Sample records for quantitative kinetic analysis

  1. Characterization of breast lesion using T1-perfusion magnetic resonance imaging: Qualitative vs. quantitative analysis.

    PubMed

    Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A

    2018-06-14

    The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast lesions among all the parameters. Copyright © 2018. Published by Elsevier Masson SAS.

  2. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  3. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.

  4. Quantitative kinetic analysis of lung nodules by temporal subtraction technique in dynamic chest radiography with a flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2007-03-01

    Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  5. A Century of Enzyme Kinetic Analysis, 1913 to 2013

    PubMed Central

    Johnson, Kenneth A.

    2013-01-01

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893

  6. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    PubMed

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  7. A century of enzyme kinetic analysis, 1913 to 2013.

    PubMed

    Johnson, Kenneth A

    2013-09-02

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.

    PubMed

    Liu, Yan; Song, Yang; Madahar, Vipul; Liao, Jiayu

    2012-03-01

    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents

    ERIC Educational Resources Information Center

    Cochran, Beverly; Lunday, Deborah; Miskevich, Frank

    2008-01-01

    Quantitative analysis of carbohydrates is a fundamental analytical tool used in many aspects of biology and chemistry. We have adapted a technique developed by Mathews et al. using an inexpensive scanner and open-source image analysis software to quantify amylase activity using both the breakdown of starch and the appearance of glucose. Breakdown…

  10. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence.

    PubMed

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-05

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  12. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    NASA Astrophysics Data System (ADS)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  14. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    PubMed

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  15. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome

    PubMed Central

    Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  16. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    PubMed

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  17. Quantitatively in Situ Imaging Silver Nanowire Hollowing Kinetics

    DOE PAGES

    Yu, Le; Yan, Zhongying; Cai, Zhonghou; ...

    2016-09-28

    We report the in-situ investigation of the morphological evolution of silver nanowires to hollow silver oxide nanotubes using transmission x-ray microscopy (TXM). Complex silver diffusion kinetics and hollowing process via the Kirkendall effect have been captured in real time. Further quantitative x-ray absorption analysis reveals the difference between the longitudinal and radial diffusions. In conclusion, the diffusion coefficient of silver in its oxide nanoshell is, for the first time, calculated to be 1.2 × 10 -13 cm 2/s from the geometrical parameters extracted from the TXM images.

  18. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.

    2010-01-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  19. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches

    PubMed Central

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    ABSTRACT Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations. PMID:26932506

  20. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.

    PubMed

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.

  1. From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.

    PubMed

    Wang, Rong-Yao; Wang, Peng; Li, Jing-Liang; Yuan, Bing; Liu, Yu; Li, Li; Liu, Xiang-Yang

    2013-03-07

    Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.

  2. qPIPSA: Relating enzymatic kinetic parameters and interaction fields

    PubMed Central

    Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C

    2007-01-01

    Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319

  3. Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck

    PubMed Central

    Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D

    2012-01-01

    Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084

  4. Methods for Kinetic and Thermodynamic Analysis of Aminoacyl-tRNA Synthetases

    PubMed Central

    Francklyn, Christopher S.; First, Eric A.; Perona, John J.; Hou, Ya-Ming

    2008-01-01

    The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion. PMID:18241792

  5. Determination of cell metabolite VEGF₁₆₅ and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe.

    PubMed

    Lin, Xuexia; Leung, Ka-Ho; Lin, Ling; Lin, Luyao; Lin, Sheng; Leung, Chung-Hang; Ma, Dik-Lung; Lin, Jin-Ming

    2016-05-15

    In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism. Furthermore, based on the principles of hydrodynamic focusing and diffusive mixing, different transient states during kinetics process were monitored and recorded. Thus, the combination of microfluidic technique and G-quadruplex luminescent probe will be potentially applied in the studies of intramolecular interactions and molecule recognition in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    PubMed

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  7. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    PubMed Central

    2012-01-01

    Background Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB’s). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. Conclusions We present two complementary methods for quantitative analysis of FLIP experiments in living cells. They provide spatial maps of exchange dynamics and absolute binding parameters of fluorescent molecules to moving intracellular entities, respectively. Our methods should be of great value for quantitative studies of intracellular transport. PMID:23148417

  8. New insight in quantitative analysis of vascular permeability during immune reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Molodij, Guillaume; Kuznetsov, Yuri; Smolyakov, Yuri; Israeli, David; Meglinski, Igor; Harmelin, Alon

    2016-03-01

    The use of fluorescence imaging of vascular permeability becomes a golden standard for assessing the inflammation process during experimental immune response in vivo. The use of the optical fluorescence imaging provides a very useful and simple tool to reach this purpose. The motivation comes from the necessity of a robust and simple quantification and data presentation of inflammation based on a vascular permeability. Changes of the fluorescent intensity, as a function of time is a widely accepted method to assess the vascular permeability during inflammation related to the immune response. In the present study we propose to bring a new dimension by applying a more sophisticated approach to the analysis of vascular reaction by using a quantitative analysis based on methods derived from astronomical observations, in particular by using a space-time Fourier filtering analysis followed by a polynomial orthogonal modes decomposition. We demonstrate that temporal evolution of the fluorescent intensity observed at certain pixels correlates quantitatively to the blood flow circulation at normal conditions. The approach allows to determine the regions of permeability and monitor both the fast kinetics related to the contrast material distribution in the circulatory system and slow kinetics associated with extravasation of the contrast material. Thus, we introduce a simple and convenient method for fast quantitative visualization of the leakage related to the inflammatory (immune) reaction in vivo.

  9. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  10. Whole-body PET parametric imaging employing direct 4D nested reconstruction and a generalized non-linear Patlak model

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Rahmim, Arman

    2014-03-01

    Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.

  11. Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors.

    PubMed

    Müntze, Gesche Mareike; Baur, Barbara; Schäfer, Wladimir; Sasse, Alexander; Howgate, John; Röth, Kai; Eickhoff, Martin

    2015-02-15

    Penicillinase-modified AlGaN/GaN field-effect transistors (PenFETs) are utilized to systematically investigate the covalently immobilized enzyme penicillinase under different experimental conditions. We demonstrate quantitative evaluation of covalently immobilized penicillinase layers on pH-sensitive field-effect transistors (FETs) using an analytical kinetic PenFET model. This kinetic model is explicitly suited for devices with thin enzyme layers that are not diffusion-limited, as it is the case for the PenFETs discussed here. By means of the kinetic model it was possible to extract the Michaelis constant of covalently immobilized penicillinase as well as relative transport coefficients of the different species associated with the enzymatic reaction which, exempli gratia, give information about the permeability of the enzymatic layer. Based on this analysis we quantify the reproducibility and the stability of the analyzed PenFETs over the course of 33 days as well as the influence of pH and buffer concentration on the properties of the enzymatic layer. Thereby the stability measurements reveal a Michalis constant KM of (67 ± 13)μM while the chronological development of the relative transport coefficients suggests a detachment of physisorbed penicillinase during the first two weeks since production. Our results show that AlGaN/GaN PenFETs prepared by covalent immobilization of a penicillinase enzyme layer present a powerful tool for quantitative analysis of enzyme functionality. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions.

    PubMed

    Sen, Rickdeb; Escorihuela, Jorge; Smulders, Maarten M J; Zuilhof, Han

    2016-04-12

    In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.

  13. Quantitative collision induced mass spectrometry of substituted piperazines - A correlative analysis between theory and experiment

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2017-12-01

    The present paper deals with quantitative kinetics and thermodynamics of collision induced dissociation (CID) reactions of piperazines under different experimental conditions together with a systematic description of effect of counter-ions on common MS fragment reactions of piperazines; and intra-molecular effect of quaternary cyclization of substituted piperazines yielding to quaternary salts. There are discussed quantitative model equations of rate constants as well as free Gibbs energies of series of m-independent CID fragment processes in GP, which have been evidenced experimentally. Both kinetic and thermodynamic parameters are also predicted by computational density functional theory (DFT) and ab initio both static and dynamic methods. The paper examines validity of Maxwell-Boltzmann distribution to non-Boltzmann CID processes in quantitatively as well. The experiments conducted within the latter framework yield to an excellent correspondence with theoretical quantum chemical modeling. The important property of presented model equations of reaction kinetics is the applicability in predicting unknown and assigning of known mass spectrometric (MS) patterns. The nature of "GP" continuum of CID-MS coupled scheme of measurements with electrospray ionization (ESI) source is discussed, performing parallel computations in gas-phase (GP) and polar continuum at different temperatures and ionic strengths. The effect of pressure is presented. The study contributes significantly to methodological and phenomenological developments of CID-MS and its analytical implementations for quantitative and structural analyses. It also demonstrates great prospective of a complementary application of experimental CID-MS and computational quantum chemistry studying chemical reactivity, among others. To a considerable extend this work underlies the place of computational quantum chemistry to the field of experimental analytical chemistry in particular highlighting the structural analysis.

  14. A quantitative analysis of aerosols inside an armored vehicle perforated by a kinetic energy penetrator containing tungsten, nickel, and cobalt.

    PubMed

    Gold, Kenneth; Cheng, Yung Sung; Holmes, Thomas D

    2007-04-01

    These tests were conducted to develop a database that could be used to assess risks to soldiers from exposure to aerosolized metallic particulates when the crew compartment of an Abrams tank is perforated by a kinetic energy penetrator. Quantitative data are reported for aerosols produced by kinetic energy penetrators containing tungsten, nickel, and cobalt. The following are addressed: (1) concentrations and rates of particle settling inside the vehicle, (2) particle size distribution, (3) inhalable and respirable particulates, (4) distribution of aerosol particles by mass, and (5) particle shapes. The scenario described in this report simulates a rare occurrence. The lessons learned, however, highlight a requirement for developing protocols for analyses of metals in body fluids and urine as soon as practical, and also for implementing targeted postdeployment medical surveillance programs that monitor both body burden for respired metals and pulmonary function.

  15. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-09-01

    Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner

    PubMed Central

    Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars

    2012-01-01

    Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287

  17. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used to analyze population-averaged NMR quantities. Essentially, to apply NMR successfully, both the type of experiment and equation to fit the data must be carefully and specifically chosen for the protein-ligand interaction under analysis. In this review, we first explain the exchange regimes and kinetic models of protein-ligand interactions, and then describe the NMR methods that quantitatively analyze these specific interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement.

    PubMed

    Buonaccorsi, Giovanni A; Roberts, Caleb; Cheung, Sue; Watson, Yvonne; O'Connor, James P B; Davies, Karen; Jackson, Alan; Jayson, Gordon C; Parker, Geoff J M

    2006-09-01

    The quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data is subject to model fitting errors caused by motion during the time-series data acquisition. However, the time-varying features that occur as a result of contrast enhancement can confound motion correction techniques based on conventional registration similarity measures. We have therefore developed a heuristic, locally controlled tracer kinetic model-driven registration procedure, in which the model accounts for contrast enhancement, and applied it to the registration of abdominal DCE-MRI data at high temporal resolution. Using severely motion-corrupted data sets that had been excluded from analysis in a clinical trial of an antiangiogenic agent, we compared the results obtained when using different models to drive the tracer kinetic model-driven registration with those obtained when using a conventional registration against the time series mean image volume. Using tracer kinetic model-driven registration, it was possible to improve model fitting by reducing the sum of squared errors but the improvement was only realized when using a model that adequately described the features of the time series data. The registration against the time series mean significantly distorted the time series data, as did tracer kinetic model-driven registration using a simpler model of contrast enhancement. When an appropriate model is used, tracer kinetic model-driven registration influences motion-corrupted model fit parameter estimates and provides significant improvements in localization in three-dimensional parameter maps. This has positive implications for the use of quantitative DCE-MRI for example in clinical trials of antiangiogenic or antivascular agents.

  19. Design and characterization of a prototype enzyme microreactor: quantification of immobilized transketolase kinetics.

    PubMed

    Matosevic, S; Lye, G J; Baganz, F

    2010-01-01

    In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.

  20. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE PAGES

    Parkison, Adam J.; Nelson, Andrew Thomas

    2016-01-11

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  1. Hydrogen measurement during steam oxidation using coupled thermogravimetric analysis and quadrupole mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkison, Adam J.; Nelson, Andrew Thomas

    An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less

  2. Fast Metabolic Response to Drug Intervention through Analysis on a Miniaturized, Highly Integrated Molecular Imaging System

    PubMed Central

    Wang, Jun; Hwang, Kiwook; Braas, Daniel; Dooraghi, Alex; Nathanson, David; Campbell, Dean O.; Gu, Yuchao; Sandberg, Troy; Mischel, Paul; Radu, Caius; Chatziioannou, Arion F.; Phelps, Michael E.; Christofk, Heather; Heath, James R.

    2014-01-01

    We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. Methods A portable in vitro molecular imaging system, comprised of a microchip and a beta-particle imaging camera, permits routine cell-based radioassays on small number of either suspension or adherent cells. We investigate the response kinetics of model lymphoma and glioblastoma cancer cell lines to [18F]fluorodeoxyglucose ([18F]FDG) uptake following drug exposure. Those responses are correlated with kinetic changes in the cell cycle, or with changes in receptor-tyrosine kinase signaling. Results The platform enables radioassays directly on multiple cell types, and yields results comparable to conventional approaches, but uses smaller sample sizes, permits a higher level of quantitation, and doesn’t require cell lysis. Conclusion The kinetic analysis enabled by the platform provides a rapid (~1 hour) drug screening assay. PMID:23978446

  3. Permeabilization Activated Reduction in Fluorescence (PARF): a novel method to measure kinetics of protein interactions with intracellular structures

    PubMed Central

    Singh, Pali P.; Hawthorne, Jenci L.; Davis, Christie A.; Quintero, Omar A.

    2016-01-01

    Understanding kinetic information is fundamental in understanding biological function. Advanced imaging technologies have fostered the development of kinetic analyses in cells. We have developed Permeabilization Activated Reduction in Fluorescence (PARF) analysis for determination of apparent t1/2 and immobile fraction, describing the dissociation of a protein of interest from intracellular structures. To create conditions where dissociation events are observable, cells expressing a fluorescently-tagged protein are permeabilized with digitonin, diluting the unbound protein into the extracellular media. As the media volume is much larger than the cytosolic volume, the concentration of the unbound pool decreases drastically, shifting the system out of equilibrium--favoring dissociation events. Loss of bound protein is observed as loss of fluorescence from intracellular structures and can be fit to an exponential decay. We compared PARF dissociation kinetics with previously published equilibrium kinetics as determined by FRAP. PARF dissociation rates agreed with the equilibrium-based FRAP analysis predictions of the magnitude of those rates. When used to investigate binding kinetics of a panel of cytoskeletal proteins, PARF analysis revealed that filament stabilization resulted in slower fluorescence loss. Additionally, commonly used “general” F-actin labels display differences in kinetic properties, suggesting that not all fluorescently-tagged actin labels interact with the actin network in the same way. We also observed differential dissociation kinetics for GFP-VASP depending on which cellular structure was being labeled. These results demonstrate that PARF analysis of non-equilibrium systems reveals kinetic information without the infrastructure investment required for other quantitative approaches such as FRAP, photoactivation, or in vitro reconstitution assays. PMID:27126922

  4. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    NASA Astrophysics Data System (ADS)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  5. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    PubMed

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  6. 3D Material Response Analysis of PICA Pyrolysis Experiments

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    The PICA decomposition experiments of Bessire and Minton are investigated using 3D material response analysis. The steady thermoelectric equations have been added to the CHAR code to enable analysis of the Joule-heated experiments and the DAKOTA optimization code is used to define the voltage boundary condition that yields the experimentally observed temperature response. This analysis has identified a potential spatial non-uniformity in the PICA sample temperature driven by the cooled copper electrodes and thermal radiation from the surface of the test article (Figure 1). The non-uniformity leads to a variable heating rate throughout the sample volume that has an effect on the quantitative results of the experiment. Averaging the results of integrating a kinetic reaction mechanism with the heating rates seen across the sample volume yield a shift of peak species production to lower temperatures that is more significant for higher heating rates (Figure 2) when compared to integrating the same mechanism at the reported heating rate. The analysis supporting these conclusions will be presented along with a proposed analysis procedure that permits quantitative use of the existing data. Time permitting, a status on the in-development kinetic decomposition mechanism based on this data will be presented as well.

  7. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    PubMed

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Kelvin-Helmholtz instability of boundary-layer plasmas in the kinetic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbusch, Benedikt, E-mail: b.steinbusch@fz-juelich.de; Gibbon, Paul, E-mail: p.gibbon@fz-juelich.de; Department of Mathematics, Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven

    2016-05-15

    The dynamics of the Kelvin-Helmholtz instability are investigated in the kinetic, high-frequency regime with a novel, two-dimensional, mesh-free tree code. In contrast to earlier studies which focused on specially prepared equilibrium configurations in order to compare with fluid theory, a more naturally occurring plasma-vacuum boundary layer is considered here with relevance to both space plasma and linear plasma devices. Quantitative comparisons of the linear phase are made between the fluid and kinetic models. After establishing the validity of this technique via comparison to linear theory and conventional particle-in-cell simulation for classical benchmark problems, a quantitative analysis of the more complexmore » magnetized plasma-vacuum layer is presented and discussed. It is found that in this scenario, the finite Larmor orbits of the ions result in significant departures from the effective shear velocity and width underlying the instability growth, leading to generally slower development and stronger nonlinear coupling between fast growing short-wavelength modes and longer wavelengths.« less

  9. Non-animal approaches for toxicokinetics in risk evaluations of food chemicals.

    PubMed

    Punt, Ans; Peijnenburg, Ad A C M; Hoogenboom, Ron L A P; Bouwmeester, Hans

    2017-01-01

    The objective of the present work was to review the availability and predictive value of non-animal toxicokinetic approaches and to evaluate their current use in European risk evaluations of food contaminants, additives and food contact materials, as well as pesticides and medicines. Results revealed little use of quantitative animal or human kinetic data in risk evaluations of food chemicals, compared with pesticides and medicines. Risk evaluations of medicines provided sufficient in vivo kinetic data from different species to evaluate the predictive value of animal kinetic data for humans. These data showed a relatively poor correlation between the in vivo bioavailability in rats and dogs versus that in humans. In contrast, in vitro (human) kinetic data have been demonstrated to provide adequate predictions of the fate of compounds in humans, using appropriate in vitro-in vivo scalers and by integration of in vitro kinetic data with in silico kinetic modelling. Even though in vitro kinetic data were found to be occasionally included within risk evaluations of food chemicals, particularly results from Caco-2 absorption experiments and in vitro data on gut-microbial conversions, only minor use of in vitro methods for metabolism and quantitative in vitro-in vivo extrapolation methods was identified. Yet, such quantitative predictions are essential in the development of alternatives to animal testing as well as to increase human relevance of toxicological risk evaluations. Future research should aim at further improving and validating quantitative alternative methods for kinetics, thereby increasing regulatory acceptance of non-animal kinetic data.

  10. Microgravimetric Analysis Method for Activation-Energy Extraction from Trace-Amount Molecule Adsorption.

    PubMed

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2016-05-03

    Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.

  11. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysis (NET analysis) is presented as a framework for mechanistic and model-based analysis of these data. By coupling the data to an operating metabolic network via the second law of thermodynamics and the metabolites' Gibbs energies of formation, NET analysis allows inferring functional principles from quantitative metabolite data; for example it identifies reactions that are subject to active allosteric or genetic regulation as exemplified with quantitative metabolite data from Escherichia coli and Saccharomyces cerevisiae. Moreover, the optimization framework of NET analysis was demonstrated to be a valuable tool to systematically investigate data sets for consistency, for the extension of sub-omic metabolome data sets and for resolving intracompartmental concentrations from cell-averaged metabolome data. Without requiring any kind of kinetic modeling, NET analysis represents a perfectly scalable and unbiased approach to uncover insights from quantitative metabolome data. PMID:16788595

  12. Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.

    PubMed

    Lorantfy, Bettina; Seyer, Bernhard; Herwig, Christoph

    2014-01-25

    Extreme halophilic Archaea are extremophile species which can thrive in hypersaline environments of up to 3-5 M sodium chloride concentration. Although their ecology and physiology are widely identified on the microbiological level, little emphasis has been laid on quantitative bioprocess development with extreme halophiles. The goal of this study was to establish, on the one hand, a methodological basis for quantitative bioprocess analysis of extreme halophilic Archaea with an extreme halophilic strain as an example. Firstly, as a novel usage, a corrosion resistant bioreactor setup for extreme halophiles has been implemented. Then, paying special attention to total bioprocess quantification approaches, an indirect method for biomass quantification using on-line process signals was introduced. Subsequently, robust quantitative data evaluation methods for halophiles could be developed, providing defined and controlled cultivation conditions in the bioreactor and therefore obtaining suitable quality of on-line as well as off-line datasets. On the other hand, new physiological results of extreme halophiles in bioreactor have also been obtained based on the quantitative methodological tools. For the first time, quantitative data on stoichiometry and kinetics were collected and evaluated on different carbon sources. The results on various substrates were interpreted, with proposed metabolic mechanisms, by linking to the reported primary carbon metabolism of extreme halophilic Archaea. Moreover, results of chemostat cultures demonstrated that extreme halophilic organisms show Monod-kinetics on different sole carbon sources. A diauxic growth pattern was described on a mixture of substrates in batch cultivations. In addition, the methodologies presented here enable one to characterize the utilized strain Haloferax mediterranei (HFX) as a potential new host organism. Thus, this study offers a strong methodological basis as well as a fundamental physiological assessment for bioreactor quantification of extreme halophiles that can serve as primary knowledge for applications of extreme halophiles in biotechnology. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Kinetic Analysis of Rhodamines Efflux Mediated by the Multidrug Resistance Protein (MRP1)

    PubMed Central

    Saengkhae, Chantarawan; Loetchutinat, Chatchanok; Garnier-Suillerot, Arlette

    2003-01-01

    Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, ka = VM/km, was very similar for the four rhodamine analogs but ∼10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes. PMID:12944313

  14. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.

    PubMed

    Andreozzi, Stefano; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2016-01-01

    Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  16. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.

    PubMed

    Blackmond, Donna G

    2015-09-02

    The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.

  17. TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.

    2016-02-01

    In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.

  18. Monochloramine Disinfection Kinetics of Nitrosomonas europaea by Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods▿

    PubMed Central

    Wahman, David G.; Wulfeck-Kleier, Karen A.; Pressman, Jonathan G.

    2009-01-01

    Monochloramine disinfection kinetics were determined for the pure-culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture-independent methods, namely, Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR). Both methods were first verified with mixtures of heat-killed (nonviable) and non-heat-killed (viable) cells before a series of batch disinfection experiments with stationary-phase cultures (batch grown for 7 days) at pH 8.0, 25°C, and 5, 10, and 20 mg Cl2/liter monochloramine. Two data sets were generated based on the viability method used, either (i) LD or (ii) PMA-qPCR. These two data sets were used to estimate kinetic parameters for the delayed Chick-Watson disinfection model through a Bayesian analysis implemented in WinBUGS. This analysis provided parameter estimates of 490 mg Cl2-min/liter for the lag coefficient (b) and 1.6 × 10−3 to 4.0 × 10−3 liter/mg Cl2-min for the Chick-Watson disinfection rate constant (k). While estimates of b were similar for both data sets, the LD data set resulted in a greater k estimate than that obtained with the PMA-qPCR data set, implying that the PMA-qPCR viability measure was more conservative than LD. For N. europaea, the lag phase was not previously reported for culture-independent methods and may have implications for nitrification in drinking water distribution systems. This is the first published application of a PMA-qPCR method for disinfection kinetic model parameter estimation as well as its application to N. europaea or monochloramine. Ultimately, this PMA-qPCR method will allow evaluation of monochloramine disinfection kinetics for mixed-culture bacteria in drinking water distribution systems. PMID:19561179

  19. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

    PubMed

    Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M

    2016-10-01

    Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals.

    PubMed

    Wang, Yi; Peng, Hsin-Chieh; Liu, Jingyue; Huang, Cheng Zhi; Xia, Younan

    2015-02-11

    Kinetic control is a powerful means for maneuvering the twin structure and shape of metal nanocrystals and thus optimizing their performance in a variety of applications. However, there is only a vague understanding of the explicit roles played by reaction kinetics due to the lack of quantitative information about the kinetic parameters. With Pd as an example, here we demonstrate that kinetic parameters, including rate constant and activation energy, can be derived from spectroscopic measurements and then used to calculate the initial reduction rate and further have this parameter quantitatively correlated with the twin structure of a seed and nanocrystal. On a quantitative basis, we were able to determine the ranges of initial reduction rates required for the formation of nanocrystals with a specific twin structure, including single-crystal, multiply twinned, and stacking fault-lined. This work represents a major step forward toward the deterministic syntheses of colloidal noble-metal nanocrystals with specific twin structures and shapes.

  1. Simulation of Decomposition Kinetics of Supercooled Austenite in Powder Steel

    NASA Astrophysics Data System (ADS)

    Tsyganova, M. S.; Ivashko, A. G.; Polyshuk, I. N.; Nabatov, R. I.; Tsyganova, A. I.

    2017-10-01

    To approve heat treatment of steel modes, quantitative data on austenite decomposition are required. Gaining these data experimentally appears to be extremely complicated. In present work, few approaches to simulate the phase transformation process are proposed considering structure characteristics of powder steels. Results of comparative analysis of these approaches are also given. Predicting the transformation kinetics by simulation is verified for PK40N2M (0.38% C, 2.10% Ni, 0.40% Mo) steel with 3% porosity and PK80 (0.80% C) steel with different porosity using published experimental data.

  2. Towards a Quantitative Analysis of the Temperature Dependence of Electron Attachment Processes

    DTIC Science & Technology

    2016-06-24

    from an Arrhenius law should become pronounced when the temperature range would be extended considerably. Such experiments then were done as reported...in Ref. 13. Indeed marked deviations from the Arrhenius law became visible and, in addition, very good agreement with predictions from our “kinetic

  3. Quantitative Imaging in Laboratory: Fast Kinetics and Fluorescence Quenching

    ERIC Educational Resources Information Center

    Cumberbatch, Tanya; Hanley, Quentin S.

    2007-01-01

    The process of quantitative imaging, which is very commonly used in laboratory, is shown to be very useful for studying the fast kinetics and fluorescence quenching of many experiments. The imaging technique is extremely cheap and hence can be used in many absorption and luminescence experiments.

  4. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry.

    PubMed

    Saunders, John E; Chen, Hao; Brauer, Chris; Clayton, McGregor; Chen, Weijian; Barnes, Jack A; Loock, Hans-Peter

    2015-12-07

    The uptake and release of sorbates into films and coatings is typically accompanied by changes of the films' refractive index and thickness. We provide a comprehensive model to calculate the concentration of the sorbate from the average refractive index and the film thickness, and validate the model experimentally. The mass fraction of the analyte partitioned into a film is described quantitatively by the Lorentz-Lorenz equation and the Clausius-Mosotti equation. To validate the model, the uptake kinetics of water and other solvents into SU-8 films (d = 40-45 μm) were explored. Large-angle interferometric refractometry measurements can be used to characterize films that are between 15 μm to 150 μm thick and, Fourier analysis, is used to determine independently the thickness, the average refractive index and the refractive index at the film-substrate interface at one-second time intervals. From these values the mass fraction of water in SU-8 was calculated. The kinetics were best described by two independent uptake processes having different rates. Each process followed one-dimensional Fickian diffusion kinetics with diffusion coefficients for water into SU-8 photoresist film of 5.67 × 10(-9) cm(2) s(-1) and 61.2 × 10(-9) cm(2) s(-1).

  5. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.

    PubMed

    Harper, M E; Brand, M D

    1994-08-01

    Thyroid hormones have well-known effects on oxidative phosphorylation, but there is little quantitative information on their important sites of action. We have used top-down elasticity analysis, an extension of metabolic control analysis, to identify the sites of action of thyroid hormones on oxidative phosphorylation in rat hepatocytes. We divided the oxidative phosphorylation system into three blocks of reactions: the substrate oxidation subsystem, the phosphorylating subsystem, and the mitochondrial proton leak subsystem and have identified those blocks of reactions whose kinetics are significantly changed by hyperthyroidism. Our results show significant effects on the kinetics of the proton leak and the phosphorylating subsystems. Quantitative analyses revealed that 43% of the increase in resting respiration rate in hyperthyroid hepatocytes compared with euthyroid hepatocytes was due to differences in the proton leak and 59% was due to differences in the activity of the phosphorylating subsystem. There were no significant effects on the substrate oxidation subsystem. Changes in nonmitochondrial oxygen consumption accounted for -2% of the change in respiration rate. Top-down control analysis revealed that the distribution of control over the rates of mitochondrial oxygen consumption, ATP synthesis and consumption, and proton leak and over mitochondrial membrane potential (delta psi m) was similar in hepatocytes from hyperthyroid and littermate-paired euthyroid controls. The results of this study include the first complete top-down elasticity and control analyses of oxidative phosphorylation in hepatocytes from hyperthyroid rats.

  7. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  8. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  9. Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model

    PubMed Central

    Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon

    2012-01-01

    Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146

  10. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NASA Astrophysics Data System (ADS)

    Navarro-López, A.; Sietsma, J.; Santofimia, M. J.

    2016-03-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature ( M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent transformation. This kinetic effect is commonly attributed to the creation of potential nucleation sites at martensite-austenite interfaces. The aim of this study is to determine qualitatively and quantitatively the effect of a small volume fraction of martensite on the nucleation kinetics of the subsequent transformation. For this purpose, dilatometry experiments were performed at different temperatures above and below the M s temperature for athermal martensite in a low-carbon high-silicon steel. Microstructural analysis led to the identification of the isothermal decomposition product formed above and below M s as bainitic ferrite. The analysis of the transformation processes demonstrated that the initial stage of formation of bainitic ferrite at heat treatments below M s is at least two orders of magnitude faster than above M s due to the presence of martensite.

  12. Novel mathematic models for quantitative transitivity of quality-markers in extraction process of the Buyanghuanwu decoction.

    PubMed

    Zhang, Yu-Tian; Xiao, Mei-Feng; Deng, Kai-Wen; Yang, Yan-Tao; Zhou, Yi-Qun; Zhou, Jin; He, Fu-Yuan; Liu, Wen-Long

    2018-06-01

    Nowadays, to research and formulate an efficiency extraction system for Chinese herbal medicine, scientists have always been facing a great challenge for quality management, so that the transitivity of Q-markers in quantitative analysis of TCM was proposed by Prof. Liu recently. In order to improve the quality of extraction from raw medicinal materials for clinical preparations, a series of integrated mathematic models for transitivity of Q-markers in quantitative analysis of TCM were established. Buyanghuanwu decoction (BYHWD) was a commonly TCMs prescription, which was used to prevent and treat the ischemic heart and brain diseases. In this paper, we selected BYHWD as an extraction experimental subject to study the quantitative transitivity of TCM. Based on theory of Fick's Rule and Noyes-Whitney equation, novel kinetic models were established for extraction of active components. Meanwhile, fitting out kinetic equations of extracted models and then calculating the inherent parameters in material piece and Q-marker quantitative transfer coefficients, which were considered as indexes to evaluate transitivity of Q-markers in quantitative analysis of the extraction process of BYHWD. HPLC was applied to screen and analyze the potential Q-markers in the extraction process. Fick's Rule and Noyes-Whitney equation were adopted for mathematically modeling extraction process. Kinetic parameters were fitted and calculated by the Statistical Program for Social Sciences 20.0 software. The transferable efficiency was described and evaluated by potential Q-markers transfer trajectory via transitivity availability AUC, extraction ratio P, and decomposition ratio D respectively. The Q-marker was identified with AUC, P, D. Astragaloside IV, laetrile, paeoniflorin, and ferulic acid were studied as potential Q-markers from BYHWD. The relative technologic parameters were presented by mathematic models, which could adequately illustrate the inherent properties of raw materials preparation and affection of Q-markers transitivity in equilibrium processing. AUC, P, D for potential Q-markers of AST-IV, laetrile, paeoniflorin, and FA were obtained, with the results of 289.9 mAu s, 46.24%, 22.35%; 1730 mAu s, 84.48%, 1.963%; 5600 mAu s, 70.22%, 0.4752%; 7810 mAu s, 24.29%, 4.235%, respectively. The results showed that the suitable Q-markers were laetrile and paeoniflorin in our study, which exhibited acceptable traceability and transitivity in the extraction process of TCMs. Therefore, these novel mathematic models might be developed as a new standard to control TCMs quality process from raw medicinal materials to product manufacturing. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Modeling of kinetic, ionospheric and auroral contributions to the 557.7-nm nightglow

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2010-11-01

    Emission of 557.7-nm radiation from the Earth's upper atmosphere is produced by kinetic, ionospheric and auroral excitation of oxygen atoms. The mechanisms and hence the relative contributions of these three sources are not fully understood. A ground-based mid-latitude recording of the 557.7-nm emissions over the previous solar cycle facilitates a comparison of measurements with theoretical predictions. In this paper the predicted kinetic and ionospheric contributions are simulated and compared with the observations. Semi-quantitative agreement is found between the kinetic contribution and the observations, particularly in the presence of annual, semi-annual and solar cycle variations. An observed enhancement in the emissions in the years following solar maximum is not predicted by the kinetic model. However, correlation analysis reveals a component in the observed values that is related to the auroral hemispheric power. When this extra component is included, a better fit to the pre-midnight observations over the full solar cycle is found.

  14. Further insights into the kinetics of thermal decomposition during continuous cooling.

    PubMed

    Liavitskaya, Tatsiana; Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2017-07-26

    Following the previous work (Phys. Chem. Chem. Phys., 2016, 18, 32021), this study continues to investigate the intriguing phenomenon of thermal decomposition during continuous cooling. The phenomenon can be detected and its kinetics can be measured by means of thermogravimetric analysis (TGA). The kinetics of the thermal decomposition of ammonium nitrate (NH 4 NO 3 ), nickel oxalate (NiC 2 O 4 ), and lithium sulfate monohydrate (Li 2 SO 4 ·H 2 O) have been measured upon heating and cooling and analyzed by means of the isoconversional methodology. The results have confirmed the hypothesis that the respective kinetics should be similar for single-step processes (NH 4 NO 3 decomposition) but different for multi-step ones (NiC 2 O 4 decomposition and Li 2 SO 4 ·H 2 O dehydration). It has been discovered that the differences in the kinetics can be either quantitative or qualitative. Physical insights into the nature of the differences have been proposed.

