Science.gov

Sample records for quantitative mass spectrometry

  1. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  2. Quantitative mass spectrometry: an overview

    PubMed Central

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  3. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  4. Mass spectrometry-based quantitative proteomic profiling.

    PubMed

    Yan, Wei; Chen, Sharon S

    2005-05-01

    Quantitative proteomics involves the identification and quantitation of protein components in various biological systems. Stable isotope labelling technology, by both metabolic and chemical methods, has been the most commonly used approach for global proteome-wide profiling. Recently, its capability has been extended from labelled pairs to multiple labels, allowing for the simultaneous quantification of multiplex samples. The ion intensity-based quantitative approach has progressively gained more popularity as mass spectrometry performance has improved significantly. Although some success has been reported, it remains difficult comprehensively to characterise the global proteome, due to its enormous complexity and dynamic range. The use of sub-proteome fractionation techniques permits a simplification of the proteome and provides a practical step towards the ultimate dissection of the entire proteome. Further development of the technology for targeting sub-proteomes on a functional basis - such as selecting proteins with differential expression profiles from mass spectrometric analyses, for further mass spectrometric sequencing in an intelligent manner--is expected in the near future.

  5. Protein Quantitation of the Developing Cochlea Using Mass Spectrometry.

    PubMed

    Darville, Lancia N F; Sokolowski, Bernd H A

    2016-01-01

    Mass spectrometry-based proteomics allows for the measurement of hundreds to thousands of proteins in a biological system. Additionally, mass spectrometry can also be used to quantify proteins and peptides. However, observing quantitative differences between biological systems using mass spectrometry-based proteomics can be challenging because it is critical to have a method that is fast, reproducible, and accurate. Therefore, to study differential protein expression in biological samples labeling or label-free quantitative methods can be used. Labeling methods have been widely used in quantitative proteomics, however label-free methods have become equally as popular and more preferred because they produce faster, cleaner, and simpler results. Here, we describe the methods by which proteins are isolated and identified from cochlear sensory epithelia tissues at different ages and quantitatively differentiated using label-free mass spectrometry.

  6. Fluxomics: mass spectrometry versus quantitative imaging

    PubMed Central

    Wiechert, Wolfgang; Schweissgut, Oliver; Takanaga, Hitomi; Frommer, Wolf B

    2010-01-01

    The recent development of analytic high-throughput technologies enables us to take a bird’s view of how metabolism is regulated in real time. We have known for a long time that metabolism is highly regulated at all levels, including transcriptional, posttranslational and allosteric controls. Flux through a metabolic or signaling pathway is determined by the activity of its individual components. Fluxomics aims to define the genes involved in regulation by following the flux. Two technologies are used to monitor fluxes. Pulse labeling of the organism or cell with a tracer, such as 13C, followed by mass spectrometric analysis of the partitioning of label into different compounds provides an efficient tool to study flux and to compare the effect of mutations on flux. The second approach is based on the use of flux sensors, proteins that respond with a conformational change to ligand binding. Fluorescence resonance energy transfer (FRET) detects the conformational change and serves as a proxy for ligand concentration. In contrast to the mass spectrometry assays, FRET nanosensors monitor only a single compound. Both methods provide high time resolution. The major advantages of FRET nanosensors are that they yield data with cellular and subcellular resolution and the method is minimally invasive. PMID:17481942

  7. Fluxomics: mass spectrometry versus quantitative imaging.

    PubMed

    Wiechert, Wolfgang; Schweissgut, Oliver; Takanaga, Hitomi; Frommer, Wolf B

    2007-06-01

    The recent development of analytic high-throughput technologies enables us to take a bird's view of how metabolism is regulated in real time. We have known for a long time that metabolism is highly regulated at all levels, including transcriptional, posttranslational and allosteric controls. Flux through a metabolic or signaling pathway is determined by the activity of its individual components. Fluxomics aims to define the genes involved in regulation by following the flux. Two technologies are used to monitor fluxes. Pulse labeling of the organism or cell with a tracer, such as 13C, followed by mass spectrometric analysis of the partitioning of label into different compounds provides an efficient tool to study flux and to compare the effect of mutations on flux. The second approach is based on the use of flux sensors, proteins that respond with a conformational change to ligand binding. Fluorescence resonance energy transfer (FRET) detects the conformational change and serves as a proxy for ligand concentration. In contrast to the mass spectrometry assays, FRET nanosensors monitor only a single compound. Both methods provide high time resolution. The major advantages of FRET nanosensors are that they yield data with cellular and subcellular resolution and the method is minimally invasive.

  8. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  9. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    SciTech Connect

    Xie, Fang; Liu, Tao; Qian, Weijun; Petyuk, Vladislav A.; Smith, Richard D.

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  10. Quantitative matrix assisted plasma desorption mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jungclas, Hartmut; Schmidt, Lothar; Köhl, Peter; Fritsch, Hans-Walter

    1993-07-01

    The development of optimized sample preparation methods accompanied the history of successful applications of 252Cf-PDMS. Studying the pharmacokinetics of the antineoplastic agent etoposide serum samples from cancer patients were labelled with the homologeous compounds teniposide as internal standard for the quantitative PDMS analysis. Sample purification by chloroform extraction and by thin layer chromatography turned out to be insufficient to guarantee a satisfying final PDMS result. Embedding the purified sample into a matrix of suitable substances on the target reduced the negative influence of impurities, raised the signal-to-noise ratio of molecular ions and improved the reproducibility of calibration. This preparation method was again successfully employed for the quantitative analysis of the cytostatic drug doxorubicin. The application of a different matrix optimized for the preparation of this anthracycline and its homologeous compound daunorubicin, improved the sensitivity, linearity and detection limit.

  11. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  12. Quantitative aspects of inductively coupled plasma mass spectrometry.

