical description of AAS. A total of 199 collisions that resulted in aortic injury were extracted from a national automotive collision database and the outcomes mapped onto AAS descriptions. The severity of aortic injury (AIS severity score) and stage of AAS progression were compared with collision kinematics and occupant demographics. Post hoc power analyses were used to estimate maximum effect size. The general demographic distribution of the sample represented that of the UK population in regard to sex and age. No significant relationship was observed between estimated test speed, collision direction, occupant location or seat belt use and clinical progression of aortic injury (once initiated). Power analysis confirmed that a suitable sample size was used to observe a medium effect in most of the cases. Similarly, no association was observed between injury severity and collision kinematics. There is sufficient information on AIS severity and location codes to map onto the clinical AAS spectrum. It was not possible, with this data set, to consider the influence of collision kinematics on aortic injury initiation. However, it was demonstrated that after initiation, further progression along the AAS pathway was not influenced by collision kinematics. This might be because the injury is not progressive, because the vehicle kinematics studied do not fully represent the kinematics of the occupants, or because an unknown factor, such as stage of cardiac cycle, dominates. Epidemiologic/prognostic study, level IV.
Differences in foot kinematics between young and older adults during walking.
Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic
2014-02-01
Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = <0.001), a smaller sagittal plane range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = <0.001) and smaller coronal plane ROM of the metatarsus (3.2° vs. 4.3°, d = 1.1, p = 0.006) compared to the young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.
2016-01-01
The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5–11 years) and 20 age and gender matched typically developing children (5–11 years) during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video. A total of 12 kinematic features representing spatial and temporal characteristics of vibratory motion were calculated. Average values and standard deviations (cycle-to-cycle variability) of the following kinematic features were computed: normalized peak displacement, normalized average opening velocity, normalized average closing velocity, normalized peak closing velocity, speed quotient, and open quotient. Group differences between children with and without vocal fold nodules were statistically investigated. While a moderate effect size was observed for the spatial feature of speed quotient, and the temporal feature of normalized average closing velocity in children with nodules compared to vocally normal children, none of the features were statistically significant between the groups after Bonferroni correction. The kinematic analysis of the mid-membranous vocal fold displacement revealed that children with nodules primarily differ from typically developing children in closing phase kinematics of the glottal cycle, whereas the opening phase kinematics are similar. Higher speed quotients and similar opening phase velocities suggest greater relative forces are acting on vocal fold in the closing phase. These findings suggest that future large-scale studies should focus on spatial and temporal features related to the closing phase of the glottal cycle for differentiating the kinematics of children with and without vocal fold nodules. PMID:27124157
Schwane, Brandi G; Goerger, Benjamin M; Goto, Shiho; Blackburn, J Troy; Aguilar, Alain J; Padua, Darin A
2015-07-01
There is limited evidence indicating the contribution of trunk kinematics to patellofemoral pain (PFP). A better understanding of the interaction between trunk and lower extremity kinematics in this population may provide new avenues for interventions to treat PFP. To compare trunk and lower extremity kinematics between participants with PFP and healthy controls during a stair-descent task. Cross-sectional study. Research laboratory. Twenty women with PFP (age = 22.2 ± 3.1 years, height = 164.5 ± 9.2 cm, mass = 63.5 ± 13.6 kg) and 20 healthy women (age = 21.0 ± 2.6 years, height = 164.5 ± 7.1 cm, mass = 63.8 ± 12.7 kg). Kinematics were recorded as participants performed stair descent at a controlled velocity. Three-dimensional joint displacement of the trunk, hip, and knee during the stance phase of stair descent for the affected leg was measured using a 7-camera infrared optical motion-capture system. Pretest and posttest pain were assessed using a visual analogue scale. Kinematic differences between groups were determined using independent-samples t tests. A 2 × 2 mixed-model analysis of variance (group = PFP, control; time = pretest, posttest) was used to compare knee pain. We observed greater knee internal-rotation displacement for the PFP group (12.8° ± 7.2°) as compared with the control group (8.9° ± 4.4°). No other between-groups differences were observed for the trunk, hip, or other knee variables. We observed no difference in trunk kinematics between groups but did note differences in knee internal-rotation displacement. These findings contribute to the current knowledge of altered movement in those with PFP and provide direction for exercise interventions.
Pure akinesia: a kinematic analysis in a case responsive to rotigotine
Di Fabio, Roberto; Serrao, Mariano; Pierelli, Francesco; Fragiotta, Gaia; Sandrini, Giorgio
2013-01-01
Summary A patient with pure akinesia is described. This rare gait disorder, poorly responsive to therapy, is characterized by gait impairment which may be associated with handwriting and speech difficulties, in the absence of further signs of extrapyramidal involvement. Here, we report the improvement in a patient suffering from pure akinesia after low doses of rotigotine, a non-ergolinic dopamine agonist, detailing the kinematic analysis before and after the treatment. After therapy, an improvement in all of the gait parameters, particularly gait speed, was observed with a trend toward normalization. Our case report suggests that rotigotine may be a therapeutic option in cases of pure akinesia. PMID:24125564
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
Kinematic analysis of work-related musculoskeletal loading of trunk among dentists in Germany.
Ohlendorf, Daniela; Erbe, Christina; Hauck, Imke; Nowak, Jennifer; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A
2016-10-18
In Germany, about 86.7 % of the dentists have stated to suffer from pain in the neck and shoulder region. These findings are predominantly based on surveys. Therefore the objective of this study is to conduct a kinematic analysis of occupational posture in dentistry. Twenty one dentists (11 f/10 m; age: 40.1 ± 10.4 years) have participated in this examination. The CUELA-System was used to collect kinematic data of the activities on an average dental workday. A detailed, computer-based task analysis took place parallel to the kinematic examination. Through the synchronization of data collected from both measurements, patterns of posture were arranged chronologically and in conjunction with the tasks performed: (I) "treatment" (II) "office" and (III) "other activities". For the data analysis, characteristic data of joint angular distributions (percentiles P05, P25, P50, P75 and P95) of head, neck and torso at pre-defined tasks were examined and assessed corresponding to ergonomic standards. Forty one percent of tasks executed on an average dental workday can be categorized as the treatment of patients. These tasked are most frequently performed in "straight back" positions (78.7 %), whereas 20.1 % were carried out in a "twisted or inclined" torso posture, 1.1 % "bowed" and only 0.1 % "bowed and twisted/inclined to the side" upper body position. In particular, it can be observed that in the area of the cervical and thoracic spine the 75th and 95th percentile show worse angular values during treatment than during non-dental tasks. For the period of treatment (at a standardized dental chair construction), a seated position with a strong inclination of the thoracic spine to the right while the lumbar spine is inclined towards the left is adopted. The kinematic analysis of dentists illustrates typical patterns of postures during tasks that are essential to the dental treatment of patients. The postures in the area of the cervical and thoracic spine have higher angular values during treatment compared to other dental tasks. Consistently, appropriate ergonomic design measures to optimize the dental chair and equipment as well as integrated training in ergonomics as part of the study of dentistry to prevent musculoskeletal are recommended.