  15. Simulation of the effects of sub-breakdown electric fields on the chemical kinetics in nonpremixed counterflow methane/air flames

    NASA Astrophysics Data System (ADS)

    Belhi, Memdouh; Im, Hong; Computational Reacting Flows Laboratory, Clean Combustion Research Center Team

    2017-11-01

    The effects of an electric field on the combustion kinetics in nonpremixed counterflow methane/air flames were investigated via one-dimensional numerical simulations. A classical fluid model coupling Poison's equation with transport equations for combustion species and electric field-induced particles was used. A methane-air reaction mechanism accounting for the natural ionization in flames was combined with a set of reactions that describe the formation of active particles induced by the electric field. Kinetic parameters for electron-impact reactions and transport coefficients of electrons were modeled as functions of reduced electric field via solutions to the Boltzmann kinetic equation using the BOLSIG code. Mobility of ions was computed based on the (n,6,4) and coulomb interaction potentials, while the diffusion coefficient was approximated from the mobility using Einstein relation. Contributions of electron dissociation, excitation and ionization processes were characterized quantitatively. An analysis to identify the plasma regime where the electric field can alter the combustion kinetic was proposed.

  16. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo

    2015-12-21

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol atmore » a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.« less

  17. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Amirthalingam, M.; Hermans, M. J. M.; Zhao, L.; Richardson, I. M.

    2010-02-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)-welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel with different base metal austenite fractions has been measured by magnetic saturation measurements, to study the effect of weld thermal cycles on the stabilization of austenite. It is found that for base metals containing 3 to 14 pct of austenite, 4 to 13 pct of austenite is found in the heat-affected zones and 6 to 10 pct in the fusion zones. The decomposition kinetics of retained austenite in the base metal and welded samples was also studied by thermomagnetic measurements. The decomposition kinetics of the austenite in the fusion zone is found to be slower compared to that in the base metal. Thermomagnetic measurements indicated the formation of ferromagnetic ɛ carbides above 290 °C and paramagnetic η( ɛ') transient iron carbides at approximately 400 °C due to the decomposition of austenite during heating.

  18. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

    NASA Astrophysics Data System (ADS)

    Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio

    2016-12-01

    Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.

  19. Purfication kinetics of beryllium during vacuum induction melting

    NASA Technical Reports Server (NTRS)

    Mukherjee, J. L.; Gupta, K. P.; Li, C. H.

    1972-01-01

    The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.

  20. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations.

    PubMed

    Meral, Derya; Provasi, Davide; Prada-Gracia, Diego; Möller, Jan; Marino, Kristen; Lohse, Martin J; Filizola, Marta

    2018-05-16

    Various experimental and computational techniques have been employed over the past decade to provide structural and thermodynamic insights into G Protein-Coupled Receptor (GPCR) dimerization. Here, we use multiple microsecond-long, coarse-grained, biased and unbiased molecular dynamics simulations (a total of ~4 milliseconds) combined with multi-ensemble Markov state models to elucidate the kinetics of homodimerization of a prototypic GPCR, the µ-opioid receptor (MOR), embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol lipid bilayer. Analysis of these computations identifies kinetically distinct macrostates comprising several different short-lived dimeric configurations of either inactive or activated MOR. Calculated kinetic rates and fractions of dimers at different MOR concentrations suggest a negligible population of MOR homodimers at physiological concentrations, which is supported by acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments. This study provides a rigorous, quantitative explanation for some conflicting experimental data on GPCR oligomerization.

  1. PET brain kinetics studies of 11C-ITMM and 11C-ITDM,radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate

    PubMed Central

    Yamasaki, Tomoteru; Maeda, Jun; Fujinaga, Masayuki; Nagai, Yuji; Hatori, Akiko; Yui, Joji; Xie, Lin; Nengaki, Nobuki; Zhang, Ming-Rong

    2014-01-01

    The metabotropic glutamate receptor type 1 (mGluR1) is a novel target protein for the development of new drugs against central nervous system disorders. Recently, we have developed 11C-labeled PET probes 11C-ITMM and 11C-ITDM, which demonstrate similar profiles, for imaging of mGluR1. In the present study, we compared 11C-ITMM and 11C-ITDM PET imaging and quantitative analysis in the monkey brain. Respective PET images showed similar distribution of uptake in the cerebellum, thalamus, and cingulate cortex. Slightly higher uptake was detected with 11C-ITDM than with 11C-ITMM. For the kinetic analysis using the two-tissue compartment model (2-TCM), the distribution volume (VT) in the cerebellum, an mGluR1-rich region in the brain, was 2.5 mL∙cm-3 for 11C-ITMM and 3.6 mL∙cm-3 for 11C-ITDM. By contrast, the VT in the pons, a region with negligible mGluR1 expression, was similarly low for both radiopharmaceuticals. Based on these results, we performed noninvasive PET quantitative analysis with general reference tissue models using the time-activity curve of the pons as a reference region. We confirmed the relationship and differences between the reference tissue models and 2-TCM using correlational scatter plots and Bland-Altman plots analyses. Although the scattergrams of both radiopharmaceuticals showed over- or underestimations of reference tissue model-based the binding potentials against 2-TCM, there were no significant differences between the two kinetic analysis models. In conclusion, we first demonstrated the potentials of 11C-ITMM and 11C-ITDM for noninvasive PET quantitative analysis using reference tissue models. In addition, our findings suggest that 11C-ITDM may be superior to 11C-ITMM as a PET probe for imaging of mGluR1, because regional VT values in PET with 11C-ITDM were higher than those of 11C-ITMM. Clinical studies of 11C-ITDM in humans will be necessary in the future. PMID:24795840

  2. PET brain kinetics studies of (11)C-ITMM and (11)C-ITDM,radioprobes for metabotropic glutamate receptor type 1, in a nonhuman primate.

    PubMed

    Yamasaki, Tomoteru; Maeda, Jun; Fujinaga, Masayuki; Nagai, Yuji; Hatori, Akiko; Yui, Joji; Xie, Lin; Nengaki, Nobuki; Zhang, Ming-Rong

    2014-01-01

    The metabotropic glutamate receptor type 1 (mGluR1) is a novel target protein for the development of new drugs against central nervous system disorders. Recently, we have developed (11)C-labeled PET probes (11)C-ITMM and (11)C-ITDM, which demonstrate similar profiles, for imaging of mGluR1. In the present study, we compared (11)C-ITMM and (11)C-ITDM PET imaging and quantitative analysis in the monkey brain. Respective PET images showed similar distribution of uptake in the cerebellum, thalamus, and cingulate cortex. Slightly higher uptake was detected with (11)C-ITDM than with (11)C-ITMM. For the kinetic analysis using the two-tissue compartment model (2-TCM), the distribution volume (VT) in the cerebellum, an mGluR1-rich region in the brain, was 2.5 mL∙cm(-3) for (11)C-ITMM and 3.6 mL∙cm(-3) for (11)C-ITDM. By contrast, the VT in the pons, a region with negligible mGluR1 expression, was similarly low for both radiopharmaceuticals. Based on these results, we performed noninvasive PET quantitative analysis with general reference tissue models using the time-activity curve of the pons as a reference region. We confirmed the relationship and differences between the reference tissue models and 2-TCM using correlational scatter plots and Bland-Altman plots analyses. Although the scattergrams of both radiopharmaceuticals showed over- or underestimations of reference tissue model-based the binding potentials against 2-TCM, there were no significant differences between the two kinetic analysis models. In conclusion, we first demonstrated the potentials of (11)C-ITMM and (11)C-ITDM for noninvasive PET quantitative analysis using reference tissue models. In addition, our findings suggest that (11)C-ITDM may be superior to (11)C-ITMM as a PET probe for imaging of mGluR1, because regional VT values in PET with (11)C-ITDM were higher than those of (11)C-ITMM. Clinical studies of (11)C-ITDM in humans will be necessary in the future.

  3. The size effects upon shock plastic compression of nanocrystals

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  4. Chemical kinetics of homogeneous atmospheric oxidation of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Seinfeld, J. H.

    1976-01-01

    A systematic evaluation of known homogeneous SO2 reactions which might be important in air pollution chemistry is carried out. A mechanism is developed to represent the chemistry of NOx/hydrocarbon/SO2 systems, and the mechanism is used to analyze available experimental data appropriate for quantitative analysis of SO2 oxidation kinetics. Detailed comparisons of observed and predicted concentration behavior are presented. In all cases, observed SO2 oxidation rates cannot be explained solely on the basis of those SO2 reactions for which rate constants have been measured. The role of ozone-olefin reactions in SO2 oxidation is elucidated.

  5. Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Urbanc, B.; Buldyrev, S. V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H. E.; Hyman, B. T.

    1997-07-01

    We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.

  6. Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements.

    PubMed

    Selck, David A; Karymov, Mikhail A; Sun, Bing; Ismagilov, Rustem F

    2013-11-19

    Quantitative bioanalytical measurements are commonly performed in a kinetic format and are known to not be robust to perturbation that affects the kinetics itself or the measurement of kinetics. We hypothesized that the same measurements performed in a "digital" (single-molecule) format would show increased robustness to such perturbations. Here, we investigated the robustness of an amplification reaction (reverse-transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in temperature and time when this reaction is used for quantitative measurements of HIV-1 RNA molecules under limited-resource settings (LRS). The digital format that counts molecules using dRT-LAMP chemistry detected a 2-fold change in concentration of HIV-1 RNA despite a 6 °C temperature variation (p-value = 6.7 × 10(-7)), whereas the traditional kinetic (real-time) format did not (p-value = 0.25). Digital analysis was also robust to a 20 min change in reaction time, to poor imaging conditions obtained with a consumer cell-phone camera, and to automated cloud-based processing of these images (R(2) = 0.9997 vs true counts over a 100-fold dynamic range). Fluorescent output of multiplexed PCR amplification could also be imaged with the cell phone camera using flash as the excitation source. Many nonlinear amplification schemes based on organic, inorganic, and biochemical reactions have been developed, but their robustness is not well understood. This work implies that these chemistries may be significantly more robust in the digital, rather than kinetic, format. It also calls for theoretical studies to predict robustness of these chemistries and, more generally, to design robust reaction architectures. The SlipChip that we used here and other digital microfluidic technologies already exist to enable testing of these predictions. Such work may lead to identification or creation of robust amplification chemistries that enable rapid and precise quantitative molecular measurements under LRS. Furthermore, it may provide more general principles describing robustness of chemical and biological networks in digital formats.

  7. Quantitative petri net model of gene regulated metabolic networks in the cell.

    PubMed

    Chen, Ming; Hofestädt, Ralf

    2011-01-01

    A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.

  8. Quantitative weaknesses of the Marcus-Hush theory of electrode kinetics revealed by Reverse Scan Square Wave Voltammetry: The reduction of 2-methyl-2-nitropropane at mercury microelectrodes

    NASA Astrophysics Data System (ADS)

    Laborda, Eduardo; Wang, Yijun; Henstridge, Martin C.; Martínez-Ortiz, Francisco; Molina, Angela; Compton, Richard G.

    2011-08-01

    The Marcus-Hush and Butler-Volmer kinetic electrode models are compared experimentally by studying the reduction of 2-methyl-2-nitropropane in acetonitrile at mercury microelectrodes using Reverse Scan Square Wave Voltammetry. This technique is found to be very sensitive to the electrode kinetics and to permit critical comparison of the two models. The Butler-Volmer model satisfactorily fits the experimental data whereas Marcus-Hush does not quantitatively describe this redox system.

  9. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  10. Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.

    PubMed

    Shekunov, Boris; Montgomery, Eda Ross

    2016-09-01

    The first-principles approach presented in this work combines surface kinetics and convective diffusion modeling applied to compounds with pH-dependent solubility and in different dissolution media. This analysis is based on experimental data available for approximately 100 compounds of pharmaceutical interest. Overall, there is a linear relationship between the drug solubility and intrinsic dissolution rate expressed through the total kinetic coefficient of dissolution and dimensionless numbers defining the mass transfer regime. The contribution of surface kinetics appears to be significant constituting on average ∼20% resistance to the dissolution flux in the compendial rotating disk apparatus at 100 rpm. The surface kinetics contribution becomes more dominant under conditions of fast laminar or turbulent flows or in cases when the surface kinetic coefficient may decrease as a function of solution composition or pH. Limitations of the well-known convective diffusion equation for rotating disk by Levich are examined using direct computational modeling with simultaneous dissociation and acid-base reactions in which intrinsic dissolution rate is strongly dependent on pH profile and solution ionic strength. It is shown that concept of diffusion boundary layer does not strictly apply for reacting/interacting species and that thin-film diffusion models cannot be used quantitatively in general case. Copyright © 2016. Published by Elsevier Inc.

  11. A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase

    ERIC Educational Resources Information Center

    Witherow, D. Scott

    2016-01-01

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…

  12. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    PubMed

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.

  13. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  14. Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

    PubMed Central

    Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K

    2014-01-01

    The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840

  15. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...

  16. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    PubMed

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.

  17. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and fitting the chosen models using an advanced minimization algorithm to yield the reaction orders and rate constants. Finally, we outline how to use this approach to investigate which targets potential inhibitors of amyloid formation bind to and where in the reaction mechanism they act. The protocol, from processing data to determining mechanisms, can be completed in <1 d.

  18. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  19. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.

    PubMed

    Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve

    2011-06-23

    We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.

  20. Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence

    NASA Astrophysics Data System (ADS)

    Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.

    2017-10-01

    Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.

  1. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  2. [Analysis of hydrodynamics parameters of runoff erosion and sediment-yielding on unpaved road].

    PubMed

    Huang, Peng-Fei; Wang, Wen-Long; Luo, Ting; Wang, Zhen; Wang, Zheng-Li; Li, Ren

    2013-02-01

    By the method of field runoff washout experiment, a simulation study was conducted on the relationships between the soil detachment rate and the hydrodynamic parameters on unpaved road, and the related quantitative formulas were established. Under the conditions of different flow discharges and road gradients, the averaged soil detachment rate increased with increasing flow discharge and road gradient, and the relationships between them could be described by a power function. As compared with road gradient, flow discharge had greater effects on the soil detachment rate. The soil detachment rate had a power relation with water flow velocity and runoff kinetic energy, and the runoff kinetic energy was of importance to the soil detachment rate. The soil detachment rate was linearly correlated with the unit runoff kinetic energy. The averaged soil erodibility was 0.120 g m-1.J-F-1, and the averaged critical unit runoff kinetic energy was 2.875 g.m-1.J-1. Flow discharge, road gradient, and unit runoff kinetic energy could be used to accurately describe the soil erosion process and calculate the soil erosion rate on unpaved road.

  3. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    DOE PAGES

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla; ...

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  4. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  5. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.-Stelson, A.T.; Stabin, M.G.; Sparks, R.B.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  6. Multivariate curve resolution applied to kinetic-spectroscopic data matrices: Dye determination in foods by means of enzymatic oxidation.

    PubMed

    Boeris, Valeria; Arancibia, Juan A; Olivieri, Alejandro C

    2017-07-01

    In this work, the combination of chemometric techniques with kinetic-spectroscopic data allowed quantifying two dyes (tartrazine and carminic acid) in complex matrices as mustard, ketchup, asparagus soup powder, pumpkin soup powder, plum jam and orange-strawberry juice. Quantitative analysis was performed without the use of tedious sample pretreatment, due to the achievement of the second-order advantage. The results obtained showed an improvement in simplicity, speed and cost with respect to usual separation techniques, allowing to properly quantifying these dyes obtaining limits of detection below 0.6mgL -1 . In addition, to the best of our knowledge, is the first time that kinetic-spectroscopic data are obtained from the action of laccase for analytical purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods ▿

    PubMed Central

    Wahman, David G.; Schrantz, Karen A.; Pressman, Jonathan G.

    2010-01-01

    Various medium compositions (phosphate, 1 to 50 mM; ionic strength, 2.8 to 150 meq/liter) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics, as determined by the Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient, 37 to 490 [LD] and 91 to 490 [PMA-qPCR] mg·min/liter; Chick-Watson rate constant, 4.0 × 10−3 to 9.3 × 10−3 [LD] and 1.6 × 10−3 to 9.6 × 10−3 [PMA-qPCR] liter/mg·min). Two competing effects may account for the variation in disinfection kinetic parameters: (i) increasing kinetics (disinfection rate constant [k] increased, lag coefficient [b] decreased) with increasing phosphate concentration and (ii) decreasing kinetics (k decreased, b increased) with increasing ionic strength. The results support development of a standard medium for evaluating disinfection kinetics in drinking water. PMID:20952645

  8. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria

    PubMed Central

    Ferrin, Michael A; Subramaniam, Arvind R

    2017-01-01

    Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes. DOI: http://dx.doi.org/10.7554/eLife.23629.001 PMID:28498106

  9. Structural kinetic modeling of metabolic networks.

    PubMed

    Steuer, Ralf; Gross, Thilo; Selbig, Joachim; Blasius, Bernd

    2006-08-08

    To develop and investigate detailed mathematical models of metabolic processes is one of the primary challenges in systems biology. However, despite considerable advance in the topological analysis of metabolic networks, kinetic modeling is still often severely hampered by inadequate knowledge of the enzyme-kinetic rate laws and their associated parameter values. Here we propose a method that aims to give a quantitative account of the dynamical capabilities of a metabolic system, without requiring any explicit information about the functional form of the rate equations. Our approach is based on constructing a local linear model at each point in parameter space, such that each element of the model is either directly experimentally accessible or amenable to a straightforward biochemical interpretation. This ensemble of local linear models, encompassing all possible explicit kinetic models, then allows for a statistical exploration of the comprehensive parameter space. The method is exemplified on two paradigmatic metabolic systems: the glycolytic pathway of yeast and a realistic-scale representation of the photosynthetic Calvin cycle.

  10. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.

    PubMed

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T

    2011-11-01

    Human molars were subjected to demineralization in acid gel followed by incubation in remineralization solutions without or with fluoride (1 or 1000 ppm). Photothermal radiometry (PTR) and modulated luminescence (LUM) frequency scans were performed prior to and during de/remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion to determine mineral loss and lesion depth. The remineralization process illustrated a complex interplay between surface and subsurface mineral deposition, confining the thermal-wave centroid toward the dominating layer. Experimental amplitudes and phases were fitted to a coupled diffuse-photon-density-wave and thermal-wave theoretical model used to quantitatively evaluate evolving changes in thermal and optical properties of de/remineralized enamel lesions. Additional information obtained from the LUM data corroborated the remineralization kinetics affecting the PTR signals. The results pointed to enhanced effectiveness of subsurface lesion remineralization in the presence of fluoride. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrostatic Effects in Filamentous Protein Aggregation

    PubMed Central

    Buell, Alexander K.; Hung, Peter; Salvatella, Xavier; Welland, Mark E.; Dobson, Christopher M.; Knowles, Tuomas P.J.

    2013-01-01

    Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules. PMID:23473495

  12. Quantitative Functional Imaging Using Dynamic Positron Computed Tomography and Rapid Parameter Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Koeppe, Robert Allen

    Positron computed tomography (PCT) is a diagnostic imaging technique that provides both three dimensional imaging capability and quantitative measurements of local tissue radioactivity concentrations in vivo. This allows the development of non-invasive methods that employ the principles of tracer kinetics for determining physiological properties such as mass specific blood flow, tissue pH, and rates of substrate transport or utilization. A physiologically based, two-compartment tracer kinetic model was derived to mathematically describe the exchange of a radioindicator between blood and tissue. The model was adapted for use with dynamic sequences of data acquired with a positron tomograph. Rapid estimation techniques were implemented to produce functional images of the model parameters by analyzing each individual pixel sequence of the image data. A detailed analysis of the performance characteristics of three different parameter estimation schemes was performed. The analysis included examination of errors caused by statistical uncertainties in the measured data, errors in the timing of the data, and errors caused by violation of various assumptions of the tracer kinetic model. Two specific radioindicators were investigated. ('18)F -fluoromethane, an inert freely diffusible gas, was used for local quantitative determinations of both cerebral blood flow and tissue:blood partition coefficient. A method was developed that did not require direct sampling of arterial blood for the absolute scaling of flow values. The arterial input concentration time course was obtained by assuming that the alveolar or end-tidal expired breath radioactivity concentration is proportional to the arterial blood concentration. The scale of the input function was obtained from a series of venous blood concentration measurements. The method of absolute scaling using venous samples was validated in four studies, performed on normal volunteers, in which directly measured arterial concentrations were compared to those predicted from the expired air and venous blood samples. The glucose analog ('18)F-3-deoxy-3-fluoro-D -glucose (3-FDG) was used for quantitating the membrane transport rate of glucose. The measured data indicated that the phosphorylation rate of 3-FDG was low enough to allow accurate estimation of the transport rate using a two compartment model.

  13. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1.

    PubMed

    Wu, Jiun-Yan; Liao, Jen-Hung; Shieh, Chwen-Jen; Hsieh, Feng-Chia; Liu, Yung-Chuan

    2018-06-12

    In this study, the precursor effect for iturin A production was quantitatively analyzed. A strain identified as Bacillus amyloliquefaciens BPD1 (Ba-BPD1) was selected due to its ability to produce iturin A. The enhancement of iturin A production in a submerged culture was tested using various additives, including palmitic acid, oils, and complex amino acids. Among these, complex amino acids triggered the highest yield at 559 mg/L. The respective amino acids that contribute to the structure of iturin A were used as precursors. In fact, it was found that the addition of l-proline, l-glutamine, l-asparagine and l-serine could improve iturin A yield in the defined medium. However, during the kinetic analysis, all the amino acids exhibited a lower saturation level than l-serine, which exhibited a high saturation level at 1.2% resulting in an iturin A yield of 914 mg/L. In contrast, a negative effect was observed following the addition of l-tyrosine. To analyze the kinetic behavior of l-serine, three kinetic models were adopted: the kinetic order equation, the Langmuir kinetic equation, and a modified logistic equation. The regression results showed that the modified logistic model was the best fit for the kinetic behavior of l-serine as the major precursor, which could be further referred to the biosynthesis pathway of iturin A. Among the proposed processes for iturin A production, this study achieved the highest iturin A levels as a result of the addition of precursors. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Detection of kinetic change points in piece-wise linear single molecule motion

    NASA Astrophysics Data System (ADS)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  15. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.

    PubMed

    Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.

  16. Kinetic analyses of vasculogenesis inform mechanistic studies

    PubMed Central

    Winfree, Seth; Chu, Chenghao; Tu, Wanzhu; Blue, Emily K.; Gohn, Cassandra R.; Dunn, Kenneth W.

    2017-01-01

    Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis. PMID:28100488

  17. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions

    PubMed Central

    Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285

  18. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches

    PubMed Central

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  19. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    PubMed

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-04-29

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.

  20. A novel robust quantitative Förster resonance energy transfer assay for protease SENP2 kinetics determination against its all natural substrates.

    PubMed

    Liu, Yan; Shen, Yali; Zheng, Shasha; Liao, Jiayu

    2015-12-01

    SUMOylation (the process of adding the SUMO [small ubiquitin-like modifier] to substrates) is an important post-translational modification of critical proteins in multiple processes. Sentrin/SUMO-specific proteases (SENPs) act as endopeptidases to process the pre-SUMO or as isopeptidases to deconjugate the SUMO from its substrate. Determining the kinetics of SENPs is important for understanding their activities. Förster resonance energy transfer (FRET) technology has been widely used in biomedical research and is a powerful tool for elucidating protein interactions. In this paper we report a novel quantitative FRET-based protease assay for SENP2 endopeptidase activity that accounts for the self-fluorescent emissions of the donor (CyPet) and the acceptor (YPet). The kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP2 toward pre-SUMO1/2/3, were obtained by this novel design. Although we use SENP2 to demonstrate our method, the general principles of this quantitative FRET-based protease kinetic determination can be readily applied to other proteases.

  1. A comparison of region-based and pixel-based CEUS kinetics parameters in the assessment of arthritis

    NASA Astrophysics Data System (ADS)

    Grisan, E.; Raffeiner, B.; Coran, A.; Rizzo, G.; Ciprian, L.; Stramare, R.

    2014-03-01

    Inflammatory rheumatic diseases are leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity and increased mortality. The gold-standard for diagnosing and differentiating arthritis is based on patient conditions and radiographic findings, as joint erosions or decalcification. However, early signs of arthritis are joint effusion, hypervascularization and synovial hypertrophy. In particular, vascularization has been shown to correlate with arthritis' destructive behavior, more than clinical assessment. Contrast Enhanced Ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. The evaluation of perfusion pattern rely on subjective semi-quantitative scales, that are able to capture the macroscopic degree of vascularization, but are unable to detect the subtler differences in kinetics perfusion parameters that might lead to a deeper understanding of disease progression and a better management of patients. Quantitative assessment is mostly performed by means of the Qontrast software package, that requires the user to define a region of interest, whose mean intensity curve is fitted with an exponential function. We show that using a more physiologically motivated perfusion curve, and by estimating the kinetics parameters separately pixel per pixel, the quantitative information gathered is able to differentiate more effectively different perfusion patterns. In particular, we will show that a pixel-based analysis is able to provide significant markers differentiating rheumatoid arthritis from simil-rheumatoid psoriatic arthritis, that have non-significant differences in clinical evaluation (DAS28), serological markers, or region-based parameters.

  2. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  3. Nonlinear Analysis of Experimental Measurements 7.6. Theoretical Chemistry

    DTIC Science & Technology

    2015-01-26

    Jianshu Cao, Robert J. Silbey, Jaeyoung Sung. Quantitative Interpretation of the Randomness in Single Enzyme Turnover Times, Biophysical Journal...Universality of Poisson Indicator and Fano Factor of Transport Event Statistics in Ion Channels and Enzyme Kinetics., J. Phys. B: At. Mol. Opt. Phys...TOTAL: 4 01/26/2015 Received Book 4.00 Jianshu Cao, Jianlan Wu. GENERALIZED MICHAELIS–MENTENEQUATION FOR CONFORMATION- MODULATEDMONOMERIC ENZYMES , New

  4. Multi-technique approach for qualitative and quantitative characterization of furazidin degradation kinetics under alkaline conditions.

    PubMed

    Bērziņš, Kārlis; Kons, Artis; Grante, Ilze; Dzabijeva, Diana; Nakurte, Ilva; Actiņš, Andris

    2016-09-10

    Degradation of drug furazidin was studied under different conditions of environmental pH (11-13) and temperature (30-60°C). The novel approach of hybrid hard- and soft-multivariate curve resolution-alternating least squares (HS-MCR-ALS) method was applied to UV-vis spectral data to determine a valid kinetic model and kinetic parameters of the degradation process. The system was found to be comprised of three main species and best characterized by two consecutive first-order reactions. Furazidin degradation rate was found to be highly dependent on the applied environmental conditions, showing more prominent differences between both degradation steps towards higher pH and temperature. Complimentary qualitative analysis of the degradation process was carried out using HPLC-DAD-TOF-MS. Based on the obtained chromatographic and mass spectrometric results, as well as additional computational analysis of the species (theoretical UV-vis spectra calculations utilizing TD-DFT methodology), the operating degradation mechanism was proposed to include formation of a 5-hydroxyfuran derivative, followed by complete hydrolysis of furazidin hydantoin ring. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    NASA Astrophysics Data System (ADS)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  6. Cellular level models as tools for cytokine design.

    PubMed

    Radhakrishnan, Mala L; Tidor, Bruce

    2010-01-01

    Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. (c) 2010 American Institute of Chemical Engineers

  7. Emergence of HGF/SF-Induced Coordinated Cellular Motility

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2012-01-01

    Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation-based collective cell motility dynamics. Our quantitative phenotypes may guide future investigation on the molecular and cellular mechanisms of tyrosine kinase-induced coordinate cell motility and morphogenesis in metastasis. PMID:22970283

  8. Analysis of Protein Adduction Kinetics by Quantitative Mass Spectrometry. Competing Adduction Reactions of Glutathione-S-Transferase P1-1 with Electrophiles

    PubMed Central

    Orton, Christopher R.; Liebler, Daniel C.

    2007-01-01

    Defining the mechanisms and consequences of protein adduction is crucial to understanding the toxicity of reactive electrophiles. Application of tandem mass spectrometry and data analysis algorithms enables detection and mapping of chemical adducts at the level of amino acid sequence. Nevertheless, detection of adducts does not indicate relative reactivity of different sites. Here we describe a method to measure the kinetics of competing adduction reactions at different sites on the same protein. Adducts are formed by electrophiles at Cys14 and Cys47 on the metabolic enzyme glutathione-S-transferase P1-1 and modification is accompanied by a loss of enzymatic activity. Relative quantitation of protein adducts was done by tagging N-termini of peptide digests with isotopically labeled phenyl isocyanate and tracking the ratio of light-tagged peptide adducts to heavy-tagged reference samples in liquid chromatography-tandem mass spectrometry analyses using a multiple reaction monitoring method. This approach was used to measure rate constants for adduction at both positions with two different model electrophiles, N-iodoacetyl-N-biotinylhexylenediamine and 1-biotinamido-4-(4′-[maleimidoethyl-cyclohexane]-carboxamido)butane. The results indicate that Cys47 was approximately 2–3-fold more reactive toward both electrophiles than was Cys14. This result was consistent with the relative reactivity of these electrophiles in a complex proteome system and with previously reported trends in reactivity of these sites. Kinetic analyses of protein modification reactions provide a means of evaluating the selectivity of reactive mediators of chemical toxicity. PMID:17433278

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from bothmore » tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.« less

  10. LIF measurements and chemical kinetic analysis of methylidyne formation in high-pressure counter-flow partially premixed and non-premixed flames

    NASA Astrophysics Data System (ADS)

    Naik, S. V.; Laurendeau, N. M.

    2004-11-01

    We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.

  11. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  12. Translational PK/PD of Anti-Infective Therapeutics

    PubMed Central

    Rathi, Chetan; Lee, Richard E.; Meibohm, Bernd

    2016-01-01

    Translational PK/PD modeling has emerged as a critical technique for quantitative analysis of the relationship between dose, exposure and response of antibiotics. By combining model components for pharmacokinetics, bacterial growth kinetics and concentration-dependent drug effects, these models are able to quantitatively capture and simulate the complex interplay between antibiotic, bacterium and host organism. Fine-tuning of these basic model structures allows to further account for complicating factors such as resistance development, combination therapy, or host responses. With this tool set at hand, mechanism-based PK/PD modeling and simulation allows to develop optimal dosing regimens for novel and established antibiotics for maximum efficacy and minimal resistance development. PMID:27978987

  13. Direct-injection chemiluminescence detector. Properties and potential applications in flow analysis.

    PubMed

    Koronkiewicz, Stanislawa; Kalinowski, Slawomir

    2015-02-01

    We present a novel chemiluminescence detector, with a cone-shaped detection chamber where the analytical reaction takes place. The sample and appropriate reagents are injected directly into the chamber in countercurrent using solenoid-operated pulse micro-pumps. The proposed detector allows for fast measurement of the chemiluminescence signal in stop-flow conditions from the moment of reagents mixing. To evaluate potential applications of the detector the Fenton-like reaction with a luminol-H2O2 system and several transition metal ions (Co(2+), Cu(2+), Cr(3+), Fe(3+)) as a catalyst were investigated. The results demonstrate suitability of the proposed detector for quantitative analysis and for investigations of reaction kinetics, particularly rapid reactions. A multi-pumping flow system was designed and optimized. The developed methodology demonstrated that the shape of the analytical signals strongly depends on the type and concentration of the metal ions. The application of the detector in quantitative analysis was assessed for determination of Fe(III). The direct-injection chemiluminescence detector allows for a sensitive and repeatable (R.S.D. 2%) determination. The intensity of chemiluminescence increased linearly in the range from about 0.5 to 10 mg L(-1) Fe(III) with the detection limit of 0.025 mg L(-1). The time of analysis depended mainly on reaction kinetics. It is possible to achieve the high sampling rate of 144 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

    PubMed

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J

    2010-11-01

    C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less

  16. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment - Quantitative spectroscopic and kinetic approaches.

    PubMed

    Ursache, Florentina-Mihaela; Ghinea, Ioana Otilia; Turturică, Mihaela; Aprodu, Iuliana; Râpeanu, Gabriela; Stănciuc, Nicoleta

    2017-10-15

    The effect of thermal processing (50-100°C) on the degradation of the phytochemicals in sea buckthorn extract was investigated using chromatographic, fluorescence and FT-IR spectroscopy techniques and degradation kinetics. Heating the sea buckthorn extract resulted in structural changes that led to red- or blue-shifts in maximum emission, depending on temperature and excitation wavelengths. The attenuated total reflectance analysis of the sea buckthorn extract revealed a satisfactory thermostability of compounds at high temperatures. A fractional conversion kinetic model was used to describe the mechanism of degradation in terms of rate and activation energy. Activation energies for total carotenoids, polyphenolic, flavonoids, and antioxidant activity were 8.45±0.93kJ/mol, 2.50±0.66kJ/mol, 22.50±7.26kJ/mol and 15.22±2.75kJ/mol, respectively. The kinetic parameters evidence a higher thermal stability of carotenoids and polyphenols, suggesting higher degradation rates for flavonoids and antioxidant activity. Our results demonstrate that industrial process optimization in terms of time-temperature combinations demands product specific kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed CH4/O2/N2 Flames

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Douglas; Laurendeau, Normand M.

    2000-01-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry. Suggestions are made which significantly improve the predictive capability of the GRI mechanism in near-stoichiometric, rich, premixed flames and in atmospheric-pressure, diffusion flames. However, the modified reaction mechanism is unable to model the formation of NO in ultra-rich, premixed or in high-pressure, nonpremixed flames, thus indicating the need for additional study under these conditions.

  18. Development of an electron paramagnetic resonance methodology for studying the photo-generation of reactive species in semiconductor nano-particle assembled films

    NASA Astrophysics Data System (ADS)

    Twardoch, Marek; Messai, Youcef; Vileno, Bertrand; Hoarau, Yannick; Mekki, Djamel E.; Felix, Olivier; Turek, Philippe; Weiss, Jean; Decher, Gero; Martel, David

    2018-06-01

    An experimental approach involving electron paramagnetic resonance is proposed for studying photo-generated reactive species in semiconductor nano-particle-based films deposited on the internal wall of glass capillaries. This methodology is applied here to nano-TiO2 and allows a semi-quantitative analysis of the kinetic evolutions of radical production using a spin scavenger probe.

  19. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giron, Nicholas H.; Celina, Mathew C.

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  20. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE PAGES

    Giron, Nicholas H.; Celina, Mathew C.

    2017-05-19

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  1. Gait Analysis Methods for Rodent Models of Arthritic Disorders: Reviews and Recommendations

    PubMed Central

    Lakes, Emily H.; Allen, Kyle D.