    PubMed

    Bulska, Ewa; Wagner, Barbara

    2016-10-28

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided.This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  14. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  15. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  16. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry.

    PubMed

    Zhang, C; Liu, Y

    2017-01-01

    Posttranslational modifications (PTMs) of histones are one of the main research interests in the rapidly growing field of epigenetics. Accurate and precise quantification of these highly complex histone PTMs is critical for understanding the histone code and the biological significance behind it. It nonetheless remains a major analytical challenge. Mass spectrometry (MS) has been proven as a robust tool in retrieving quantitative information of histone PTMs, and a variety of MS-based quantitative strategies have been successfully developed and employed in basic research as well as clinical studies. In this chapter, we provide an overview for quantitative analysis of histone PTMs, often highly flexible and case dependent, as a primer for future experimental designs. © 2017 Elsevier Inc. All rights reserved.

  17. Attomole quantitation of protein separations with accelerator mass spectrometry

    SciTech Connect

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  18. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

    PubMed Central

    2016-01-01

    Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides. PMID:27103886

  19. Issues and Applications in Label-Free Quantitative Mass Spectrometry

    PubMed Central

    Lai, Xianyin; Wang, Lianshui; Witzmann, Frank A.

    2013-01-01

    To address the challenges associated with differential expression proteomics, label-free mass spectrometric protein quantification methods have been developed as alternatives to array-based, gel-based, and stable isotope tag or label-based approaches. In this paper, we focus on the issues associated with label-free methods that rely on quantitation based on peptide ion peak area measurement. These issues include chromatographic alignment, peptide qualification for quantitation, and normalization. In addressing these issues, we present various approaches, assembled in a recently developed label-free quantitative mass spectrometry platform, that overcome these difficulties and enable comprehensive, accurate, and reproducible protein quantitation in highly complex protein mixtures from experiments with many sample groups. As examples of the utility of this approach, we present a variety of cases where the platform was applied successfully to assess differential protein expression or abundance in body fluids, in vitro nanotoxicology models, tissue proteomics in genetic knock-in mice, and cell membrane proteomics. PMID:23401775

  20. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  1. Accelerator mass spectrometry for quantitative in vivo tracing

    SciTech Connect

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  2. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry.

    PubMed

    Collins, Ben C; Hunter, Christie L; Liu, Yansheng; Schilling, Birgit; Rosenberger, George; Bader, Samuel L; Chan, Daniel W; Gibson, Bradford W; Gingras, Anne-Claude; Held, Jason M; Hirayama-Kurogi, Mio; Hou, Guixue; Krisp, Christoph; Larsen, Brett; Lin, Liang; Liu, Siqi; Molloy, Mark P; Moritz, Robert L; Ohtsuki, Sumio; Schlapbach, Ralph; Selevsek, Nathalie; Thomas, Stefani N; Tzeng, Shin-Cheng; Zhang, Hui; Aebersold, Ruedi

    2017-08-21

    Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.

  3. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites

    PubMed Central

    Lietz, Christopher B.; Gemperline, Erin; Li, Lingjun

    2013-01-01

    Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. PMID:23603211

  4. [Identification and quantitative determination of baclofen in human blood by HPLC with mass spectrometry detection].

    PubMed

    Dukova, O A; Kotlovsky, M Yu; Pokrovsky, A A; Suvorova, E V; Shivrina, T G; Krasnov, E A; Efremov, A A

    2016-03-01

    A method of identification and quantitative determination of baclofen in blood by HPLC with mass spectrometry detection has been developed. It is characterized by high sensitivity, specificity, linearity, accuracy, reproducibility, and a low detection for quantitative determination. The method has been used for diagnostics of acute baclofen poisoning in patients.

  5. Assessing the Phagosome Proteome by Quantitative Mass Spectrometry.

    PubMed

    Peltier, Julien; Härtlova, Anetta; Trost, Matthias

    2017-01-01

    Phagocytosis is the process that engulfs particles in vesicles called phagosomes that are trafficked through a series of maturation steps, culminating in the destruction of the internalized cargo. Because phagosomes are in direct contact with the particle and undergo constant fusion and fission events with other organelles, characterization of the phagosomal proteome is a powerful tool to understand mechanisms controlling innate immunity as well as vesicle trafficking. The ability to isolate highly pure phagosomes through the use of latex beads led to an extensive use of proteomics to study phagosomes under different stimuli. Thousands of different proteins have been identified and quantified, revealing new properties and shedding new light on the dynamics and composition of maturing phagosomes and innate immunity mechanisms. In this chapter, we describe how quantitative-based proteomic methods such as label-free, dimethyl labeling or Tandem Mass Tag (TMT) labeling can be applied for the characterization of protein composition and translocation during maturation of phagosomes in macrophages.

  6. Quantitative sampling with free-jet, molecular beam mass spectrometry

    SciTech Connect

    Wang, D.; Meglen, R.; Evans, R.J.

    1995-03-01

    The MBMS technique is used in the authors` laboratory as a rapid screening tool to provide qualitative information about complex mixtures from high temperature processes. It has been widely applied to the various research projects to develop new technologies for energy conservation and renewable energy. They include thermochemical conversion of biomass, municipal solid waste, and other waste materials to fuels and high value chemicals, plastics recycling, solar destruction of hazardous wastes, employing pyrolysis, catalysis, and sometimes sunlight. It often becomes desirable to know product yields in order to assess the economics of the process under study. Unfortunately, when it comes to quantitative analysis, MBMS has not matched the performance of conventional methods such as GC or GC/MS. The main problem is the interference of peaks from overlapping fragment ions in multicomponent mixtures. In addition, when the MBMS is interfaced with a pyrolysis/catalysis reactor system, it becomes much more difficult to control the whole system well enough to achieve identical performance from one day to the other, or even within the same day. In this paper the authors review several approaches that they have used, with some degree of success, to estimate yields of individual products in a mixture from MBMS data. They are based on calibration methods using a single ion, multiple ions, or the whole mass spectrum. Among the approaches examined are linear least square regression, multiple linear regression (MLR) and principle component regression (PCR). They discuss a few of the major problems encountered in using these methods. The most recent approach to obtaining quantitative analysis with MBMS at NREL is based on partial least squares. The authors present some preliminary results and discuss future plans to realize this approach in practical applications and to generalize it to other environments where MBMS has advantages over conventional techniques.