Xu, Chang; Li, Siyi; Wang, Kui; Hou, Zengguang; Yu, Ningbo
2017-07-01
In neuro-rehabilitation after stroke, the conventional constrained induced movement therapy (CIMT) has been well-accepted. Existing bilateral trainings are mostly on mirrored symmetrical motion. However, complementary bilateral movements are dominantly involved in activities of daily living (ADLs), and functional bilateral therapies may bring better skill transfer from trainings to daily life. Neurophysiological evidence is also growing. In this work, we firstly introduce our bilateral arm training system realized with a haptic interface and a motion sensor, as well as the tasks that have been designed to train both the manipulation function of the paretic arm and coordination of bilateral upper limbs. Then, we propose quantitative measures for functional assessment of complementary bilateral training performance, including kinematic behavior indices, smoothness, submovement and bimanual coordination. After that, we describe the experiments with healthy subjects and the results with respect to these quantitative measures. Feasibility and sensitivity of the proposed indices were evaluated through comparison of unilateral and bilateral training outcomes. The proposed bilateral training system and tasks, as well as the quantitative measures, have been demonstrated effective for training and assessment of unilateral and bilateral arm functions.
NASA Astrophysics Data System (ADS)
Zschaechner, Laura K.; Rand, Richard J.; Walterbos, Rene
2015-01-01
To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H I in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H I are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R 25. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H I kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R 25 and R 25, suggesting internal processes are important in dictating extra-planar kinematics.
The EDGE-CALIFA survey: validating stellar dynamical mass models with CO kinematics
NASA Astrophysics Data System (ADS)
Leung, Gigi Y. C.; Leaman, Ryan; van de Ven, Glenn; Lyubenova, Mariya; Zhu, Ling; Bolatto, Alberto D.; Falcón-Barroso, Jesus; Blitz, Leo; Dannerbauer, Helmut; Fisher, David B.; Levy, Rebecca C.; Sanchez, Sebastian F.; Utomo, Dyas; Vogel, Stuart; Wong, Tony; Ziegler, Bodo
2018-06-01
Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g. CO), on the other hand, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper, we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the Calar Alto Legacy Integral Field Area (CALIFA) survey, and CO kinematics from the Extragalactic Database for Galaxy Evolution (EDGE) survey. We test the asymmetric drift correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10 per cent. All three methods show larger scatter (up to 20 per cent) in the inner regions (R < 0.4Re) that may be due to an increasingly spherical mass distribution (which is not captured by the thin disc assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20 per cent, but users should be mindful of scatter in the inner regions where some assumptions may break down.
The feasibility of a modified shoe for multi-segment foot motion analysis: a preliminary study.
Halstead, J; Keenan, A M; Chapman, G J; Redmond, A C
2016-01-01
The majority of multi-segment kinematic foot studies have been limited to barefoot conditions, because shod conditions have the potential for confounding surface-mounted markers. The aim of this study was to investigate whether a shoe modified with a webbed upper can accommodate multi-segment foot marker sets without compromising kinematic measurements under barefoot and shod conditions. Thirty participants (15 controls and 15 participants with midfoot pain) underwent gait analysis in two conditions; barefoot and wearing a shoe (shod) in a random order. The shod condition employed a modified shoe (rubber plimsoll) with a webbed upper, allowing skin mounted reflective markers to be visualised through slits in the webbed material. Three dimensional foot kinematics were captured using the Oxford multi-segment foot model whilst participants walked at a self-selected speed. The foot pain group showed greater hindfoot eversion and less hindfoot dorsiflexion than controls in the barefoot condition and these differences were maintained when measured in the shod condition. Differences between the foot pain and control participants were also observed for walking speed in the barefoot and in the shod conditions. No significant differences between foot pain and control groups were demonstrated at the forefoot in either condition. Subtle differences between pain and control groups, which were found during barefoot walking are retained when wearing the modified shoe. The novel properties of the modified shoe offers a potential solution for the use of passive infrared based motion analysis for shod applications, for instance to investigate the kinematic effect of foot orthoses.
Kinematic gait patterns in healthy runners: A hierarchical cluster analysis.
Phinyomark, Angkoon; Osis, Sean; Hettinga, Blayne A; Ferber, Reed
2015-11-05
Previous studies have demonstrated distinct clusters of gait patterns in both healthy and pathological groups, suggesting that different movement strategies may be represented. However, these studies have used discrete time point variables and usually focused on only one specific joint and plane of motion. Therefore, the first purpose of this study was to determine if running gait patterns for healthy subjects could be classified into homogeneous subgroups using three-dimensional kinematic data from the ankle, knee, and hip joints. The second purpose was to identify differences in joint kinematics between these groups. The third purpose was to investigate the practical implications of clustering healthy subjects by comparing these kinematics with runners experiencing patellofemoral pain (PFP). A principal component analysis (PCA) was used to reduce the dimensionality of the entire gait waveform data and then a hierarchical cluster analysis (HCA) determined group sets of similar gait patterns and homogeneous clusters. The results show two distinct running gait patterns were found with the main between-group differences occurring in frontal and sagittal plane knee angles (P<0.001), independent of age, height, weight, and running speed. When these two groups were compared to PFP runners, one cluster exhibited greater while the other exhibited reduced peak knee abduction angles (P<0.05). The variability observed in running patterns across this sample could be the result of different gait strategies. These results suggest care must be taken when selecting samples of subjects in order to investigate the pathomechanics of injured runners. Copyright © 2015 Elsevier Ltd. All rights reserved.
Apostolopoulos, Alexandros; Lallos, Stergios; Mastrokalos, Dimitrios; Michos, Ioannis; Darras, Nikolaos; Tzomaki, Magda; Efstathopoulos, Nikolaos
2011-01-01
The objective of this study was to capture and analyze the kinetics and kinematics and determine the functional performance of the osteoarthritic knee after a posterior cruciate ligament (PCL) retaining total knee arthroplasty. Kinematic and kinetic gait analysis of level walking was performed in 20 subjects (12 female and 8 male) with knee ostoarthritis. These patients were free of any neurological diseases that could affect their normal gait. Mean age was 69.6 ± 6.6 years; mean height was 157.6 cm ± 7.6 cm; and mean weight was 77.2 ± 12.1 kg. Full body gait analyses were performed using the BIOKIN 3D motion analysis system before and 9 months after total knee arthroplasty procedures. Single-step ascending kinetic analyses and plantar pressure distribution analyses were also performed for all subjects. International Knee Society Scores (IKSSs) were also assessed pre- and postoperatively. Significant increases were noted postoperatively in average cadence (preoperative mean = 99.26, postoperative mean = 110.5; p < 0.004), step length (preoperative mean = 0.49, postoperative mean = 0.54; p < 0.01) , and walking velocity (preoperative mean = 0.78, preoperatively, postoperative mean = 0.99; p < 0.001). Decreases in stance duration percentage and knee adduction moment were also reported postoperatively. All patients showed a significant improvement of knee kinetics and kinematics after a PCL retaining total knee arthroplasty. Significant differences were found in the cadence, step length, stride length, and walk velocity postoperatively. IKSSs also significantly improved. Further research is warranted to determine the clinical relevance of these findings.
Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W
2005-09-01
Experimental study to describe lumbar spine and hip joint movements during sit-to-stand and stand-to-sit. To examine differences in the kinematics and joint coordination of the lumbar spine and hips during sit-to-stand and stand-to-sit between healthy subjects and patients with subacute low back pain (LBP). There is a paucity of information on the coordination of movements of lumbar spine and hips during sit-to-stand and stand-to-sit. The effect of LBP, with or without nerve root signs, is largely unknown. A three-dimensional real-time electromagnetic tracking device was used to measure movements of the lumbar spine and hips during sit-to-stand and stand-to-sit. Sixty subacute LBP participants with or without straight leg raise signs and 20 healthy asymptomatic participants were recruited. The kinematic patterns of lumbar spine and hips were analyzed. Coordination between the two joints was studied by relative phase angle analysis. The mobility of the spine and hips was significantly limited in back pain subjects. It was observed that LBP subjects employed various strategies to compensate for the limited motions at the hips and lumbar spine. The contribution of the lumbar spine relative to that of the hip was found to be reduced for subjects with LBP. The lumbar spine-hip joint coordination was significantly altered in back pain subjects, in particular, those with positive straight leg raise sign. Back pain was related to changes in the kinematics and coordination of the lumbar spine and hips during sit-to-stand and stand-to-sit. Assessment of back pain patients should include kinematic analysis of the hips as well as the spine.
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2011-03-01
To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.
Czupryna, Krzysztof; Nowotny, Janusz
2012-01-01
Physiological human gait is characterized by tree-dimensional pelvis movements, which make that gait is smooth and does not require excessive energy expenditure. In children with cerebral palsy determinants of the pelvis may be affected, mainly due to pathological afferent synergisms. Therefore many specialists is looking for ways to improve this situation. The aim of this study was to verify whether the use of botulinium toxin or inhibitive casts affects the kinematic parameters of the pelvis during the gait of children with hemiparetic form of cerebral palsy. The study involved 34 hemiparetic children with cerebral palsy aged 7-14 years who reached the capacity of walking. All were improving by neurodevelop-mental treatment according to NDT-Bobath method. Two groups were created. In the first group inhibiting casting was used in 16 children. In the second group botulinium toxin was injected in 18 children. Gait analysis was performed before and after using those type of treatment. Ultrasonic CMS-HS system (Zebris) was used for three dimensional gait analysis. Despite of the characteristic for hemiplegic gait pattern asymmetry, various ab-normalities of pelvis kinematic parameters were observed. Gait symmetry was improved aafter the treatment. Using inhibiting casts also improved kinematic parameters of the pelvis, especially in those children who are found deficit of decreasing and rotation of the pelvis. 1) The use of Btx-A or inhibitive casts results in improving temporal- spatial parameters of gait of cerebral palsied children with hemiparesis. 2) The improvement of kinematic pelvis parameters are obtained through the use of inhibitive casts, while the use of Btx-A does not have a significant impact on them.
Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation
NASA Astrophysics Data System (ADS)
Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao
2015-07-01
Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.
Kinematics of polygonal fault systems: observations from the northern North Sea
NASA Astrophysics Data System (ADS)
Wrona, Thilo; Magee, Craig; Jackson, Christopher A.-L.; Huuse, Mads; Taylor, Kevin G.
2017-12-01
Layer-bound, low-displacement normal faults, arranged into a broadly polygonal pattern, are common in many sedimentary basins. Despite having constrained their gross geometry, we have a relatively poor understanding of the processes controlling the nucleation and growth (i.e. the kinematics) of polygonal fault systems. In this study we use high-resolution 3-D seismic reflection and borehole data from the northern North Sea to undertake a detailed kinematic analysis of faults forming part of a seismically well-imaged polygonal fault system hosted within the up to 1000 m thick, Early Palaeocene-to-Middle Miocene mudstones of the Hordaland Group. Growth strata and displacement-depth profiles indicate faulting commenced during the Eocene to early Oligocene, with reactivation possibly occurring in the late Oligocene to middle Miocene. Mapping the position of displacement maxima on 137 polygonal faults suggests that the majority (64%) nucleated in the lower 500 m of the Hordaland Group. The uniform distribution of polygonal fault strikes in the area indicates that nucleation and growth were not driven by gravity or far-field tectonic extension as has previously been suggested. Instead, fault growth was likely facilitated by low coefficients of residual friction on existing slip surfaces, and probably involved significant layer-parallel contraction (strains of 0.01-0.19) of the host strata. To summarize, our kinematic analysis provides new insights into the spatial and temporal evolution of polygonal fault systems.
Kinematics of ribbon-fin locomotion in the bowfin, Amia calva.
Jagnandan, Kevin; Sanford, Christopher P
2013-12-01
An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts. © 2013 Wiley Periodicals, Inc.
Gait Kinematics in Individuals with Acute and Chronic Patellofemoral Pain.
Fox, Aaron; Ferber, Reed; Saunders, Natalie; Osis, Sean; Bonacci, Jason
2018-03-01
This study aimed to identify the discriminating kinematic gait characteristics between individuals with acute and chronic patellofemoral pain (PFP) and healthy controls. Ninety-eight runners with PFP (39 male, 59 female) and 98 healthy control runners (38 male, 60 female) ran on a treadmill at a self-selected speed while three-dimensional lower limb kinematic data were collected. Runners with PFP were split into acute (n = 25) and chronic (n = 73) subgroups on the basis of whether they had been experiencing pain for less or greater than 3 months, respectively. Principal component analysis and linear discriminant analysis were used to determine the combination of kinematic gait characteristics that optimally separated individuals with acute PFP and chronic PFP and healthy controls. Compared with controls, both the acute and chronic PFP subgroups exhibited greater knee flexion across stance and greater ankle dorsiflexion during early stance. The acute PFP subgroup demonstrated greater transverse plane hip motion across stance compared with healthy controls. In contrast, the chronic PFP subgroup demonstrated greater frontal plane hip motion, greater knee abduction, and reduced ankle eversion/greater ankle inversion across stance when compared with healthy controls. This study identified characteristics that discriminated between individuals with acute and chronic PFP when compared with healthy controls. Certain discriminating characteristics were shared between both the acute and chronic subgroups when compared with healthy controls, whereas others were specific to the duration of PFP.
Landing limb posture in volleyball athletes with patellar tendinopathy: a pilot study.
Kulig, K; Joiner, D G; Chang, Y-J
2015-05-01
The aims of this pilot study were to investigate how a novel sagittal plane kinematic measurement - the lower extremity contact angle (LECA) - relates to the landing dynamics of elite male volleyball athletes with and without patellar tendinopathy. The LECA was defined as the angle between the ground and the line connecting the center of pressure to the L5S1 marker. 18 athletes (9 with patellar tendinopathy and 9 with asymptomatic tendons) completed simulated spike jumps while instrumented for kinetic and kinematic analysis using a force platform and 3D motion analysis system. The patellar tendinopathic group demonstrated a significantly more acute LECA compared to the asymptomatic group (65.3°±2.2° vs. 69.1°±4.5°) and was the only kinematic or kinetic variable measured to discriminate between the 2 groups. The LECA further demonstrated less variability between trials than sagittal plane hip, knee, and ankle kinematics. Additionally, the LECA's - and not individual joints' - high correlation with the braking impulse ensures its predictive value for landing dynamics (r=- 0.890). The LECA has the potential to be a valuable tool to help assess jumping athletes in both injury prevention screening and as a variable that, if modified, could help alter the maladaptive behavior observed in symptomatic athletes. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Nevin, Becky; Comerford, Julia M.; Blecha, Laura
2018-06-01
Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifications. Mergers are typically identified using imaging alone, which has its limitations and biases. With the growing popularity of integral field spectroscopy (IFS), it is now possible to use kinematic signatures to improve galaxy merger identifications. I use GADGET-3 hydrodynamical simulations of merging galaxies with the radiative transfer code SUNRISE, the later of which enables me to apply the same analysis to simulations and observations. From the simulated galaxies, I have developed the first merging galaxy classification scheme that is based on kinematics and imaging. Utilizing a Linear Discriminant Analysis tool, I have determined which kinematic and imaging predictors are most useful for identifying mergers of various merger parameters (such as orientation, mass ratio, gas fraction, and merger stage). I will discuss the strengths and limitations of the classification technique and then my initial results for applying the classification to the >10,000 observed galaxies in the MaNGA (Mapping Nearby Galaxies at Apache Point) IFS survey. Through accurate identification of merging galaxies in the MaNGA survey, I will advance our understanding of supermassive black hole growth in galaxy mergers and other open questions related to galaxy evolution.