    2016-01-01

    Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future. PMID:26995111

  2. Electrochemical performance investigations on the hydrogen depolarized CO2 concentrator

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1976-01-01

    An extensive investigation of anode and cathode polarization in complete cells and half cells was conducted to determine the factors affecting HDC electrode polarization and the nature of this polarization. Matrix-electrolyte-electrode interactions and cell electrolyte composition were also investigated. The electrodes were found to have normal performance capabilities. The HDC anode polarization characteristics were correlated with a theoretical kinetic analysis; and, except for some quantitative details, a rather complete understanding of the causes for HDC electrode polarization was formulated. One of the important finding resulting from the kinetic analysis was that platinum appears to catalyze the decomposition of carbonic acid to carbon dioxide and water. It was concluded that the abnormal voltage performance of the One Man ARS HDC cells was caused by insufficient cell electrolyte volume under normal operating conditions due to deficiencies in the reservoir to cell interfacing.

  3. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  4. Endotoxin Detection in Pharmaceuticals and Medical Devices with Kinetic-QCL, a Kinetic-Quantitative Chromogenic Limulus Amebocyte Lysate Assay.

    PubMed

    Berzofsky, Ronald N.

    1995-01-01

    The observation that endotoxin caused gelation in extracts of Limulus amebocytes has been expanded to the development of an in vitro kinetic, quantitative chromogenic LAL assay (Kinetic-QCL) for the detection of endotoxin in aqueous fluids. Within the last 15 years, the use of Limulus amebocyte lysate to detect and control the presence of pyrogenic substances in pharmaceuticals and medical devices has gained wide international acceptance. Both the United States and European Pharmacopoeias contain descriptions of and requirements for the LAL Bacterial Endotoxin Test. Both pharmacopoeias have begun to remove the rabbit pyrogen test requirement in a majority of drug monographs and have substituted endotoxin limits to be determined by LAL. The use of LAL has proved invaluable in controlling the level of endotoxin in finished product. The endotoxin contribution of raw materials and packaging material can be monitored as well. In-process testing at critical production steps can identify additional sources of endotoxin contamination, and depyrogenation processes can be validated by quantitating the degradation of endotoxin challenges. The speed, reproducibility, sensitivity, and economics of the Kinetic-QCL assay, in conjunction with the ppropriate equipment and software, over both the in vivo rabbit pyrogen test and the more traditional LAL gel-clot assay allow a more in-depth approach to the control of endotoxin in pharmaceuticals and medical devices.

  5. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).

    PubMed

    Giakoumakis, Nickolaos Nikiforos; Rapsomaniki, Maria Anna; Lygerou, Zoi

    2017-01-01

    Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.

  6. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  7. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  8. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.

    PubMed

    Mech, Franziska; Wilson, Duncan; Lehnert, Teresa; Hube, Bernhard; Thilo Figge, Marc

    2014-02-01

    Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium. © 2013 International Society for Advancement of Cytometry.

  9. Poster — Thur Eve — 44: Linearization of Compartmental Models for More Robust Estimates of Regional Hemodynamic, Metabolic and Functional Parameters using DCE-CT/PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blais, AR; Dekaban, M; Lee, T-Y

    2014-08-15

    Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less

  10. Clinical study of quantitative diagnosis of early cervical cancer based on the classification of acetowhitening kinetics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Cheung, Tak-Hong; Yim, So-Fan; Qu, Jianan Y.

    2010-03-01

    A quantitative colposcopic imaging system for the diagnosis of early cervical cancer is evaluated in a clinical study. This imaging technology based on 3-D active stereo vision and motion tracking extracts diagnostic information from the kinetics of acetowhitening process measured from the cervix of human subjects in vivo. Acetowhitening kinetics measured from 137 cervical sites of 57 subjects are analyzed and classified using multivariate statistical algorithms. Cross-validation methods are used to evaluate the performance of the diagnostic algorithms. The results show that an algorithm for screening precancer produced 95% sensitivity (SE) and 96% specificity (SP) for discriminating normal and human papillomavirus (HPV)-infected tissues from cervical intraepithelial neoplasia (CIN) lesions. For a diagnostic algorithm, 91% SE and 90% SP are achieved for discriminating normal tissue, HPV infected tissue, and low-grade CIN lesions from high-grade CIN lesions. The results demonstrate that the quantitative colposcopic imaging system could provide objective screening and diagnostic information for early detection of cervical cancer.

  11. Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak

    DOE PAGES

    Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-04-07

    A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less

  12. Advances in Surface Plasmon Resonance Imaging allowing for quantitative measurement of laterally heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2012-02-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to materials on metallic surfaces for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases -- uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. The degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  13. General Methods for Analysis of Sequential “n-step” Kinetic Mechanisms: Application to Single Turnover Kinetics of Helicase-Catalyzed DNA Unwinding

    PubMed Central

    Lucius, Aaron L.; Maluf, Nasib K.; Fischer, Christopher J.; Lohman, Timothy M.

    2003-01-01

    Helicase-catalyzed DNA unwinding is often studied using “all or none” assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using “n-step” sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the “kinetic step size”, m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using “n-step” sequential mechanisms has previously been limited by an inability to float the number of “unwinding steps”, n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, fss(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain fss(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation. PMID:14507688

  14. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    PubMed

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  15. Predicting Ki67% expression from DCE-MR images of breast tumors using textural kinetic features in tumor habitats

    NASA Astrophysics Data System (ADS)

    Chaudhury, Baishali; Zhou, Mu; Farhidzadeh, Hamidreza; Goldgof, Dmitry B.; Hall, Lawrence O.; Gatenby, Robert A.; Gillies, Robert J.; Weinfurtner, Robert J.; Drukteinis, Jennifer S.

    2016-03-01

    The use of Ki67% expression, a cell proliferation marker, as a predictive and prognostic factor has been widely studied in the literature. Yet its usefulness is limited due to inconsistent cut off scores for Ki67% expression, subjective differences in its assessment in various studies, and spatial variation in expression, which makes it difficult to reproduce as a reliable independent prognostic factor. Previous studies have shown that there are significant spatial variations in Ki67% expression, which may limit its clinical prognostic utility after core biopsy. These variations are most evident when examining the periphery of the tumor vs. the core. To date, prediction of Ki67% expression from quantitative image analysis of DCE-MRI is very limited. This work presents a novel computer aided diagnosis framework to use textural kinetics to (i) predict the ratio of periphery Ki67% expression to core Ki67% expression, and (ii) predict Ki67% expression from individual tumor habitats. The pilot cohort consists of T1 weighted fat saturated DCE-MR images from 17 patients. Support vector regression with a radial basis function was used for predicting the Ki67% expression and ratios. The initial results show that texture features from individual tumor habitats are more predictive of the Ki67% expression ratio and spatial Ki67% expression than features from the whole tumor. The Ki67% expression ratio could be predicted with a root mean square error (RMSE) of 1.67%. Quantitative image analysis of DCE-MRI using textural kinetic habitats, has the potential to be used as a non-invasive method for predicting Ki67 percentage and ratio, thus more accurately reporting high KI-67 expression for patient prognosis.

  16. Mucuna pruriens in Parkinson Disease: A Kinetic-Dynamic Comparison With Levodopa Standard Formulations.

    PubMed

    Contin, Manuela; Lopane, Giovanna; Passini, Andrea; Poli, Ferruccio; Iannello, Carmelina; Guarino, Maria

    2015-01-01

    We compared levodopa (LD) kinetic-dynamic profile of a dose of LD/aromatic amino acid decarboxylase peripheral inhibitors versus a nominally equivalent dose of a commercial Mucuna pruriens (Mucuna) seeds extract in 2 patients with Parkinson disease chronically taking LD standard combined with self-prescribed Mucuna. Patients were challenged with a fasting morning dose of 100 mg LD/25 mg carbidopa (patient 1) or benserazide (patient 2) versus 100 mg LD from Mucuna capsules in 2 different sessions, after a 12-hour standard LD formulations' washout. They underwent kinetic-dynamic LD monitoring based on LD dose intake and simultaneous serial assessments of plasma drug concentrations and motor test performances. Quantitative analysis of LD in Mucuna capsules was also performed. Levodopa bioavailability was markedly lower after Mucuna administration compared with LD standard formulations: in patient 1, peak plasma LD concentration (Cmax) decreased from 2.0 to 1.0 mg/L and the area under the plasma concentration time curve from 137 to 33.6 mg/L per minute; in patient 2, Cmax was 0.7 mg/L after LD/benserazide and nearly undetectable after Mucuna. In patient 1, impaired LD bioavailability from Mucuna resulted in reduced duration and overall extent of drug response compared with LD/carbidopa. In patient 2, no significant subacute LD motor response was observed in either condition. Quantitative analysis of Mucuna formulation confirmed the 100 mg LD content for the utilized capsules. Our results show an impaired LD bioavailability from Mucuna preparation, as expected by the lacking aromatic amino acid decarboxylase inhibitors coadministration, which might explain the suggested lower dyskinetic potential of Mucuna compared with standard LD formulations.

  17. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    PubMed

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  18. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.

    PubMed

    Pesavento, James J; Bullock, Courtney R; LeDuc, Richard D; Mizzen, Craig A; Kelleher, Neil L

    2008-05-30

    Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.

  19. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.

    PubMed

    Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing

    2018-05-15

    The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.

  20. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis[S

    PubMed Central

    Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga

    2012-01-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737

  1. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  2. An analysis of OH excited state absorption lines in DR 21 and K3-50

    NASA Astrophysics Data System (ADS)

    Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.

    1992-10-01

    We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.

  3. Gender differences in joint biomechanics during walking: normative study in young adults.

    PubMed

    Kerrigan, D C; Todd, M K; Della Croce, U

    1998-01-01

    The effect of gender on specific joint biomechanics during gait has been largely unexplored. Given the perceived, subjective, and temporal differences in walking between genders, we hypothesized that quantitative analysis would reveal specific gender differences in joint biomechanics as well. Sagittal kinematic (joint motion) and kinetic (joint torque and power) data from the lower limbs during walking were collected and analyzed in 99 young adult subjects (49 females), aged 20 to 40 years, using an optoelectronic motion analysis and force platform system. Kinetic data were normalized for both height and weight. Female and male data were compared graphically and statistically to assess differences in all major peak joint kinematic and kinetic values. Females had significantly greater hip flexion and less knee extension before initial contact, greater knee flexion moment in pre-swing, and greater peak mechanical joint power absorption at the knee in pre-swing (P < 0.0019 for each parameter). Other differences were noted (P < 0.05) that were not statistically significant when accounting for multiple comparisons. These gender differences may provide new insights into walking dynamics and may be important for both clinical and research studies in motivating the development of separate biomechanical reference databases for males and females.

  4. Millisecond-Timescale Monitoring of PbS Nanoparticle Nucleation and Growth Using Droplet-Based Microfluidics.

    PubMed

    Lignos, Ioannis; Stavrakis, Stavros; Kilaj, Ardita; deMello, Andrew J

    2015-08-26

    The early-time kinetics (<1 s) of lead sulfide (PbS) quantum dot formation are probed using a novel droplet-based microfluidic platform, which allows for high-throughput and real-time optical analysis of the reactive process with millisecond time resolution. The reaction platform enables the concurrent investigation of the emission characteristics of PbS quantum dots and a real-time estimation of their size and concentration during nucleation and growth. These investigations reveal a two-stage mechanism for PbS nanoparticle formation. The first stage corresponds to the fast conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz-Slyozov-Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet-based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  6. Microfluidic Dynamic Interfacial Tensiometry (μDIT).

    PubMed

    Brosseau, Quentin; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-05-07

    We designed, developed and characterized a microfluidic method for the measurement of surfactant adsorption kinetics via interfacial tensiometry on a microfluidic chip. The principle of the measurement is based on the deformability of droplets as a response to hydrodynamic forcing through a series of microfluidic expansions. We focus our analysis on one perfluoro surfactant molecule of practical interest for droplet-based microfluidic applications. We show that although the adsorption kinetics is much faster than the kinetics of the corresponding pendant drop experiment, our droplet-based microfluidic system has a sufficient time resolution to obtain quantitative measurement at the sub-second time-scale on nanoliter droplet volumes, leading to both a gain by a factor of ∼10 in time resolution and a downscaling of the measurement volumes by a factor of ∼1000 compared to standard techniques. Our approach provides new insight into the adsorption of surfactant molecules at liquid-liquid interfaces in a confined environment, relevant to emulsification, encapsulation and foaming, and the ability to measure adsorption and desorption rate constants.

  7. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling.

    PubMed

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.

  8. Dimensionality of Motion and Binding Valency Govern Receptor–Ligand Kinetics As Revealed by Agent-Based Modeling

    PubMed Central

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071

  9. Protein kinetic signatures of the remodeling heart following isoproterenol stimulation.

    PubMed

    Lam, Maggie P Y; Wang, Ding; Lau, Edward; Liem, David A; Kim, Allen K; Ng, Dominic C M; Liang, Xiangbo; Bleakley, Brian J; Liu, Chenguang; Tabaraki, Jason D; Cadeiras, Martin; Wang, Yibin; Deng, Mario C; Ping, Peipei

    2014-04-01

    Protein temporal dynamics play a critical role in time-dimensional pathophysiological processes, including the gradual cardiac remodeling that occurs in early-stage heart failure. Methods for quantitative assessments of protein kinetics are lacking, and despite knowledge gained from single-protein studies, integrative views of the coordinated behavior of multiple proteins in cardiac remodeling are scarce. Here, we developed a workflow that integrates deuterium oxide (2H2O) labeling, high-resolution mass spectrometry (MS), and custom computational methods to systematically interrogate in vivo protein turnover. Using this workflow, we characterized the in vivo turnover kinetics of 2,964 proteins in a mouse model of β-adrenergic-induced cardiac remodeling. The data provided a quantitative and longitudinal view of cardiac remodeling at the molecular level, revealing widespread kinetic regulations in calcium signaling, metabolism, proteostasis, and mitochondrial dynamics. We translated the workflow to human studies, creating a reference dataset of 496 plasma protein turnover rates from 4 healthy adults. The approach is applicable to short, minimal label enrichment and can be performed on as little as a single biopsy, thereby overcoming critical obstacles to clinical investigations. The protein turnover quantitation experiments and computational workflow described here should be widely applicable to large-scale biomolecular investigations of human disease mechanisms with a temporal perspective.

  10. Protein kinetic signatures of the remodeling heart following isoproterenol stimulation

    PubMed Central

    Lam, Maggie P.Y.; Wang, Ding; Lau, Edward; Liem, David A.; Kim, Allen K.; Ng, Dominic C.M.; Liang, Xiangbo; Bleakley, Brian J.; Liu, Chenguang; Tabaraki, Jason D.; Cadeiras, Martin; Wang, Yibin; Deng, Mario C.; Ping, Peipei

    2014-01-01

    Protein temporal dynamics play a critical role in time-dimensional pathophysiological processes, including the gradual cardiac remodeling that occurs in early-stage heart failure. Methods for quantitative assessments of protein kinetics are lacking, and despite knowledge gained from single-protein studies, integrative views of the coordinated behavior of multiple proteins in cardiac remodeling are scarce. Here, we developed a workflow that integrates deuterium oxide (2H2O) labeling, high-resolution mass spectrometry (MS), and custom computational methods to systematically interrogate in vivo protein turnover. Using this workflow, we characterized the in vivo turnover kinetics of 2,964 proteins in a mouse model of β-adrenergic–induced cardiac remodeling. The data provided a quantitative and longitudinal view of cardiac remodeling at the molecular level, revealing widespread kinetic regulations in calcium signaling, metabolism, proteostasis, and mitochondrial dynamics. We translated the workflow to human studies, creating a reference dataset of 496 plasma protein turnover rates from 4 healthy adults. The approach is applicable to short, minimal label enrichment and can be performed on as little as a single biopsy, thereby overcoming critical obstacles to clinical investigations. The protein turnover quantitation experiments and computational workflow described here should be widely applicable to large-scale biomolecular investigations of human disease mechanisms with a temporal perspective. PMID:24614109

  11. Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia K; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-06-05

    Immunotherapy has raised the issue of appropriate treatment response evaluation, due to the unique mechanism of action of the immunotherapeutic agents. Aim of this analysis is to evaluate the potential role of quantitative analysis of 2-deoxy-2-( 18 F)fluoro-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) data in monitoring of patients with metastatic melanoma undergoing ipilimumab therapy. 25 patients with unresectable metastatic melanoma underwent dynamic PET/CT (dPET/CT) of the thorax and upper abdomen as well as static, whole body PET/CT with 18 F-FDG before the start of ipilimumab treatment (baseline PET/CT), after two cycles of treatment (interim PET/CT) and at the end of treatment after four cycles (late PET/CT). The evaluation of dPET/CT studies was based on semi-quantitative (standardized uptake value, SUV) calculation as well as quantitative analysis, based on two-tissue compartment modeling and a fractal approach. Patients' best clinical response, assessed at a mean of 59 weeks, was used as reference. According to their best clinical response, patients were dichotomized in those demonstrating clinical benefit (CB, n = 16 patients) and those demonstrating no clinical benefit (no-CB, n = 9 patients). No statistically significant differences were observed between CB and no-CB regarding either semi-quantitative or quantitative parameters in all scans. On contrary, the application of the recently introduced PET response evaluation criteria for immunotherapy (PERCIMT) led to a correct classification rate of 84% (21/25 patients). Quantitative analysis of 18 F-FDG PET data does not provide additional information in treatment response evaluation of metastatic melanoma patients receiving ipilimumab. PERCIMT criteria correlated better with clinical response.

  12. Mathematics of quantitative kinetic PCR and the application of standard curves.

    PubMed

    Rutledge, R G; Côté, C

    2003-08-15

    Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of +/-6-21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.

  13. Quantitative gait analysis in parkin disease: Possible role of dystonia.

    PubMed

    Castagna, Anna; Frittoli, Serena; Ferrarin, Maurizio; Del Sorbo, Francesca; Romito, Luigi M; Elia, Antonio E; Albanese, Alberto

    2016-11-01

    Parkin disease (PARK2, OMIM 602544) is an autosomal-recessive early-onset parkinsonism characterized by an early occurrence of lower limb dystonia. The aim of this study was to analyze spatiotemporal, kinematic, and kinetic gait parameters in patients with parkin disease in the OFF and ON conditions compared to healthy age-matched controls. Fifteen patients with parkin disease and 15 healthy age-matched controls were studied in a gait analysis laboratory with an integrated optoelectronic system. Spatiotemporal, kinematic, and kinetic gait parameters at a self-selected speed were recorded in the OFF and ON conditions. A jerk index was computed to quantify the possible reduction of smoothness of joint movements. Compared to controls, parkin patients had, either in the OFF or in the ON conditions, significant reduction of walking velocity, increased step width, and decreased percentage of double support. Kinematic analysis in both conditions showed: increased ankle dorsiflexion and knee flexion at the initial contact; maximal flexion and increased range of motion in mid stance; increased hip flexion and max extension in stance at pelvis; and increased mean tilt antiversion. Kinetics showed increased hip and knee power generation in stance in either condition. The jerk index was increased at all joints both in OFF and ON. There were no correlations between individual gait parameters and clinical ratings. Parkin patients have an abnormal gait pattern that does not vary between the OFF and the ON conditions. Variations recorded with instrumented analysis are more evident for kinematic than kinetic parameters at lower limbs. Severity of dystonia does not correlate with any individual kinematic parameter. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  14. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Mo, E-mail: Sunmo.Kim@rmp.uhn.on.ca; Haider, Masoom A.; Jaffray, David A.

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarselymore » sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the quantitative histogram parameters of volume transfer constant [standard deviation (SD), 98th percentile, and range], rate constant (SD), blood volume fraction (mean, SD, 98th percentile, and range), and blood flow (mean, SD, median, 98th percentile, and range) for sampling intervals between 10 and 15 s. Conclusions: The proposed method of PCA filtering combined with the AIF estimation technique allows low frequency scanning for DCE-CT study to reduce patient radiation dose. The results indicate that the method is useful in pixel-by-pixel kinetic analysis of DCE-CT data for patients with cervical cancer.« less

  15. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    NASA Astrophysics Data System (ADS)

    Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.

    2017-04-01

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.

  16. INFLUENCE OF ORGANIC COSOLVENTS ON THE SORPTION KINETICS OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    A quantitative examination of the kinetics of sorption of hydrophobic organic chemicals by soils from mixed solvents reveals that the reverse sorption rate constant (k2) increases log-linearly with increasing volume fraction of organic cosolvent (fc). This relationship was expec...

  17. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor.

    PubMed

    Xiu, G H; Jiang, L; Li, P

    2001-07-05

    A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.

  18. Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement

    PubMed Central

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.

    2016-01-01

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. PMID:27520734

  19. Analysis of transformations of the ultrafast electron transfer photoreaction mechanism in liquid solutions by the rate distribution approach.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V

    2014-05-01

    Representation of the experimental reaction kinetics in the form of rate distribution is shown to be an effective method for the analysis of the mechanisms of these reactions and for comparisons of the kinetics with QC calculations, as well as with the experimental data on the medium mobility. The rate constant distribution function P(k) can be obtained directly from the experimental kinetics N(t) by an inverse Laplace transform. The application of this approach to kinetic data for several excited-state electron transfer reactions reveals the transformations of their rate control factors in the time domain of 1-1000 ps. In neat electron donating solvents two components are observed. The fastest component (k > 1 ps(-1)) was found to be controlled by the fluctuations of the overall electronic coupling matrix element, involving all the reactant molecules, located inside the interior of the solvent shell, rather than for specific pairs of reactant molecules. The slower component (1 > k > 0.1 ps(-1)) is controlled by the medium reorganization (longitudinal relaxation times, τL). A substantial contribution from the non-stationary diffusion controlled reaction is observed in diluted solutions ([Q] < 1 M). No contribution from the long-distance electron transfer (electron tunneling) proposed earlier for the excited-state electron transfer between perylene and tetracyanoethylene in acetonitrile is observed. The rate distribution approach provides a simple and efficient method for the quantitative analysis of the reaction mechanism and transformation of the rate control factors in the course of the reactions.

  20. Simultaneous kinetic spectrometric determination of three flavonoid antioxidants in fruit with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Sun, Ruiling; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2014-03-01

    A simple, inexpensive and sensitive kinetic spectrophotometric method was developed for the simultaneous determination of three anti-carcinogenic flavonoids: catechin, quercetin and naringenin, in fruit samples. A yellow chelate product was produced in the presence neocuproine and Cu(I) - a reduction product of the reaction between the flavonoids with Cu(II), and this enabled the quantitative measurements with UV-vis spectrophotometry. The overlapping spectra obtained, were resolved with chemometrics calibration models, and the best performing method was the fast independent component analysis (fast-ICA/PCR (Principal component regression)); the limits of detection were 0.075, 0.057 and 0.063 mg L-1 for catechin, quercetin and naringenin, respectively. The novel method was found to outperform significantly the common HPLC procedure.

  1. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    PubMed

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Hariharan, Prasanna; Myers, Matthew R; Badano, Aldo

    2011-10-01

    To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.

  3. Analysis of Vaginal Microbicide Film Hydration Kinetics by Quantitative Imaging Refractometry

    PubMed Central

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery. PMID:24736376

  4. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    PubMed

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  5. Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity

    PubMed Central

    Breit, Marc; Netzer, Michael

    2015-01-01

    The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars) were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS) with the concept of stable isotope dilution (SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2), showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001). In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001), classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001). These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling approach demonstrates high potential for dynamic biomarker identification and the investigation of kinetic mechanisms in disease or pharmacodynamics studies using MS data from longitudinal cohort studies. PMID:26317529

  6. Kinetics of N-Glycan Release from Human Immunoglobulin G (IgG) by PNGase F: All Glycans Are Not Created Equal.

    PubMed

    Huang, Yining; Orlando, Ron

    2017-12-01

    The biologic activity of IgG molecules is modulated by its crystallizable fragment N-glycosylation, and thus, the analysis of IgG glycosylation is critical. A standard approach to analyze glycosylation of IgGs involves the release of the N-glycans by the enzyme peptide N-glycosidase F, which cleaves the linkage between the asparagine residue and innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the reducing terminal GlcNAc residue. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this de-glycosylation reaction for IgG glycopeptides and to determine the effect of glycan structure and amino acid sequence on the rate of glycan release from glycopeptides of IgGs. This study revealed that the slight differences in amino acid sequences did not lead to a statistically different deglycosylation rate. However, statistically significant differences in the deglycosylation rate constants were observed between glycopeptides differing only in glycan structure ( i.e. , nonfucosylated, fucosylated, bisecting-GlcNAc, sialylated, etc .). For example, a single sialic acid residue was found to decrease the rate by a factor of 3. Similar reductions in rate were associated with the presence of a bisecting-GlcNAc. We predict the differences in release kinetics can lead to significant quantitative variations of the glycosylation study of IgGs.

  7. A simple and inexpensive image analysis technique to study the effect of disintegrants concentration and diluents type on disintegration.

    PubMed

    Berardi, Alberto; Bisharat, Lorina; Blaibleh, Anaheed; Pavoni, Lucia; Cespi, Marco

    2018-06-20

    Tablets disintegration is often the result of a size expansion of the tablets. In this study, we quantified the extent and direction of size expansion of tablets during disintegration, using readily available techniques, i.e. a digital camera and a public domain image analysis software. After validating the method, the influence of disintegrants concentration and diluents type on kinetics and mechanisms of disintegration were studied. Tablets containing diluent, disintegrant (sodium starch glycolate-SSG, crospovidone-PVPP or croscarmellose sodium-CCS) and lubricant were prepared by direct compression. Projected area and aspect ratio of the tablets were monitored using image analysis techniques. The developed method could describe the kinetics and mechanisms of disintegration qualitatively and quantitatively. SSG and PVPP acted purely by swelling and shape recovery mechanisms. Instead, CCS worked by a combination of both mechanisms, the extent of which changed depending on its concentration and the diluent type. We anticipate that the method described here could provide a framework for the routine screening of tablets disintegration using readily available equipment. Copyright © 2018. Published by Elsevier Inc.

  8. Deciphering the mechanisms of binding induced folding at nearly atomic resolution: The Φ value analysis applied to IDPs.

    PubMed

    Gianni, Stefano; Dogan, Jakob; Jemth, Per

    2014-01-01

    The Φ value analysis is a method to analyze the structure of metastable states in reaction pathways. Such a methodology is based on the quantitative analysis of the effect of point mutations on the kinetics and thermodynamics of the probed reaction. The Φ value analysis is routinely used in protein folding studies and is potentially an extremely powerful tool to analyze the mechanism of binding induced folding of intrinsically disordered proteins. In this review we recapitulate the key equations and experimental advices to perform the Φ value analysis in the perspective of the possible caveats arising in intrinsically disordered systems. Finally, we briefly discuss some few examples already available in the literature.

  9. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Anwar, Hoda; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    A renewed interest has been recently developed for the highly sensitive bone-seeking radiopharmaceutical 18F-NaF. Aim of the present study is to evaluate the potential utility of quantitative analysis of 18F-NaF dynamic PET/CT data in differentiating malignant from benign degenerative lesions in multiple myeloma (MM). 80 MM patients underwent whole-body PET/CT and dynamic PET/CT scanning of the pelvis with 18F-NaF. PET/CT data evaluation was based on visual (qualitative) assessment, semi-quantitative (SUV) calculations, and absolute quantitative estimations after application of a 2-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). In total 263 MM lesions were demonstrated on 18F-NaF PET/CT. Semi-quantitative and quantitative evaluations were performed for 25 MM lesions as well as for 25 benign, degenerative and traumatic lesions. Mean SUVaverage for MM lesions was 11.9 and mean SUVmax was 23.2. Respectively, SUVaverage and SUVmax for degenerative lesions were 13.5 and 20.2. Kinetic analysis of 18F-NaF revealed the following mean values for MM lesions: K1 = 0.248 (1/min), k3 = 0.359 (1/min), influx (Ki) = 0.107 (1/min), FD = 1.382, while the respective values for degenerative lesions were: K1 = 0.169 (1/min), k3 = 0.422 (1/min), influx (Ki) = 0.095 (1/min), FD = 1. 411. No statistically significant differences between MM and benign degenerative disease regarding SUVaverage, SUVmax, K1, k3 and influx (Ki) were demonstrated. FD was significantly higher in degenerative than in malignant lesions. The present findings show that quantitative analysis of 18F-NaF PET data cannot differentiate malignant from benign degenerative lesions in MM patients, supporting previously published results, which reflect the limited role of 18F-NaF PET/CT in the diagnostic workup of MM. PMID:28913153

  11. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    PubMed

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  12. Application of Petri net based analysis techniques to signal transduction pathways.

    PubMed

    Sackmann, Andrea; Heiner, Monika; Koch, Ina

    2006-11-02

    Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.

  13. Application of Petri net based analysis techniques to signal transduction pathways

    PubMed Central

    Sackmann, Andrea; Heiner, Monika; Koch, Ina

    2006-01-01

    Background Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. Methods We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. Results We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. Conclusion The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules. PMID:17081284

  14. A global resource allocation strategy governs growth transition kinetics of Escherichia coli

    PubMed Central

    Erickson, David W; Schink, Severin J.; Patsalo, Vadim; Williamson, James R.; Gerland, Ulrich; Hwa, Terence

    2018-01-01

    A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms1–3 and they remain a topic of active investigation4–11. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations12–17, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models15,18–20 from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions. PMID:29072300

  15. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  16. Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.

    1993-01-01

    IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.

  17. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  18. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei; Shi, Zhenqing; Lu, Yang

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less

  19. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chin-Rang

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complementmore » Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.« less

  20. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    ERIC Educational Resources Information Center

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  1. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    PubMed

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  2. Quantitative kinetic theory of active matter

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas; Chou, Yen-Liang

    2014-03-01

    Models of self-driven agents similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226] are studied by means of kinetic theory. In these models, particles try to align their travel directions with the average direction of their neighbours. At strong alignment a globally ordered state of collective motion forms. An Enskog-like kinetic theory is derived from the exact Chapman-Kolmogorov equation in phase space using Boltzmann's mean-field approximation of molecular chaos. The kinetic equation is solved numerically by a nonlocal Lattice-Boltzmann-like algorithm. Steep soliton-like waves are observed that lead to an abrupt jump of the global order parameter if the noise level is changed. The shape of the wave is shown to follow a novel scaling law and to quantitatively agree within 3 % with agent-based simulations at large particle speeds. This provides a mean-field mechanism to change the second-order character of the flocking transition to first order. Diagrammatic techniques are used to investigate small particle speeds, where the mean-field assumption of Molecular Chaos is invalid and where correlation effects need to be included.

  3. Kinetic Model of Growth of Arthropoda Populations

    NASA Astrophysics Data System (ADS)

    Ershov, Yu. A.; Kuznetsov, M. A.

    2018-05-01

    Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.

  4. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction.

    PubMed

    Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi

    2015-12-01

    Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. Copyright © 2015. Published by Elsevier Ltd.

  5. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.

    PubMed

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca

    2016-10-28

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantitative modeling of the reaction/diffusion kinetics of two-chemistry photopolymers

    NASA Astrophysics Data System (ADS)

    Kowalski, Benjamin Andrew

    Optically driven diffusion in photopolymers is an appealing material platform for a broad range of applications, in which the recorded refractive index patterns serve either as images (e.g. data storage, display holography) or as optical elements (e.g. custom GRIN components, integrated optical devices). A quantitative understanding of the reaction/diffusion kinetics is difficult to obtain directly, but is nevertheless necessary in order to fully exploit the wide array of design freedoms in these materials. A general strategy for characterizing these kinetics is proposed, in which key processes are decoupled and independently measured. This strategy enables prediction of a material's potential refractive index change, solely on the basis of its chemical components. The degree to which a material does not reach this potential reveals the fraction of monomer that has participated in unwanted reactions, reducing spatial resolution and dynamic range. This approach is demonstrated for a model material similar to commercial media, achieving quantitative predictions of index response over three orders of exposure dose (~1 to ~103 mJ cm-2) and three orders of feature size (0.35 to 500 microns). The resulting insights enable guided, rational design of new material formulations with demonstrated performance improvement.

  7. Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects.

    PubMed

    Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M

    2003-01-01

    Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.

  8. PET kinetic analysis --pitfalls and a solution for the Logan plot.

    PubMed

    Kimura, Yuichi; Naganawa, Mika; Shidahara, Miho; Ikoma, Yoko; Watabe, Hiroshi

    2007-01-01

    The Logan plot is a widely used algorithm for the quantitative analysis of neuroreceptors using PET because it is easy to use and simple to implement. The Logan plot is also suitable for receptor imaging because its algorithm is fast. However, use of the Logan plot, and interpretation of the formed receptor images should be regarded with caution, because noise in PET data causes bias in the Logan plot estimates. In this paper, we describe the basic concept of the Logan plot in detail and introduce three algorithms for the Logan plot. By comparing these algorithms, we demonstrate the pitfalls of the Logan plot and discuss the solution.

  9. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging

    NASA Astrophysics Data System (ADS)

    Watson, C. C.; Newport, D.; Casey, M. E.; deKemp, R. A.; Beanlands, R. S.; Schmand, M.

    1997-02-01

    Quantitative imaging of the human thorax poses one of the most difficult challenges for three-dimensional (3-D) (septaless) positron emission tomography (PET), due to the strong attenuation of the annihilation radiation and the large contribution of scattered photons to the data. In [/sup 18/F] fluorodeoxyglucose (FDG) studies of the heart with the patient's arms in the field of view, the contribution of scattered events can exceed 50% of the total detected coincidences. Accurate correction for this scatter component is necessary for meaningful quantitative image analysis and tracer kinetic modeling. For this reason, the authors have implemented a single-scatter simulation technique for scatter correction in positron volume imaging. Here, they describe this algorithm and present scatter correction results from human and chest phantom studies.

  10. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  11. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions. PMID:21992378

  12. Enhanced picture of protein-folding intermediates using organic solvents in H/D exchange and quench-flow experiments

    PubMed Central

    Nishimura, Chiaki; Dyson, H. Jane; Wright, Peter E.

    2005-01-01

    Hydrogen/deuterium exchange followed by trapping of the labeled species in the aprotic solvent DMSO has been used to elucidate structure in both the burst-phase molten globule-folding intermediate of apomyoglobin and in an equilibrium intermediate that models the kinetic intermediate. Precise estimates can be made of exchange times in an interrupted exchange-out experiment at pH 4 followed by analysis in DMSO solution, giving extensive sequence-specific information about the structure of the equilibrium intermediate. In addition, the use of DMSO as a solvent for NMR measurements after quench-flow pH-pulse labeling experiments gives a greatly increased data set for the elucidation of the kinetic folding pathway. Interestingly, differences are observed in some regions of apomyoglobin between the equilibrium and kinetic intermediates. These differences are quantitative rather than qualitative; that is, the overall patterns of labeling and secondary structure formation remain similar between the two species. However, local differences are observed, which probably reflect the difference in the solution conditions for the equilibrium experiment (pH 4) vs. the kinetic experiment (pH 6) and the change in the status of the stabilizing hydrogen bond between the side chains of His-24 and His-119. PMID:15769860

  13. Analysis of the 22-NBD-cholesterol transfer between liposome membranes and its relation to the intermembrane exchange of 25-hydroxycholesterol.