  7. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  8. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  9. Standard addition strip for quantitative electrostatic spray ionization mass spectrometry analysis: determination of caffeine in drinks.

    PubMed

    Tobolkina, Elena; Qiao, Liang; Roussel, Christophe; Girault, Hubert H

    2014-12-01

    Standard addition strips were prepared for the quantitative determination of caffeine in different beverages by electrostatic spray ionization mass spectrometry (ESTASI-MS). The gist of this approach is to dry spots of caffeine solutions with different concentrations on a polymer strip, then to deposit a drop of sample mixed with an internal standard, here theobromine on each spot and to measure the mass spectrometry signals of caffeine and theobromine by ESTASI-MS. This strip approach is very convenient and provides quantitative analyses as accurate as the classical standard addition method by MS or liquid chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Zondlo, Mark A.; Bomse, David S.

    2005-01-01

    The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes.

  11. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data.

    PubMed

    Mueller, Lukas N; Brusniak, Mi-Youn; Mani, D R; Aebersold, Ruedi

    2008-01-01

    Over the past decade, a series of experimental strategies for mass spectrometry based quantitative proteomics and corresponding computational methodology for the processing of the resulting data have been generated. We provide here an overview of the main quantification principles and available software solutions for the analysis of data generated by liquid chromatography coupled to mass spectrometry (LC-MS). Three conceptually different methods to perform quantitative LC-MS experiments have been introduced. In the first, quantification is achieved by spectral counting, in the second via differential stable isotopic labeling, and in the third by using the ion current in label-free LC-MS measurements. We discuss here advantages and challenges of each quantification approach and assess available software solutions with respect to their instrument compatibility and processing functionality. This review therefore serves as a starting point for researchers to choose an appropriate software solution for quantitative proteomic experiments based on their experimental and analytical requirements.

  12. Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry.

    PubMed

    Liu, Huiling; Zhang, Yangjun; Wang, Jinglan; Wang, Dong; Zhou, Chunxi; Cai, Yun; Qian, Xiaohong

    2006-09-15

    The mass spectrometry-based methods with a stable isotope as the internal standard in quantitative proteomics have been developed quickly in recent years. But the use of some stable isotope reagents is limited by the relative high price and synthetic difficulties. We have developed a new method for quantitative proteomics research by using metal element chelated tags (MECT) coupled with mass spectrometry. The bicyclic anhydride diethylenetriamine-N,N,N',N' ',N' '-pentaacetic acid (DTPA) is covalently coupled to primary amines of peptides, and the ligand is then chelated to the rare earth metals Y and Tb. The tagged peptides are mixed and analyzed by LC-ESI-MS/MS. Peptides are quantified by measuring the relative signal intensities for the Y and Tb tag pairs in MS, which permits the quantitation of the original proteins generating the corresponding peptides. The protein is then identified by the corresponding peptide sequence from its MS/MS spectrum. The MECT method was evaluated by using standard proteins as model sample. The experimental results showed that metal chelate-tagged peptides chromatographically coeluted successfully during the reversed-phase LC analysis. The relative quantitation results were accurate for proteins using MECT. DTPA modification of the N-terminal of peptides promoted cleaner fragmentation (only y-series ions) in mass spectrometry and improved the confidence level of protein identification. The MECT strategy provides a simple, rapid, and economical alternative to current mass tagging technologies available.

  13. Quantitative analysis of multiple components based on liquid chromatography with mass spectrometry in full scan mode.

    PubMed

    Xu, Min Li; Li, Bao Qiong; Wang, Xue; Chen, Jing; Zhai, Hong Lin

    2016-08-01

    Although liquid chromatography with mass spectrometry in full scan mode can obtain all the signals simultaneously in a large range and low cost, it is rarely used in quantitative analysis due to several problems such as chromatographic drifts and peak overlap. In this paper, we propose a Tchebichef moment method for the simultaneous quantitative analysis of three active compounds in Qingrejiedu oral liquid based on three-dimensional spectra in full scan mode of liquid chromatography with mass spectrometry. After the Tchebichef moments were calculated directly from the spectra, the quantitative linear models for three active compounds were established by stepwise regression. All the correlation coefficients were more than 0.9978. The limits of detection and limits of quantitation were less than 0.11 and 0.49 μg/mL, respectively. The intra- and interday precisions were less than 6.54 and 9.47%, while the recovery ranged from 102.56 to 112.15%. Owing to the advantages of multi-resolution and inherent invariance properties, Tchebichef moments could provide favorable results even in the situation of peaks shifting and overlapping, unknown interferences and noise signals, so it could be applied to the analysis of three-dimensional spectra in full scan mode of liquid chromatography with mass spectrometry.

  14. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  15. Building the connectivity map of epigenetics: Chromatin profiling by quantitative targeted mass spectrometry

    PubMed Central

    Creech, Amanda L.; Taylor, Jordan E.; Maier, Verena K.; Wu, Xiaoyun; Feeney, Caitlin M.; Udeshi, Namrata D.; Peach, Sally E.; Boehm, Jesse S.; Lee, Jeannie T.; Carr, Steven A.; Jaffe, Jacob D.