Linear and nonlinear subspace analysis of hand movements during grasping.
Cui, Phil Hengjun; Visell, Yon
2014-01-01
This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.
Hassani, Asma; Kubicki, Alexandre; Brost, Vincent; Mourey, France; Yang, Fan
2015-01-01
Objective The purpose of this work was to analyze and compare the movement kinematics of sit-to-stand (STS) and back-to-sit (BTS) transfers between frail aged adults and young subjects, as well as to determine the relationship between kinematic changes and functional capacities. Methods We analyzed the Timed Up and Go (TUG) movements by using a 3D movement analysis system for real-time balance assessment in frail elderly. Ten frail aged adults (frail group [FG]) and ten young subjects (young group [YG]) performed the TUG. Seven spatiotemporal parameters were extracted and compared between the two groups. Moreover, these parameters were plotted with TUG test duration. Results The experiments revealed that there were significant differences between FG and YG in trunk angle during both STS and BTS, and in TUG duration. The trunk angle of the young subjects was more than two times higher than that of the FG. As expected, the TUG duration was higher in the FG than in YG. Trunk angles during both transfers were the most different parameters between the groups. However, the BTS trunk angle and STS ratio were more linked to functional capacities. Conclusion There was a relationship between kinematic changes, representing the motor planning strategies, and physical frailty in these aged adults. These changes should be taken into account in clinical practice. PMID:25759570
Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano
2016-09-01
Possible delays in pre-activation or deficiencies in the activity of the dynamic muscle stabilizers of the knee and hip joints are the most common causes of the patellofemoral pain syndrome (PFPS). The aim of the study was to compare kinematic variables and electromyographic activity of the vastus lateralis, biceps femoris, gluteus maximus and gluteus medius muscles between patients with PFPS and health subjects during the single leg triple hop test (SLTHT). This study included 14 female with PFPS (PFPS group) and 14 female healthy with no history of knee pain (Healthy group). Kinematic and EMG data ware collected through participants performed a single session of the SLTHT. The PFPS group exhibited a significant increase (p<0.05) in the EMG activity of the biceps femoris and vastus lateralis muscles, when compared with the healthy group in pre-activity and during the stance phase. This same result was also found for the vastus lateralis muscle (p<0.05) when analyzing the EMG activity during the eccentric phase of the stance phase. In kinematic analysis, no significant differences were found between the groups. These results indicate that biceps femoris and vastus lateralis muscles mainly during the pre-activation phase and stance phases of the SLTHT are more active in PFPS group among healthy group. Copyright © 2016 Elsevier B.V. All rights reserved.
Material removal and surface figure during pad polishing of fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, T I; Feit, M D; Steele, W A
2009-05-04
The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the appliedmore » loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.« less
Multi-segmental movements as a function of experience in karate.
Zago, Matteo; Codari, Marina; Iaia, F Marcello; Sforza, Chiarella
2017-08-01
Karate is a martial art that partly depends on subjective scoring of complex movements. Principal component analysis (PCA)-based methods can identify the fundamental synergies (principal movements) of motor system, providing a quantitative global analysis of technique. In this study, we aimed at describing the fundamental multi-joint synergies of a karate performance, under the hypothesis that the latter are skilldependent; estimate karateka's experience level, expressed as years of practice. A motion capture system recorded traditional karate techniques of 10 professional and amateur karateka. At any time point, the 3D-coordinates of body markers produced posture vectors that were normalised, concatenated from all karateka and submitted to a first PCA. Five principal movements described both gross movement synergies and individual differences. A second PCA followed by linear regression estimated the years of practice using principal movements (eigenpostures and weighting curves) and centre of mass kinematics (error: 3.71 years; R2 = 0.91, P ≪ 0.001). Principal movements and eigenpostures varied among different karateka and as functions of experience. This approach provides a framework to develop visual tools for the analysis of motor synergies in karate, allowing to detect the multi-joint motor patterns that should be restored after an injury, or to be specifically trained to increase performance.
Computerized method to compensate for breathing body motion in dynamic chest radiographs
NASA Astrophysics Data System (ADS)
Matsuda, H.; Tanaka, R.; Sanada, S.
2017-03-01
Dynamic chest radiography combined with computer analysis allows quantitative analyses on pulmonary function and rib motion. The accuracy of kinematic analysis is directly linked to diagnostic accuracy, and thus body motion compensation is a major concern. Our purpose in this study was to develop a computerized method to reduce a breathing body motion in dynamic chest radiographs. Dynamic chest radiographs of 56 patients were obtained using a dynamic flat-panel detector. The images were divided into a 1 cm-square and the squares on body counter were used to detect the body motion. Velocity vector was measured using cross-correlation method on the body counter and the body motion was then determined on the basis of the summation of motion vector. The body motion was then compensated by shifting the images based on the measured vector. By using our method, the body motion was accurately detected by the order of a few pixels in clinical cases, mean 82.5% in right and left directions. In addition, our method detected slight body motion which was not able to be identified by human observations. We confirmed our method effectively worked in kinetic analysis of rib motion. The present method would be useful for the reduction of a breathing body motion in dynamic chest radiography.