    PubMed

    Ishii, Haruyuki; Shimanouchi, Toshinori; Umakoshi, Hiroshi; Walde, Peter; Kuboi, Ryoichi

    2010-05-01

    The transfer of 22-NBD-cholesterol (22-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3-ol) between two liposome membranes was quantitatively analyzed by using the fluorescence resonance energy transfer (FRET) method. Liposomes labeled with both 22-NBD-cholesterol and a rhodamine-labeled phosphatidylethanolamine (Rh-DHPE) were used as donor liposomes, and the 22-NBD-cholesterol transfer from these donor liposomes to acceptor liposomes prepared from same type of phosphatidylcholine was monitored. The transfer kinetics was found to be composed of a fast and a slow phase, and all kinetic measurements could be fitted with a bi-exponential model. The results obtained indicate that the 22-NBD-cholesterol transfer kinetics between liposome membranes depends on the fluidity of the liposome used and that the curvature may affect the kinetics. Furthermore, the behavior of 22-NBD-cholesterol in lipid membrane is similar to that of the oxysterol 25-hydroxycholesterol rather than cholesterol. It is proposed that 22-NBD-cholesterol can be a useful fluorescent probe to mimic the intermembrane transfer of oxidized cholesterols like 25-hydroxycholesterol, rather than that of cholesterol itself. 2010 Elsevier B.V. All rights reserved.

  14. Microsecond Unfolding Kinetics of Sheep Prion Protein Reveals an Intermediate that Correlates with Susceptibility to Classical Scrapie

    PubMed Central

    Chen, Kai-Chun; Xu, Ming; Wedemeyer, William J.; Roder, Heinrich

    2011-01-01

    The microsecond folding and unfolding kinetics of ovine prion proteins (ovPrP) were measured under various solution conditions. A fragment comprising residues 94–233 of the full-length ovPrP was studied for four variants with differing susceptibilities to classical scrapie in sheep. The observed biexponential unfolding kinetics of ovPrP provides evidence for an intermediate species. However, in contrast to previous results for human PrP, there is no evidence for an intermediate under refolding conditions. Global analysis of the kinetic data, based on a sequential three-state mechanism, quantitatively accounts for all folding and unfolding data as a function of denaturant concentration. The simulations predict that an intermediate accumulates under both folding and unfolding conditions, but is observable only in unfolding experiments because the intermediate is optically indistinguishable from the native state. The relative population of intermediates in two ovPrP variants, both transiently and under destabilizing equilibrium conditions, correlates with their propensities for classical scrapie. The variant susceptible to classical scrapie has a larger population of the intermediate state than the resistant variant. Thus, the susceptible variant should be favored to undergo the PrPC to PrPSc conversion and oligomerization. PMID:21889460

  15. Novel image cytometric method for detection of physiological and metabolic changes in Saccharomyces cerevisiae.

    PubMed

    Chan, Leo L; Kury, Alexandria; Wilkinson, Alisha; Berkes, Charlotte; Pirani, Alnoor

    2012-11-01

    The studying and monitoring of physiological and metabolic changes in Saccharomyces cerevisiae (S. cerevisiae) has been a key research area for the brewing, baking, and biofuels industries, which rely on these economically important yeasts to produce their products. Specifically for breweries, physiological and metabolic parameters such as viability, vitality, glycogen, neutral lipid, and trehalose content can be measured to better understand the status of S. cerevisiae during fermentation. Traditionally, these physiological and metabolic changes can be qualitatively observed using fluorescence microscopy or flow cytometry for quantitative fluorescence analysis of fluorescently labeled cellular components associated with each parameter. However, both methods pose known challenges to the end-users. Specifically, conventional fluorescent microscopes lack automation and fluorescence analysis capabilities to quantitatively analyze large numbers of cells. Although flow cytometry is suitable for quantitative analysis of tens of thousands of fluorescently labeled cells, the instruments require a considerable amount of maintenance, highly trained technicians, and the system is relatively expensive to both purchase and maintain. In this work, we demonstrate the first use of Cellometer Vision for the kinetic detection and analysis of vitality, glycogen, neutral lipid, and trehalose content of S. cerevisiae. This method provides an important research tool for large and small breweries to study and monitor these physiological behaviors during production, which can improve fermentation conditions to produce consistent and higher-quality products.

  16. Differential equation methods for simulation of GFP kinetics in non-steady state experiments.

    PubMed

    Phair, Robert D

    2018-03-15

    Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Quantitative determination of conformational, dynamic, and kinetic parameters of a ligand-protein/DNA complex from a complete relaxation and conformational exchange matrix analysis of intermolecular transferred NOESY.

    PubMed

    Moseley, H N; Lee, W; Arrowsmith, C H; Krishna, N R

    1997-05-06

    We report a quantitative analysis of the 13C-edited intermolecular transferred NOESY (inter-TrNOESY) spectrum of the trp-repressor/operator complex (trp-rep/op) with [ul-13C/15N]-L-tryptophan corepressor using a computer program implementing complete relaxation and conformational exchange matrix (CORCEMA) methodology [Moseley et al. (1995) J. Magn. Reson. 108B, 243-261]. Using complete mixing time curves of three inter-TrNOESY peaks between the tryptophan and the Trp-rep/op, this self-consistent analysis determined the correlation time of the bound species (tauB = 13.5 ns) and the exchange off-rate (k(off) = 3.6 s(-1)) of the corepressor. In addition, the analysis estimated the correlation time of the free species (tauF approximately 0.15 ns). Also, we demonstrate the sensitivity of these inter-TrNOESY peaks to several factors including the k(off) and orientation of the tryptophan corepressor within the binding site. The analysis indicates that the crystal structure orientation for the corepressor is compatible with the solution NMR data.

  18. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  19. Ivestigation of the Interface Kinetic Effects on Dendritic Growth in a Pure Undercooled Melt

    NASA Astrophysics Data System (ADS)

    Lee, Youngyih; Rappel, Wouter-Jan; Karma, Alain

    1997-03-01

    The non-equilibrium kinetics of the solid-liquid interface is known to strongly influence the growth rate and morphology of dendrites in undercooled melts. In metallic systems, kinetic effects are usually considered relevant only at high undercooling, while in some transparent organic materials, like pivalic acid (PVA), kinetic effects already seem to influence dendritic growth at low undercooling. We investigate quantitatively the effect of isotropic and anisotropic kinetics on dendritic growth in a pure undercooled melt in two and three dimensions using a standard boundary integral approach. Our numerical results are interpreted with the help of a simple dimensional criterion which predicts the critical undercooling at which the transition from surface energy dominated growth to interface kinetics dominated growth takes place. Finally, our calculations are used to estimate the kinetic coefficient of pure Nickel and PVA using a fit to the experimentally observed growth rates.

  20. In vitro kinetics of P700+ reduction of Thermosynechococcus elongatus trimeric Photosystem I complexes by recombinant cytochrome c 6 using a Joliot-type LED spectrophotometer.

    PubMed

    Nguyen, Khoa; Vaughn, Michael; Frymier, Paul; Bruce, Barry D

    2017-01-01

    The reduction rate of photo-oxidized Photosystem I (PSI) with various natural and artificial electron donors have been well studied by transient absorption spectroscopy. The electron transfer rate from various donors to P 700 + has been measured for a wide range of photosynthetic organisms encompassing cyanobacteria, algae, and plants. PSI can be a limiting component due to tedious extraction and purification methods required for this membrane protein. In this report, we have determined the in vivo, intracellular cytochrome c 6 (cyt c 6 )/PSI ratio in Thermosynechococcus elongatus (T.e.) using quantitative Western blot analysis. This information permitted the determination of P 700 + reduction kinetics via recombinant cyt c 6 in a physiologically relevant ratio (cyt c 6 : PSI) with a Joliot-type, LED-driven, pump-probe spectrophotometer. Dilute PSI samples were tested under varying cyt c 6 concentration, temperature, pH, and ionic strength, each of which shows similar trends to the reported literature utilizing much higher PSI concentrations with laser-based spectrophotometer. Our results do however indicate kinetic differences between actinic light sources (laser vs. LED), and we have attempted to resolve these effects by varying our LED light intensity and duration. The standardized configuration of this spectrophotometer will also allow a more uniform kinetic analysis of samples in different laboratories. We can conclude that our findings from the LED-based system display an added total protein concentration effect due to multiple turnover events of P 700 + reduction by cyt c 6 during the longer illumination regime.

  1. Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification.

    PubMed

    Zerjatke, Thomas; Gak, Igor A; Kirova, Dilyana; Fuhrmann, Markus; Daniel, Katrin; Gonciarz, Magdalena; Müller, Doris; Glauche, Ingmar; Mansfeld, Jörg

    2017-05-30

    Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA) as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Quantitative estimation of cholinesterase-specific drug metabolism of carbamate inhibitors provided by the analysis of the area under the inhibition-time curve.

    PubMed

    Zhou, Huimin; Xiao, Qiaoling; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco

    2017-09-10

    Several molecules containing carbamate groups are metabolized by cholinesterases. This metabolism includes a time-dependent catalytic step which temporary inhibits the enzymes. In this paper we demonstrate that the analysis of the area under the inhibition versus time curve (AUIC) can be used to obtain a quantitative estimation of the amount of carbamate metabolized by the enzyme. (R)-bambuterol monocarbamate and plasma butyrylcholinesterase were used as model carbamate-cholinesterase system. The inhibition of different concentrations of the enzyme was monitored for 5h upon incubation with different concentrations of carbamate and the resulting AUICs were analyzed. The amount of carbamate metabolized could be estimated with <15% accuracy (RE%) and ≤23% precision (RSD%). Since the knowledge of the inhibition kinetics is not required for the analysis, this approach could be used to determine the amount of drug metabolized by cholinesterases in a selected compartment in which the cholinesterase is confined (e.g. in vitro solutions, tissues or body fluids), either in vitro or in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Satyakam; Khodayari, Ali; Zhou, Jilai

    Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.« less

  4. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations

    DOE PAGES

    Dash, Satyakam; Khodayari, Ali; Zhou, Jilai; ...

    2017-05-02

    Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.« less

  5. Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro- scales.

    PubMed

    Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav

    2018-05-22

    The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.

  6. Detection of flunixin in greyhound urine by a kinetic enzyme-linked immunosorbent assay.

    PubMed

    Brady, T C; Yang, T J; Hyde, W G; Kind, A J; Hill, D W

    1997-01-01

    A two-step kinetic enzyme-linked immunosorbent assay was developed to detect the presence of flunixin in the urine of greyhound dogs. The assay system was developed using polyclonal antiflunixin antisera, a rabbit albumin-flunixin conjugate adsorbed onto polystyrene microtiter strips, and flunixin reference standards for calibration. The assay parameters were optimized and the performance characteristics were determined. The quantitative intra- and inter-run precisions (%CV) of the analysis of replicate (n = 10) flunixin-spiked urine samples were 9.9-12.5% and 10.2-13.6%, respectively. The linear dynamic range was 1-100 ng/mL, and the quantitative accuracy, as determined by calculation of percent error of measured flunixin in flunixin-spiked drug-free greyhound urine, was -16% to +14% over this range. The I50 of the ELISA was 17.3 ng/mL. The limit of detection was 25 ng/mL in greyhound urine. The reactivity in the assay system relative to flunixin (100%) was 147% for flunixin glucuronide, 25% for clonixin, and 5% for niflumic acid. The ELISA was capable of detecting total flunixin for up to 72 h in dogs administered flunixin at 0.55 mg/kg orally and up to 96 h in a dog that was administered flunixin at 1.0 mg/kg orally.

  7. Kinetic study of hydrolysis of coconut fiber into glucose

    NASA Astrophysics Data System (ADS)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  8. Domain Growth Kinetics in Stratifying Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.

  9. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less

  10. Steady-state generation of hydrogen peroxide: kinetics and stability of alcohol oxidase immobilized on nanoporous alumina.

    PubMed

    Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar

    2013-04-01

    Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.

  11. Tremor analysis separates Parkinson's disease and dopamine receptor blockers induced parkinsonism.

    PubMed

    Shaikh, Aasef G

    2017-05-01

    Parkinson's disease, the most common cause of parkinsonism is often difficult to distinguish from its second most common etiology due to exposure to dopamine receptor blocking agents such as antiemetics and neuroleptics. Dual axis accelerometry was used to quantify tremor in 158 patients with parkinsonism; 62 had Parkinson's disease and 96 were clinically diagnosed with dopamine receptor blocking agent-induced parkinsonism. Tremor was measured while subjects rested arms (resting tremor), outstretched arms in front (postural tremor), and reached a target (kinetic tremor). Cycle-by-cycle analysis was performed to measure cycle duration, oscillation amplitude, and inter-cycle variations in the frequency. Patients with dopamine receptor blocker induced parkinsonism had lower resting and postural tremor amplitude. There was a substantial increase of kinetic tremor amplitude in both disorders. Postural and resting tremor in subjects with dopamine receptor blocking agent-induced parkinsonism was prominent in the abduction-adduction plane. In contrast, the Parkinson's disease tremor had equal amplitude in all three planes of motion. Tremor frequency was comparable in both groups. Remarkable variability in the width of the oscillatory cycles suggested irregularity in the oscillatory waveforms in both subtypes of parkinsonism. Quantitative tremor analysis can distinguish Parkinson's disease from dopamine receptor blocking agent-induced parkinsonism.

  12. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barani, T.; Bruschi, E.; Pizzocri, D.

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. Experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of burst release in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which ismore » applied as an extension of diffusion-based models to allow for the burst release effect. The concept and governing equations of the model are presented, and the effect of the newly introduced parameters is evaluated through an analytic sensitivity analysis. Then, the model is assessed for application to integral fuel rod analysis. The approach that we take for model assessment involves implementation in two structurally different fuel performance codes, namely, BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D semi-analytic code). The model is validated against 19 Light Water Reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the qualitative representation of the FGR kinetics and the quantitative predictions of integral fuel rod FGR, relative to the canonical, purely diffusion-based models, with both codes. The overall quantitative improvement of the FGR predictions in the two codes is comparable. Furthermore, calculated radial profiles of xenon concentration are investigated and compared to experimental data, demonstrating the representation of the underlying mechanisms of burst release by the new model.« less

  14. On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hmadeh, Mohamad; Fang, Lei; Trabolsi, Ali

    2010-01-01

    We report a variety of [c2]daisy chain molecules which undergo quantitative, efficient, and fully reversible molecular movements upon the addition of base/acid in organic solvents. Such externally triggered molecular movements can induce the contraction and extension of the [c2]daisy chain molecule as a whole. A linear polymer of such a bistable [c2]daisy chain exerts similar types of movements and can be looked upon as a candidate for the development of artificial muscles. The spectrophotometric investigations of both the monomeric and polymeric bistable [c2]daisy chains, as well as the corresponding model compounds, were performed in MeCN at room temperature, in ordermore » to obtain the thermodynamic parameters for these mechanically interlocked molecules. Based on their spectrophotometric and thermodynamic characteristics, kinetic analysis of the acid/base-induced contraction and extension of the [c2]daisy chain monomer and polymer were conducted by employing a stopped-flow technique. These kinetic data suggest that the rates of contraction and extension for these [c2]daisy chain molecules are determined by the thermodynamic stabilities of the corresponding kinetic intermediates. Faster switching rates for both the contraction and extension processes of the polymeric [c2]daisy chain were observed when compared to those of its monomeric counterpart. These kinetic and thermodynamic investigations on [c2]daisy chain-based muscle-like compounds provide important information for those seeking an understanding of the mechanisms of actuation in mechanically interlocked macromolecules.« less

  15. Respiratory motion compensation algorithm of ultrasound hepatic perfusion data acquired in free-breathing

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Zhang, Xuming; Chen, Guangxie; Weng, Fei; Ding, Mingyue

    2013-10-01

    Images acquired in free breathing using contrast enhanced ultrasound exhibit a periodic motion that needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. In this work, we present an algorithm to compensate the respiratory motion by effectively combining the PCA (Principal Component Analysis) method and block matching method. The respiratory kinetics of the ultrasound hepatic perfusion image sequences was firstly extracted using the PCA method. Then, the optimal phase of the obtained respiratory kinetics was detected after normalizing the motion amplitude and determining the image subsequences of the original image sequences. The image subsequences were registered by the block matching method using cross-correlation as the similarity. Finally, the motion-compensated contrast images can be acquired by using the position mapping and the algorithm was evaluated by comparing the TICs extracted from the original image sequences and compensated image subsequences. Quantitative comparisons demonstrated that the average fitting error estimated of ROIs (region of interest) was reduced from 10.9278 +/- 6.2756 to 5.1644 +/- 3.3431 after compensating.

  16. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  17. Photodegradation of imidacloprid insecticide by Ag-deposited titanate nanotubes: a study of intermediates and their reaction pathways.

    PubMed

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2014-12-31

    The present work demonstrates the influence of Ag-loading (0.2-1.0 wt %) onto sodium titanate nanotubes (TNT) for complete photomineralization of the neurotoxic imidacloprid (IMI) insecticide under UV light illumination. It has been observed that degradation of IMI follows pseudo-first-order kinetics, where 0.5 wt % Ag-loaded TNT exhibited highest apparent rate constant (2.2 × 10(-2) min(-1)) and corresponding least half-life (t1/2) of 31 min for IMI relative to bare P25-TiO2 (3.4 × 10(-3) min(-1), t1/2 = 230 min). The mineralization of IMI intermediates to CO2 during its photooxidation has been described by time course GC-MS and GC analysis and has been correlated with the kinetic analysis. The investigation for the role and quantitative estimation of the fate of heteroatoms (N, O, and Cl) present in IMI revealed an increase in the amount of nitrate, nitrite, and chloride ions with time during its photooxidation. On the basis of these results a mechanistic pathway for photomineralization of IMI is proposed.

  18. Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai

    2017-03-01

    This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH 3 , etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO 2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO 2 formation. Low sensitivity of NH 3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    ERIC Educational Resources Information Center

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.

    2015-01-01

    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  20. Oxidative dissolution of silver nanoparticles: A new theoretical approach.

    PubMed

    Adamczyk, Zbigniew; Oćwieja, Magdalena; Mrowiec, Halina; Walas, Stanisław; Lupa, Dawid

    2016-05-01

    A general model of an oxidative dissolution of silver particle suspensions was developed that rigorously considers the bulk and surface solute transport. A two-step surface reaction scheme was proposed that comprises the formation of the silver oxide phase by direct oxidation and the acidic dissolution of this phase leading to silver ion release. By considering this, a complete set of equations is formulated describing oxygen and silver ion transport to and from particles' surfaces. These equations are solved in some limiting cases of nanoparticle dissolution in dilute suspensions. The obtained kinetic equations were used for the interpretation of experimental data pertinent to the dissolution kinetics of citrate-stabilized silver nanoparticles. In these kinetic measurements the role of pH and bulk suspension concentration was quantitatively evaluated by using the atomic absorption spectrometry (AAS). It was shown that the theoretical model adequately reflects the main features of the experimental results, especially the significant increase in the dissolution rate for lower pH. Also the presence of two kinetic regimes was quantitatively explained in terms of the decrease in the coverage of the fast dissolving oxide layer. The overall silver dissolution rate constants characterizing these two regimes were determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. An adaptive bias - hybrid MD/kMC algorithm for protein folding and aggregation.

    PubMed

    Peter, Emanuel K; Shea, Joan-Emma

    2017-07-05

    In this paper, we present a novel hybrid Molecular Dynamics/kinetic Monte Carlo (MD/kMC) algorithm and apply it to protein folding and aggregation in explicit solvent. The new algorithm uses a dynamical definition of biases throughout the MD component of the simulation, normalized in relation to the unbiased forces. The algorithm guarantees sampling of the underlying ensemble in dependency of one average linear coupling factor 〈α〉 τ . We test the validity of the kinetics in simulations of dialanine and compare dihedral transition kinetics with long-time MD-simulations. We find that for low 〈α〉 τ values, kinetics are in good quantitative agreement. In folding simulations of TrpCage and TrpZip4 in explicit solvent, we also find good quantitative agreement with experimental results and prior MD/kMC simulations. Finally, we apply our algorithm to study growth of the Alzheimer Amyloid Aβ 16-22 fibril by monomer addition. We observe two possible binding modes, one at the extremity of the fibril (elongation) and one on the surface of the fibril (lateral growth), on timescales ranging from ns to 8 μs.

  2. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    PubMed Central

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  3. 4-D spatiotemporal analysis of ultrasound contrast agent dispersion for prostate cancer localization: a feasibility study.

    PubMed

    Schalk, Stefan G; Demi, Libertario; Smeenge, Martijn; Mills, David M; Wallace, Kirk D; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo

    2015-05-01

    Currently, nonradical treatment for prostate cancer is hampered by the lack of reliable diagnostics. Contrastultrasound dispersion imaging (CUDI) has recently shown great potential as a prostate cancer imaging technique. CUDI estimates the local dispersion of intravenously injected contrast agents, imaged by transrectal dynamic contrast-enhanced ultrasound (DCE-US), to detect angiogenic processes related to tumor growth. The best CUDI results have so far been obtained by similarity analysis of the contrast kinetics in neighboring pixels. To date, CUDI has been investigated in 2-D only. In this paper, an implementation of 3-D CUDI based on spatiotemporal similarity analysis of 4-D DCE-US is described. Different from 2-D methods, 3-D CUDI permits analysis of the entire prostate using a single injection of contrast agent. To perform 3-D CUDI, a new strategy was designed to estimate the similarity in the contrast kinetics at each voxel, and data processing steps were adjusted to the characteristics of 4-D DCE-US images. The technical feasibility of 4-D DCE-US in 3-D CUDI was assessed and confirmed. Additionally, in a preliminary validation in two patients, dispersion maps by 3-D CUDI were quantitatively compared with those by 2-D CUDI and with 12-core systematic biopsies with promising results.

  4. Chemical Applications of a Programmable Image Acquisition System

    NASA Astrophysics Data System (ADS)

    Ogren, Paul J.; Henry, Ian; Fletcher, Steven E. S.; Kelly, Ian

    2003-06-01

    Image analysis is widely used in chemistry, both for rapid qualitative evaluations using techniques such as thin layer chromatography (TLC) and for quantitative purposes such as well-plate measurements of analyte concentrations or fragment-size determinations in gel electrophoresis. This paper describes a programmable system for image acquisition and processing that is currently used in the laboratories of our organic and physical chemistry courses. It has also been used in student research projects in analytical chemistry and biochemistry. The potential range of applications is illustrated by brief presentations of four examples: (1) using well-plate optical transmission data to construct a standard concentration absorbance curve; (2) the quantitative analysis of acetaminophen in Tylenol and acetylsalicylic acid in aspirin using TLC with fluorescence detection; (3) the analysis of electrophoresis gels to determine DNA fragment sizes and amounts; and, (4) using color change to follow reaction kinetics. The supplemental material in JCE Online contains information on two additional examples: deconvolution of overlapping bands in protein gel electrophoresis, and the recovery of data from published images or graphs. The JCE Online material also presents additional information on each example, on the system hardware and software, and on the data analysis methodology.

  5. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    PubMed Central

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  6. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma.

    PubMed

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Anwar, Hoda; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    A renewed interest has been recently developed for the highly sensitive bone-seeking radiopharmaceutical 18 F-NaF. Aim of the present study is to evaluate the potential utility of quantitative analysis of 18 F-NaF dynamic PET/CT data in differentiating malignant from benign degenerative lesions in multiple myeloma (MM). 80 MM patients underwent whole-body PET/CT and dynamic PET/CT scanning of the pelvis with 18 F-NaF. PET/CT data evaluation was based on visual (qualitative) assessment, semi-quantitative (SUV) calculations, and absolute quantitative estimations after application of a 2-tissue compartment model and a non-compartmental approach leading to the extraction of fractal dimension (FD). In total 263 MM lesions were demonstrated on 18 F-NaF PET/CT. Semi-quantitative and quantitative evaluations were performed for 25 MM lesions as well as for 25 benign, degenerative and traumatic lesions. Mean SUV average for MM lesions was 11.9 and mean SUV max was 23.2. Respectively, SUV average and SUV max for degenerative lesions were 13.5 and 20.2. Kinetic analysis of 18 F-NaF revealed the following mean values for MM lesions: K 1 = 0.248 (1/min), k 3 = 0.359 (1/min), influx (K i ) = 0.107 (1/min), FD = 1.382, while the respective values for degenerative lesions were: K 1 = 0.169 (1/min), k 3 = 0.422 (1/min), influx (K i ) = 0.095 (1/min), FD = 1. 411. No statistically significant differences between MM and benign degenerative disease regarding SUV average , SUV max , K 1 , k 3 and influx (K i ) were demonstrated. FD was significantly higher in degenerative than in malignant lesions. The present findings show that quantitative analysis of 18 F-NaF PET data cannot differentiate malignant from benign degenerative lesions in MM patients, supporting previously published results, which reflect the limited role of 18 F-NaF PET/CT in the diagnostic workup of MM.

  7. Quantitatively and Kinetically Identifying Binding Motifs of Amelogenin Proteins to Mineral Crystals Through Biochemical and Spectroscopic Assays

    PubMed Central

    Zhu, Li; Hwang, Peter; Witkowska, H. Ewa; Liu, Haichuan; Li, Wu

    2014-01-01

    Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin–crystal interactions and amelogenin–proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter. PMID:24188774

  8. Modeling of uncertainties in biochemical reactions.

    PubMed

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to changes in metabolite levels according to the irreversible Michelis-Menten kinetics. The efficient sampling procedure allows easy, scalable, implementation of this methodology to modeling of large-scale biochemical networks. © 2010 Wiley Periodicals, Inc.

  9. Low Gravity Rapid Thermal Analysis of Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.

    2004-01-01

    It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.

  10. Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals.

    PubMed

    O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A

    2009-06-01

    Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.

  11. Rapid Multi-Tracer PET Tumor Imaging With F-FDG and Secondary Shorter-Lived Tracers.

    PubMed

    Black, Noel F; McJames, Scott; Kadrmas, Dan J

    2009-10-01

    Rapid multi-tracer PET, where two to three PET tracers are rapidly scanned with staggered injections, can recover certain imaging measures for each tracer based on differences in tracer kinetics and decay. We previously showed that single-tracer imaging measures can be recovered to a certain extent from rapid dual-tracer (62)Cu - PTSM (blood flow) + (62)Cu - ATSM (hypoxia) tumor imaging. In this work, the feasibility of rapidly imaging (18)F-FDG plus one or two of these shorter-lived secondary tracers was evaluated in the same tumor model. Dynamic PET imaging was performed in four dogs with pre-existing tumors, and the raw scan data was combined to emulate 60 minute long dual- and triple-tracer scans, using the single-tracer scans as gold standards. The multi-tracer data were processed for static (SUV) and kinetic (K(1), K(net)) endpoints for each tracer, followed by linear regression analysis of multi-tracer versus single-tracer results. Static and quantitative dynamic imaging measures of FDG were both accurately recovered from the multi-tracer scans, closely matching the single-tracer FDG standards (R > 0.99). Quantitative blood flow information, as measured by PTSM K(1) and SUV, was also accurately recovered from the multi-tracer scans (R = 0.97). Recovery of ATSM kinetic parameters proved more difficult, though the ATSM SUV was reasonably well recovered (R = 0.92). We conclude that certain additional information from one to two shorter-lived PET tracers may be measured in a rapid multi-tracer scan alongside FDG without compromising the assessment of glucose metabolism. Such additional and complementary information has the potential to improve tumor characterization in vivo, warranting further investigation of rapid multi-tracer techniques.

  12. Rapid Multi-Tracer PET Tumor Imaging With 18F-FDG and Secondary Shorter-Lived Tracers

    PubMed Central

    Black, Noel F.; McJames, Scott; Kadrmas, Dan J.

    2009-01-01

    Rapid multi-tracer PET, where two to three PET tracers are rapidly scanned with staggered injections, can recover certain imaging measures for each tracer based on differences in tracer kinetics and decay. We previously showed that single-tracer imaging measures can be recovered to a certain extent from rapid dual-tracer 62Cu – PTSM (blood flow) + 62Cu — ATSM (hypoxia) tumor imaging. In this work, the feasibility of rapidly imaging 18F-FDG plus one or two of these shorter-lived secondary tracers was evaluated in the same tumor model. Dynamic PET imaging was performed in four dogs with pre-existing tumors, and the raw scan data was combined to emulate 60 minute long dual- and triple-tracer scans, using the single-tracer scans as gold standards. The multi-tracer data were processed for static (SUV) and kinetic (K1, Knet) endpoints for each tracer, followed by linear regression analysis of multi-tracer versus single-tracer results. Static and quantitative dynamic imaging measures of FDG were both accurately recovered from the multi-tracer scans, closely matching the single-tracer FDG standards (R > 0.99). Quantitative blood flow information, as measured by PTSM K1 and SUV, was also accurately recovered from the multi-tracer scans (R = 0.97). Recovery of ATSM kinetic parameters proved more difficult, though the ATSM SUV was reasonably well recovered (R = 0.92). We conclude that certain additional information from one to two shorter-lived PET tracers may be measured in a rapid multi-tracer scan alongside FDG without compromising the assessment of glucose metabolism. Such additional and complementary information has the potential to improve tumor characterization in vivo, warranting further investigation of rapid multi-tracer techniques. PMID:20046800

  13. Neurotomy of the rectus femoris nerve: Short-term effectiveness for spastic stiff knee gait: Clinical assessment and quantitative gait analysis.

    PubMed

    Gross, R; Robertson, J; Leboeuf, F; Hamel, O; Brochard, S; Perrouin-Verbe, B

    2017-02-01

    Stiff knee gait is a troublesome gait disturbance related to spastic paresis, frequently associated with overactivity of the rectus femoris muscle in the swing phase of gait. The aim of this study was to assess the short-term effects of rectus femoris neurotomy for the treatment of spastic stiff-knee gait in patients with hemiparesis. An Intervention study (before-after trial) with an observational design was carried out in a university hospital. Seven ambulatory patients with hemiparesis of spinal or cerebral origin and spastic stiff-knee gait, which had previously been improved by botulinum toxin injections, were proposed a selective neurotomy of the rectus femoris muscle. A functional evaluation (Functional Ambulation Classification and maximal walking distance), clinical evaluation (spasticity - Ashworth scale and Duncan-Ely test, muscle strength - Medical Research Council scale), and quantitative gait analysis (spatiotemporal parameters, stiff knee gait-related kinematic and kinetic parameters, and dynamic electromyography of rectus femoris) were performed as outcome measures, before and 3 months after rectus femoris neurotomy. Compared with preoperative values, there was a significant increase in maximal walking distance, gait speed, and stride length at 3 months. All kinematic parameters improved, and the average early swing phase knee extension moment decreased. The duration of the rectus femoris burst decreased post-op. This study is the first to show that rectus femoris neurotomy helps to normalise muscle activity during gait, and results in improvements in kinetic, kinematic, and functional parameters in patients with spastic stiff knee gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates

    PubMed Central

    Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda

    2012-01-01

    One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values. PMID:22934039

  15. Some fundamental questions concerning the kinetic theory of electrons in molecular gases and the e H2 vibrational cross section controversy

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; White, R. D.; Morrison, Michael A.

    2003-10-01

    We commence a fundamental re-examination of the kinetic theory of charged particle swarms in molecular gases, focusing on collisional excitation of molecular rotational and ro-vibrational states by electrons. Modern day analysis of electron swarms has been based upon the kinetic equation of Wang-Chang et al, which simply treats all processes as scalar energy excitations, and ignores angular momentum conservation and the vector dynamics associated with rotational excitation. It is pointed out that there is no alternative, more exact kinetic equation readily available for electrons which enables one to directly ascertain the degree of error introduced by this approximation. Thus in this preliminary study, we approach the problem indirectly, from the standpoint of the neutral molecules, using the Waldmann-Snider quantum kinetic equation, and insist that an electron-molecule collision must look the same from the perspective of both electron and molecule. We give a formula for quantitatively assessing the importance of scalar versus vectorial treatments of rotational excitation by looking at the post-collisional 'echo' produced by an electron swarm as it passes through the gas. It is then pointed out that in order to remedy any deficiency, it will be necessary to introduce a kinetic collisional operator non-local in space to properly account for angular momentum conservation, as has long been established in the literature. This is a major exercise and given the preliminary nature of this study, we consider the inclusion of such effects from a formal point of view only. In particular we show how non-local effects lead to a spatially dependent 'source' term in the equation of continuity, and hence to corrections for both drift velocity and diffusion coefficients. The magnitude of these corrections has yet to be established.

  16. Kinetic Parameters of Efflux of Penicillins by the Multidrug Efflux Transporter AcrAB-TolC of Escherichia coli▿

    PubMed Central

    Lim, Siew Ping; Nikaido, Hiroshi

    2010-01-01

    The multidrug efflux transporter AcrAB-TolC is known to pump out a diverse range of antibiotics, including β-lactams. However, the kinetic constants of the efflux process, needed for the quantitative understanding of resistance, were not available until those accompanying the efflux of some cephalosporins were recently determined by combining efflux with the hydrolysis of drugs by the periplasmic β-lactamase. In the present study we extended this approach to the study of a wide range of penicillins, from ampicillin and penicillin V to ureidopenicillins and isoxazolylpenicillins, by combining efflux with hydrolysis with the OXA-7 penicillinase. We found that the penicillins had a much stronger apparent affinity to AcrB and higher maximum rates of efflux than the cephalosporins. All penicillins showed strong positive cooperativity kinetics for export. The kinetic constants obtained were validated, as the MICs theoretically predicted on the basis of efflux and hydrolysis kinetics were remarkably similar to the observed MICs (except for the isoxazolylpenicillins). Surprisingly, however, the efflux kinetics of cloxacillin, for example, whose MIC decreased 512-fold in Escherichia coli upon the genetic deletion of the acrB gene, were quite similar to those of ampicillin, whose MIC decreased only 2-fold with the same treatment. Analysis of this phenomenon showed that the extensive decrease in the MIC for the acrB mutant is primarily due to the low permeation of the drug and that comparison of the MICs between the parent and the acrB strains is a very poor measure of the ability of AcrB to pump a drug out. PMID:20160052

  17. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.

    PubMed

    Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  18. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.