    2014-01-01

    Epigenetic control of genome function is an important regulatory mechanism in diverse processes such as lineage commitment and environmental sensing, and in disease etiologies ranging from neuropsychiatric disorders to cancer. Here we report a robust, high-throughput targeted, quantitative mass spectrometry (MS) method to rapidly profile modifications of the core histones of chromatin that compose the epigenetic landscape, enabling comparisons among cells with differing genetic backgrounds, genomic perturbations, and drug treatments. PMID:25448295

  16. Building the Connectivity Map of epigenetics: chromatin profiling by quantitative targeted mass spectrometry.

    PubMed

    Creech, Amanda L; Taylor, Jordan E; Maier, Verena K; Wu, Xiaoyun; Feeney, Caitlin M; Udeshi, Namrata D; Peach, Sally E; Boehm, Jesse S; Lee, Jeannie T; Carr, Steven A; Jaffe, Jacob D

    2015-01-15

    Epigenetic control of genome function is an important regulatory mechanism in diverse processes such as lineage commitment and environmental sensing, and in disease etiologies ranging from neuropsychiatric disorders to cancer. Here we report a robust, high-throughput targeted, quantitative mass spectrometry (MS) method to rapidly profile modifications of the core histones of chromatin that compose the epigenetic landscape, enabling comparisons among cells with differing genetic backgrounds, genomic perturbations, and drug treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Quantitation of acrylamide in foods by high-resolution mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo

    2014-01-08

    Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS.

  18. The quantitation of procaine in equine plasma by liquid chromatography-linear ion trap mass spectrometry.

    PubMed

    Zientek, Keith D; Anderson, Danielle F; Wegner, Kirsten; Cole, Cynthia

    2007-03-01

    A method for the extraction and quantitation of procaine in equine plasma was developed for use with liquid chromatography-mass spectrometry (LC-MS). Procaine was isolated from equine plasma by liquid-liquid extraction at pH 11 with dichloromethane using procaine-d10 as an internal standard. Quantitation was achieved by LC-MS using a 3-microm C-18 column coupled to an electrospray ionization source on a linear ion-trap mass spectrometer. The limit of detection and limit of quantitation was determined to be 50 and 200 pg/mL, respectively. The lowest limit of detection determined by previous methods was 1 ng/mL. Administration samples were obtained as part of a larger study to determine a regulatory limit for procaine in racehorses and procaine concentrations were determined using this method.

  19. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  20. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels.

    PubMed

    Cordeau, Emmanuelle; Arnaudguilhem, Carine; Bouyssiere, Brice; Hagège, Agnès; Martinez, Jean; Subra, Gilles; Cantel, Sonia; Enjalbal, Christine

    2016-01-01

    In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and

  1. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels

    PubMed Central

    Cordeau, Emmanuelle; Arnaudguilhem, Carine; Bouyssiere, Brice; Hagège, Agnès; Martinez, Jean; Subra, Gilles; Cantel, Sonia

    2016-01-01

    In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and

  2. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    SciTech Connect

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  3. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data*

    PubMed Central

    Mitchell, Christopher J.; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-01-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, 15N, 13C, or 18O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25–45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. PMID:27231314

  4. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. © 2016 by The American Society for Biochemistry and Molecular Biology

  5. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry.

    PubMed

    Mo, Shunyan; Dong, Linlin; Hurst, W Jeffrey; van Breemen, Richard B

    2013-09-01

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays.

  6. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry

    PubMed Central

    Mo, Shunyan; Dong, Linlin; Hurst, W. Jeffrey; van Breemen, Richard B.

    2014-01-01

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays. PMID:23884629

  7. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  8. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry.

    PubMed

    Steinhauser, Matthew L; Lechene, Claude P

    2013-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans.

  9. New sample preparation for quantitative laser desorption mass spectrometry and optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Haefliger, Olivier P.; Zenobi, Renato

    1998-04-01

    Several analytical mass spectrometric and optical spectroscopic methods require a step during which a nonvolatile substance is desorbed by a laser pulse. It is, however, very difficult to use these methods for quantitative measurements because an accurate control over the amount desorbed by the laser pulse is generally not possible, especially when mixtures of several substances are used. We report a new fast and convenient sample preparation procedure that solves these problems. A solution of the analytes is mixed with a solution of poly(vinyl chloride) to obtain a homogeneous and vacuum-stable thin polymer membrane after the solvent has evaporated. Laser ablation is then performed directly from this membrane, allowing an accurate control of the amount of ablated analytes and excellent reproducibility. Quantitative laser desorption mass spectrometry over three orders of magnitude as well as optical spectroscopic measurements using this sample preparation method are demonstrated for polycyclic aromatic hydrocarbons.

  10. Enabling Quantitative Analysis in Ambient Ionization Mass Spectrometry: Internal Standard Coated Capillary Samplers

    PubMed Central

    Liu, Jiangjiang; Cooks, R. Graham; Ouyang, Zheng

    2013-01-01

    We describe a sampling method using glass capillaries for quantitative analysis of trace analytes in small volumes of complex mixtures (~1 μL) using ambient ionization mass spectrometry. The internal surface of a sampling glass capillary was coated with internal standard then used to draw liquid sample and so transfer both the analyte and internal standard in a single fixed volume onto a substrate for analysis. The internal standard was automatically mixed into the sample during this process and the volumes of the internal standard solution and sample are both fixed by the capillary volume. Precision in quantitation is insensitive to variations in length of the capillary, making the preparation of the sampling capillary simple and providing a robust sampling protocol. Significant improvements in quantitation accuracy were obtained for analysis of 1 μL samples using various ambient ionization methods. PMID:23731380