NASA Astrophysics Data System (ADS)
Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola
2016-04-01
Most classifications of mass movements in rock slopes use relatively simple, idealized geometries for the basal sliding surface, like planar sliding, wedge sliding, toppling or columnar failures. For small volumes, the real sliding surface can be often well described by such simple geometries. Extended and complex rock surfaces, however, can exhibit a large number of mass movements, also showing various kind of kinematisms. As a consequence, the real situation in large rock surfaces with a complicate geometry is generally very complex and a site depending analysis, such as fieldwork and compass, cannot be comprehensive of the real situation. Since the outstanding development of terrestrial laser scanner (TLS) in recent years, rock slopes can now be investigated and mapped through high resolution point clouds, reaching the resolution of few mm's and accuracy less than a cm in most advanced instruments, even from remote surveying. The availability of slope surface digital data can offer a unique chance to determine potential kinematisms in a wide distributed area for all the investigated geomorphological processes. More in detail the proposed method is based on the definition of least squares fitting planes on clusters of points extracted by moving a sampling cube on the point cloud. If the associated standard deviation is below a defined threshold, the cluster is considered valid. By applying geometric criteria it is possible to join all the clusters lying on the same surface; in this way discontinuity planes can be reconstructed, rock mass geometrical properties are calculated and, finally, potential kinematisms established. The Siq of Petra (Jordan), is a 1.2 km naturally formed gorge, with an irregular horizontal shape and a complex vertical slope, that represents the main entrance to Nabatean archaeological site. In the Siq, discontinuities of various type (bedding, joints, faults), mainly related to geomorphological evolution of the slope, lateral stress released, stratigraphic setting and tectonic activity can be recognized. As a consequence, rock-falls have been occurring, even recently, with unstable rock mass volumes ranging from 0.1 m3 up to over some hundreds m3. Slope instability, acceleration of crack deformation and consequent increasing of rock-fall hazard conditions, could threaten the safety of tourist as well as the integrity of the heritage. 3D surface model coming from Terrestrial Laser Scanner acquisitions was developed almost all over the site of Petra, including the Siq. Comprehensively, a point cloud of five billion points was generated making the site of Petra likely the largest scanned archaeological site in the word. As far as the Siq, the scanner was positioned on the path floor at intervals of not more than 10 meters from each station. The total number of scans in the Siq was 220 with an average point cloud interval of approximately 3 cm. Subsequently, for the definition of the main rockfall source areas, a spatial kinematic analysis for the whole Siq has been performed, by using discontinuity orientation data extracted from the point cloud by means of the software Diana. Orientation, number of sets, spacing/frequency, persistence, block size and scale dependent roughness was obtained combining fieldwork and automatic analysis. This kind of analysis is able to establish where a particular instability mechanism is kinematically feasible, given the geometry of the slope, the orientation of discontinuities and shear strength of the rock. The final outcome of this project was a detail landslide kinematic index map, reporting main potential instability mechanisms for a given area. The kinematic index was finally calibrated for each instability mechanism (plane failure; wedge failure; block toppling; flexural toppling) surveyed in the site. The latter is including the collapse occurred in May 2015, likely not producing any victim, in a sector clearly identified by the susceptibility maps produced by the analysis.
Marini, Ida; Alessandri Bonetti, Giulio; Bortolotti, Francesco; Bartolucci, Maria Lavinia; Gatto, Maria Rosaria; Michelotti, Ambra
2015-06-01
It has been hypothesized that different plantar sensory inputs could influence the whole body posture and dental occlusion but there is a lack of evidence on this possible association. To investigate the effects of experimental insoles redistributing plantar pressure on body posture, mandibular kinematics and electromyographic (EMG) activity of masticatory muscles on healthy subjects. A pilot study was conducted on 19 healthy volunteers that wore custom-made insoles normalizing the plantar pressure distribution for 2 weeks. Body posture parameters were measured by means of an optoelectronic stereophotogrammetric analysis; mandibular kinematics was analyzed by means of gothic arch tracings; superficial EMG activity of head and neck muscles was performed. Measurements were carried out 10 days before the insertion of the insoles, immediately before the insertion, the day after, 7 and 14 days after, in four different exteroceptive conditions. The outcomes of the present study show that insoles do not modify significantly over time the parameters of body posture, SEMG activity of head and neck muscles and mandibular kinematics. In this pilot study the experimental insoles did not significantly influence the body posture, the mandibular kinematics and the activity of masticatory muscles during a 14-day follow up period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Casino, Daniela; Martelli, Sandra; Zaffagnini, Stefano; Lopomo, Nicola; Iacono, Francesco; Bignozzi, Simone; Visani, Andrea; Marcacci, Maurilio
2009-02-01
Surgical navigation systems are currently used to guide the surgeon in the correct alignment of the implant. The aim of this study was to expand the use of navigation systems by proposing a surgical protocol for intraoperative kinematics evaluations during knee arthroplasty. The protocol was evaluated on 20 patients, half undergoing unicondylar knee arthroplasty (UKA) and half undergoing posterior-substituting, rotating-platform total knee arthroplasty (TKA). The protocol includes a simple acquisition procedure and an original elaboration methodology. Kinematic tests were performed before and after surgery and included varus/valgus stress at 0 and 30 degrees and passive range of motion. Both UKA and TKA improved varus/valgus stability in extension and preserved the total magnitude of screw-home motion during flexion. Moreover, compared to preoperative conditions, values assumed by tibial axial rotation during flexion in TKA knees were more similar to the rotating patterns of UKA knees. The analysis of the anteroposterior displacement of the knee compartments confirmed that the two prostheses did not produce medial pivoting, but achieved a postoperative normal behavior. These results demonstrated that proposed intraoperative kinematics evaluations by a navigation system provided new information on the functional outcome of the reconstruction useful to restore knee kinematics during surgery.
Yelshyna, Darya; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090
Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.
Effect of shoulder model complexity in upper-body kinematics analysis of the golf swing.
Bourgain, M; Hybois, S; Thoreux, P; Rouillon, O; Rouch, P; Sauret, C
2018-06-25
The golf swing is a complex full body movement during which the spine and shoulders are highly involved. In order to determine shoulder kinematics during this movement, multibody kinematics optimization (MKO) can be recommended to limit the effect of the soft tissue artifact and to avoid joint dislocations or bone penetration in reconstructed kinematics. Classically, in golf biomechanics research, the shoulder is represented by a 3 degrees-of-freedom model representing the glenohumeral joint. More complex and physiological models are already provided in the scientific literature. Particularly, the model used in this study was a full body model and also described motions of clavicles and scapulae. This study aimed at quantifying the effect of utilizing a more complex and physiological shoulder model when studying the golf swing. Results obtained on 20 golfers showed that a more complex and physiologically-accurate model can more efficiently track experimental markers, which resulted in differences in joint kinematics. Hence, the model with 3 degrees-of-freedom between the humerus and the thorax may be inadequate when combined with MKO and a more physiological model would be beneficial. Finally, results would also be improved through a subject-specific approach for the determination of the segment lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.
Casellato, Claudia; Ferrante, Simona; Gandolla, Marta; Volonterio, Nicola; Ferrigno, Giancarlo; Baselli, Giuseppe; Frattini, Tiziano; Martegani, Alberto; Molteni, Franco; Pedrocchi, Alessandra
2010-09-23
Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters.Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability.We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected.
2010-01-01
Background Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters. Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. Methods The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability. We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Results Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. Conclusions The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected. PMID:20863391
PyGPlates - a GPlates Python library for data analysis through space and deep geological time
NASA Astrophysics Data System (ADS)
Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar
2017-04-01
A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute plate motions, subduction zone kinematics, and mid-ocean ridge migration and orientation through deep time; to investigate the systematics of continental rift velocity evolution during Pangea breakup; and to make connections between kinematics of the Andean subduction zone and ore deposit formation. To support the numerical modelling community, pyGPlates facilitates the connection between tectonic surface boundary conditions contained within plate tectonic reconstructions (plate boundary configurations and plate velocities) and simulations such as thermo-mechanical models of lithospheric deformation and mantle convection. To support the development of web-based applications that can serve the wider geoscience community, we will demonstrate how pyGPlates can be combined with other open-source tools to serve alternative reconstructions together with a diverse array of reconstructed data sets in a self-consistent framework over the internet. PyGPlates is available to the public via the GPlates web site and contains comprehensive documentation covering installation on Windows/Mac/Linux platforms, sample code, tutorials and a detailed reference of pyGPlates functions and classes.
NASA Astrophysics Data System (ADS)
Khait, A.; Shemer, L.