    PubMed Central

    Velasco-García, R; González-Segura, L; Muñoz-Clares, R A

    2000-01-01

    Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD(+)- and NADP(+)-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)(+) and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)(+) binds first and NAD(P)H leaves last, particularly in the NADP(+)-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP(+)-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose. PMID:11104673

  19. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT−/− mouse hearts

    PubMed Central

    Branovets, Jelena; Sepp, Mervi; Kotlyarova, Svetlana; Jepihhina, Natalja; Sokolova, Niina; Aksentijevic, Dunja; Lygate, Craig A.; Neubauer, Stefan; Birkedal, Rikke

    2013-01-01

    Disruption of the creatine kinase (CK) system in hearts of CK-deficient mice leads to changes in the ultrastructure and regulation of mitochondrial respiration. We expected to see similar changes in creatine-deficient mice, which lack the enzyme guanidinoacetate methyltransferase (GAMT) to produce creatine. The aim of this study was to characterize the changes in cardiomyocyte mitochondrial organization, regulation of respiration, and intracellular compartmentation associated with GAMT deficiency. Three-dimensional mitochondrial organization was assessed by confocal microscopy. On populations of permeabilized cardiomyocytes, we recorded ADP and ATP kinetics of respiration, competition between mitochondria and pyruvate kinase for ADP produced by ATPases, ADP kinetics of endogenous pyruvate kinase, and ATP kinetics of ATPases. These data were analyzed by mathematical models to estimate intracellular compartmentation. Quantitative analysis of morphological and kinetic data as well as derived model fits showed no difference between GAMT-deficient and wild-type mice. We conclude that inactivation of the CK system by GAMT deficiency does not alter mitochondrial organization and intracellular compartmentation in relaxed cardiomyocytes. Thus, our results suggest that the healthy heart is able to preserve cardiac function at a basal level in the absence of CK-facilitated energy transfer without compromising intracellular organization and the regulation of mitochondrial energy homeostasis. This raises questions on the importance of the CK system as a spatial energy buffer in unstressed cardiomyocytes. PMID:23792673

  20. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    DOE PAGES

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    2017-01-31

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past the application of sensitivity analysis, such as Degree ofmore » Rate Control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. Here in this study we present an efficient and robust three stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using CO oxidation on RuO 2(110) as a prototypical reaction. In a first step, we utilize the Fisher Information Matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally we adopt a method for sampling coupled finite differences for evaluating the sensitivity measure of lattice based models. This allows efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano scale design of heterogeneous catalysts.« less

  1. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis.

    PubMed

    Hoffmann, Max J; Engelmann, Felix; Matera, Sebastian

    2017-01-28

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for the atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past, the application of sensitivity analysis, such as degree of rate control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using the CO oxidation on RuO 2 (110) as a prototypical reaction. In the first step, we utilize the Fisher information matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on the linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity measure for lattice based models. This allows for an efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano-scale design of heterogeneous catalysts.

  2. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past the application of sensitivity analysis, such as Degree ofmore » Rate Control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. Here in this study we present an efficient and robust three stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using CO oxidation on RuO 2(110) as a prototypical reaction. In a first step, we utilize the Fisher Information Matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally we adopt a method for sampling coupled finite differences for evaluating the sensitivity measure of lattice based models. This allows efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano scale design of heterogeneous catalysts.« less

  3. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    2017-01-01

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for the atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past, the application of sensitivity analysis, such as degree of rate control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using the CO oxidation on RuO2(110) as a prototypical reaction. In the first step, we utilize the Fisher information matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on the linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity measure for lattice based models. This allows for an efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano-scale design of heterogeneous catalysts.

  4. Gait pattern in myotonic dystrophy (Steinert disease): a kinematic, kinetic and EMG evaluation using 3D gait analysis.

    PubMed

    Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro

    2012-03-15

    We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Quantitative Investigation of Protein-Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance.

    PubMed

    Wang, Shuo; Poon, Gregory M K; Wilson, W David

    2015-01-01

    Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with low sample requirements and without the need for external probes. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is provided with results evaluated by both kinetic and steady-state SPR methods.

  6. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  7. Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay

    PubMed Central

    Prasanphanich, Adam F.; White, Douglas E.; Gran, Margaret A.

    2016-01-01

    The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity. PMID:27851764

  8. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase

    PubMed Central

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T.; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2005-01-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcβ1,4- and X=[Xylα1,6]Glcβ1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 °C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes. PMID:16356166

  9. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.

    PubMed

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2006-04-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcbeta1,4- and X=[Xylalpha1,6]Glcbeta1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 degrees C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes.

  10. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    DOE PAGES

    Barani, T.; Bruschi, E.; Pizzocri, D.; ...

    2017-01-03

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. Experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of burst release in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which ismore » applied as an extension of diffusion-based models to allow for the burst release effect. The concept and governing equations of the model are presented, and the effect of the newly introduced parameters is evaluated through an analytic sensitivity analysis. Then, the model is assessed for application to integral fuel rod analysis. The approach that we take for model assessment involves implementation in two structurally different fuel performance codes, namely, BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D semi-analytic code). The model is validated against 19 Light Water Reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the qualitative representation of the FGR kinetics and the quantitative predictions of integral fuel rod FGR, relative to the canonical, purely diffusion-based models, with both codes. The overall quantitative improvement of the FGR predictions in the two codes is comparable. Furthermore, calculated radial profiles of xenon concentration are investigated and compared to experimental data, demonstrating the representation of the underlying mechanisms of burst release by the new model.« less

  11. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities in Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.

    2002-01-01

    The objective of the proposed research is to obtain further insight into the onset and development of the defect-causing instabilities that anise due to the coupling of the bulk transport and nonlinear-interfacial kinetics during growth in the mixed regime, utilizing the reduction of the convective contribution to the bulk transport under microgravity. These studies will build upon the data on the effects of quantitative variations of the forced convection velocity on the averaged and time-dependent kinetic behavior of protein crystal growth systems that have recently been obtained in our laboratory.

  12. Abnormal early diastolic intraventricular flow 'kinetic energy index' assessed by vector flow mapping in patients with elevated filling pressure.

    PubMed

    Nogami, Yoshie; Ishizu, Tomoko; Atsumi, Akiko; Yamamoto, Masayoshi; Kawamura, Ryo; Seo, Yoshihiro; Aonuma, Kazutaka

    2013-03-01

    Recently developed vector flow mapping (VFM) enables evaluation of local flow dynamics without angle dependency. This study used VFM to evaluate quantitatively the index of intraventricular haemodynamic kinetic energy in patients with left ventricular (LV) diastolic dysfunction and to compare those with normal subjects. We studied 25 patients with estimated high left atrial (LA) pressure (pseudonormal: PN group) and 36 normal subjects (control group). Left ventricle was divided into basal, mid, and apical segments. Intraventricular haemodynamic energy was evaluated in the dimension of speed, and it was defined as the kinetic energy index. We calculated this index and created time-energy index curves. The time interval from electrocardiogram (ECG) R wave to peak index was measured, and time differences of the peak index between basal and other segments were defined as ΔT-mid and ΔT-apex. In both groups, early diastolic peak kinetic energy index in mid and apical segments was significantly lower than that in the basal segment. Time to peak index did not differ in apex, mid, and basal segments in the control group but was significantly longer in the apex than that in the basal segment in the PN group. ΔT-mid and ΔT-apex were significantly larger in the PN group than the control group. Multiple regression analysis showed sphericity index, E/E' to be significant independent variables determining ΔT apex. Retarded apical kinetic energy fluid dynamics were detected using VFM and were closely associated with LV spherical remodelling in patients with high LA pressure.

  13. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  14. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  15. Cyclic voltammetric analysis of C 1-C 4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.

  16. Kinetic Modeling Sheds Light on the Mode of Action of Recombinant Factor VIIa on Thrombin Generation

    DTIC Science & Technology

    2011-01-01

    Regular Article Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation Alexander Y. Mitrophanov...its effects on the quantitative parameters of thrombin generation. For recombinant activated factor VII (rFVIIa) ― a promising hemostasis-inducing...modulate thrombin production , it is necessary to identify rFVIIa-induced effects that are compatible with the available biochemical knowledge about

  17. Nucleation and growth in cluster dynamics: A quantitative test of the classical kinetic approach

    NASA Astrophysics Data System (ADS)

    Gránásy, László; James, Peter F.

    2000-12-01

    Nucleation and size dependent growth of nanometer sized crystalline particles in glassy media have been studied by numerically solving the Turnbull-Fisher master equations that describe the time evolution of cluster population. Time dependencies of the formation rate and number density are determined for large clusters (built of up to 2×105 formula units, containing 1.8×106 atoms). We demonstrate that the formation rate and number density of such clusters are well approximated by Shneidman's asymptotically exact analytical solution. A quantitative test of the kinetic Turnbull-Fisher model has been performed: Evaluating the kinetic coefficients and interfacial parameters from the transient time and steady-state nucleation rates measured on six stoichiometric oxide glass compositions (lithium-disilicate, barium-disilicate, lithium-diborate, wollastonite, 1:2:3 and 2:1:3 soda-lime-silica glass compositions), we calculated the macroscopic growth rates and compared with experiments. For wollastonite, lithium-diborate and the 1:2:3 soda-lime-silica glass, differences of 2 to 4 orders of magnitude have been observed between theory and experiment. This inadequacy of the microscopic kinetic parameters in describing macroscopic growth cannot be explained by either the curvature effect on the interfacial free energy or the self-consistency correction for the cluster free energy. The origin of the discrepancy is discussed.

  18. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  19. TROSY-based z-exchange spectroscopy: application to the determination of the activation energy for intermolecular protein translocation between specific sites on different DNA molecules.

    PubMed

    Sahu, Debashish; Clore, G Marius; Iwahara, Junji

    2007-10-31

    A two-dimensional TROSY-based z-exchange 1H-15N correlation experiment for the quantitative analysis of kinetic processes in the slow exchange regime is presented. The pulse scheme converts the product operator terms Nz into 2NzHz and 2NzHz into -Nz in the middle of the z-mixing period, thereby suppressing the buildup of spurious semi-TROSY peaks arising from the different relaxation rates for the Nz and 2NzHz terms and simplifying the behavior of longitudinal magnetization for an exchanging system during the mixing period. Theoretical considerations and experimental data demonstrate that the TROSY-based z-exchange experiment permits quantitative determination of rate constants using the same procedure as that for the conventional non-TROSY 15Nz-exchange experiment. Line narrowing as a consequence of the use of the TROSY principle makes the method particularly suitable for kinetic studies at low temperature, thereby permitting activation energies to be extracted from data acquired over a wider temperature range. We applied this method to the investigation of the process whereby the HoxD9 homeodomain translocates between specific target sites on different DNA molecules via a direct transfer mechanism without going through the intermediary of free protein. The activation enthalpy for intermolecular translocation was determined to be 17 kcal/mol.

  20. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: a pilot study

    PubMed Central

    Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M

    2015-01-01

    Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918

  1. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood

    PubMed Central

    2010-01-01

    Background The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Methods Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Results Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. Conclusions These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly fat soluble persistent organic chemicals (e.g. polychlorinated biphenyls, dioxins) whose pharmacokinetics are primarily determined by the adipose-blood exchange kinetics. PMID:20055995

  2. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood.

    PubMed

    Levitt, David G

    2010-01-07

    The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly fat soluble persistent organic chemicals (e.g. polychlorinated biphenyls, dioxins) whose pharmacokinetics are primarily determined by the adipose-blood exchange kinetics.

  3. Evaluation of metal biouptake from the analysis of bulk metal depletion kinetics at various cell concentrations: theory and application.

    PubMed

    Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L

    2015-01-20

    Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.

  4. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy.

    PubMed

    Rautaniemi, Kaisa; Vuorimaa-Laukkanen, Elina; Strachan, Clare J; Laaksonen, Timo

    2018-05-07

    Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.

  5. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

  6. Evaluating reporter genes of different luciferases for optimized in vivo bioluminescence imaging of transplanted neural stem cells in the brain.

    PubMed

    Mezzanotte, Laura; Aswendt, Markus; Tennstaedt, Annette; Hoeben, Rob; Hoehn, Mathias; Löwik, Clemens

    2013-01-01

    Bioluminescence imaging (BLI) has become the method of choice for optical tracking of cells in small laboratory animals. However, the use of luciferases from different species, depending on different substrates and emitting at distinct wavelengths, has not been optimized for sensitive neuroimaging. In order to identify the most suitable luciferase, this quantitative study compared the luciferases Luc2, CBG99, PpyRE9 and hRluc. Human embryonic kidney (HEK-293) cells and mouse neural stem cells were transduced by lentiviral vector-mediated transfer to express one of the four luciferases, together with copGFP. A T2A peptide linker promoted stoichiometric expression between both imaging reporters and the comparison of cell populations upon flow cytometry. Cell dilution series were used to determine highest BLI sensitivity in vitro for Luc2. However, Coelenterazine h-dependent hRluc signals clearly exceeded d-luciferin-dependent BLI in vitro. For the quantitative in vivo analysis, cells were transplanted into mouse brain and BLI was performed including the recording of emission kinetics and spectral characteristics. Differences in light kinetics were observed for d-luciferin vs Coelenterazine h. The emission spectra of Luc2 and PpyRE9 remained almost unchanged, while the emission spectrum of CBG99 became biphasic. Most importantly, photon emission decreased in the order of Luc2, CBG99, PpyRE9 to hRluc. The feasibility of combining different luciferases for dual color and dual substrate neuroimaging was tested and discussed. This investigation provides the first complete quantitative comparison of different luciferases expressed by neural stem cells. It results in a clear recommendation of Luc2 as the best luciferase selection for in vivo neuroimaging. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy.

    PubMed

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Shane

    2014-01-01

    This article provides a comprehensive review of studies that investigated ankle assessment techniques to better understand those that can be used in the real-time monitoring of rehabilitation progress for implementation in conjunction with robot-assisted therapy. Seventy-six publications published between January 1980 and August 2013 were selected based on eight databases. They were divided into two main categories (16 qualitative and 60 quantitative studies): 13 goniometer studies, 18 dynamometer studies, and 29 studies about innovative techniques. A total of 465 subjects participated in the 29 quantitative studies of innovative measurement techniques that may potentially be integrated in a real-time monitoring device, of which 19 studies included less than 10 participants. Results show that qualitative ankle assessment methods are not suitable for real-time monitoring in robot-assisted therapy, though they are reliable for certain patients, while the quantitative methods show great potential. The majority of quantitative techniques are reliable in measuring ankle kinematics and kinetics but are usually available only for use in the sagittal plane. Limited studies determine kinematics and kinetics in all three planes (sagittal, transverse, and frontal) where motions of the ankle joint and the subtalar joint actually occur.

  8. Advances in Surface Plasmon Resonance Imaging enable quantitative measurement of laterally heterogeneous coatings of nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2013-03-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to the optical properties of nanoscale coatings on thin metallic surfaces, for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases - uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. We first demonstrate the directionally heterogeneous nature of the SPR phenomenon using a directionally ordered sample, then show how this allows for the calculation of the average coverage of a heterogeneous sample. Finally, the degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  9. Effect of Diffusion Limitations on Multianalyte Determination from Biased Biosensor Response

    PubMed Central

    Baronas, Romas; Kulys, Juozas; Lančinskas, Algirdas; Žilinskas, Antanas

    2014-01-01

    The optimization-based quantitative determination of multianalyte concentrations from biased biosensor responses is investigated under internal and external diffusion-limited conditions. A computational model of a biocatalytic amperometric biosensor utilizing a mono-enzyme-catalyzed (nonspecific) competitive conversion of two substrates was used to generate pseudo-experimental responses to mixtures of compounds. The influence of possible perturbations of the biosensor signal, due to a white noise- and temperature-induced trend, on the precision of the concentration determination has been investigated for different configurations of the biosensor operation. The optimization method was found to be suitable and accurate enough for the quantitative determination of the concentrations of the compounds from a given biosensor transient response. The computational experiments showed a complex dependence of the precision of the concentration estimation on the relative thickness of the outer diffusion layer, as well as on whether the biosensor operates under diffusion- or kinetics-limited conditions. When the biosensor response is affected by the induced exponential trend, the duration of the biosensor action can be optimized for increasing the accuracy of the quantitative analysis. PMID:24608006

  10. Development of an LC-MS based enzyme activity assay for MurC: application to evaluation of inhibitors and kinetic analysis.

    PubMed

    Deng, Gejing; Gu, Rong-Fang; Marmor, Stephen; Fisher, Stewart L; Jahic, Haris; Sanyal, Gautam

    2004-06-29

    An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated. Copyright 2004 Elsevier B.V.

  11. A Radio-genomics Approach for Identifying High Risk Estrogen Receptor-positive Breast Cancers on DCE-MRI: Preliminary Results in Predicting OncotypeDX Risk Scores

    PubMed Central

    Wan, Tao; Bloch, B. Nicolas; Plecha, Donna; Thompson, CheryI L.; Gilmore, Hannah; Jaffe, Carl; Harris, Lyndsay; Madabhushi, Anant

    2016-01-01

    To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of their ability to distinguish low and high OncotypeDX risk categories. Classification performance was evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories for ER-positive cancers. PMID:26887643

  12. Cloud computing approaches for prediction of ligand binding poses and pathways.

    PubMed

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  13. Secondary Interstellar Oxygen in the Heliosphere: Numerical Modeling and Comparison with IBEX-Lo Data

    NASA Astrophysics Data System (ADS)

    Baliukin, I. I.; Izmodenov, V. V.; Möbius, E.; Alexashov, D. B.; Katushkina, O. A.; Kucharek, H.

    2017-12-01

    Quantitative analysis of the interstellar heavy (oxygen and neon) atom fluxes obtained by the Interstellar Boundary Explorer (IBEX) suggests the existence of the secondary interstellar oxygen component. This component is formed near the heliopause due to charge exchange of interstellar oxygen ions with hydrogen atoms, as was predicted theoretically. A detailed quantitative analysis of the fluxes of interstellar heavy atoms is only possible with a model that takes into account both the filtration of primary and the production of secondary interstellar oxygen in the boundary region of the heliosphere as well as a detailed simulation of the motion of interstellar atoms inside the heliosphere. This simulation must take into account photoionization, charge exchange with the protons of the solar wind and solar gravitational attraction. This paper presents the results of modeling interstellar oxygen and neon atoms through the heliospheric interface and inside the heliosphere based on a three-dimensional kinetic-MHD model of the solar wind interaction with the local interstellar medium and a comparison of these results with the data obtained on the IBEX spacecraft.

  14. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.

    PubMed

    Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa

    2014-10-01

    Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.

  15. Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.

    PubMed

    Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung

    2017-07-06

    Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.

  16. Computer-aided sperm analysis: a useful tool to evaluate patient's response to varicocelectomy.

    PubMed

    Ariagno, Julia I; Mendeluk, Gabriela R; Furlan, María J; Sardi, M; Chenlo, P; Curi, Susana M; Pugliese, Mercedes N; Repetto, Herberto E; Cohen, Mariano

    2017-01-01

    Preoperative and postoperative sperm parameter values from infertile men with varicocele were analyzed by computer-aided sperm analysis (CASA) to assess if sperm characteristics improved after varicocelectomy. Semen samples of men with proven fertility (n = 38) and men with varicocele-related infertility (n = 61) were also analyzed. Conventional semen analysis was performed according to WHO (2010) criteria and a CASA system was employed to assess kinetic parameters and sperm concentration. Seminal parameters values in the fertile group were very far above from those of the patients, either before or after surgery. No significant improvement in the percentage normal sperm morphology (P = 0.10), sperm concentration (P = 0.52), total sperm count (P = 0.76), subjective motility (%) (P = 0.97) nor kinematics (P = 0.30) was observed after varicocelectomy when all groups were compared. Neither was significant improvement found in percentage normal sperm morphology (P = 0.91), sperm concentration (P = 0.10), total sperm count (P = 0.89) or percentage motility (P = 0.77) after varicocelectomy in paired comparisons of preoperative and postoperative data. Analysis of paired samples revealed that the total sperm count (P = 0.01) and most sperm kinetic parameters: curvilinear velocity (P = 0.002), straight-line velocity (P = 0.0004), average path velocity (P = 0.0005), linearity (P = 0.02), and wobble (P = 0.006) improved after surgery. CASA offers the potential for accurate quantitative assessment of each patient's response to varicocelectomy.

  17. Control of DNA strand displacement kinetics using toehold exchange.

    PubMed

    Zhang, David Yu; Winfree, Erik

    2009-12-02

    DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.

  18. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    PubMed

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Kinetics of Poliovirus Shedding following Oral Vaccination as Measured by Quantitative Reverse Transcription-PCR versus Culture

    PubMed Central

    Begum, Sharmin; Uddin, Md Jashim; Platts-Mills, James A.; Liu, Jie; Kirkpatrick, Beth D.; Chowdhury, Anwarul H.; Jamil, Khondoker M.; Haque, Rashidul; Petri, William A.; Houpt, Eric R.

    2014-01-01

    Amid polio eradication efforts, detection of oral polio vaccine (OPV) virus in stool samples can provide information about rates of mucosal immunity and allow estimation of the poliovirus reservoir. We developed a multiplex one-step quantitative reverse transcription-PCR (qRT-PCR) assay for detection of OPV Sabin strains 1, 2, and 3 directly in stool samples with an external control to normalize samples for viral quantity and compared its performance with that of viral culture. We applied the assay to samples from infants in Dhaka, Bangladesh, after the administration of trivalent OPV (tOPV) at weeks 14 and 52 of life (on days 0 [pre-OPV], +4, +11, +18, and +25 relative to vaccination). When 1,350 stool samples were tested, the sensitivity and specificity of the quantitative PCR (qPCR) assay were 89 and 91% compared with culture. A quantitative relationship between culture+/qPCR+ and culture−/qPCR+ stool samples was observed. The kinetics of shedding revealed by qPCR and culture were similar. qPCR quantitative cutoffs based on the day +11 or +18 stool samples could be used to identify the culture-positive shedders, as well as the long-duration or high-frequency shedders. Interestingly, qPCR revealed that a small minority (7%) of infants contributed the vast majority (93 to 100%) of the total estimated viral excretion across all subtypes at each time point. This qPCR assay for OPV can simply and quantitatively detect all three Sabin strains directly in stool samples to approximate shedding both qualitatively and quantitatively. PMID:25378579

  20. A time to search: finding the meaning of variable activation energy.

    PubMed

    Vyazovkin, Sergey

    2016-07-28

    This review deals with the phenomenon of variable activation energy frequently observed when studying the kinetics in the liquid or solid phase. This phenomenon commonly manifests itself through nonlinear Arrhenius plots or dependencies of the activation energy on conversion computed by isoconversional methods. Variable activation energy signifies a multi-step process and has a meaning of a collective parameter linked to the activation energies of individual steps. It is demonstrated that by using appropriate models of the processes, the link can be established in algebraic form. This allows one to analyze experimentally observed dependencies of the activation energy in a quantitative fashion and, as a result, to obtain activation energies of individual steps, to evaluate and predict other important parameters of the process, and generally to gain deeper kinetic and mechanistic insights. This review provides multiple examples of such analysis as applied to the processes of crosslinking polymerization, crystallization and melting of polymers, gelation, and solid-solid morphological and glass transitions. The use of appropriate computational techniques is discussed as well.

  1. Kinetics of oil saponification by lead salts in ancient preparations of pharmaceutical lead plasters and painting lead mediums.

    PubMed

    Cotte, M; Checroun, E; Susini, J; Dumas, P; Tchoreloff, P; Besnard, M; Walter, Ph

    2006-12-15

    Lead soaps can be found in archaeological cosmetics as well as in oil paintings, as product of interactions of lead salts with oil. In this context, a better understanding of the formation of lead soaps allows a follow-up of the historical evolution of preparation recipes and provides new insights into conservation conditions. First, ancient recipes of both pharmaceutical lead plasters and painting lead mediums, mixtures of oil and lead salts, were reconstructed. The ester saponification by lead salts is determined by the preparation parameters which were quantified by FT-IR spectrometry. In particular, ATR/FT-IR spectrometer was calibrated by the standard addition method to quantitatively follow the kinetics of this reaction. The influence of different parameters such as temperature, presence of water and choice of lead salts was assessed: the saponification is clearly accelerated by water and heating. This analysis provides chemical explanations to the historical evolution of cosmetic and painting preparation recipes.

  2. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  3. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders.

    PubMed

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-30

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  4. Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability.

    PubMed

    Cai, Yafan; Zhao, Xiaoling; Zhao, Yubin; Wang, Hongliang; Yuan, Xufeng; Zhu, Wanbin; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    Fe is widely used as an additive in anaerobic digestion, but its bioavailability and the mechanism by which it enhances digestion are unclear. In this study, sequential extraction was used to measure Fe bioavailability, while biochemical parameters, kinetics model and Q-PCR (fluorescence quantitative PCR) were used to explore its mechanism of stimulation. The results showed that sequential extraction is a suitable method to assess the anaerobic system bioavailability of Fe, which is low and fluctuates to a limited extent (1.7 to -3.1wt%), indicating that it would be easy for Fe levels to be insufficient. Methane yield increased when the added Fe 2+ was 10-500mg/L. Appropriate amounts of Fe 2+ accelerated the decomposition of rice straw and facilitated methanogen metabolism, thereby improving reactor performance. The modified Gompertz model better fitted the results than the first-order kinetic model. Feasibility analysis showed that addition of Fe 2+ at ≤50mg/L was suitable. Copyright © 2017. Published by Elsevier Ltd.

  5. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    NASA Astrophysics Data System (ADS)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  6. Removal of lead from aqueous solutions with a treated spent bleaching earth.

    PubMed

    Mana, Mohamed; Ouali, Mohand Said; Lindheimer, Marc; Menorval, Louis Charles de

    2008-11-30

    A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the sorption of lead on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second-order kinetic model and the Weber & Morris, intraparticle diffusion model. The pH had effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A comparison between the results obtained with this material and those of the literature highlighted a good removal capacity of the treated spent bleaching earth at low cost.

  7. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    PubMed Central

    Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742

  8. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  9. Investigating rate-limiting barriers to nanoscale nonviral gene transfer with nanobiophotonics

    NASA Astrophysics Data System (ADS)

    Chen, Hunter H.

    Nucleic acids are a novel class of therapeutics poised to address many unmet clinical needs. Safe and efficient delivery remains a significant challenge that has delayed the realization of the full therapeutic potential of nucleic acids. Nanoscale nonviral vectors offer an attractive alternative to viral vectors as natural and synthetic polymers or polypeptides may be rationally designed to meet the unique demands of individual applications. A mechanistic understanding of cellular barriers is necessary to develop guidelines for designing custom gene carriers which are expected to greatly impact this delivery challenge. The work herein focused on the relationships among nanocomplex stability, intracellular trafficking and unpacking kinetics, and DNA degradation. Ultrasensitive nanosensors based on QD-FRET were developed to characterize the biophysical properties of nanocomplexes and study these rate-limiting steps. Quantitative image analysis enabled the distributions of the subpopulation of condensed or released DNA to be determined within the major cellular compartments encountered during gene transfer. The steady state stability and unpacking kinetics within these compartments were found to impact transgene expression, elucidating multiple design strategies to achieve efficient gene transfer. To address enzymatic barriers, a novel two-step QD-FRET nanosensor was developed to analyze unpacking and DNA degradation simultaneously, which has not been accomplished previously. Bioresponsive strategies such as disulfide crosslinking and thermosensitivity were evaluated by QD-FRET and quantitative compartmental analysis as case studies to determine appropriate design specifications for thiolated polymers and thermoresponsive polypeptides. Relevant nanobiophotonic tools were developed as a platform to study major rate-limiting barriers to nanomedicine and demonstrated the feasibility of using mechanistic information gained from these tools to guide the rational design of gene carriers and achieve the desired properties that enable efficient gene transfer.

  10. Identifying metastatic breast tumors using textural kinetic features of a contrast based habitat in DCE-MRI

    NASA Astrophysics Data System (ADS)

    Chaudhury, Baishali; Zhou, Mu; Goldgof, Dmitry B.; Hall, Lawrence O.; Gatenby, Robert A.; Gillies, Robert J.; Drukteinis, Jennifer S.

    2015-03-01

    The ability to identify aggressive tumors from indolent tumors using quantitative analysis on dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) would dramatically change the breast cancer treatment paradigm. With this prognostic information, patients with aggressive tumors that have the ability to spread to distant sites outside of the breast could be selected for more aggressive treatment and surveillance regimens. Conversely, patients with tumors that do not have the propensity to metastasize could be treated less aggressively, avoiding some of the morbidity associated with surgery, radiation and chemotherapy. We propose a computer aided detection framework to determine which breast cancers will metastasize to the loco-regional lymph nodes as well as which tumors will eventually go on to develop distant metastses using quantitative image analysis and radiomics. We defined a new contrast based tumor habitat and analyzed textural kinetic features from this habitat for classification purposes. The proposed tumor habitat, which we call combined-habitat, is derived from the intersection of two individual tumor sub-regions: one that exhibits rapid initial contrast uptake and the other that exhibits rapid delayed contrast washout. Hence the combined-habitat represents the tumor sub-region within which the pixels undergo both rapid initial uptake and rapid delayed washout. We analyzed a dataset of twenty-seven representative two dimensional (2D) images from volumetric DCE-MRI of breast tumors, for classification of tumors with no lymph nodes from tumors with positive number of axillary lymph nodes. For this classification an accuracy of 88.9% was achieved. Twenty of the twenty-seven patients were analyzed for classification of distant metastatic tumors from indolent cancers (tumors with no lymph nodes), for which the accuracy was 84.3%.

  11. Computational model, method, and system for kinetically-tailoring multi-drug chemotherapy for individuals

    DOEpatents

    Gardner, Shea Nicole

    2007-10-23

    A method and system for tailoring treatment regimens to individual patients with diseased cells exhibiting evolution of resistance to such treatments. A mathematical model is provided which models rates of population change of proliferating and quiescent diseased cells using cell kinetics and evolution of resistance of the diseased cells, and pharmacokinetic and pharmacodynamic models. Cell kinetic parameters are obtained from an individual patient and applied to the mathematical model to solve for a plurality of treatment regimens, each having a quantitative efficacy value associated therewith. A treatment regimen may then be selected from the plurlaity of treatment options based on the efficacy value.

  12. Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics

    PubMed Central

    2003-01-01

    Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair. PMID:12975533

  13. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  14. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  15. Visual evaluation of kinetic characteristics of PET probe for neuroreceptors using a two-phase graphic plot analysis.

    PubMed

    Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao

    2017-05-01

    Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For investigation of the kinetics of radioligands, such kinetic characteristics should be considered.

  16. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-06-14

    Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.

    PubMed

    Walkenhorst, W F; Green, S M; Roder, H

    1997-05-13

    The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.

  18. Kinetic modeling of benzodiazepine receptor binding with PET and high specific activity [(11)C]Iomazenil in healthy human subjects.

    PubMed

    Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R

    2000-01-01

    Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.

  19. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.

  20. Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces.

    PubMed

    Sauer, Jørgen; Abou Hachem, Maher; Svensson, Birte; Jensen, Knud J; Thygesen, Mikkel B

    2013-06-28

    We here report a quantitative study on the binding kinetics of inhibition of the enzyme glucoamylase and how individual active site amino acid mutations influence kinetics. To address this challenge, we have developed a fast and efficient method for anchoring native acarbose to gold chip surfaces for surface plasmon resonance studies employing wild type glucoamylase and active site mutants, Y175F, E180Q, and R54L, as analytes. The key method was the chemoselective and protecting group-free oxime functionalization of the pseudo-tetrasaccharide-based inhibitor acarbose. By using this technique we have shown that at pH 7.0 the association and dissociation rate constants for the acarbose-glucoamylase interaction are 10(4)M(-1)s(-1) and 10(3)s(-1), respectively, and that the conformational change to a tight enzyme-inhibitor complex affects the dissociation rate constant by a factor of 10(2)s(-1). Additionally, the acarbose-presenting SPR surfaces could be used as a glucoamylase sensor that allowed rapid, label-free affinity screening of small carbohydrate-based inhibitors in solution, which is otherwise difficult with immobilized enzymes or other proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Photoplasma of optically excited metal vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezuglov, N.N.; Llyucharev, A.N.; Stacewicz, T.

    1994-09-01

    A wide range of questions associated with various aspects of photoplasma physics is considered. A comprehensive analysis of processes of optical excitation and de-excitation depending on optical characteristics of an absorbing gas medium is given. Analytical methods used for determining the excitation degree of photoresonance plasma in conditions of resonance radiation transfer are described. The accuracy of the Biberman approximation for effective lifetimes in population kinetics of resonance plasma states is analyzed for many experimental conditions. A detailed discussion of primary ionization mechanisms in photoplasma is given; the kinetics of ionization processes is discussed; and systematization of various types ofmore » photoresonance plasma is presented. Basis aspects of the LIBORS model, which is widely used for studying ionization kinetics of laser photoresonance plasma, and its limitations are considered. An ingenious method used to analytically solve a class of decay-type nonlinear problems, which arise for the capture equation in the case of noticeable saturation of a resonance transition by a short laser pulse, is described. A reliable quantitative description of fluorescence decay curve peculiarities that are associated with the bleaching of gases at resonance line frequencies can be obtained by this method. Some possible applications of photoplasma in problems of optics and spectroscopy are considered. 75 refs., 24 figs., 1 tab.« less

  2. Step Permeability on the Pt(111) Surface

    NASA Astrophysics Data System (ADS)

    Altman, Michael

    2005-03-01

    Surface morphology will be affected, or even dictated, by kinetic limitations that may be present during growth. Asymmetric step attachment is recognized to be an important and possibly common cause of morphological growth instabilities. However, the impact of this kinetic limitation on growth morphology may be hindered by other factors such as the rate limiting step and step permeability. This strongly motivates experimental measurements of these quantities in real systems. Using low energy electron microscopy, we have measured step flow velocities in growth on the Pt(111) surface. The dependence of step velocity upon adjacent terrace width clearly shows evidence of asymmetric step attachment and step permeability. Step velocity is modeled by solving the diffusion equation simultaneously on several adjacent terraces subject to boundary conditions at intervening steps that include asymmetric step attachment and step permeability. This analysis allows a quantitative evaluation of step permeability and the kinetic length, which characterizes the rate limiting step continuously between diffusion and attachment-detachment limited regimes. This work provides information that is greatly needed to set physical bounds on the parameters that are used in theoretical treatments of growth. The observation that steps are permeable even on a simple metal surface should also stimulate more experimental measurements and theoretical treatments of this effect.

  3. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-03-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.