  11. Quantitative Proteomics Targeting Classes of Motif-containing Peptides Using Immunoaffinity-based Mass Spectrometry*

    PubMed Central

    Olsson, Niclas; James, Peter; Borrebaeck, Carl A. K.; Wingren, Christer

    2012-01-01

    The development of high-performance technology platforms for generating detailed protein expression profiles, or protein atlases, is essential. Recently, we presented a novel platform that we termed global proteome survey, where we combined the best features of affinity proteomics and mass spectrometry, to probe any proteome in a species independent manner while still using a limited set of antibodies. We used so called context-independent-motif-specific antibodies, directed against short amino acid motifs. This enabled enrichment of motif-containing peptides from a digested proteome, which then were detected and identified by mass spectrometry. In this study, we have demonstrated the quantitative capability, reproducibility, sensitivity, and coverage of the global proteome survey technology by targeting stable isotope labeling with amino acids in cell culture-labeled yeast cultures cultivated in glucose or ethanol. The data showed that a wide range of motif-containing peptides (proteins) could be detected, identified, and quantified in a highly reproducible manner. On average, each of six different motif-specific antibodies was found to target about 75 different motif-containing proteins. Furthermore, peptides originating from proteins spanning in abundance from over a million down to less than 50 copies per cell, could be targeted. It is worth noting that a significant set of peptides previously not reported in the PeptideAtlas database was among the profiled targets. The quantitative data corroborated well with the corresponding data generated after conventional strong cation exchange fractionation of the same samples. Finally, several differentially expressed proteins, with both known and unknown functions, many relevant for the central carbon metabolism, could be detected in the glucose- versus ethanol-cultivated yeast. Taken together, the study demonstrated the potential of our immunoaffinity-based mass spectrometry platform for reproducible quantitative

  12. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers☆

    PubMed Central

    Fischer, Lutz; Chen, Zhuo Angel; Rappsilber, Juri

    2013-01-01

    Dynamic proteins and multi-protein complexes govern most biological processes. Cross-linking/mass spectrometry (CLMS) is increasingly successful in providing residue-resolution data on static proteinaceous structures. Here we investigate the technical feasibility of recording dynamic processes using isotope-labelling for quantitation. We cross-linked human serum albumin (HSA) with the readily available cross-linker BS3-d0/4 in different heavy/light ratios. We found two limitations. First, isotope labelling reduced the number of identified cross-links. This is in line with similar findings when identifying proteins. Second, standard quantitative proteomics software was not suitable for work with cross-linking. To ameliorate this we wrote a basic open source application, XiQ. Using XiQ we could establish that quantitative CLMS was technically feasible. Biological significance Cross-linking/mass spectrometry (CLMS) has become a powerful tool for providing residue-resolution data on static proteinaceous structures. Adding quantitation to CLMS will extend its ability of recording dynamic processes. Here we introduce a cross-linking specific quantitation strategy by using isotope labelled cross-linkers. Using a model system, we demonstrate the principle and feasibility of quantifying cross-linking data and discuss challenges one may encounter while doing so. We then provide a basic open source application, XiQ, to carry out automated quantitation of CLMS data. Our work lays the foundations of studying the molecular details of biological processes at greater ease than this could be done so far. This article is part of a Special Issue entitled: New Horizons and Applications for Proteomics [EuPA 2012]. PMID:23541715

  13. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    PubMed

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Current challenges in software solutions for mass spectrometry-based quantitative proteomics.

    PubMed

    Cappadona, Salvatore; Baker, Peter R; Cutillas, Pedro R; Heck, Albert J R; van Breukelen, Bas

    2012-09-01

    Mass spectrometry-based proteomics has evolved as a high-throughput research field over the past decade. Significant advances in instrumentation, and the ability to produce huge volumes of data, have emphasized the need for adequate data analysis tools, which are nowadays often considered the main bottleneck for proteomics development. This review highlights important issues that directly impact the effectiveness of proteomic quantitation and educates software developers and end-users on available computational solutions to correct for the occurrence of these factors. Potential sources of errors specific for stable isotope-based methods or label-free approaches are explicitly outlined. The overall aim focuses on a generic proteomic workflow.

  15. Beyond hairballs: the use of quantitative mass spectrometry data to understand protein-protein interactions

    PubMed Central

    Gingras, Anne-Claude; Raught, Brian

    2012-01-01

    The past 10 years have witnessed a dramatic proliferation in the availability of protein interaction data. However, for interaction mapping based on affinity purification coupled with mass spectrometry (AP-MS), there is a wealth of information present in the datasets that often goes unrecorded in public repositories, and as such remains largely unexplored. Further, how this type of data is represented and used by bioinformaticians has not been well established. Here, we point out some common mistakes in how AP-MS data are handled, and describe how protein complex organization and interaction dynamics can be inferred using quantitative AP-MS approaches. PMID:22710165

  16. Quantitation of Insulin-Like Growth Factor 1 in Serum by Liquid Chromatography High Resolution Accurate-Mass Mass Spectrometry.

    PubMed

    Ketha, Hemamalini; Singh, Ravinder J

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is a 70 amino acid peptide hormone which acts as the principal mediator of the effects of growth hormone (GH). Due to a wide variability in circulating concentration of GH, IGF-1 quantitation is the first step in the diagnosis of GH excess or deficiency. Majority (>95 %) of IGF-1 circulates as a ternary complex along with its principle binding protein insulin-like growth factor 1 binding protein 3 (IGFBP-3) and acid labile subunit. The assay design approach for IGF-1 quantitation has to include a step to dissociate IGF-1 from its ternary complex. Several commercial assays employ a buffer containing acidified ethanol to achieve this. Despite several modifications, commercially available immunoassays have been shown to have challenges with interference from IGFBP-3. Additionally, inter-method comparison between IGF-1 immunoassays has been shown to be suboptimal. Mass spectrometry has been utilized for quantitation of IGF-1. In this chapter a liquid chromatography high resolution accurate-mass mass spectrometry (LC-HRAMS) based method for IGF-1 quantitation has been described.

  17. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry

    PubMed Central

    Chavez, Juan D.; Eng, Jimmy K.; Schweppe, Devin K.; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E.