2018-05-01
The evolution of unidirectional wave trains containing a wave that gradually becomes steep is evaluated experimentally and numerically using the Boundary Element Method (BEM). The boundary conditions for the nonlinear numerical simulations corresponded to the actual movements of the wavemaker paddle as recorded in the physical experiments, allowing direct comparison between the measured in experiments' characteristics of the wave train and the numerical predictions. The high level of qualitative and quantitative agreement between the measurements and simulations validated the kinematic criterion for the inception of breaking and the location of the spilling breaker, on the basis of the BEM computations and associated experiments. The breaking inception is associated with the fluid particle at the crest of the steep wave that has been accelerated to match and surpass the crest velocity. The previously observed significant slow-down of the crest while approaching breaking is verified numerically; both narrow-/broad-banded wave trains are considered. Finally, the relative importance of linear and nonlinear contributions is analyzed.
Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung
2014-01-01
Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.
NASA Astrophysics Data System (ADS)
Hunter, N. J. R.; Weinberg, R. F.; Wilson, C. J. L.; Law, R. D.
2018-07-01
Variations in flow kinematics influence the type of crystallographic preferred orientations (CPOs) in plastically deformed quartz, yet we currently lack a robust means of quantifying the diagnostic symmetries that develop in the c-axis (0001) pole figure. In this contribution, we demonstrate how the symmetry of common c-axis topologies may be quantified by analysing the intensity distribution across a line transect of the pole figure margin. A symmetry value (S) measures the relative difference in intensities between marginal girdle maxima in the pole figure, and thus the degree to which the pole figure defines orthorhombic or monoclinic end member symmetries. This provides a semi-quantitative depiction of whether the rocks underwent coaxial or non-coaxial flow, respectively, and may subsequently be used to quantify other topological properties, such as the opening angle of girdle maxima. The open source Matlab® toolbox MTEX is used to quantify pole figure symmetries in quartzite samples from the Main Central Thrust (NW Himalaya) and the Moine Thrust (NW Scotland).
Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung
2014-01-01
Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883
Minor, Scott A.; Brandt, Theodore R.
2015-01-01
A principal aim of the new mapping and associated fault-kinematic measurements is to document and constrain the nature of transpressional strain transfer between various regional, potentially seismogenic faults. In the accompanying pamphlet, surficial and bedrock map units are described in detail as well as a summary of the structural and fault-kinematic framework of the map area. New biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations are embedded in the digital map database. This compilation provides a uniform geologic digital geodatabase and map plot files that can be used for visualization, analysis, and interpretation of the area’s geology, geologic hazards, and natural resources.
A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid.
Dimitriou, Christopher J; McKinley, Gareth H
2014-09-21
Guided by a series of discriminating rheometric tests, we develop a new constitutive model that can quantitatively predict the key rheological features of waxy crude oils. We first develop a series of model crude oils, which are characterized by a complex thixotropic and yielding behavior that strongly depends on the shear history of the sample. We then outline the development of an appropriate preparation protocol for carrying out rheological measurements, to ensure consistent and reproducible initial conditions. We use RheoPIV measurements of the local kinematics within the fluid under imposed deformations in order to validate the selection of a particular protocol. Velocimetric measurements are also used to document the presence of material instabilities within the model crude oil under conditions of imposed steady shearing. These instabilities are a result of the underlying non-monotonic steady flow curve of the material. Three distinct deformation histories are then used to probe the material's constitutive response. These deformations are steady shear, transient response to startup of steady shear with different aging times, and large amplitude oscillatory shear (LAOS). The material response to these three different flows is used to motivate the development of an appropriate constitutive model. This model (termed the IKH model) is based on a framework adopted from plasticity theory and implements an additive strain decomposition into characteristic reversible (elastic) and irreversible (plastic) contributions, coupled with the physical processes of isotropic and kinematic hardening. Comparisons of experimental to simulated response for all three flows show good quantitative agreement, validating the chosen approach for developing constitutive models for this class of materials.
Zollo, L; Zaccheddu, N; Ciancio, A L; Morrone, M; Bravi, M; Santacaterina, F; Laineri Milazzo, M; Guglielmelli, E; Sterzi, S
2015-04-01
Ankle-foot-orthoses (AFOs) are frequently prescribed for hemiparetic patients to compensate for the foot drop syndrome. However, there is not a systematic study either on the effectiveness of AFOs in the gait recovery process or pointing out the therapeutic differences among the various types of AFOs available on the market. To perform a comparative evaluation of solid and dynamic Ankle-Foot-Orthoses (AFOs) on hemiparetic patients affected by foot drop syndrome by means of spatio-temporal, kinematic and electromyographic indicators. Crossover design with randomization for the interventions. A rehabilitation center for adults with neurologic disorders. Ten chronic hemiparetic patients with foot drop syndrome met inclusion criteria and volunteered to participate. Biomechanical gait analysis was carried out on hemiparetic subjects with foot drop syndrome under 3 conditions with randomized sequences: 1) without AFO; 2) wearing a solid AFO; 3) wearing a dynamic AFO. Significant changes in spatio-temporal, kinematic and electromyographic features of gait were investigated. Gait analysis outcomes showed that there were no significant differences among the solid and the dynamic AFO on the spatio-temporal parameters. Both AFOs led to a reduction of the range of motion of the ankle dorsi-plantar-flexion during stance with respect to the ambulation without AFO. They also had the effect of reducing the asymmetry between the paretic and the contralateral limb in terms of ankle angle at initial contact and hip flexion. The solid AFO generally led to an increase of the co-contraction of the couples of muscles involved in the gait. The proposed set of indicators showed that the AFOs were capable of limiting the effect of the foot-drop in hemiparetic patients and balancing the two limbs. Main differences between the two orthoses were related to muscular activity, being the level of co-contraction of the two couples of analysed muscles typically lower when the dynamic AFO was worn and closer to a normal pattern. A more extensive use of the proposed indicators in the clinical practice is expected in order to enable the definition of clinical guidelines for the prescription of the two devices.
A Late Cenozoic Kinematic Model for Deformation Within the Greater Cascadia Subduction System
NASA Astrophysics Data System (ADS)
Wilson, D. S.; McCrory, P. A.
2016-12-01
Relatively low fault slip rates have complicated efforts to characterize seismic hazards associated with the diffuse subduction boundary between North America and offshore oceanic plates in the Pacific Northwest region. A kinematic forward model that encompasses a broader region, and incorporates seismologic and geodetic as well as geologic and paleomagnetic constraints offers a tool for constraining fault rupture chronologies—all within a framework tracking relative motion of the Juan de Fuca, Pacific, and North American plates during late Cenozoic time. Our kinematic model tracks motions as a system of rigid microplates, bounded by the more important mapped faults of the region or zones of distributed deformation. Though our emphasis is on Washington and Oregon, the scope of the model extends eastward to the rigid craton in Montana and Wyoming, and southward to the Sierra Nevada block of California to provide important checks on its internal consistency. The model reproduces observed geodetic velocities [e.g., McCaffrey et al., 2013, JGR], for 6 Ma to present, with only minor reorganization for 12-6 Ma. Constraints for the older deformation history are based on paleomagnetic rotations within the Columbia River Basalt Group, and geologic details of fault offsets. Since 17 Ma, our model includes 50 km of N-S shortening across the central Yakima fold and thrust belt, substantial NW-SE right-lateral strike slip distributed among faults in the Washington Cascade Range, 90 km of shortening on thrusts of Puget Lowland, and substantial oroclinal bending of the Crescent Formation basement surrounding the Olympic Peninsula. This kinematic reconstruction provides an integrated, quantitative framework with which to investigate the motions of various PNW forearc and backarc blocks during late Cenozoic time, an essential tool for characterizing the seismic risk associated with the Puget Sound and Portland urban areas, hydroelectric dams, and other critical infrastructure.