  4. Quantitative imaging of protein targets in the human brain with PET

    NASA Astrophysics Data System (ADS)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts, partial volume effects, age effects, image registration and normalization, input functions and metabolites, parametric imaging, receptor internalization and genetic factors.

  5. Relationships between PEMFC Cathode Kinetic Losses and Contaminants’ Dipole Moment and Adsorption Energy on Pt

    DOE PAGES

    St-Pierre, Jean; Zhai, Yunfeng; Ge, Junjie

    2016-01-05

    A database summarizing the effects of 21 contaminants on the performance of proton exchange membrane fuel cells (PEMFCs) was used to examine relationships between cathode kinetic losses and contaminant physicochemical parameters. Impedance spectroscopy data were employed to obtain oxygen reduction kinetic resistances by fitting data in the 10-158 Hz range to a simplified equivalent circuit. The contaminant dipole moment and the adsorption energy of the contaminant on a Pt surface were chosen as parameters. Dipole moments did not correlate with dimensionless cathode kinetic resistances. In contrast, adsorption energies were quantitatively and linearly correlated with minimum dimensionless cathode kinetic resistances. Contaminantsmore » influence the oxygen reduction for contaminant adsorption energies smaller than -24.5 kJ mol -1, a value near the high limit of the adsorption energy of O 2 on Pt. Dimensionless cathode kinetic resistances linearly increase with decreasing O 2 adsorption energies below -24.5 kJ mol -1. Measured total cell voltage losses are mostly larger than the cathode kinetic losses calculated from kinetic resistance changes, which indicates the existence of other sources of performance degradation. Modifications to the experimental procedure are proposed to ensure that data are comparable on a similar basis and improve the correlation between contaminant adsorption energy and kinetic cell voltage losses.« less

  6. Relationships between PEMFC Cathode Kinetic Losses and Contaminants’ Dipole Moment and Adsorption Energy on Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Pierre, Jean; Zhai, Yunfeng; Ge, Junjie

    A database summarizing the effects of 21 contaminants on the performance of proton exchange membrane fuel cells (PEMFCs) was used to examine relationships between cathode kinetic losses and contaminant physicochemical parameters. Impedance spectroscopy data were employed to obtain oxygen reduction kinetic resistances by fitting data in the 10-158 Hz range to a simplified equivalent circuit. The contaminant dipole moment and the adsorption energy of the contaminant on a Pt surface were chosen as parameters. Dipole moments did not correlate with dimensionless cathode kinetic resistances. In contrast, adsorption energies were quantitatively and linearly correlated with minimum dimensionless cathode kinetic resistances. Contaminantsmore » influence the oxygen reduction for contaminant adsorption energies smaller than -24.5 kJ mol -1, a value near the high limit of the adsorption energy of O 2 on Pt. Dimensionless cathode kinetic resistances linearly increase with decreasing O 2 adsorption energies below -24.5 kJ mol -1. Measured total cell voltage losses are mostly larger than the cathode kinetic losses calculated from kinetic resistance changes, which indicates the existence of other sources of performance degradation. Modifications to the experimental procedure are proposed to ensure that data are comparable on a similar basis and improve the correlation between contaminant adsorption energy and kinetic cell voltage losses.« less

  7. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  8. Supersymmetric quantum mechanics method for the Fokker-Planck equation with applications to protein folding dynamics

    NASA Astrophysics Data System (ADS)

    Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de

    2018-03-01

    This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.

  9. A Model for the Estimation of Hepatic Insulin Extraction After a Meal.

    PubMed

    Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio

    2016-09-01

    Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.

  10. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data.

    PubMed

    Koulouras, Grigorios; Panagopoulos, Andreas; Rapsomaniki, Maria A; Giakoumakis, Nickolaos N; Taraviras, Stavros; Lygerou, Zoi

    2018-06-13

    Understanding protein dynamics is crucial in order to elucidate protein function and interactions. Advances in modern microscopy facilitate the exploration of the mobility of fluorescently tagged proteins within living cells. Fluorescence recovery after photobleaching (FRAP) is an increasingly popular functional live-cell imaging technique which enables the study of the dynamic properties of proteins at a single-cell level. As an increasing number of labs generate FRAP datasets, there is a need for fast, interactive and user-friendly applications that analyze the resulting data. Here we present easyFRAP-web, a web application that simplifies the qualitative and quantitative analysis of FRAP datasets. EasyFRAP-web permits quick analysis of FRAP datasets through an intuitive web interface with interconnected analysis steps (experimental data assessment, different types of normalization and estimation of curve-derived quantitative parameters). In addition, easyFRAP-web provides dynamic and interactive data visualization and data and figure export for further analysis after every step. We test easyFRAP-web by analyzing FRAP datasets capturing the mobility of the cell cycle regulator Cdt2 in the presence and absence of DNA damage in cultured cells. We show that easyFRAP-web yields results consistent with previous studies and highlights cell-to-cell heterogeneity in the estimated kinetic parameters. EasyFRAP-web is platform-independent and is freely accessible at: https://easyfrap.vmnet.upatras.gr/.

  11. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data

    PubMed Central

    Toseland, Christopher P; Clayton, Debra J; McSparron, Helen; Hemsley, Shelley L; Blythe, Martin J; Paine, Kelly; Doytchinova, Irini A; Guan, Pingping; Hattotuwagama, Channa K; Flower, Darren R

    2005-01-01

    AntiJen is a database system focused on the integration of kinetic, thermodynamic, functional, and cellular data within the context of immunology and vaccinology. Compared to its progenitor JenPep, the interface has been completely rewritten and redesigned and now offers a wider variety of search methods, including a nucleotide and a peptide BLAST search. In terms of data archived, AntiJen has a richer and more complete breadth, depth, and scope, and this has seen the database increase to over 31,000 entries. AntiJen provides the most complete and up-to-date dataset of its kind. While AntiJen v2.0 retains a focus on both T cell and B cell epitopes, its greatest novelty is the archiving of continuous quantitative data on a variety of immunological molecular interactions. This includes thermodynamic and kinetic measures of peptide binding to TAP and the Major Histocompatibility Complex (MHC), peptide-MHC complexes binding to T cell receptors, antibodies binding to protein antigens and general immunological protein-protein interactions. The database also contains quantitative specificity data from position-specific peptide libraries and biophysical data, in the form of diffusion co-efficients and cell surface copy numbers, on MHCs and other immunological molecules. The uses of AntiJen include the design of vaccines and diagnostics, such as tetramers, and other laboratory reagents, as well as helping parameterize the bioinformatic or mathematical in silico modeling of the immune system. The database is accessible from the URL: . PMID:16305757

  12. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography

    PubMed Central

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2016-01-01

    Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437

  13. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.

    PubMed

    Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun

    2014-10-01

    Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2016-04-01

    Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.

  15. Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation.

    PubMed

    Smeal, Steven W; Schmitt, Margaret A; Pereira, Ronnie Rodrigues; Prasad, Ashok; Fisk, John D

    2017-01-01

    To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A systems-biology approach to yeast actin cables.

    PubMed

    Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios

    2012-01-01

    We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin-cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin-monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions - among actin-monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins - and the emergence of cell-scale physical form as embodied by the actin cables themselves.

  17. Identification of phototransformation products of thalidomide and mixture toxicity assessment: an experimental and quantitative structural activity relationships (QSAR) approach.

    PubMed

    Mahmoud, Waleed M M; Toolaram, Anju P; Menz, Jakob; Leder, Christoph; Schneider, Mandy; Kümmerer, Klaus

    2014-02-01

    The fate of thalidomide (TD) was investigated after irradiation with a medium-pressure Hg-lamp. The primary elimination of TD was monitored and structures of phototransformation products (PTPs) were assessed by LC-UV-FL-MS/MS. Environmentally relevant properties of TD and its PTPs as well as hydrolysis products (HTPs) were predicted using in silico QSAR models. Mutagenicity of TD and its PTPs was investigated in the Ames microplate format (MPF) aqua assay (Xenometrix, AG). Furthermore, a modified luminescent bacteria test (kinetic luminescent bacteria test (kinetic LBT)), using the luminescent bacteria species Vibrio fischeri, was applied for the initial screening of environmental toxicity. Additionally, toxicity of phthalimide, one of the identified PTPs, was investigated separately in the kinetic LBT. The UV irradiation eliminated TD itself without complete mineralization and led to the formation of several PTPs. TD and its PTPs did not exhibit mutagenic response in the Salmonella typhimurium strains TA 98, and TA 100 with and without metabolic activation. In contrast, QSAR analysis of PTPs and HTPs provided evidence for mutagenicity, genotoxicity and carcinogenicity using additional endpoints in silico software. QSAR analysis of different ecotoxicological endpoints, such as acute toxicity towards V. fischeri, provided positive alerts for several identified PTPs and HTPs. This was partially confirmed by the results of the kinetic LBT, in which a steady increase of acute and chronic toxicity during the UV-treatment procedure was observed for the photolytic mixtures at the highest tested concentration. Moreover, the number of PTPs within the reaction mixture that might be responsible for the toxification of TD during UV-treatment was successfully narrowed down by correlating the formation kinetics of PTPs with QSAR predictions and experimental toxicity data. Beyond that, further analysis of the commercially available PTP phthalimide indicated that transformation of TD into phthalimide was not the cause for the toxification of TD during UV-treatment. These results provide a path for toxicological assessment of complex chemical mixtures and in detail show the toxic potential of TD and its PTPs as well as its HTPs. This deserves further attention as UV irradiation might not always be a green technology, because it might pose a toxicological risk for the environment in general and specifically for water compartments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Calcium tracer kinetics show decreased irreversible flow to bone in glucocorticoid treated patients.

    PubMed

    Goans, R E; Weiss, G H; Abrams, S A; Perez, M D; Yergey, A L

    1995-06-01

    Osteopenia resulting from pharmacologic doses of glucocorticoids is well known. Previously, there has been no satisfactory quantitative model describing the kinetics of calcium flow in subjects on chronic steroid use. A mathematical model of calcium isotope interaction with bone is described and applied to determine an estimate of kinetic parameters characterizing these changes. Calcium tracer dilution kinetics after a bolus injection of 42Ca were measured in 14 subjects with juvenile dermatomyositis, 6 on prednisone regimens and 8 on treatment regimens without prednisone. Irreversible tracer loss from plasma bone is found to be significantly reduced (P = 0.043) in the glucocorticoid-treated patients compared with patients on nonsteroid regimens. Reversible flow to bone is noted to be similar in the two groups. These results suggest a direct effect of glucocorticoids on osteoblast function.

  19. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    PubMed

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  20. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE PAGES

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    2016-12-02

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  1. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  2. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  3. A comparative kinetic RT/-PCR strategy for the quantitation of mRNAs in microdissected human renal biopsy specimens.

    PubMed

    Del Prete, D; Forino, M; Gambaro, G; D'Angelo, A; Baggio, B; Anglani, F

    1998-01-01

    Molecular biology techniques, to be applicable to a diagnostic renal biopsy specimen, should (1) be highly sensitive to be performed on a very small quantity of tissue; (2) be quantitative because they have to analyze genes normally expressed in the tissue and (3) allow the analysis of as large a number of genes as possible. Among different methods, only the reverse-transcriptase polymerase chain reaction (RT/-PCR) might comply with previous requisites, but the few RT/-PCR examples on renal biopsies in the literature do not allow starting RNA quantification and quality control; furthermore they have the drawback of analyzing only few genes. In an ongoing study to assess the expression of a number of genes in glomeruli and in tubulointerstitium of patients with different nephropathies, we developed a comparative RT/-PCR kinetic strategy based on the purification and quantification of total glomerular and tubulointerstitial RNA and on the use of an internal standard, the housekeeping gene G3PDH. We demonstrate that in microdissected diagnostic renal biopsies (1) glomerular and interstitial starting RNA can be quantified; (2) the G3PDH gene may be used both as an internal standard and as an indirect marker of RNA integrity; (3) as low as 28 ng of total RNA is sufficient to obtain PCR products of eight genes, and (4) it is worth to operate on microdissected biopsy specimens because of the different expression of genes in the two renal compartments.

  4. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  5. Differential substrate behaviour of phenol and aniline derivatives during oxidation by horseradish peroxidase: kinetic evidence for a two-step mechanism.

    PubMed

    Gilabert, María Angeles; Hiner, Alexander N P; García-Ruiz, Pedro Antonio; Tudela, José; García-Molina, Francisco; Acosta, Manuel; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2004-06-01

    The catalytic constant (k(cat)) and the second-order association constant of compound II with reducing substrate (k(5)) of horseradish peroxidase C (HRPC) acting on phenols and anilines have been determined from studies of the steady-state reaction velocities (V(0) vs. [S(0)]). Since k(cat)=k(2)k(6)/k(2)+k(6), and k(2) (the first-order rate constant for heterolytic cleavage of the oxygen-oxygen bond of hydrogen peroxide during compound I formation) is known, it has been possible to calculate the first-order rate constant for the transformation of each phenol or aniline by HRPC compound II (k(6)). The values of k(6) are quantitatively correlated to the sigma values (Hammett equation) and can be rationalized by an aromatic substrate oxidation mechanism in which the substrate donates an electron to the oxyferryl group in HRPC compound II, accompanied by two proton additions to the ferryl oxygen atom, one from the substrate and the other the protein or solvent. k(6) is also quantitatively correlated to the experimentally determined (13)C-NMR chemical shifts (delta(1)) and the calculated ionization potentials, E (HOMO), of the substrates. Similar dependencies were observed for k(cat) and k(5). From the kinetic analysis, the absolute values of the Michaelis constants for hydrogen peroxide and the reducing substrates (K(M)(H(2)O(2)) and K(M)(S)), respectively, were obtained.

  6. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  7. Stress-dependence of kinetic transitions at atomistic defects

    NASA Astrophysics Data System (ADS)

    Ball, S. L.; Alexander, K. C.; Schuh, C. A.

    2018-01-01

    The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the Σ5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.

  8. Factor analysis for delineation of organ structures, creation of in- and output functions, and standardization of multicenter kinetic modeling

    NASA Astrophysics Data System (ADS)

    Schiepers, Christiaan; Hoh, Carl K.; Dahlbom, Magnus; Wu, Hsiao-Ming; Phelps, Michael E.

    1999-05-01

    PET imaging can quantify metabolic processes in-vivo; this requires the measurement of an input function which is invasive and labor intensive. A non-invasive, semi-automated, image based method of input function generation would be efficient, patient friendly, and allow quantitative PET to be applied routinely. A fully automated procedure would be ideal for studies across institutions. Factor analysis (FA) was applied as processing tool for definition of temporally changing structures in the field of view. FA has been proposed earlier, but the perceived mathematical difficulty has prevented widespread use. FA was utilized to delineate structures and extract blood and tissue time-activity-curves (TACs). These TACs were used as input and output functions for tracer kinetic modeling, the results of which were compared with those from an input function obtained with serial blood sampling. Dynamic image data of myocardial perfusion studies with N-13 ammonia, O-15 water, or Rb-82, cancer studies with F-18 FDG, and skeletal studies with F-18 fluoride were evaluated. Correlation coefficients of kinetic parameters obtained with factor and plasma input functions were high. Linear regression usually furnished a slope near unity. Processing time was 7 min/patient on an UltraSPARC. Conclusion: FA can non-invasively generate input functions from image data eliminating the need for blood sampling. Output (tissue) functions can be simultaneously generated. The method is simple, requires no sophisticated operator interaction and has little inter-operator variability. FA is well suited for studies across institutions and standardized evaluations.

  9. Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk

    The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less

  10. Spatiotemporal, kinematic, and kinetic effects of a peroneal nerve stimulator versus an ankle foot orthosis in hemiparetic gait.

    PubMed

    Sheffler, Lynne R; Bailey, Stephanie Nogan; Wilson, Richard D; Chae, John

    2013-06-01

    The relative effect of a transcutaneous peroneal nerve stimulator (tPNS) and an ankle foot orthosis (AFO) on spatiotemporal, kinematic, and kinetic parameters of hemiparetic gait has not been well described. To compare the relative neuroprosthetic effect of a tPNS with the orthotic effect of an AFO using quantitative gait analysis (QGA). In all, 12 stroke survivors underwent QGA under 3 device conditions: (1) no device (ND), (2) AFO, and (3) tPNS. A series of repeated-measures analyses of variance (rmANOVAs) were performed with dorsiflexion status (presence or absence of volitional dorsiflexion) as a covariate to compare selected spatiotemporal, kinematic, and kinetic parameters for each device condition. Post hoc pairwise comparisons and/or subset analysis by dorsiflexion status were performed for significant effect. Stride length was improved with both the AFO (P = .035) and the tPNS (P = .029) relative to ND. Those with absent dorsiflexion had longer stride length with the tPNS relative to ND (P = .034) and a higher walking velocity with a tPNS relative to the AFO (P = .015). There was no device effect on dorsiflexion angle at initial contact; however, a significant Device × Dorsiflexion status interaction effect favored the AFO relative to ND (P = .025) in those with dorsiflexion present. This study suggests that level of motor impairment may influence the relative effects of the tPNS and AFO devices in chronic hemiparetic gait; however, the small sample size limits generalizability. Future studies are necessary to determine if motor impairment level should be considered in the clinical prescription of these devices.

  11. The sublimation kinetics of GeSe single crystals

    NASA Technical Reports Server (NTRS)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  12. Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.

    2016-09-01

    Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.

  13. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.

  14. Pixel-based approach to assess contrast-enhanced ultrasound kinetics parameters for differential diagnosis of rheumatoid arthritis.

    PubMed

    Rizzo, Gaia; Raffeiner, Bernd; Coran, Alessandro; Ciprian, Luca; Fiocco, Ugo; Botsios, Costantino; Stramare, Roberto; Grisan, Enrico

    2015-07-01

    Inflammatory rheumatic diseases are the leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity, and increased mortality. The standard for diagnosing and differentiating arthritis is based on clinical examination, laboratory exams, and imaging findings, such as synovitis, bone edema, or joint erosions. Contrast-enhanced ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. Quantitative assessment is mostly performed at the region of interest level, where the mean intensity curve is fitted with an exponential function. We showed that using a more physiologically motivated perfusion curve, and by estimating the kinetic parameters separately pixel by pixel, the quantitative information gathered is able to more effectively characterize the different perfusion patterns. In particular, we demonstrated that a random forest classifier based on pixelwise quantification of the kinetic contrast agent perfusion features can discriminate rheumatoid arthritis from different arthritis forms (psoriatic arthritis, spondyloarthritis, and arthritis in connective tissue disease) with an average accuracy of 97%. On the contrary, clinical evaluation (DAS28), semiquantitative CEUS assessment, serological markers, or region-based parameters do not allow such a high diagnostic accuracy.

  15. Pixel-based approach to assess contrast-enhanced ultrasound kinetics parameters for differential diagnosis of rheumatoid arthritis

    PubMed Central

    Rizzo, Gaia; Raffeiner, Bernd; Coran, Alessandro; Ciprian, Luca; Fiocco, Ugo; Botsios, Costantino; Stramare, Roberto; Grisan, Enrico

    2015-01-01

    Abstract. Inflammatory rheumatic diseases are the leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity, and increased mortality. The standard for diagnosing and differentiating arthritis is based on clinical examination, laboratory exams, and imaging findings, such as synovitis, bone edema, or joint erosions. Contrast-enhanced ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. Quantitative assessment is mostly performed at the region of interest level, where the mean intensity curve is fitted with an exponential function. We showed that using a more physiologically motivated perfusion curve, and by estimating the kinetic parameters separately pixel by pixel, the quantitative information gathered is able to more effectively characterize the different perfusion patterns. In particular, we demonstrated that a random forest classifier based on pixelwise quantification of the kinetic contrast agent perfusion features can discriminate rheumatoid arthritis from different arthritis forms (psoriatic arthritis, spondyloarthritis, and arthritis in connective tissue disease) with an average accuracy of 97%. On the contrary, clinical evaluation (DAS28), semiquantitative CEUS assessment, serological markers, or region-based parameters do not allow such a high diagnostic accuracy. PMID:27014713

  16. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    PubMed Central

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  17. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  18. New observations and insights into the morphology and growth kinetics of hydrate films.

    PubMed

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K

    2014-02-19

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6.

  19. New Observations and Insights into the Morphology and Growth Kinetics of Hydrate Films

    PubMed Central

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K.

    2014-01-01

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6. PMID:24549241

  20. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  1. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  2. Validation of Normalizations, Scaling, and Photofading Corrections for FRAP Data Analysis

    PubMed Central

    Kang, Minchul; Andreani, Manuel; Kenworthy, Anne K.

    2015-01-01

    Fluorescence Recovery After Photobleaching (FRAP) has been a versatile tool to study transport and reaction kinetics in live cells. Since the fluorescence data generated by fluorescence microscopy are in a relative scale, a wide variety of scalings and normalizations are used in quantitative FRAP analysis. Scaling and normalization are often required to account for inherent properties of diffusing biomolecules of interest or photochemical properties of the fluorescent tag such as mobile fraction or photofading during image acquisition. In some cases, scaling and normalization are also used for computational simplicity. However, to our best knowledge, the validity of those various forms of scaling and normalization has not been studied in a rigorous manner. In this study, we investigate the validity of various scalings and normalizations that have appeared in the literature to calculate mobile fractions and correct for photofading and assess their consistency with FRAP equations. As a test case, we consider linear or affine scaling of normal or anomalous diffusion FRAP equations in combination with scaling for immobile fractions. We also consider exponential scaling of either FRAP equations or FRAP data to correct for photofading. Using a combination of theoretical and experimental approaches, we show that compatible scaling schemes should be applied in the correct sequential order; otherwise, erroneous results may be obtained. We propose a hierarchical workflow to carry out FRAP data analysis and discuss the broader implications of our findings for FRAP data analysis using a variety of kinetic models. PMID:26017223

  3. Evaluation of kinetic constants of biomolecular interaction on optical surface plasmon resonance sensor with Newton Iteration Method

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan; Jiang, Guoliang; Hu, Jiandong; Hu, Fengjiang; Wei, Jianguang; Shi, Liang

    2010-10-01

    In the immunology, there are two important types of biomolecular interaction: antigens-antibodies and receptors-ligands. Monitoring the response rate and affinity of biomolecular interaction can help analyze the protein function, drug discover, genomics and proteomics research. Moreover the association rate constant and dissociation rate constant of receptors-ligands are the important parameters for the study of signal transmission between cells. Recent advances in bioanalyzer instruments have greatly simplified the measurement of the kinetics of molecular interactions. Non-destructive and real-time monitoring the response to evaluate the parameters between antigens and antibodies can be performed by using optical surface plasmon resonance (SPR) biosensor technology. This technology provides a quantitative analysis that is carried out rapidly with label-free high-throughput detection using the binding curves of antigens-antibodies. Consequently, the kinetic parameters of interaction between antigens and antibodies can be obtained. This article presents a low cost integrated SPR-based bioanalyzer (HPSPR-6000) designed by ourselves. This bioanalyzer is mainly composed of a biosensor TSPR1K23, a touch-screen monitor, a microprocessor PIC24F128, a microflow cell with three channels, a clamp and a photoelectric conversion device. To obtain the kinetic parameters, sensorgrams may be modeled using one of several binding models provided with BIAevaluation software 3.0, SensiQ or Autolab. This allows calculation of the association rate constant (ka) and the dissociation rate constant (kd). The ratio of ka to kd can be used to estimate the equilibrium constant. Another kind is the analysis software OriginPro, which can process the obtained data by nonlinear fitting and then get some correlative parameters, but it can't be embedded into the bioanalyzer, so the bioanalyzer don't support the use of OriginPro. This paper proposes a novel method to evaluate the kinetic parameters of biomolecular interaction by using Newton Iteration Method and Least Squares Method. First, the pseudo first order kinetic model of biomolecular interaction was established. Then the data of molecular interaction of HBsAg and HBsAb was obtained by bioanalyzer. Finally, we used the optical SPR bioanalyzer software which was written by ourselves to make nonlinear fit about the association and dissociation curves. The correlation coefficient R-squared is 0.99229 and 0.99593, respectively. Furthermore, the kinetic parameters and affinity constants were evaluated using the obtained data from the fitting results.

  4. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  5. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  6. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish

    2013-08-01

    A molecular motor is made of either a single macromolecule or a macromolecular complex. Just like their macroscopic counterparts, molecular motors “transduce” input energy into mechanical work. All the nano-motors considered here operate under isothermal conditions far from equilibrium. Moreover, one of the possible mechanisms of energy transduction, called Brownian ratchet, does not even have any macroscopic counterpart. But, molecular motor is not synonymous with Brownian ratchet; a large number of molecular motors execute a noisy power stroke, rather than operating as Brownian ratchet. We review not only the structural design and stochastic kinetics of individual single motors, but also their coordination, cooperation and competition as well as the assembly of multi-module motors in various intracellular kinetic processes. Although all the motors considered here execute mechanical movements, efficiency and power output are not necessarily good measures of performance of some motors. Among the intracellular nano-motors, we consider the porters, sliders and rowers, pistons and hooks, exporters, importers, packers and movers as well as those that also synthesize, manipulate and degrade “macromolecules of life”. We review mostly the quantitative models for the kinetics of these motors. We also describe several of those motor-driven intracellular stochastic processes for which quantitative models are yet to be developed. In part I, we discuss mainly the methodology and the generic models of various important classes of molecular motors. In part II, we review many specific examples emphasizing the unity of the basic mechanisms as well as diversity of operations arising from the differences in their detailed structure and kinetics. Multi-disciplinary research is presented here from the perspective of physicists.

  7. Optimization of time-course experiments for kinetic model discrimination.

    PubMed

    Lages, Nuno F; Cordeiro, Carlos; Sousa Silva, Marta; Ponces Freire, Ana; Ferreira, António E N

    2012-01-01

    Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate models from a set of candidates in order to elect one as the best model to use for prediction.In this work, a method is proposed to optimize the design of enzyme kinetic assays with the goal of selecting a model among a set of candidates. We focus on models with systems of ordinary differential equations as the underlying mathematical description. The method provides a design where an extension of the Kullback-Leibler distance, computed over the time courses predicted by the models, is maximized. Given the asymmetric nature this measure, a generalized differential evolution algorithm for multi-objective optimization problems was used.The kinetics of yeast glyoxalase I (EC 4.4.1.5) was chosen as a difficult test case to evaluate the method. Although a single-substrate kinetic model is usually considered, a two-substrate mechanism has also been proposed for this enzyme. We designed an experiment capable of discriminating between the two models by optimizing the initial substrate concentrations of glyoxalase I, in the presence of the subsequent pathway enzyme, glyoxalase II (EC 3.1.2.6). This discriminatory experiment was conducted in the laboratory and the results indicate a two-substrate mechanism for the kinetics of yeast glyoxalase I.

  8. A study of hydriding kinetics of metal hydrides using a physically based model

    NASA Astrophysics Data System (ADS)

    Voskuilen, Tyler G.

    The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the effects of multidimensional phase growth and transitions between rate-limiting processes on the experimentally determined reaction rates. Unlike conventional solid state reaction analysis methods, this model relies fully on rate parameters based on the physical mechanisms occurring in the hydride reaction and can be extended to reactions in any dimension.

  9. The significance of intergranular diffusion to the mechanisms and kinetics of porphyroblast crystallization

    NASA Astrophysics Data System (ADS)

    Carlson, William D.

    1989-09-01

    The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.

  10. MONALISA for stochastic simulations of Petri net models of biochemical systems.

    PubMed

    Balazki, Pavel; Lindauer, Klaus; Einloft, Jens; Ackermann, Jörg; Koch, Ina

    2015-07-10

    The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.

  11. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference

    PubMed Central

    Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David

    2016-01-01

    Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698038

  12. Three-dimensional drift kinetic response of high-β plasmas in the DIII-D tokamak.

    PubMed

    Wang, Z R; Lanctot, M J; Liu, Y Q; Park, J-K; Menard, J E

    2015-04-10

    A quantitative interpretation of the experimentally measured high-pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon β limit, is achieved. The self-consistent inclusion of the drift kinetic effects in magnetohydrodynamic (MHD) modeling [Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)] successfully resolves an outstanding issue of the ideal MHD model, which significantly overpredicts the plasma-induced field amplification near the no-wall limit, as compared to experiments. The model leads to quantitative agreement not only for the measured field amplitude and toroidal phase but also for the measured internal 3D displacement of the plasma. The results can be important to the prediction of the reliable plasma behavior in advanced fusion devices, such as ITER [K. Ikeda, Nucl. Fusion 47, S1 (2007)].

  13. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    NASA Astrophysics Data System (ADS)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivieri, Giorgia; Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch; Parry, Krista M.

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer descriptionmore » of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.« less

  15. Optical gating with organic building blocks. A quantitative model for the fluorescence modulation of photochromic perylene bisimide dithienylcyclopentene triads

    PubMed Central

    Pärs, Martti; Gradmann, Michael; Gräf, Katja; Bauer, Peter; Thelakkat, Mukundan; Köhler, Jürgen

    2014-01-01

    We investigated the capability of molecular triads, consisting of two strong fluorophores that were covalently linked to a photochromic molecule, for optical gating. Therefore we monitored the fluorescence intensity of the fluorophores as a function of the isomeric state of the photoswitch. From the analysis of our data we develop a kinetic model that allows us to predict quantitatively the degree of the fluorescence modulation as a function of the mutual intensities of the lasers that are used to induce the fluorescence and the switching of the photochromic unit. We find that the achievable contrast for the modulation of the fluorescence depends mainly on the intensity ratio of the two light beams and appears to be very robust against absolute changes of these intensities. The latter result provides valuable information for the development of all-optical circuits which would require to handle different signal strengths for the input and output levels. PMID:24614963

  16. Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris

    PubMed Central

    Merkle, Conrad W.; Leahy, Conor; Srinivasan, Vivek J.

    2016-01-01

    Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo. DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution. PMID:27867732

  17. Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris.

    PubMed

    Merkle, Conrad W; Leahy, Conor; Srinivasan, Vivek J

    2016-10-01

    Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo . DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution.

  18. Surface Plasmon Damping Quantified with an Electron Nanoprobe

    PubMed Central

    Bosman, Michel; Ye, Enyi; Tan, Shu Fen; Nijhuis, Christian A.; Yang, Joel K. W.; Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Han, Ming-Yong

    2013-01-01

    Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm. PMID:23425921

  19. Ambient Ionization Mass Spectrometry Measurement of Aminotransferase Activity

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Li, Xin; Zhang, Chengsen; Xu, Yang; Cooks, R. Graham

    2017-06-01

    A change in enzyme activity has been used as a clinical biomarker for diagnosis and is useful in evaluating patient prognosis. Current laboratory measurements of enzyme activity involve multi-step derivatization of the reaction products followed by quantitative analysis of these derivatives. This study simplified the reaction systems by using only the target enzymatic reaction and directly detecting its product. A protocol using paper spray mass spectrometry for identifying and quantifying the reaction product has been developed. Evaluation of the activity of aspartate aminotransferase (AST) was chosen as a proof-of-principle. The volume of sample needed is greatly reduced compared with the traditional method. Paper spray has a desalting effect that avoids sprayer clogging problems seen when examining serum samples by nanoESI. This very simple method does not require sample pretreatment and additional derivatization reactions, yet it gives high quality kinetic data, excellent limits of detection (60 ppb from serum), and coefficients of variation <10% in quantitation. [Figure not available: see fulltext.

  20. Integrated Physics-based Modeling and Experiments for Improved Prediction of Combustion Dynamics in Low-Emission Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William E.; Lucht, Robert P.; Mongia, Hukam

    2015-01-01

    Concurrent simulation and experiment was undertaken to assess the ability of a hybrid RANS-LES model to predict combustion dynamics in a single-element lean direct-inject (LDI) combustor showing self-excited instabilities. High frequency pressure modes produced by Fourier and modal decomposition analysis were compared quantitatively, and trends with equivalence ratio and inlet temperature were compared qualitatively. High frequency OH PLIF and PIV measurements were also taken. Submodels for chemical kinetics and primary and secondary atomization were also tested against the measured behavior. For a point-wise comparison, the amplitudes matched within a factor of two. The dependence on equivalence ratio was matched. Preliminary results from simulation using an 18-reaction kinetics model indicated instability amplitudes closer to measurement. Analysis of the simulations suggested a band of modes around 1400 Hz were due to a vortex bubble breakdown and a band of modes around 6 kHz were due to a precessing vortex core hydrodynamic instability. The primary needs are directly coupled and validated ab initio models of the atomizer free surface flow and the primary atomization processes, and more detailed study of the coupling between the 3D swirling flow and the local thermoacoustics in the diverging venturi section.

  1. Mitochondrial Respiration in Human Colorectal and Breast Cancer Clinical Material Is Regulated Differently

    PubMed Central

    Koit, Andre; Ounpuu, Lyudmila; Klepinin, Aleksandr; Chekulayev, Vladimir; Timohhina, Natalja; Tepp, Kersti; Puurand, Marju; Truu, Laura; Heck, Karoliina; Valvere, Vahur; Guzun, Rita

    2017-01-01

    We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures. PMID:28781720

  2. Solar Wind Turbulent Cascade from MHD to Sub-ion Scales: Large-size 3D Hybrid Particle-in-cell Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Landi, Simone; Verdini, Andrea; Matteini, Lorenzo; Hellinger, Petr

    2018-01-01

    Properties of the turbulent cascade from fluid to kinetic scales in collisionless plasmas are investigated by means of large-size 3D hybrid (fluid electrons, kinetic protons) particle-in-cell simulations. Initially isotropic Alfvénic fluctuations rapidly develop a strongly anisotropic turbulent cascade, mainly in the direction perpendicular to the ambient magnetic field. The omnidirectional magnetic field spectrum shows a double power-law behavior over almost two decades in wavenumber, with a Kolmogorov-like index at large scales, a spectral break around ion scales, and a steepening at sub-ion scales. Power laws are also observed in the spectra of the ion bulk velocity, density, and electric field, at both magnetohydrodynamic (MHD) and kinetic scales. Despite the complex structure, the omnidirectional spectra of all fields at ion and sub-ion scales are in remarkable quantitative agreement with those of a 2D simulation with similar physical parameters. This provides a partial, a posteriori validation of the 2D approximation at kinetic scales. Conversely, at MHD scales, the spectra of the density and of the velocity (and, consequently, of the electric field) exhibit differences between the 2D and 3D cases. Although they can be partly ascribed to the lower spatial resolution, the main reason is likely the larger importance of compressible effects in the full 3D geometry. Our findings are also in remarkable quantitative agreement with solar wind observations.