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions. PMID:27997545

  18. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  19. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis.

    PubMed

    Nanita, Sergio C; Kaldon, Laura G

    2016-01-01

    Where does flow injection analysis mass spectrometry (FIA-MS) stand relative to ambient mass spectrometry (MS) and chromatography-MS? Improvements in FIA-MS methods have resulted in fast-expanding uses of this technique. Key advantages of FIA-MS over chromatography-MS are fast analysis (typical run time <60 s) and method simplicity, and FIA-MS offers high-throughput without compromising sensitivity, precision and accuracy as much as ambient MS techniques. Consequently, FIA-MS is increasingly becoming recognized as a suitable technique for applications where quantitative screening of chemicals needs to be performed rapidly and reliably. The FIA-MS methods discussed herein have demonstrated quantitation of diverse analytes, including pharmaceuticals, pesticides, environmental contaminants, and endogenous compounds, at levels ranging from parts-per-billion (ppb) to parts-per-million (ppm) in very complex matrices (such as blood, urine, and a variety of foods of plant and animal origin), allowing successful applications of the technique in clinical diagnostics, metabolomics, environmental sciences, toxicology, and detection of adulterated/counterfeited goods. The recent boom in applications of FIA-MS for high-throughput quantitative analysis has been driven in part by (1) the continuous improvements in sensitivity and selectivity of MS instrumentation, (2) the introduction of novel sample preparation procedures compatible with standalone mass spectrometric analysis such as salting out assisted liquid-liquid extraction (SALLE) with volatile solutes and NH4(+) QuEChERS, and (3) the need to improve efficiency of laboratories to satisfy increasing analytical demand while lowering operational cost. The advantages and drawbacks of quantitative analysis by FIA-MS are discussed in comparison to chromatography-MS and ambient MS (e.g., DESI, LAESI, DART). Generally, FIA-MS sits 'in the middle' between ambient MS and chromatography-MS, offering a balance between analytical

  20. Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography-mass spectrometry/mass spectrometry.

    PubMed

    Sealey-Voyksner, Jennifer A; Khosla, Chaitan; Voyksner, Robert D; Jorgenson, James W

    2010-06-18

    A novel, specific and sensitive non-immunological liquid chromatography-mass spectrometry (LC-MS) based assay has been developed to detect and quantify trace levels of wheat gluten in food and consumer products. Detection and quantification of dietary gluten is important, because gluten is a principle trigger of a variety of immune diseases including food allergies and intolerances. One such disease, celiac sprue, can cause intestinal inflammation and enteropathy in patients who are exposed to dietary gluten. At present, immunochemistry is the leading analytical method for gluten detection in food. Consequently, enzyme-linked immunosorbent assays (ELISAs), such as the sandwich or competitive type assays, are the only commercially available methods to ensure that food and consumer products are accurately labeled as gluten-free. The availability of a comprehensive, fast and economic alternative to the immunological ELISA may also facilitate research towards the development of new drugs, therapies and food processing technologies to aid patients with gluten intolerances and for gluten-free labeling and certification purposes. LC-MS is an effective and efficient analytical technique for the study of cereal grain proteins and to quantify trace levels of targeted dietary gluten peptides in complex matrices. Initial efforts in this area afforded the unambiguous identification and structural characterization of six unique physiologically relevant wheat gluten peptides. This paper describes the development and optimization of an LC-MS/MS method that attempts to provide the best possible accuracy and sensitivity for the quantitative detection of trace levels of these six peptides in various food and consumer products. The overall performance of this method was evaluated using native cereal grains. Experimental results demonstrated that this method is capable of detecting and quantifying select target peptides in food over a range from 10pg/mg to 100ng/mg (corresponding to

  1. High Throughput Quantitative Analysis of Serum Proteins Using Glycopeptide Capture and Liquid Chromatography Mass Spectrometry

    SciTech Connect

    Zhang, Hui; Yi, Eugene C.; Li, Xiao-jun; Mallick, Parag; Kelly-Spratt, Karen S.; Masselon, Christophe D.; Camp, David G.; Smith, Richard D.; Kemp, Christopher J.; Aebersold, Reudi

    2005-02-01

    It is expected that the composition of the serum proteome can provide valuable information about the state of the human body in health and disease and that this information can be extracted via quantitative proteomic measurements. Suitable proteomic techniques need to be sensitive, reproducible, and robust to detect potential biomarkers below the level of highly expressed proteins, generate data sets that are comparable between experiments and laboratories, and have high throughput to support statistical studies. Here we report a method for high throughput quantitative analysis of serum proteins. It consists of the selective isolation of peptides that are N-linked glycosylated in the intact protein, the analysis of these now deglycosylated peptides by liquid chromatography electrospray ionization mass spectrometry, and the comparative analysis of the resulting patterns. By focusing selectively on a few formerly N-linked glycopeptides per serum protein, the complexity of the analyte sample is significantly reduced and the sensitivity and throughput of serum proteome analysis are increased compared with the analysis of total tryptic peptides from unfractionated samples. We provide data that document the performance of the method and show that sera from untreated normal mice and genetically identical mice with carcinogen-induced skin cancer can be unambiguously discriminated using unsupervised clustering of the resulting peptide patterns. We further identify, by tandem mass spectrometry, some of the peptides that were consistently elevated in cancer mice compared with their control littermates.

  2. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging.

    PubMed

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-03-30

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research.

  3. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems.

    PubMed

    Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman

    2016-10-28

    Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo Typically, the analysis is carried out in vitro, by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  4. Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics.

    PubMed

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas; Schmich, Fabian; Sinclair, John; Mršnik, Martina; Schoof, Erwin M; Barker, Holly E; Linding, Rune; Jørgensen, Claus; Erler, Janine T

    2014-05-02

    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC data were also developed, and computational mapping of MALDI-MSI data to IHC results was applied for data validation. The results and limitations of the methodologies described are discussed.