2D versus 3D in the kinematic analysis of the horse at the trot.
Miró, F; Santos, R; Garrido-Castro, J L; Galisteo, A M; Medina-Carnicer, R
2009-08-01
The handled trot of three Lusitano Purebred stallions was analyzed by using 2D and 3D kinematical analysis methods. Using the same capture and analysis system, 2D and 3D data of some linear (stride length, maximal height of the hoof trajectories) and angular (angular range of motion, inclination of bone segments) variables were obtained. A paired Student T-test was performed in order to detect statistically significant differences between data resulting from the two methodologies With respect to the angular variables, there were significant differences in scapula inclination, shoulder angle, cannon inclination and protraction-retraction angle in the forelimb variables, but none of them were statistically different in the hind limb. Differences between the two methods were found in most of the linear variables analyzed.
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
Kinematics Simulation of the Cardan Shaft for Investigation of the Cardan Error in Catia V5
NASA Astrophysics Data System (ADS)
Hajdu, Štefan; Rolník, Ladislav; Švoš, Juraj
2016-12-01
The goal of this paper is the creation of kinematic systems of the cardan shaft in the CAD/CAM/CAE system CATIA V5 and analysis of three cases of assembly to determine upon which, angular accelerations had been observed between the input driving shaft, central cardan shaft and output driven shaft. The scientific result of this paper was to confirm the presence of cardan error and how this type of error can be successfully eliminated.
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
Computer-aided sperm analysis: a useful tool to evaluate patient's response to varicocelectomy.
Ariagno, Julia I; Mendeluk, Gabriela R; Furlan, María J; Sardi, M; Chenlo, P; Curi, Susana M; Pugliese, Mercedes N; Repetto, Herberto E; Cohen, Mariano
2017-01-01
Preoperative and postoperative sperm parameter values from infertile men with varicocele were analyzed by computer-aided sperm analysis (CASA) to assess if sperm characteristics improved after varicocelectomy. Semen samples of men with proven fertility (n = 38) and men with varicocele-related infertility (n = 61) were also analyzed. Conventional semen analysis was performed according to WHO (2010) criteria and a CASA system was employed to assess kinetic parameters and sperm concentration. Seminal parameters values in the fertile group were very far above from those of the patients, either before or after surgery. No significant improvement in the percentage normal sperm morphology (P = 0.10), sperm concentration (P = 0.52), total sperm count (P = 0.76), subjective motility (%) (P = 0.97) nor kinematics (P = 0.30) was observed after varicocelectomy when all groups were compared. Neither was significant improvement found in percentage normal sperm morphology (P = 0.91), sperm concentration (P = 0.10), total sperm count (P = 0.89) or percentage motility (P = 0.77) after varicocelectomy in paired comparisons of preoperative and postoperative data. Analysis of paired samples revealed that the total sperm count (P = 0.01) and most sperm kinetic parameters: curvilinear velocity (P = 0.002), straight-line velocity (P = 0.0004), average path velocity (P = 0.0005), linearity (P = 0.02), and wobble (P = 0.006) improved after surgery. CASA offers the potential for accurate quantitative assessment of each patient's response to varicocelectomy.
Effect of sexual steroids on boar kinematic sperm subpopulations.
Ayala, E M E; Aragón, M A
2017-11-01
Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Muluneh, Ameha A.; Cuffaro, Marco; Kidane, Tesfaye
2017-09-01
In this paper we combine kinematic reconstruction and seismic strain rate analysis to understand the along-strike variation in strain accommodation in the Ethiopian Rift (ER) evolution. The reconstruction poles close the southern and central ER at 19 and 15 Myr, respectively whereas there is 34 ± 14 km overlap in the northern ER at 11 Myr. Using Kostrov summation, seismic strain rates of 6.81 ×10-9 yr-1 and 0.06 × 10-9 yr-1 are obtained for the south-central and northern ER, respectively. Comparison of the seismic and geodetic strain rates shows that seismic deformation dominates the south and central ER contrary to the northern ER that deforms aseismically. The results obtained indicate that Nubia/Somalia plate reconstructions together with information on the onset of rifting overestimate the kinematics of the northern ER. We argue that magmatic processes play significant role in accommodating the ∼ 2 Myr opening of the rift. Our findings agree well with previous geophysical and geological studies in the Ethiopian Rift.
Sinclair, Jonathan K; Vincent, Hayley; Richards, Jim D
2017-01-01
To investigate the effects of a prophylactic knee brace on knee joint kinetics and kinematics during netball specific movements. Repeated measures. Laboratory. Twenty university first team level female netball players. Participants performed three movements, run, cut and vertical jump under two conditions (brace and no-brace). 3-D knee joint kinetics and kinematics were measured using an eight-camera motion analysis system. Knee joint kinetics and kinematics were examined using 2 × 3 repeated measures ANOVA whilst the subjective ratings of comfort and stability were investigated using chi-squared tests. The results showed no differences (p > 0.05) in knee joint kinetics. However the internal/external rotation range of motion was significantly (p < 0.05) reduced when wearing the brace in all movements. The subjective ratings of stability revealed that netballers felt that the knee brace improved knee stability in all movements. Further study is required to determine whether reductions in transverse plane knee range of motion serve to attenuate the risk from injury in netballers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.
Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad
2012-07-01
The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.
Hay, Dean C; Wachowiak, Mark P; Graham, Ryan B
2016-10-01
Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles' motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).
In-vivo analysis of ankle joint movement for patient-specific kinematic characterization.
Ferraresi, Carlo; De Benedictis, Carlo; Franco, Walter; Maffiodo, Daniela; Leardini, Alberto
2017-09-01
In this article, a method for the experimental in-vivo characterization of the ankle kinematics is proposed. The method is meant to improve personalization of various ankle joint treatments, such as surgical decision-making or design and application of an orthosis, possibly to increase their effectiveness. This characterization in fact would make the treatments more compatible with the specific patient's joint physiological conditions. This article describes the experimental procedure and the analytical method adopted, based on the instantaneous and mean helical axis theories. The results obtained in this experimental analysis reveal that more accurate techniques are necessary for a robust in-vivo assessment of the tibio-talar axis of rotation.
The strength study of the rotating device driver indexing spatial mechanism
NASA Astrophysics Data System (ADS)
Zakharenkov, N. V.; Kvasov, I. N.
2018-04-01
The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.
Analysis of facial motion patterns during speech using a matrix factorization algorithm
Lucero, Jorge C.; Munhall, Kevin G.