  3. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less

  4. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2016-07-15

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less

  5. Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks

    PubMed Central

    Smallbone, Kieran; Klipp, Edda; Mendes, Pedro; Liebermeister, Wolfram

    2013-01-01

    The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments. PMID:24324546

  6. Nonlinear Acoustical Assessment of Precipitate Nucleation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2004-01-01

    The purpose of the present work is to show that measurements of the acoustic nonlinearity parameter in heat treatable alloys as a function of heat treatment time can provide quantitative information about the kinetics of precipitate nucleation and growth in such alloys. Generally, information on the kinetics of phase transformations is obtained from time-sequenced electron microscopical examination and differential scanning microcalorimetry. The present nonlinear acoustical assessment of precipitation kinetics is based on the development of a multiparameter analytical model of the effects on the nonlinearity parameter of precipitate nucleation and growth in the alloy system. A nonlinear curve fit of the model equation to the experimental data is then used to extract the kinetic parameters related to the nucleation and growth of the targeted precipitate. The analytical model and curve fit is applied to the assessment of S' precipitation in aluminum alloy 2024 during artificial aging from the T4 to the T6 temper.

  7. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    PubMed

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  8. Geometric decompositions of collective motion

    NASA Astrophysics Data System (ADS)

    Mischiati, Matteo; Krishnaprasad, P. S.

    2017-04-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.

  9. Profile of student’s understanding in Kinetic Theory of Gases

    NASA Astrophysics Data System (ADS)

    Putri, E. E. R.; Sukarmin; Cari

    2018-04-01

    Students in eleven grade had a different style for answering the physics problems. They could do anything to solve the problem. The way they thought and revealed it into the answer in many styles could be used as a data to know their conception. One of the sub-chapter in physics was the effective velocity of gases. It included in Kinetic Theory of Gases. It was one of the most difficult scientific theories to accept. This research aimed to identify student’s understanding in effective velocity of gases problem. The research was qualitative research. It was taken place at MAN Yogyakarta I in semester two on grade eleven. The obtained datas were collected by test sheet that contained of essay form. The respondents were all of the students in XI MIA 3. The data was analyzed by quantitative analysis using rubric of scoring in essay test and it contained of two problems. The results were the students had resolved the test and it was divided into three categories which are high 10,42%, medium 29,17%, and low 50,00%.

  10. The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J-I-P chlorophyll fluorescence rise: effects of various electron acceptors.

    PubMed

    Joly, David; Carpentier, Robert

    2007-07-27

    Quantitative analysis of the fluorescence induction (FI) rise was used in this study to elucidate the complex effects of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on thylakoids. Reduced TMPD molecules, responsible for the ADRY agent effect, caused an increase in the amplitude of the O-J rise. Also, only oxidized TMPD molecules were shown to have the ability to bind the Q(B) pocket of photosystem II (PSII). On the other hand, the I-P rise was slowed in proportion with the oxidized TMPD concentration, inducing the clear appearance of the I-peak. While this property was previously thought to be unique to TMPD, this study shows that some artificial electron acceptors of PSII, silicomolybdate, 2,5-dichloro-p-benzoquinone, and phenyl-p-benzoquinone, have a similar effect. These results demonstrated a major role of the oxido-reduction kinetics of the PQ-pool in the resolution of J-I and I-P phases in the FI of isolated thylakoids.

  11. Removal of basic dyes from aqueous solutions with a treated spent bleaching earth.

    PubMed

    Mana, Mohamed; Ouali, Mohand-Said; de Menorval, L C

    2007-03-01

    A spent bleaching earth from an edible oil refinery was treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried, and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE), and the virgin bleaching earth (VBE). The kinetic results fit the pseudo-second-order kinetic model and the Weber and Morris intraparticle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of the determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of treated spent bleaching earth.

  12. The processive kinetics of gene conversion in bacteria

    PubMed Central

    Paulsson, Johan; El Karoui, Meriem; Lindell, Monica

    2017-01-01

    Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. PMID:28256783

  13. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping.

    PubMed

    Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal

    2018-04-01

    To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Geometric decompositions of collective motion

    PubMed Central

    Krishnaprasad, P. S.

    2017-01-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes—including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots. PMID:28484319

  15. A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 2. Knockdown Response and Long-Term Response

    PubMed Central

    Maurya, Mano Ram; Subramaniam, Shankar

    2007-01-01

    This article addresses how quantitative models such as the one proposed in the companion article can be used to study cellular network perturbations such as knockdowns and pharmacological perturbations in a predictive manner. Using the kinetic model for cytosolic calcium dynamics in RAW 264.7 cells developed in the companion article, the calcium response to complement 5a (C5a) for the knockdown of seven proteins (C5a receptor; G-β-2; G-α,i-2,3; regulator of G-protein signaling-10; G-protein coupled receptor kinase-2; phospholipase C β-3; arrestin) is predicted and validated against the data from the Alliance for Cellular Signaling. The knockdown responses provide insights into how altered expressions of important proteins in disease states result in intermediate measurable phenotypes. Long-term response and long-term dose response have also been predicted, providing insights into how the receptor desensitization, internalization, and recycle result in tolerance. Sensitivity analysis of long-term response shows that the mechanisms and parameters in the receptor recycle path are important for long-term calcium dynamics. PMID:17483189

  16. Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids.

    PubMed

    Kotomin, Eugene; Kuzovkov, Vladimir; Popov, Anatoli I; Maier, Joachim; Vila, Rafael

    2018-01-11

    The annealing kinetics of the primary electronic F-type color centers (oxygen vacancies with trapped one or two electrons) is analyzed for three ionic materials (Al 2 O 3 , MgO, and MgF 2 ) exposed to intensive irradiation by electrons, neutrons, and heavy swift ions. Phenomenological theory of diffusion-controlled recombination of the F-type centers with much more mobile interstitial ions (complementary hole centers) allows us to extract from experimental data the migration energy of interstitials and pre-exponential factor of diffusion. The obtained migration energies are compared with available first-principles calculations. It is demonstrated that with the increase of radiation fluence both the migration energy and pre-exponent are decreasing in all three materials, irrespective of the type of irradiation. Their correlation satisfies the Meyer-Neldel rule observed earlier in glasses, liquids, and disordered materials.The origin of this effect is discussed. This study demonstrates that in the quantitative analysis of the radiation damage of real materials the dependence of the defect migration parameters on the radiation fluence plays an important role and cannot be neglected.

  17. Overview of EPA Research on Drinking Water Distribution System Nitrification

    EPA Science Inventory

    Results from USEPA research investigating drinking water distribution system nitrification will be presented. The two research areas include: (1) monochloramine disinfection kinetics of Nitrosomonas europaea using Propidium Monoazide Quantitative Real-time PCR (PMA-qPCR) and (2...

  18. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: QSAR DEVELOPMENT

    EPA Science Inventory

    Despite the common occurrence of the aromatic amine functional group in environmental contaminants, few quantitative structure-activity relationships (QSARs) have been developed to predict sorption kinetics for aromatic amines in natural soils and sediments. Towards the goal of d...

  19. Quantitative measurements of regional glucose utilization and rate of valine incorporation into proteins by double-tracer autoradiography in the rat brain tumor model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirikae, M.; Diksic, M.; Yamamoto, Y.L.

    1989-02-01

    We examined the rate of glucose utilization and the rate of valine incorporation into proteins using 2-(/sup 18/F)fluoro-2-deoxyglucose and L-(1-14C)-valine in a rat brain tumor model by quantitative double-tracer autoradiography. We found that in the implanted tumor the rate of valine incorporation into proteins was about 22 times and the rate of glucose utilization was about 1.5 times that in the contralateral cortex. (In the ipsilateral cortex, the tumor had a profound effect on glucose utilization but no effect on the rate of valine incorporation into proteins.) Our findings suggest that it is more useful to measure protein synthesis thanmore » glucose utilization to assess the effectiveness of antitumor agents and their toxicity to normal brain tissue. We compared two methods to estimate the rate of valine incorporation: kinetic (quantitation done using an operational equation and the average brain rate coefficients) and washed slices (unbound labeled valine removed by washing brain slices in 10% trichloroacetic acid). The results were the same using either method. It would seem that the kinetic method can thus be used for quantitative measurement of protein synthesis in brain tumors and normal brain tissue using (/sup 11/C)-valine with positron emission tomography.« less

  20. Reactive transport modeling of ⁹⁰Sr sorption in reactive sandpacks.

    PubMed

    Yin, Jun; Jeen, Sung-Wook; Lee, David R; Mayer, K Ulrich

    2014-09-15

    Strontium-90 ((90)Sr) is one of the most problematic radioactive contaminants in groundwater at nuclear sites. Although (90)Sr is retarded relative to groundwater flow, it is sufficiently mobile and long-lived to require treatment in many hydrogeological settings. A detailed study was performed on the practicality of using granular clinoptilolite as a sandpack around groundwater wells where groundwater is contaminated with (90)Sr and the water table must be lowered. The effectiveness of the reactive sandpack concept and the mechanisms controlling (90)Sr attenuation was investigated by numerical analysis of data obtained from four in situ column experiments. The experiments spanned the range of pore-water velocities that would occur during radial flow through granular clinoptilolite sandpacks. A kinetic sorption model was required to adequately reproduce the experimentally observed (90)Sr behavior. Calibrated first-order kinetic rates were correlated with pore-water velocities. After calibration, three sorption models were used to simulate (90)Sr attenuation for four hypothetical pumping scenarios. Results show that a velocity-dependent kinetic model accurately simulates the observed early breakthrough for high pore-water velocities. The results indicate (1) that reactive sandpacks have good potential for in situ remediation and construction dewatering and (2) that quantitative modeling can aid in the design and application of this novel technique. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A [32P]-NAD+-based method to identify and quantitate long residence time enoyl-ACP reductase inhibitors

    PubMed Central

    Yu, Weixuan; Neckles, Carla; Chang, Andrew; Bommineni, Gopal Reddy; Spagnuolo, Lauren; Zhang, Zhuo; Liu, Nina; Lai, Christina; Truglio, James; Tonge, Peter J.

    2015-01-01

    The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-ACP reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P] NAD(P+) cofactor. Twenty-three FabI inhibitors were analyzed and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percent drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady state kinetic methods for compounds with tR values of 10-100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 °C to 37 °C . PMID:25684450

  2. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  3. Kinetic Evaluation of Lipid Oils Conversion to Biofuel Using Layered Double Hydroxide Doped with Triazabicyclodece Catalyst

    NASA Astrophysics Data System (ADS)

    Nato Lopez, Frank D.

    Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.

  4. Characterizing Bacteriophage PR772 as a Potential Surrogate for Adenovirus in Water Disinfection: A Comparative Analysis of Inactivation Kinetics and Replication Cycle Inhibition by Free Chlorine.

    PubMed

    Gall, Aimee M; Shisler, Joanna L; Mariñas, Benito J

    2016-03-01

    Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.

  5. Kinetics of diuron under aerobic condition and residue analysis in sugarcane under subtropical field conditions.

    PubMed

    Tandon, Shishir; Pant, Ravi

    2017-10-10

    The phenylureas group includes persistent herbicides which are major pollutants to soil and water. Dissipation kinetics of diuron in different soils under sugarcane field conditions was investigated. Diuron was extracted with acetone and florisil solid phase extraction clean-up and characterized by high-performance liquid chromatography-UV. Diuron persisted for more than 100 days and dissipation followed monophasic first-order kinetics. Persistence was more in sandy loam compared to silty clay loam soil. Half-life of diuron in silty clay loam soil was 22.57 and 32.37 days and in sandy loam was 28.35 and 43.93 days at 2 and 4 kg ha-1applications, respectively. Average recovery in soil, bagasse, leaf-straw and juice ranged from 75.95% to 84.20%, 80.15% to 89.35%, 77.46% to 86.19% and 81.88% to 92.68%, respectively. The quantitation limits for soil, bagasse, leaf-straw and juice were 0.01, 0.03, 0.04 μg g -1 and 0.008 μg mL -1 , respectively. Application of diuron inhibited growth of soil microbes initially but they recovered later. At harvest, diuron residues were below maximum residue limits in all samples. The study revealed that under subtropical conditions, diuron is safe for use in weed management and would not pose any residual/environmental problem and that sugarcane crop could be used safe for human/animal consumption.

  6. A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 1. Mechanisms, Parameters, and Subpopulational Variability

    PubMed Central

    Maurya, Mano Ram; Subramaniam, Shankar

    2007-01-01

    Calcium (Ca2+) is an important second messenger and has been the subject of numerous experimental measurements and mechanistic studies in intracellular signaling. Calcium profile can also serve as a useful cellular phenotype. Kinetic models of calcium dynamics provide quantitative insights into the calcium signaling networks. We report here the development of a complex kinetic model for calcium dynamics in RAW 264.7 cells stimulated by the C5a ligand. The model is developed using the vast number of measurements of in vivo calcium dynamics carried out in the Alliance for Cellular Signaling (AfCS) Laboratories. Ligand binding, phospholipase C-β (PLC-β) activation, inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) dynamics, and calcium exchange with mitochondria and extracellular matrix have all been incorporated into the model. The experimental data include data from both native and knockdown cell lines. Subpopulational variability in measurements is addressed by allowing nonkinetic parameters to vary across datasets. The model predicts temporal response of Ca2+ concentration for various doses of C5a under different initial conditions. The optimized parameters for IP3R dynamics are in agreement with the legacy data. Further, the half-maximal effect concentration of C5a and the predicted dose response are comparable to those seen in AfCS measurements. Sensitivity analysis shows that the model is robust to parametric perturbations. PMID:17483174

  7. Verification of continuum drift kinetic equation solvers in NIMROD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, E. D.; Ji, J.-Y.; Kruger, S. E.

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speedmore » coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.« less

  8. A Systems-Biology Approach to Yeast Actin Cables

    PubMed Central

    Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios

    2011-01-01

    We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions—among actin monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins—and the emergence of cell-scale physical form as embodied by the actin cables themselves. PMID:22161338

  9. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis.

    PubMed

    Baret, Jean-Christophe; Kleinschmidt, Felix; El Harrak, Abdeslam; Griffiths, Andrew D

    2009-06-02

    In classical emulsification processes, surfactants play two roles: first, they reduce the interfacial tension, facilitating droplet deformation and rupture, and second, they reduce droplet coalescence. Here, we use a microfluidic emulsification system to completely uncouple these two processes, allowing stabilization against coalescence to be studied quantitatively and independently of droplet formation. We demonstrate that, in addition to the classical effect of stabilization by an increase of surfactant concentration, the dynamics of adsorption of surfactant at the water-oil interface is a key element for droplet stabilization. Microfluidic emulsification devices can therefore be tailored to improve emulsification while decreasing the concentration of surfactant by increasing the time before the droplets first come into contact.

  10. Application of curve resolution algorithms in the study of drug photodegradation kinetics -- the example of moclobemide.

    PubMed

    Skibiński, Robert; Komsta, Łukasz

    2012-01-01

    The photodegradation of moclobemide was studied in methanolic media. Ultra-HPLC (UHPLC)/MS/MS analysis proved decomposition to 4-chlorobenzamide as a major degradation product and small amounts of Ro 16-3177 (4-chloro-N-[2-[(2-hydroxyethyl)amino] ethyl]benzamide) and 2-[(4-chlorobenzylidene)amino]-N-[2-ethoxyethenyl]ethenamine. The methanolic solution was investigated spectrophotometrically in the UV region, registering the spectra during 30 min of degradation. Using reference spectra and a multivariate chemometric method (multivariate curve resolution-alternating least squares), the spectra were resolved and concentration profiles were obtained. The obtained results were in good agreement with a quantitative approach, with UHPLC-diode array detection as the reference method.

  11. Analysis of Transformation Plasticity in Steel Using a Finite Element Method Coupled with a Phase Field Model

    PubMed Central

    Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam

    2012-01-01

    An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295

  12. The evolution of phase holographic imaging from a research idea to publicly traded company

    NASA Astrophysics Data System (ADS)

    Egelberg, Peter

    2018-02-01

    Recognizing the value and unmet need for label-free kinetic cell analysis, Phase Holograhic Imaging defines its market segment as automated, easy to use and affordable time-lapse cytometry. The process of developing new technology, meeting customer expectations, sources of corporate funding and R&D adjustments prompted by field experience will be reviewed. Additionally, it is discussed how relevant biological information can be extracted from a sequence of quantitative phase images, with negligible user assistance and parameter tweaking, to simultaneously provide cell culture characteristics such as cell growth rate, viability, division rate, mitosis duration, phagocytosis rate, migration, motility and cell-cell adherence without requiring any artificial cell manipulation.

  13. Parameter Balancing in Kinetic Models of Cell Metabolism†

    PubMed Central

    2010-01-01

    Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants needed for a model could be collected from ever-growing literature and public web resources, but they are often incomplete, incompatible, or simply not available. We address this lack of information by parameter balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep the estimated quantities within plausible ranges. An online service and free software for parameter balancing with models provided in SBML format (Systems Biology Markup Language) is accessible at www.semanticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and discuss its possible applications and limitations. In the future, parameter balancing could become an important routine step in the kinetic modeling of large metabolic networks. PMID:21038890

  14. Quantitative description of realistic wealth distributions by kinetic trading models

    NASA Astrophysics Data System (ADS)

    Lammoglia, Nelson; Muñoz, Víctor; Rogan, José; Toledo, Benjamín; Zarama, Roberto; Valdivia, Juan Alejandro

    2008-10-01

    Data on wealth distributions in trading markets show a power law behavior x-(1+α) at the high end, where, in general, α is greater than 1 (Pareto’s law). Models based on kinetic theory, where a set of interacting agents trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets.

  15. Antibody escape kinetics of equine infectious anemia virus infection of horses.

    PubMed

    Schwartz, Elissa J; Nanda, Seema; Mealey, Robert H

    2015-07-01

    Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Quantitative Evaluation of Dichloroacetic Acid Kinetics in Human -- A Physiologically-Based Pharmacokinetic Modeling Investigation

    DTIC Science & Technology

    2008-01-01

    weight) Plasma VPLAC 4.4 (Merrill et al., 2005) Liver VLC 2.6 (Brown et al., 1997) Kidney VKC 0.44 (Brown et al., 1997) Rapidly perfused VRC 9.86...entire data set with the exception of individual subject optimized kinetic data reported by Schultz and Shangraw (2006). Perhaps the most challenging ...GSTzeta as well as the 0.02 mg/kg DCA administered daily in drinking water between the 2 challenges . If a person is administered 50 mg/kg/day by IV

  17. Kinetic theory of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.

    1991-12-01

    A kinetic theory that describes the time evolution of a fluid consisting of Lennard-Jones particles at all densities is proposed. The kinetic equation assumes binary collisions, but takes into account the finite time duration of a collision. Furthermore, it is an extension of a kinetic equation for the square well fluid as well as the hard sphere Enskog theory. In the low density limit, the Boltzmann theory is obtained. It is shown that the proposed theory obeys all the conservation laws. The exchange of potential and kinetic energies is studied and it is shown that at high density this is a fast process. The dominant mechanism for energy exchange is found to be collisions at the strongly repulsive part of the potential that are disturbed by third particles. The kinetic equation is also used to calculate the Green-Kubo integrands for shear viscosity and heat conductivity. The major structures found in molecular dynamics simulations are reproduced at intermediate densities quantitatively and at high density semiquantitatively. It is found that at high density, not only correlated collisions have to be taken into account, but that even the concept of collisions in the sense of sudden changes in the velocity is no longer useful.

  18. Kinetic quantitation of cerebral PET-FDG studies without concurrent blood sampling: statistical recovery of the arterial input function.

    PubMed

    O'Sullivan, F; Kirrane, J; Muzi, M; O'Sullivan, J N; Spence, A M; Mankoff, D A; Krohn, K A

    2010-03-01

    Kinetic quantitation of dynamic positron emission tomography (PET) studies via compartmental modeling usually requires the time-course of the radio-tracer concentration in the arterial blood as an arterial input function (AIF). For human and animal imaging applications, significant practical difficulties are associated with direct arterial sampling and as a result there is substantial interest in alternative methods that require no blood sampling at the time of the study. A fixed population template input function derived from prior experience with directly sampled arterial curves is one possibility. Image-based extraction, including requisite adjustment for spillover and recovery, is another approach. The present work considers a hybrid statistical approach based on a penalty formulation in which the information derived from a priori studies is combined in a Bayesian manner with information contained in the sampled image data in order to obtain an input function estimate. The absolute scaling of the input is achieved by an empirical calibration equation involving the injected dose together with the subject's weight, height and gender. The technique is illustrated in the context of (18)F -Fluorodeoxyglucose (FDG) PET studies in humans. A collection of 79 arterially sampled FDG blood curves are used as a basis for a priori characterization of input function variability, including scaling characteristics. Data from a series of 12 dynamic cerebral FDG PET studies in normal subjects are used to evaluate the performance of the penalty-based AIF estimation technique. The focus of evaluations is on quantitation of FDG kinetics over a set of 10 regional brain structures. As well as the new method, a fixed population template AIF and a direct AIF estimate based on segmentation are also considered. Kinetics analyses resulting from these three AIFs are compared with those resulting from radially sampled AIFs. The proposed penalty-based AIF extraction method is found to achieve significant improvements over the fixed template and the segmentation methods. As well as achieving acceptable kinetic parameter accuracy, the quality of fit of the region of interest (ROI) time-course data based on the extracted AIF, matches results based on arterially sampled AIFs. In comparison, significant deviation in the estimation of FDG flux and degradation in ROI data fit are found with the template and segmentation methods. The proposed AIF extraction method is recommended for practical use.

  19. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    PubMed

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91.

  20. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor.

    PubMed

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars

    2013-01-01

    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  1. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF.

    PubMed

    Duan, Chong; Kallehauge, Jesper F; Pérez-Torres, Carlos J; Bretthorst, G Larry; Beeman, Scott C; Tanderup, Kari; Ackerman, Joseph J H; Garbow, Joel R

    2018-02-01

    This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. Bayesian probability theory-based parameter estimation and model selection were used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, cervical cancer DCE-MRI data. When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., had a higher posterior probability) in 80 % of the voxels compared to the direct use of a single R-AIF. Maps of spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, such as cervical cancer, are accessible with the cL-AIF approach. The cL-AIF method, which estimates unique local-AIF amplitude and arrival time for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords estimates of uncertainties for each model parameter, via posterior probability density functions, and voxel-wise comparison across methods/models, via model selection in data modeling.

  2. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.

    PubMed

    Charbonnel, Cyril; Gallego, Maria E; White, Charles I

    2010-10-01

    Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  3. Measuring pKa of activation and pKi of inactivation for influenza hemagglutinin from kinetics of membrane fusion of virions and of HA expressing cells.

    PubMed

    Mittal, Aditya; Shangguan, Tong; Bentz, Joe

    2002-11-01

    The data for the pH dependence of lipid mixing between influenza virus (A/PR/8/34 strain) and fluorescently labeled liposomes containing gangliosides has been analyzed using a comprehensive mass action kinetic model for hemaglutinin (HA)-mediated fusion. Quantitative results obtained about the architecture of HA-mediated membrane fusion site from this analysis are in agreement with the previously reported results from analyses of data for HA-expressing cells fusing with various target membranes. Of the eight or more HAs forming a fusogenic aggregate, only two have to undergo the "essential" conformational change needed to initiate fusion. The mass action kinetic model has been extended to allow the analysis of the pKa for HA activation and pKi for HA inactivation. Inactivation and activation of HA following protonation were investigated for various experimental systems involving different strains of HA (A/PR/8/34, X:31, A/Japan). We find that the pKa for the final protonation site on each monomer of the trimer molecule is 5.6 to 5.7, irrespective of the strain. We also find that the pKi for the PR/8 strain is 4.8 to 4.9. The inactivation rate constants for HA, measured from experiments done with PR/8 virions fusing with liposomes and X:31 HA-expressing cells fusing with red blood cells, were both found to be of the order of 10(-4) s(-1). This number appears to be the minimal rate for HA's essential conformational change at low HA surface density. At high HA surface densities, we find evidence for cooperativity in the conformational change, as suggested by other studies.

  4. Measuring pKa of activation and pKi of inactivation for influenza hemagglutinin from kinetics of membrane fusion of virions and of HA expressing cells.

    PubMed Central

    Mittal, Aditya; Shangguan, Tong; Bentz, Joe

    2002-01-01

    The data for the pH dependence of lipid mixing between influenza virus (A/PR/8/34 strain) and fluorescently labeled liposomes containing gangliosides has been analyzed using a comprehensive mass action kinetic model for hemaglutinin (HA)-mediated fusion. Quantitative results obtained about the architecture of HA-mediated membrane fusion site from this analysis are in agreement with the previously reported results from analyses of data for HA-expressing cells fusing with various target membranes. Of the eight or more HAs forming a fusogenic aggregate, only two have to undergo the "essential" conformational change needed to initiate fusion. The mass action kinetic model has been extended to allow the analysis of the pKa for HA activation and pKi for HA inactivation. Inactivation and activation of HA following protonation were investigated for various experimental systems involving different strains of HA (A/PR/8/34, X:31, A/Japan). We find that the pKa for the final protonation site on each monomer of the trimer molecule is 5.6 to 5.7, irrespective of the strain. We also find that the pKi for the PR/8 strain is 4.8 to 4.9. The inactivation rate constants for HA, measured from experiments done with PR/8 virions fusing with liposomes and X:31 HA-expressing cells fusing with red blood cells, were both found to be of the order of 10(-4) s(-1). This number appears to be the minimal rate for HA's essential conformational change at low HA surface density. At high HA surface densities, we find evidence for cooperativity in the conformational change, as suggested by other studies. PMID:12414698

  5. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    PubMed

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  6. Gradual Ordering in Red Abalone Nacre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, P. U. P. A.; Metzler, Rebecca A.; Zhou, Dong

    2008-09-03

    Red abalone (Haliotis rufescens) nacre is a layered composite biomineral that contains crystalline aragonite tablets confined by organic layers. Nacre is intensely studied because its biologically controlled microarchitecture gives rise to remarkable strength and toughness, but the mechanisms leading to its formation are not well understood. Here we present synchrotron spectromicroscopy experiments revealing that stacks of aragonite tablet crystals in nacre are misoriented with respect to each other. Quantitative measurements of crystal orientation, tablet size, and tablet stacking direction show that orientational ordering occurs not abruptly but gradually over a distance of 50 {micro}m. Several lines of evidence indicate thatmore » different crystal orientations imply different tablet growth rates during nacre formation. A theoretical model based on kinetic and gradual selection of the fastest growth rates produces results in qualitative and quantitative agreement with the experimental data and therefore demonstrates that ordering in nacre is a result of crystal growth kinetics and competition either in addition or to the exclusion of templation by acidic proteins as previously assumed. As in other natural evolving kinetic systems, selection of the fastest-growing stacks of tablets occurs gradually in space and time. These results suggest that the self-ordering of the mineral phase, which may occur completely independently of biological or organic-molecule control, is fundamental in nacre formation.« less

  7. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  8. Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism

    PubMed Central

    Achcar, Fiona; Kerkhoven, Eduard J.; Bakker, Barbara M.; Barrett, Michael P.; Breitling, Rainer

    2012-01-01

    Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies. PMID:22379410

  9. SYMPOSIUM SESSION PROPOSAL: INCORPORATION OF MODE OF ACTION INTO MECHANISTICALLY-BASED QUANTITATIVE MODELS

    EPA Science Inventory

    The biological processes by which environmental pollutants induce adverse health effects is most likely regulated by complex interactions dependent upon the route of exposure, dose, kinetics of distribution, and multiple cellular responses. To further complicate deciphering thes...

  10. The quantitative impact of the mesopore size on the mass transfer mechanism of the new 1.9 μm fully porous Titan-C18 particles II--analysis of biomolecules.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2015-05-01

    The kinetic performances of 3.0 × 100 mm columns packed with 1.9 μm Titan-C18 particles with average mesopore sizes of 80 Å and 120 Å were investigated quantitatively for the analysis of biomolecules. Large mesopores are expected to speed up the rate of diffusivity of high-molecular-weight compounds across the stationary phase and to generate higher plate counts at high velocities. The mass transfer mechanism of bradykinin acetate salt (1060 Da) and insulin (5733 Da) was determined over a range of flow rates from 0.025 to 1.0 mL/min. The pore diffusivities of these two biomolecules were accurately measured from the peak parking method. Even though the gain in column efficiency was not found significant for small molecules such as valerophenone (162 Da), enlarging the average pore size from 80 to 120 Å induces a measurable diminution of the reduced plate height, h, of bradykinin (from 17 to 11 or -35% at a reduced velocity of 50) and a significant reduction for insulin (from 43 to 12 or -72% at a reduced velocity of 90). Remarkably, while the increase of the column efficiency for bradykinin is consistent with a faster diffusivity of bradykinin across the 120 Å Titan-C18 particles, the higher column efficiencies measured for insulin are mostly due to a faster absorption kinetics into the 120 Å than that into the 80 Å Titan-C18 particles. This result is supported by the fact that the effective pore diffusivity of insulin is even slightly smaller across the 120 Å than that across the 80 Å 1.9μm Titan-C18 particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    PubMed Central

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca2+ upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons. PMID:26818524

  12. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.

    PubMed

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Mabuchi, Hideo; Herschlag, Daniel

    2017-09-12

    Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔG align , the probability of aligning tertiary contact partners, and ΔG tert , the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔG HJH ) or from changes in the electrostatic environment (ΔG +/- ) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔG tert ). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔG tert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.

  13. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tissot, B.P.; Pelet, R.; Ungerer, P.

    1987-12-01

    Temperature is the most sensitive parameter in hydrocarbon generation. Thus, reconstruction of temperature history is essential when evaluating petroleum prospects. No measurable parameter can be directly converted to paleotemperature. Maturation indices such as vitrinite reflectance, T/sub max/ from Rock-Eval pyrolysis, spore coloration, Thermal Alteration Index (TAI), or concentration of biological markers offer an indirect approach. All these indices are a function of the thermal history through rather complex kinetics, frequently influenced by the type of organic matter. Their significance and validity are reviewed. Besides the problems of identification (e.g. vitrinite) and interlaboratory calibration, it is important to simultaneously interpret kerogenmore » type and maturation and to avoid difficult conversions from one index to another. Geodynamic models, where structural and thermal histories are connected, are another approach to temperature reconstruction which could be calibrated against the present distribution of temperature and the present value of maturation indices. Kinetics of kerogen decomposition controls the amount and composition of hydrocarbons generated. An empirical time-temperature index (TTI), originally introduced by Lopatin, does not allow such a quantitative evaluation. Due to several limitations (no provision for different types of kerogen and different rates of reactions, poor calibration on vitrinite reflectance), it is of limited interest unless one has no access to a desk-top computer. Kinetic models, based on a specific calibration made on actual source rock samples, can simulate the evolution of all types of organic matter and can provide a quantitative evaluation of oil and gas generated. 29 figures.« less

  14. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  15. Applications of nonlinear science and kinetic equations to the spread of epidemics

    NASA Astrophysics Data System (ADS)

    Macinnis, David Robert

    The study of the spread of epidemics is currently growing into a successful subfield of a combination of nonlinear science and statistical mechanics. Topics studied in this field include kinetic and mean field levels of epidemiological models. This thesis consists of the analysis of such topics and specifically directed at the Hantavirus, West Nile virus, and the Bubonic Plague. A successful reaction-diffusion equation approach developed recently by Abramson and Kenkre was able to describe spatiotemporal patterns of the Hantavirus model. From measurements of the parameters of their model it was found that the mice, the carriers of the infection, must be regarded as moving diffusively within attractive potentials representative of home ranges. Several attempts have been made to incorporate home ranges into their model. Two of these attempts are discussed within this thesis. A model to explain the transmission of the West Nile virus within bird and mosquito populations was recently developed by Kenkre, Parmenter, Peixoto, and Sadasiv who showed how spatially resolved issues could be discussed but restricted their analysis to mean field considerations. This thesis extends that study by investigating spatial resolution of the infected populations. Traveling waves of the bird and mosquito populations are found in the West Nile context. Infection control of various epidemics has become increasingly important to limit the potential force of infection into the human population. This thesis contains a quantitative attempt at a theory of such control (for the West Nile virus) via spraying of the mosquito population. Mean field and kinetic level models are proposed in this thesis to describe the transmission of the Bubonic Plague which involves flea and mammal populations. The various populations are found to undergo a variety of bifurcations as well as hysteresis in their steady state regime. Spatially resolved analysis of the populations is also presented.

  16. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses. PMID:27625669

  17. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?

    PubMed Central

    De Gasperi, Andrea; Mazza, Ernestina; Prosperi, Manlio

    2016-01-01

    Indocyanine green (ICG) kinetics (PDR/R15) used to quantitatively assess hepatic function in the perioperative period of major resective surgery and liver transplantation have been the object of an extensive, updated and critical review. New, non invasive bedside monitors (pulse dye densitometry technology) make this opportunity widely available in clinical practice. After having reviewed basic concepts of hepatic clearance, we analysed the most common indications ICG kinetic parameters have nowadays in clinical practice, focusing in particular on the diagnostic and prognostic role of PDR and R15 in the perioperative period of major liver surgery and liver transplantation. As recently pointed out, even if of extreme interest, ICG clearance parameters have still some limitations, to be considered when using these tests. PMID:26981173

  18. Database-Centric Method for Automated High-Throughput Deconvolution and Analysis of Kinetic Antibody Screening Data.

    PubMed

    Nobrega, R Paul; Brown, Michael; Williams, Cody; Sumner, Chris; Estep, Patricia; Caffry, Isabelle; Yu, Yao; Lynaugh, Heather; Burnina, Irina; Lilov, Asparouh; Desroches, Jordan; Bukowski, John; Sun, Tingwan; Belk, Jonathan P; Johnson, Kirt; Xu, Yingda

    2017-10-01

    The state-of-the-art industrial drug discovery approach is the empirical interrogation of a library of drug candidates against a target molecule. The advantage of high-throughput kinetic measurements over equilibrium assessments is the ability to measure each of the kinetic components of binding affinity. Although high-throughput capabilities have improved with advances in instrument hardware, three bottlenecks in data processing remain: (1) intrinsic molecular properties that lead to poor biophysical quality in vitro are not accounted for in commercially available analysis models, (2) processing data through a user interface is time-consuming and not amenable to parallelized data collection, and (3) a commercial solution that includes historical kinetic data in the analysis of kinetic competition data does not exist. Herein, we describe a generally applicable method for the automated analysis, storage, and retrieval of kinetic binding data. This analysis can deconvolve poor quality data on-the-fly and store and organize historical data in a queryable format for use in future analyses. Such database-centric strategies afford greater insight into the molecular mechanisms of kinetic competition, allowing for the rapid identification of allosteric effectors and the presentation of kinetic competition data in absolute terms of percent bound to antigen on the biosensor.