  5. Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry.

    PubMed

    Nuengchamnong, Nitra; Ingkaninan, Kornkanok; Kaewruang, Wiroje; Wongareonwanakij, Sathaporn; Hongthongdaeng, Bhinai

    2007-08-15

    A novel HPLC-MS/MS method was developed for the quantitative determination of 1-deoxynojirimycin (DNJ), a potent glucosidase inhibitor present in mulberry leaves (Morus alba L.). DNJ was isolated from the mulberry leave extract on a TSKgel Amide-80 column using a mixture of 0.1% formic acid and acetonitrile as a mobile phase at a flow rate of 0.6 ml/min. A triple quadrupole mass spectrometry using electrospray ionization source in a positive ion mode under multiple reaction monitoring with the [M+H]+ ions, m/z 164.4/109.9 was used. The detection limit (S/N=3) was 75 pg and quantitation limit (S/N=10) was 100 pg. The comparison of mulberry leaves of different ages showed that the DNJ level was higher in mulberry shoots than young and mature leaves.

  6. Method for the Simultaneous Quantitation of Apolipoprotein E Isoforms using Tandem Mass Spectrometry

    PubMed Central

    Wildsmith, Kristin R.; Han, Bomie; Bateman, Randall J.

    2009-01-01

    Using Apolipoprotein E (ApoE) as a model protein, we developed a protein isoform analysis method utilizing Stable Isotope Labeling Tandem Mass Spectrometry (SILT MS). ApoE isoforms are quantitated using the intensities of the b and y ions of the 13C-labeled tryptic isoform-specific peptides versus unlabeled tryptic isoform-specific peptides. The ApoE protein isoform analysis using SILT allows for the simultaneous detection and relative quantitation of different ApoE isoforms from the same sample. This method provides a less biased assessment of ApoE isoforms compared to antibody-dependent methods, and may lead to a better understanding of the biological differences between isoforms. PMID:19653990

  7. Extraction and quantitation of carfentanil and naltrexone in goat plasma with liquid chromatography-mass spectrometry.

    PubMed

    Hunter, Robert P; Koch, David E; Mutlow, Adrian; Isaza, Ramiro

    2003-08-15

    This method is the first analytical method for the detection and quantitation of carfentanil and naltrexone at clinically relevant concentrations using liquid chromatography-mass spectrometry. Samples were alkalinized with 100 microl of 1 M NaOH and extracted 2x with 2 ml of toluene. The extractions were combined and dried under N(2) at 40 degrees C in a H(2)O bath. Chromatography was performed using a Zirchrom PBD column and a mobile phase of 30:70 acetonitrile/10 mM ammonium acetate and 0.1 mM citrate (pH=4.4) at a flow rate of 0.3 ml/min. The lower limit of quantitation was 8.5 pg/ml for carfentanil and 0.21 ng/ml for naltrexone.

  8. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.

    PubMed

    Vidova, Veronika; Spacil, Zdenek

    2017-04-29

    Mass spectrometry (MS) based proteomics have achieved a near-complete proteome coverage in humans and in several other organisms, producing a wealth of information stored in databases and bioinformatics resources. Recent implementation of selected/multiple reaction monitoring (SRM/MRM) technology in targeted proteomics introduced the possibility of quantitatively follow-up specific protein targets in a hypothesis-driven experiment. In contrast to immunoaffinity-based workflows typically used in biological and clinical research for protein quantification, SRM/MRM is characterized by high selectivity, large capacity for multiplexing (approx. 200 proteins per analysis) and rapid, cost-effective transition from assay development to deployment. The concept of SRM/MRM utilizes triple quadrupole (QqQ) mass analyzer to provide inherent reproducibility, unparalleled sensitivity and selectivity to efficiently differentiate isoforms, post-translational modifications and mutated forms of proteins. SRM-like targeted acquisitions such as parallel reaction monitoring (PRM) are pioneered on high resolution/accurate mass (HR/AM) platforms based on the quadrupole-orbitrap (Q-orbitrap) mass spectrometer. The expansion of HR/AM also caused development in data independent acquisition (DIA). This review presents a step-by-step tutorial on development of SRM/MRM protein assay intended for researchers without prior experience in proteomics. We discus practical aspects of SRM-based quantitative proteomics workflow, summarize milestones in basic biological and medical research as well as recent trends and emerging techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Annotator: Post-processing Software for generating function-based signatures from quantitative mass spectrometry

    PubMed Central

    Sylvester, Juliesta E.; Bray, Tyler S.; Kron, Stephen J.

    2012-01-01

    Mass spectrometry is used to investigate global changes in protein abundance in cell lysates. Increasingly powerful methods of data collection have emerged over the past decade, but this has left researchers with the task of sifting through mountains of data for biologically significant results. Often, the end result is a list of proteins with no obvious quantitative relationships to define the larger context of changes in cell behavior. Researchers are often forced to perform a manual analysis from this list or to fall back on a range of disparate tools, which can hinder the communication of results and their reproducibility. To address these methodological problems we developed Annotator, an application that filters validated mass spectrometry data and applies a battery of standardized heuristic and statistical tests to determine significance. To address systems-level interpretations we incorporated UniProt and Gene Ontology keywords as statistical units of analysis, yielding quantitative information about changes in abundance for an entire functional category. This provides a consistent and quantitative method for formulating conclusions about cellular behavior, independent of network models or standard enrichment analyses. Annotator allows for “bottom-up” annotations that are based on experimental data and not inferred by comparison to external or hypothetical models. Annotator was developed as an independent post-processing platform that runs on all common operating systems, thereby providing a useful tool for establishing the inherently dynamic nature of functional annotations, which depend on results from on-going proteomic experiments. Annotator is available for download at http://people.cs.uchicago.edu/~tyler/annotator/annotator_desktop_0.1.tar.gz. PMID:22224429

  10. The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics.

    PubMed

    Walzer, Mathias; Qi, Da; Mayer, Gerhard; Uszkoreit, Julian; Eisenacher, Martin; Sachsenberg, Timo; Gonzalez-Galarza, Faviel F; Fan, Jun; Bessant, Conrad; Deutsch, Eric W; Reisinger, Florian; Vizcaíno, Juan Antonio; Medina-Aunon, J Alberto; Albar, Juan Pablo; Kohlbacher, Oliver; Jones, Andrew R

    2013-08-01

    The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)(1) leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.