2008-01-01
This paper presents an analysis of facial motion during speech to identify linearly independent kinematic regions. The data consists of three-dimensional displacement records of a set of markers located on a subject’s face while producing speech. A QR factorization with column pivoting algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis to fit the motion of the other facial markers, which determines facial regions of influence of each of the linearly independent markers. Those regions constitute kinematic “eigenregions” whose combined motion produces the total motion of the face. Facial animations may be generated by driving the independent markers with collected displacement records. PMID:19062866
Lee, Jeong J; You, Joshua Sung H
2017-12-01
To compare the immediate effects of conventional treadmill gait and guidance tubing gait (GTG) on electromyographic neuromuscular imbalance and knee joint kinematics in hemiparetic gait. Case-control study. University medical center. Participants (N=33; 19 men, 14 women) were patients with hemiparetic stroke (n=18 [experimental]; mean age ± SD, 39.2±16.8y) and healthy controls (n=15; mean age ± SD, 26.3±2.6y). The GTG was provided for approximately 30 minutes and involved application of an assistive guidance force using the tubing, specifically to improve knee joint stabilization during midstance and increase knee joint flexion during midswing phase. Clinical tests included the Korean Mini-Mental State Examination, Modified Ashworth Scale, Berg Balance Scale, manual muscle test, and knee joint range of motion and sensory tests. Knee joint muscle electromyographic and kinematic analyses were determined at pretest and posttest. After the intervention, the experimental group showed significantly greater improvements in balanced quadriceps and hamstring electromyographic coactivation and knee joint kinematics relative to the control group (P=.005). The GTG intervention decreased overactive hamstring activity (P=.018) and reciprocally increased quadriceps activity (P<.001). The knee joint kinematic analysis showed significant changes in the hemiparetic stroke group (P=.004). This study demonstrates the effectiveness of the tubing gait condition to restore knee joint muscle imbalance and kinematics in individuals with hemiparetic stroke who present with an abnormal hyperextension knee gait. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Tsang, Sharon M H; Szeto, Grace P Y; Lee, Raymond Y W
2013-07-01
Research on the kinematics and inter-regional coordination of movements between the cervical and thoracic spines in motion adds to our understanding of the performance and interplay of these spinal regions. The purpose of this study was to examine the effects of chronic neck pain on the three-dimensional kinematics and coordination of the cervical and thoracic spines during active movements of the neck. Three-dimensional spinal kinematics and movement coordination between the cervical, upper thoracic, and lower thoracic spines were examined by electromagnetic motion sensors in thirty-four individuals with chronic neck pain and thirty-four age- and gender-matched asymptomatic subjects. All subjects performed a set of free active neck movements in three anatomical planes in sitting position and at their own pace. Spinal kinematic variables (angular displacement, velocity, and acceleration) of the three defined regions, and movement coordination between regions were determined and compared between the two groups. Subjects with chronic neck pain exhibited significantly decreased cervical angular velocity and acceleration of neck movement. Cross-correlation analysis revealed consistently lower degrees of coordination between the cervical and upper thoracic spines in the neck pain group. The loss of coordination was most apparent in angular velocity and acceleration of the spine. Assessment of the range of motion of the neck is not sufficient to reveal movement dysfunctions in chronic neck pain subjects. Evaluation of angular velocity and acceleration and movement coordination should be included to help develop clinical intervention strategies to promote restoration of differential kinematics and movement coordination. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.
Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli
2017-07-01
Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (<5°) for most of the parameters. The Bland-Altman plots indicated that there was no systematic error or bias in kinematic measurements and showed good agreement between measurements obtained on two different days. These results indicate that kinematic gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints.
Kipp, Kristof; Redden, Josh; Sabick, Michelle B; Harris, Chad
2012-07-01
The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.
NASA Astrophysics Data System (ADS)
Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia
2014-05-01
The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we performed a dip-domain analysis that allowed to categorize the different fold limbs and reduce the uncertainty in the reconstruction of the fault network topology in map view. This enabled us to reconstruct a high-quality, low-uncertainty 3D structural and geological model, which unambiguously proves that deformations with a top-to-WSW Dinaric transport direction propagate farther to the west than previously supposed in this part of the Southern Alps. Our new structural reconstruction of the Vajont valley have also clarified the structural control on the 1963 catastrophic landslide (which caused over 2000 losses). Besides being a challenging natural laboratory for testing analysis and modelling methodologies to be used when reconstructing in 3D this kind of complex interference structures, the Vajont area also provides useful clues on the still-enigmatic structures in the frontal part of the Friuli-Venetian Southern Alps, buried in the Venetian Plain foredeep. These include active seismogenic thrust-faults and, at the same time, represent a growing interest for the oil industry.
Bishop, Chris; Arnold, John B; Fraysse, Francois; Thewlis, Dominic
2015-01-01
To investigate in-shoe foot kinematics, holes are often cut in the shoe upper to allow markers to be placed on the skin surface. However, there is currently a lack of understanding as to what is an appropriate size. This study aimed to demonstrate a method to assess whether different diameter holes were large enough to allow free motion of marker wands mounted on the skin surface during walking using a multi-segment foot model. Eighteen participants underwent an analysis of foot kinematics whilst walking barefoot and wearing shoes with different size holes (15 mm, 20mm and 25 mm). The analysis was conducted in two parts; firstly the trajectory of the individual skin-mounted markers were analysed in a 2D ellipse to investigate total displacement of each marker during stance. Secondly, a geometrical analysis was conducted to assess cluster deformation of the hindfoot and midfoot-forefoot segments. Where movement of the markers in the 15 and 20mm conditions were restricted, the marker movement in the 25 mm condition did not exceed the radius at any anatomical location. Despite significant differences in the isotropy index of the medial and lateral calcaneus markers between the 25 mm and barefoot conditions, the differences were due to the effect of footwear on the foot and not a result of the marker wands hitting the shoe upper. In conclusion, the method proposed and results can be used to increase confidence in the representativeness of joint kinematics with respect to in-shoe multi-segment foot motion during walking. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Papagiannis, Georgios I; Roumpelakis, Ilias M; Triantafyllou, Athanasios I; Makris, Ioannis N; Babis, George C
2016-08-01
Total knee arthroplasties (TKAs) using well-designed, fixed bearing prostheses, such as medial pivot (MP), have produced good long-term results. Rotating-platform, posterior-stabilized (RP-PS) mobile bearing implants were designed to decrease polyethylene wear. Sagittal and coronal plane TKA biomechanics are well examined and correlated to polyethylene wear. However, limited research findings describe this relationship in transverse plane. We assumed that although axial plane biomechanics might not be the most destructive parameters on polyethylene wear, it is important to clarify their role because both joint kinematics and kinetics in all 3 planes are important input parameters for TKA wear testing (International Organization for Standardization 14243-1 and 14343-3). Our hypothesis was that transverse plane overall range of motion (ROM) and/or peak moment show differences that reflect on wear advantages when compared RP-PS implants to MP designs. Two groups (MPs = 24 and RP-PSs = 22 subjects) were examined by using 3D gait analysis. The variables were total internal-external rotation (IER) ROM and peak IER moments. No statistically significant difference was demonstrated between the 2 groups in kinetics (P = .389) or kinematics (P = .275). In the present study, no wear advantages were found between 2 TKAs. Both designs showed identical kinetics at the transverse plane in level-ground walking. Kinematic analysis could not illustrate any statistically significant difference in terms of overall IER ROM. Nevertheless, kinematic gait pattern differences observed possibly reflect different patterns of joint surface motion or abnormal gait patterns. Thus, wear testing with various input waveforms combined with functional data analysis will be necessary to identify the actual effects of gait variability on polyethylene wear. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Edmiston, John Kearney
This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting of the quantitative profitability of undertaking such a line of experimentation for the study of plastic deformation processes.