  19. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    PubMed

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  20. Comparison of enzyme kinetics of warfarin analyzed by LC-MS/MS QTrap and differential mobility spectrometry.

    PubMed

    Shaik, Abdul Naveed; Grater, Richard; Lulla, Mukesh; Williams, David A; Gan, Lawrence L; Bohnert, Tonika; LeDuc, Barbara W

    2016-01-01

    Warfarin is an anticoagulant used in the treatment of thrombosis and thromboembolism. It is given as a racemic mixture of R and S enantiomers. These two enantiomers show differences in metabolism by CYPs: S-warfarin undergoes 7 hydroxylation by CYP2C9 and R-warfarin by CYP3A4 to form 10 hydroxy warfarin. In addition, warfarin is acted upon by different CYPs to form the minor metabolites 3'-hydroxy, 4'-hydroxy, 6-hydroxy, and 8-hydroxy warfarin. For analysis, separation of these metabolites is necessary since all have the same m/z ratio and similar fragmentation pattern. Enzyme kinetics for the formation of all of the six hydroxylated metabolites of warfarin from human liver microsomes were determined using an LC-MS/MS QTrap and LC-MS/MS with a differential mobility spectrometry (DMS) (SelexION™) interface to compare the kinetic parameters. These two methods were chosen to compare their selectivity and sensitivity. Substrate curves for 3'-OH, 4'-OH, 6-OH, 7-OH, 8-OH and 10-OH warfarin formation were generated to determine the kinetic parameters (Km and Vmax) in human liver microsomal preparations. The limit of quantitation (LOQ) for all the six hydroxylated metabolites of warfarin were in the range of 1-3nM using an LC-MS/MS QTrap method which had a run time of 22min. In contrast, the LOQ for all the six hydroxylated metabolites using DMS interface technology was 100nM with a run time of 2.8min. We compare these two MS methods and discuss the kinetics of metabolite formation for the metabolites generated from racemic warfarin. In addition, we show inhibition of major metabolic pathways of warfarin by sulfaphenazole and ketoconazole which are known specific inhibitors of CYP2C9 and CYP3A4 respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Utilization of a deuterated derivatization agent to synthesize internal standards for gas chromatography-tandem mass spectrometry quantification of silylated metabolites.

    PubMed

    Lien, Stina K; Kvitvang, Hans Fredrik Nyvold; Bruheim, Per

    2012-07-20

    GC-MS analysis of silylated metabolites is a sensitive method that covers important metabolite groups such as sugars, amino acids and non-amino organic acids, and it has become one of the most important analytical methods for exploring the metabolome. Absolute quantitative GC-MS analysis of silylated metabolites poses a challenge as different metabolites have different derivatization kinetics and as their silyl-derivates have varying stability. This report describes the development of a targeted GC-MS/MS method for quantification of metabolites. Internal standards for each individual metabolite were obtained by derivatization of a mixture of standards with deuterated N-methyl-N-trimethylsilyltrifluoroacetamide (d9-MSTFA), and spiking this solution into MSTFA derivatized samples prior to GC-MS/MS analysis. The derivatization and spiking protocol needed optimization to ensure that the behaviour of labelled compound responses in the spiked sample correctly reflected the behaviour of unlabelled compound responses. Using labelled and unlabelled MSTFA in this way enabled normalization of metabolite responses by the response of their deuterated counterpart (i.e. individual correction). Such individual correction of metabolite responses reproducibly resulted in significantly higher precision than traditional data correction strategies when tested on samples both with and without serum and urine matrices. The developed method is thus a valuable contribution to the field of absolute quantitative metabolomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2001-01-01

    This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.

  3. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    PubMed Central

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  4. Optimization of Region of Interest Drawing for Quantitative Analysis: Differentiation Between Benign and Malignant Breast Lesions on Contrast-Enhanced Sonography.

    PubMed

    Nakata, Norio; Ohta, Tomoyuki; Nishioka, Makiko; Takeyama, Hiroshi; Toriumi, Yasuo; Kato, Kumiko; Nogi, Hiroko; Kamio, Makiko; Fukuda, Kunihiko

    2015-11-01

    This study was performed to evaluate the diagnostic utility of quantitative analysis of benign and malignant breast lesions using contrast-enhanced sonography. Contrast-enhanced sonography using the perflubutane-based contrast agent Sonazoid (Daiichi Sankyo, Tokyo, Japan) was performed in 94 pathologically proven palpable breast mass lesions, which could be depicted with B-mode sonography. Quantitative analyses using the time-intensity curve on contrast-enhanced sonography were performed in 5 region of interest (ROI) types (manually traced ROI and circular ROIs of 5, 10, 15, and 20 mm in diameter). The peak signal intensity, initial slope, time to peak, positive enhancement integral, and wash-out ratio were investigated in each ROI. There were significant differences between benign and malignant lesions in the time to peak (P < .05), initial slope (P < .001), and positive enhancement integral (P < .05) for the manual ROI. Significant differences were found between benign and malignant lesions in the time to peak (P < .05) for the 5-mm ROI; the time to peak (P < .05) and initial slope (P< .05) for the 10-mm ROI; absolute values of the peak signal intensity (P< .05), time to peak (P< .01), and initial slope (P< .005) for the 15-mm ROI; and the time to peak (P < .05) and initial slope (P < .05) for the 20-mm ROI. There were no statistically significant differences in any wash-out ratio values for the 5 ROI types. Kinetic analysis using contrast-enhanced sonography is useful for differentiation between benign and malignant breast lesions. © 2015 by the American Institute of Ultrasound in Medicine.

  5. The role of PET quantification in cardiovascular imaging.

    PubMed

    Slomka, Piotr; Berman, Daniel S; Alexanderson, Erick; Germano, Guido

    2014-08-01

    Positron Emission Tomography (PET) has several clinical and research applications in cardiovascular imaging. Myocardial perfusion imaging with PET allows accurate global and regional measurements of myocardial perfusion, myocardial blood flow and function at stress and rest in one exam. Simultaneous assessment of function and perfusion by PET with quantitative software is currently the routine practice. Combination of ejection fraction reserve with perfusion information may improve the identification of severe disease. The myocardial viability can be estimated by quantitative comparison of fluorodeoxyglucose ( 18 FDG) and rest perfusion imaging. The myocardial blood flow and coronary flow reserve measurements are becoming routinely included in the clinical assessment due to enhanced dynamic imaging capabilities of the latest PET/CT scanners. Absolute flow measurements allow evaluation of the coronary microvascular dysfunction and provide additional prognostic and diagnostic information for coronary disease. Standard quantitative approaches to compute myocardial blood flow from kinetic PET data in automated and rapid fashion have been developed for 13 N-ammonia, 15 O-water and 82 Rb radiotracers. The agreement between software methods available for such analysis is excellent. Relative quantification of 82 Rb PET myocardial perfusion, based on comparisons to normal databases, demonstrates high performance for the detection of obstructive coronary disease. New tracers, such as 18 F-flurpiridaz may allow further improvements in the disease detection. Computerized analysis of perfusion at stress and rest reduces the variability of the assessment as compared to visual analysis. PET quantification can be enhanced by precise coregistration with CT angiography. In emerging clinical applications, the potential to identify vulnerable plaques by quantification of atherosclerotic plaque uptake of 18 FDG and 18 F-sodium fluoride tracers in carotids, aorta and coronary arteries has been demonstrated.

  6. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    NASA Astrophysics Data System (ADS)

    Schmid, Sonja; Hugel, Thorsten

    2018-03-01

    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  7. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  8. Application of Real-Time Fluorescent PCR for Quantitative Assessment of Neospora caninum Infections in Organotypic Slice Cultures of Rat Central Nervous System Tissue

    PubMed Central

    Müller, Norbert; Vonlaufen, Nathalie; Gianinazzi, Christian; Leib, Stephen L.; Hemphill, Andrew

    2002-01-01

    The previously described Nc5-specific PCR test for the diagnosis of Neospora caninum infections was used to develop a quantitative PCR assay which allows the determination of infection intensities within different experimental and diagnostic sample groups. The quantitative PCR was performed by using a dual fluorescent hybridization probe system and the LightCycler Instrument for online detection of amplified DNA. This assay was successfully applied for demonstrating the parasite proliferation kinetics in organotypic slice cultures of rat brain which were infected in vitro with N. caninum tachyzoites. This PCR-based method of parasite quantitation with organotypic brain tissue samples can be regarded as a novel ex vivo approach for exploring different aspects of cerebral N. caninum infection. PMID:11773124

  9. Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT.

    PubMed

    Epelbaum, Ron; Frenkel, Alex; Haddad, Riad; Sikorski, Natalia; Strauss, Ludwig G; Israel, Ora; Dimitrakopoulou-Strauss, Antonia

    2013-01-01

    This study aimed to assess the role of a quantitative dynamic PET model in pancreatic cancer as a potential index of tumor aggressiveness and predictor of survival. Seventy-one patients with (18)F-FDG-avid adenocarcinoma of the pancreas before treatment were recruited, including 27 with localized tumors (11 underwent pancreatectomy, and 16 had localized nonresectable tumors) and 44 with metastatic disease. Dynamic (18)F-FDG PET images were acquired over a 60-min period, followed by a whole-body PET/CT study. Quantitative data measurements were based on a 2-compartment model, and the following variables were calculated: VB (fractional blood volume in target area), K(1) and k(2) (kinetic membrane transport parameters), k(3) and k(4) (intracellular (18)F-FDG phosphorylation and dephosphorylation parameters, respectively), and (18)F-FDG INF (global (18)F-FDG influx). The single significant variable for overall survival (OS) in patients with localized disease was (18)F-FDG INF. Patients with a high (18)F-FDG INF (>0.033 min(-1)) had a median OS of 6 and 5 mo for nonresectable and resected tumors, respectively, versus 15 and 19 mo for a low (18)F-FDG INF in nonresectable and resected tumors, respectively (P < 0.04). In metastatic disease, multivariate analysis found VB, K(1), and k(3) to be significant variables for OS (P < 0.043, <0.031, and <0.009, respectively). Prognostic factors for OS in the entire group of patients that were significant at multivariate analysis were stage of disease, VB, K(1), and (18)F-FDG INF (P < 0.00035, <0.03, <0.024, and <0.008, respectively). Median OS for all patients with a high (18)F-FDG INF, low VB, and high K(1) was 3 mo, as opposed to 14 mo in patients with a low (18)F-FDG INF, high VB, and low K(1) (P < 0.021), irrespective of stage and resectability. Quantitative (18)F-FDG kinetic parameters measured by dynamic PET in newly diagnosed pancreatic cancer correlated with the aggressiveness of disease. The (18)F-FDG INF was the single most significant variable for OS in patients with localized disease, whether resectable or not.

  10. HOW CAN BIOLOGICALLY-BASED MODELING OF ARSENIC KINETICS AND DYNAMICS INFORM THE RISK ASSESSMENT PROCESS?

    EPA Science Inventory

    Quantitative biologically-based models describing key events in the continuum from arsenic exposure to the development of adverse health effects provide a framework to integrate information obtained across diverse research areas. For example, genetic polymorphisms in arsenic met...

  11. What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure.

    PubMed

    Dancik, Yuri; Bigliardi, Paul L; Bigliardi-Qi, Mei

    2015-12-01

    Animal-based developmental and reproductive toxicological studies involving skin exposure rarely incorporate information on skin permeation kinetics. For practical reasons, animal studies cannot investigate the many factors which can affect human skin permeation and systemic uptake kinetics in real-life scenarios. Traditional route-to-route extrapolation is based on the same types of experiments and requires assumptions regarding route similarity. Pharmacokinetic modeling based on skin physiology and structure is the most efficient way to incorporate the variety of intrinsic skin and exposure-dependent parameters occurring in clinical and occupational settings into one framework. Physiologically-based pharmacokinetic models enable the integration of available in vivo, in vitro and in silico data to quantitatively predict the kinetics of uptake at the site of interest, as needed for 21st century toxicology and risk assessment. As demonstrated herein, proper interpretation and integration of these data is a multidisciplinary endeavor requiring toxicological, risk assessment, mathematical, pharmaceutical, biological and dermatological expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Monitoring the synthesis of biomolecules using mass spectrometry.

    PubMed

    Miyagi, Masaru; Kasumov, Takhar

    2016-10-28

    The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water ((2)H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  14. Monitoring the synthesis of biomolecules using mass spectrometry

    PubMed Central

    2016-01-01

    The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput ‘omics’ studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water (2H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644976

  15. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

    PubMed Central

    Gamarra, Lionel F; daCosta-Filho, Antonio J; Mamani, Javier B; de Cassia Ruiz, Rita; Pavon, Lorena F; Sibov, Tatiana T; Vieira, Ernanni D; Silva, André C; Pontuschka, Walter M; Amaro, Edson

    2010-01-01

    The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro). PMID:20463936

  16. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    NASA Astrophysics Data System (ADS)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  17. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).

  18. Live-cell imaging of G-actin dynamics using sequential FDAP

    PubMed Central

    Kiuchi, Tai; Nagai, Tomoaki; Ohashi, Kazumasa; Watanabe, Naoki; Mizuno, Kensaku

    2011-01-01

    Various microscopic techniques have been developed to understand the mechanisms that spatiotemporally control actin filament dynamics in live cells. Kinetic data on the processes of actin assembly and disassembly on F-actin have been accumulated. However, the kinetics of cytoplasmic G-actin, a key determinant for actin polymerization, has remained unclear because of a lack of appropriate methods to measure the G-actin concentration quantitatively. We have developed two new microscopic techniques based on the fluorescence decay after photoactivation (FDAP) time-lapse imaging of photoswitchable Dronpa-labeled actin. These techniques, sequential FDAP (s-FDAP) and multipoint FDAP, were used to measure the time-dependent changes in and spatial distribution of the G-actin concentration in live cells. Use of s-FDAP provided data on changes in the G-actin concentration with high temporal resolution; these data were useful for the model analysis of actin assembly processes in live cells. The s-FDAP analysis also provided evidence that the cytoplasmic G-actin concentration substantially decreases after cell stimulation and that the extent of stimulus-induced actin assembly and cell size extension are linearly correlated with the G-actin concentration before cell stimulation. The advantages of using s-FDAP and multipoint FDAP to measure spatiotemporal G-actin dynamics and the roles of G-actin concentration and ADF/cofilin in stimulus-induced actin assembly and lamellipodium extension in live cells are discussed. PMID:22754616

  19. Invasion-wave-induced first-order phase transition in systems of active particles.

    PubMed

    Ihle, Thomas

    2013-10-01

    An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.

  20. Kinetics and Mechanisms of Phosphorus Adsorption in Soils from Diverse Ecological Zones in the Source Area of a Drinking-Water Reservoir

    PubMed Central

    Zhang, Liang; Loáiciga, Hugo A.; Xu, Meng; Du, Chao; Du, Yun

    2015-01-01

    On-site soils are increasingly used in the treatment and restoration of ecosystems to harmonize with the local landscape and minimize costs. Eight natural soils from diverse ecological zones in the source area of a drinking-water reservoir in central China are used as adsorbents for the uptake of phosphorus from aqueous solutions. The X-ray fluorescence (XRF) spectrometric and BET (Brunauer-Emmett-Teller) tests and the Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectral analyses are carried out to investigate the soils’ chemical properties and their potential changes with adsorbed phosphorous from aqueous solutions. The intra-particle diffusion, pseudo-first-order, and pseudo-second-order kinetic models describe the adsorption kinetic processes. Our results indicate that the adsorption processes of phosphorus in soils occurred in three stages and that the rate-controlling steps are not solely dependent on intra-particle diffusion. A quantitative comparison of two kinetics models based on their linear and non-linear representations, and using the chi-square (χ2) test and the coefficient of determination (r2), indicates that the adsorptive properties of the soils are best described by the non-linear pseudo-second-order kinetic model. The adsorption characteristics of aqueous phosphorous are determined along with the essential kinetic parameters. PMID:26569278

  1. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

    PubMed

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.

  2. Heavy baryons in the large N c limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertus, C.; Ruiz Arriola, Enrique; Fernando, Ishara P.

    It is shown that in the large N c limit heavy baryon masses can be estimated quantitatively in a 1/N c expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass tension independent of N c. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. Lastly, themore » results provide good estimates for the first sub-leading in 1/N c corrections.« less

  3. Heavy baryons in the large N c limit

    DOE PAGES

    Albertus, C.; Ruiz Arriola, Enrique; Fernando, Ishara P.; ...

    2015-09-16

    It is shown that in the large N c limit heavy baryon masses can be estimated quantitatively in a 1/N c expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass tension independent of N c. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. Lastly, themore » results provide good estimates for the first sub-leading in 1/N c corrections.« less

  4. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    PubMed

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Size analysis of polyglutamine protein aggregates using fluorescence detection in an analytical ultracentrifuge.

    PubMed

    Polling, Saskia; Hatters, Danny M; Mok, Yee-Foong

    2013-01-01

    Defining the aggregation process of proteins formed by poly-amino acid repeats in cells remains a challenging task due to a lack of robust techniques for their isolation and quantitation. Sedimentation velocity methodology using fluorescence detected analytical ultracentrifugation is one approach that can offer significant insight into aggregation formation and kinetics. While this technique has traditionally been used with purified proteins, it is now possible for substantial information to be collected with studies using cell lysates expressing a GFP-tagged protein of interest. In this chapter, we describe protocols for sample preparation and setting up the fluorescence detection system in an analytical ultracentrifuge to perform sedimentation velocity experiments on cell lysates containing aggregates formed by poly-amino acid repeat proteins.

  6. Native denaturation differential scanning fluorimetry: Determining the effect of urea using a quantitative real-time thermocycler.

    PubMed

    Childers, Christine L; Green, Stuart R; Dawson, Neal J; Storey, Kenneth B

    2016-09-01

    The effect of protein stability on kinetic function is monitored with many techniques that often require large amounts of expensive substrates and specialized equipment not universally available. We present differential scanning fluorimetry (DSF), a simple high-throughput assay performed in real-time thermocyclers, as a technique for analysis of protein unfolding. Furthermore, we demonstrate a correlation between the half-maximal rate of protein unfolding (Knd), and protein unfolding by urea (I50). This demonstrates that DSF methods can determine the structural stability of an enzyme's active site and can compare the relative structural stability of homologous enzymes with a high degree of sequence similarity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. © 2015 Authors; published by Portland Press Limited.

  8. Biomechanical Analysis of T2 Exercise

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.

    2010-01-01

    Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.

  9. Effects of finite spatial resolution on quantitative CBF images from dynamic PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.; Huang, S.C.; Mahoney, D.K.

    1985-05-01

    The finite spatial resolution of PET causes the time-activity responses on pixels around the boundaries between gray and white matter regions to contain kinetic components from tissues of different CBF's. CBF values estimated from kinetics of such mixtures are underestimated because of the nonlinear relationship between the time-activity response and the estimated CBF. Computer simulation is used to investigate these effects on phantoms of circular structures and realistic brain slice in terms of object size and quantitative CBF values. The CBF image calculated is compared to the case of having resolution loss alone. Results show that the size of amore » high flow region in the CBF image is decreased while that of a low flow region is increased. For brain phantoms, the qualitative appearance of CBF images is not seriously affected, but the estimated CBF's are underestimated by 11 to 16 percent in local gray matter regions (of size 1 cm/sup 2/) with about 14 percent reduction in global CBF over the whole slice. It is concluded that the combined effect of finite spatial resolution and the nonlinearity in estimating CBF from dynamic PET is quite significant and must be considered in processing and interpreting quantitative CBF images.« less

  10. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae

    PubMed Central

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-01-01

    Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast. PMID:19874630

  11. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.

    PubMed

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-10-30

    Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast.

  12. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung.

    PubMed

    Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris

    2016-04-21

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant (18)F-FDG and (18)F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  13. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris

    2016-04-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  14. How Can Biologically-Based Modeling of Arsenic Kinetics and Dynamics Inform the Risk Assessment Process? -- ETD

    EPA Science Inventory

    Quantitative biologically-based models describing key events in the continuum from arsenic exposure to the development of adverse health effects provide a framework to integrate information obtained across diverse research areas. For example, genetic polymorphisms in arsenic me...

  15. Electrochemical Removal of Metal Cations from Wastewater Monitored by Differential Pulse Polarography

    ERIC Educational Resources Information Center

    Bruce, Delphine; Kuhn, Alexander; Sojic, Neso

    2004-01-01

    Electrodeposition eliminates wastewater pollutants such as electrochemically active metal cations, with different pulse polarography (DPP) scrutinizing the kinetics of the treatment process. These mechanisms produce qualitative and quantitative data about the removal process, while students appreciate the use of electrochemistry in resolving…

  16. Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity.

    PubMed

    Liu, Y; Gibson, E R; Cain, J P; Wang, H; Grassian, V H; Laskin, A

    2008-02-21

    Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of Dp = 0.85 mum, particle loading densities 2 x 104 /= 0.06 (x3//2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gammanet >/= 0.003 at RH = 10% to 0.21 at 80%.

  17. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  18. Time-course, negative-stain electron microscopy–based analysis for investigating protein–protein interactions at the single-molecule level

    PubMed Central

    Nogal, Bartek; Bowman, Charles A.; Ward, Andrew B.

    2017-01-01

    Several biophysical approaches are available to study protein–protein interactions. Most approaches are conducted in bulk solution, and are therefore limited to an average measurement of the ensemble of molecular interactions. Here, we show how single-particle EM can enrich our understanding of protein–protein interactions at the single-molecule level and potentially capture states that are unobservable with ensemble methods because they are below the limit of detection or not conducted on an appropriate time scale. Using the HIV-1 envelope glycoprotein (Env) and its interaction with receptor CD4-binding site neutralizing antibodies as a model system, we both corroborate ensemble kinetics-derived parameters and demonstrate how time-course EM can further dissect stoichiometric states of complexes that are not readily observable with other methods. Visualization of the kinetics and stoichiometry of Env–antibody complexes demonstrated the applicability of our approach to qualitatively and semi-quantitatively differentiate two highly similar neutralizing antibodies. Furthermore, implementation of machine-learning techniques for sorting class averages of these complexes into discrete subclasses of particles helped reduce human bias. Our data provide proof of concept that single-particle EM can be used to generate a “visual” kinetic profile that should be amenable to studying many other protein–protein interactions, is relatively simple and complementary to well-established biophysical approaches. Moreover, our method provides critical insights into broadly neutralizing antibody recognition of Env, which may inform vaccine immunogen design and immunotherapeutic development. PMID:28972148

  19. Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment.

    PubMed

    Huang, Junlei; Wang, Yahui; Liu, Guoguang; Chen, Ping; Wang, Fengliang; Ma, Jingshuai; Li, Fuhua; Liu, Haijin; Lv, Wenying

    2017-04-01

    The oxidation of indometacin (IDM) by ferrate(VI) (Fe(VI)) was investigated to determine the reaction kinetics, transformation products, and changes in toxicity. The reaction between IDM and Fe(VI) followed first-order kinetics with respect to each reactant. The apparent second-order rate constants (k app ) decreased from 9.35 to 6.52 M -1  s -1 , as the pH of the solution increased from 7.0 to 10.0. The pH dependence of k app might be well explained by considering the species-specific rate constants of the reactions of IDM with Fe(VI). Detailed product studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that the oxidation products were primarily derived from the hydrolysis of amide linkages, the addition of hydroxyl groups, and electrophilic oxidation. The toxicity of the oxidation products was evaluated using the Microtox test, which indicated that transformation products exhibited less toxicity to the Vibrio fischeri bacteria. Quantitative structure-activity relationship (QSAR) analysis calculated by the ecological structure activity relationship (ECOSAR) revealed that all of the identified products exhibited lower acute and chronic toxicity than the parent pharmaceutical for fish, daphnid, and green algae. Furthermore, Fe(VI) was effective in the degradation IDM in water containing carbonate ions or fulvic acid (FA), and in lake water samples; however, higher Fe(VI) dosages would be required to completely remove IDM in lake water in contrast to deionized water.

  20. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V

    PubMed Central

    Tan, Xipeng; Kok, Yihong; Toh, Wei Quan; Tan, Yu Jun; Descoins, Marion; Mangelinck, Dominique; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2016-01-01

    As an important metal three-dimensional printing technology, electron beam melting (EBM) is gaining increasing attention due to its huge potential applications in aerospace and biomedical fields. EBM processing of Ti-6Al-4V as well as its microstructure and mechanical properties were extensively investigated. However, it is still lack of quantitative studies regarding its microstructural evolution, indicative of EBM thermal process. Here, we report α′ martensitic transformation and α/β interface evolution in varied printing thicknesses of EBM-printed Ti-6Al-4V block samples by means of atom probe tomography. Quantitative chemical composition analysis suggests a general phase transformation sequence. By increasing in-fill hatched thickness, elemental partitioning ratios arise and β volume fraction is increased. Furthermore, we observe kinetic vanadium segregation and aluminum depletion at interface front and the resultant α/β interface widening phenomenon. It may give rise to an increased α/β lattice mismatch and weakened α/β interfaces, which could account for the degraded strength as printing thickness increases. PMID:27185285

  1. Langevin model of low-energy fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierk, Arnold John

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less

  2. Langevin model of low-energy fission

    DOE PAGES

    Sierk, Arnold John

    2017-09-05

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for some observables which are close to measurements. In conclusion, this model is able to reproduce several mass and energy yield observables with a small number of physical parameters, some of which do not need to be varied after benchmarking to 235U (n, f) to predict results for other fissioning isotopes.« less

  3. Quantitative analysis of the Ca2+ -dependent regulation of delayed rectifier K+ current IKs in rabbit ventricular myocytes.

    PubMed

    Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M

    2017-04-01

    [Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Quantitative analysis of the Ca2+‐dependent regulation of delayed rectifier K+ current I Ks in rabbit ventricular myocytes

    PubMed Central

    Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora

    2017-01-01

    Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618

  5. Prostate specific antigen (PSA) kinetic as a prognostic factor in metastatic prostate cancer receiving androgen deprivation therapy: systematic review and meta-analysis.

    PubMed

    Afriansyah, Andika; Hamid, Agus Rizal Ardy Hariandy; Mochtar, Chaidir Arif; Umbas, Rainy

    2018-01-01

    Aim: Metastatic prostate cancer (mPCa) has a poor outcome with median survival of two to five years. The use of androgen deprivation therapy (ADT) is a gold standard in management of this stage.  Aim of this study is to analyze the prognostic value of PSA kinetics of patient treated with hormonal therapy related to survival from several published studies Method: Systematic review and meta-analysis was performed using literature searching in the electronic databases of MEDLINE, Science Direct, and Cochrane Library. Inclusion criteria were mPCa receiving ADT, a study analyzing Progression Free Survival (PFS), Overall Survival (OS), or Cancer Specific Survival (CSS) and prognostic factor of survival related to PSA kinetics (initial PSA, PSA nadir, and time to achieve nadir (TTN)). The exclusion criteria were metastatic castration resistant of prostate cancer (mCRPC) and non-metastatic disease. Generic inverse variance method was used to combine hazard ratio (HR) within the studies. Meta-analysis was performed using Review Manager 5.2 and a p-value <0.05 was considered statistically significant. Results: We found 873 citations throughout database searching with 17 studies were consistent with inclusion criteria. However, just 10 studies were analyzed in the quantitative analysis. Most of the studies had a good methodological quality based on Ottawa Scale. No significant association between initial PSA and PFS. In addition, there was no association between initial PSA and CSS/ OS. We found association of reduced PFS (HR 2.22; 95% CI 1.82 to 2.70) and OS/ CSS (HR 3.31; 95% CI 2.01-5.43) of patient with high PSA nadir. Shorter TTN was correlated with poor result of survival either PFS (HR 2.41; 95% CI 1.19 - 4.86) or CSS/ OS (HR 1.80; 95%CI  1.42 - 2.30) Conclusion: Initial PSA before starting ADT do not associated with survival in mPCa.  There is association of PSA nadir and TTN with survival.

  6. Prostate specific antigen (PSA) kinetic as a prognostic factor in metastatic prostate cancer receiving androgen deprivation therapy: systematic review and meta-analysis

    PubMed Central

    Afriansyah, Andika; Hamid, Agus Rizal Ardy Hariandy; Mochtar, Chaidir Arif; Umbas, Rainy

    2018-01-01

    Aim: Metastatic prostate cancer (mPCa) has a poor outcome with median survival of two to five years. The use of androgen deprivation therapy (ADT) is a gold standard in management of this stage.  Aim of this study is to analyze the prognostic value of PSA kinetics of patient treated with hormonal therapy related to survival from several published studies Method: Systematic review and meta-analysis was performed using literature searching in the electronic databases of MEDLINE, Science Direct, and Cochrane Library. Inclusion criteria were mPCa receiving ADT, a study analyzing Progression Free Survival (PFS), Overall Survival (OS), or Cancer Specific Survival (CSS) and prognostic factor of survival related to PSA kinetics (initial PSA, PSA nadir, and time to achieve nadir (TTN)). The exclusion criteria were metastatic castration resistant of prostate cancer (mCRPC) and non-metastatic disease. Generic inverse variance method was used to combine hazard ratio (HR) within the studies. Meta-analysis was performed using Review Manager 5.2 and a p-value <0.05 was considered statistically significant. Results: We found 873 citations throughout database searching with 17 studies were consistent with inclusion criteria. However, just 10 studies were analyzed in the quantitative analysis. Most of the studies had a good methodological quality based on Ottawa Scale. No significant association between initial PSA and PFS. In addition, there was no association between initial PSA and CSS/ OS. We found association of reduced PFS (HR 2.22; 95% CI 1.82 to 2.70) and OS/ CSS (HR 3.31; 95% CI 2.01-5.43) of patient with high PSA nadir. Shorter TTN was correlated with poor result of survival either PFS (HR 2.41; 95% CI 1.19 – 4.86) or CSS/ OS (HR 1.80; 95%CI  1.42 – 2.30) Conclusion: Initial PSA before starting ADT do not associated with survival in mPCa.  There is association of PSA nadir and TTN with survival PMID:29904592

  7. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method.

    PubMed

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  8. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Debalina; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term themore » Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.« less

  9. Kinetic Titration Series with Biolayer Interferometry

    PubMed Central

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  10. Kinetic titration series with biolayer interferometry.

    PubMed

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.

  11. The Role of Endocytosis during Morphogenetic Signaling

    PubMed Central

    Gonzalez-Gaitan, Marcos; Jülicher, Frank

    2014-01-01

    Morphogens are signaling molecules that are secreted by a localized source and spread in a target tissue where they are involved in the regulation of growth and patterning. Both the activity of morphogenetic signaling and the kinetics of ligand spreading in a tissue depend on endocytosis and intracellular trafficking. Here, we review quantitative approaches to study how large-scale morphogen profiles and signals emerge in a tissue from cellular trafficking processes and endocytic pathways. Starting from the kinetics of endosomal networks, we discuss the role of cellular trafficking and receptor dynamics in the formation of morphogen gradients. These morphogen gradients scale during growth, which implies that overall tissue size influences cellular trafficking kinetics. Finally, we discuss how such morphogen profiles can be used to control tissue growth. We emphasize the role of theory in efforts to bridge between scales. PMID:24984777

  12. Combustor kinetic energy efficiency analysis of the hypersonic research engine data

    NASA Astrophysics Data System (ADS)

    Hoose, K. V.

    1993-11-01

    A one-dimensional method for measuring combustor performance is needed to facilitate design and development scramjet engines. A one-dimensional kinetic energy efficiency method is used for measuring inlet and nozzle performance. The objective of this investigation was to assess the use of kinetic energy efficiency as an indicator for scramjet combustor performance. A combustor kinetic energy efficiency analysis was performed on the Hypersonic Research Engine (HRE) data. The HRE data was chosen for this analysis due to its thorough documentation and availability. The combustor, inlet, and nozzle kinetic energy efficiency values were utilized to determine an overall engine kinetic energy efficiency. Finally, a kinetic energy effectiveness method was developed to eliminate thermochemical losses from the combustion of fuel and air. All calculated values exhibit consistency over the flight speed range. Effects from fuel injection, altitude, angle of attack, subsonic-supersonic combustion transition, and inlet spike position are shown and discussed. The results of analyzing the HRE data indicate that the kinetic energy efficiency method is effective as a measure of scramjet combustor performance.

  13. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  14. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    PubMed

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  15. Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons

    PubMed Central

    Zheng, Yao-Rong; Stang, Peter J.

    2009-01-01

    The direct observation of dynamic ligand exchange beween Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable isotope labeling (1H/2D) of the pyridyl donors and electrospray ionization mass spectrometry (ESI-MS) together with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established based on quantitative mass spectral results. Further investigation showed that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counter anions. PMID:19243144

  16. Direct and quantitative characterization of dynamic ligand exchange between coordination-driven self-assembled supramolecular polygons.

    PubMed

    Zheng, Yao-Rong; Stang, Peter J

    2009-03-18

    The direct observation of dynamic ligand exchange between Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable (1)H/(2)D isotope labeling of the pyridyl donors and electrospray ionization mass spectrometry combined with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established on the basis of quantitative mass spectral results. Further investigation has shown that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counteranions.

  17. Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology.

    PubMed

    Steffen, Philipp A; Fonseca, João P; Ringrose, Leonie

    2012-10-01

    How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins. Copyright © 2012 WILEY Periodicals, Inc.

  18. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    PubMed Central

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  19. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system.

    PubMed

    Xiao, Ya-Dong; Huang, Wu-Yang; Li, Da-Jing; Song, Jiang-Feng; Liu, Chun-Quan; Wei, Qiu-Yu; Zhang, Min; Yang, Qiu-Ming

    2018-01-15

    Thermal degradation kinetics of lutein, zeaxanthin, β-cryptoxanthin, β-carotene was studied at 25, 35, and 45°C in a model system. Qualitative and quantitative analyses of all-trans- and cis-carotenoids were conducted using HPLC-DAD-MS technologies. Kinetic and thermodynamic parameters were calculated by non-linear regression. A total of 29 geometrical isomers and four oxidation products were detected, including all-trans-, keto compounds, mono-cis- and di-cis-isomers. Degradations of all-trans-lutein, zeaxanthin, β-cryptoxanthin, and β-carotene were described by a first-order kinetic model, with the order of rate constants as k β -carotene >k β -cryptoxanthin >k lutein >k zeaxanthin . Activation energies of zeaxanthin, lutein, β-cryptoxanthin, and β-carotene were 65.6, 38.9, 33.9, and 8.6kJ/moL, respectively. cis-carotenoids also followed with the first-order kinetic model, but they did not show a defined sequence of degradation rate constants and activation energies at different temperatures. A possible degradation pathway of four carotenoids was identified to better understand the mechanism of carotenoid degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    PubMed

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (E a ), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. E a , k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

Top