  11. Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis.

    PubMed

    Aceña, Jaume; Stampachiacchiere, Serena; Pérez, Sandra; Barceló, Damià

    2015-08-01

    This review summarizes the advances in environmental analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) during the last decade and discusses different aspects of their application. LC-HRMS has become a powerful tool for simultaneous quantitative and qualitative analysis of organic pollutants, enabling their quantitation and the search for metabolites and transformation products or the detection of unknown compounds. LC-HRMS provides more information than low-resolution (LR) MS for each sample because it can accurately determine the mass of the molecular ion and its fragment ions if it can be used for MS-MS. Another advantage is that the data can be processed using either target analysis, suspect screening, retrospective analysis, or non-target screening. With the growing popularity and acceptance of HRMS analysis, current guidelines for compound confirmation need to be revised for quantitative and qualitative purposes. Furthermore, new commercial software and user-built libraries are required to mine data in an efficient and comprehensive way. The scope of this critical review is not to provide a comprehensive overview of the many studies performed with LC-HRMS in the field of environmental analysis, but to reveal its advantages and limitations using different workflows.

  12. Direct quantitation of peptide mixtures without standards using clusters formed by electrospray ionization mass spectrometry.

    PubMed

    Leib, Ryan D; Flick, Tawnya G; Williams, Evan R

    2009-05-15

    In electrospray ionization mass spectrometry, ion abundances depend on a number of different factors, including analyte surface activity, competition between analytes for charge, analyte concentration, as well as instrumental factors, including mass-dependent ion transmission and detection. Here, a novel method for obtaining quantitative information about solution-phase concentrations of peptide mixtures is described and demonstrated for five different peptide mixtures with relative concentrations ranging from 0.05% to 50%. In this method, the abundances of large clusters containing anywhere from 0 to 13 impurity molecules are measured and directly related to the relative solution-phase concentration of the peptides. For clusters containing approximately 15 or more peptides, the composition of the clusters approaches the statistical value indicating that these clusters are formed nonspecifically and that any differences in ion detection or ionization efficiency are negligible at these large cluster sizes. This method is accurate to within approximately 20% or better, even when the relative ion intensities of the protonated monomers can differ by over an order of magnitude compared to their solution-phase concentrations. Although less accurate than other quantitation methods that employ internal standards, this method does have the key advantages of speed, simplicity, and the ability to quantitate components in solution even when the identities of the components are unknown.

  13. Quantitation of mycotoxins using direct analysis in real time (DART)-mass spectrometry (MS)

    USDA-ARS?s Scientific Manuscript database

    Ambient ionization represents a new generation of mass spectrometry ion sources which is used for rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and mass spectrometry allows analyzing multiple food samples with simple or no sample treatment, or in...

  14. Comparison between liquid chromatography-time of-flight mass spectrometry and selected reaction monitoring liquid chromatography-mass spectrometry for quantitative determination of idoxifene in human plasma.

    PubMed

    Zhang, H; Henion, J

    2001-06-05

    This study compares HPLC electrospray time-of-flight mass spectrometry and selected reaction monitoring (SRM) LC-MS for high throughput quantitative determination of a small molecule drug in biological samples. A high throughput LC-MS method was developed for quantitatative determination of idoxifene in human plasma and the evaluation was accomplished with the cross-validation of the developed LC-MS method between the time-of-flight mass spectrometer, and a triple quadrupole mass spectrometer operated in the SRM mode. A simple one-step semi-automated 96-well liquid-liquid extraction procedure was used to prepare 96 samples in approximately 30 min and a rapid gradient was used to shorten the LC run time. Time-of-flight mass spectrometry provides acquisition of full-scan mass spectra and extracted ion current chromatograms, which may be extracted from the total ion current chromatogram for peak area determination. The limit of quantitation for idoxifene in human plasma obtained with the time-of-flight mass spectrometer was 5 ng/ml based on 100-microl aliquots of human plasma, and the linear dynamic range was from 5 ng/ml to 2000 ng/ml. The quantitative LC-MS results from the time-of-flight mass spectrometer demonstrated that precision did not exceed 7.1% and accuracy did not exceed 1.7% with reference to quality control samples at three concentration levels in replicates of six. In contrast, the limit of quantitation for idoxifene in human plasma using a tandem triple quadrupole mass spectrometer was 0.5 ng/ml with a linear dynamic range to 1000 ng/ml. The results from the triple quadrupole instrument show that the precision did not exceed 2.2% and accuracy did not exceed 2.9%. The overall results suggest time-of-flight mass spectrometry may be a viable technique for high throughput bioanalytical work for the quantitative determination of a representative small molecule drug in the low ng/ml range in human plasma.

  15. Qualitative and Quantitative Proteome Analysis of Oral Fluids in Health and Periodontal Disease by Mass Spectrometry.

    PubMed

    Salih, Erdjan

    2017-01-01

    The significance of protein identification and characterization by classical protein chemistry approaches is clearly highlighted by our detailed understanding of the biological systems assembled over a time period of almost a century. The advent of state-of-the-art mass spectrometry (MS) with sensitivity, speed, and global protein analysis capacity without individual protein purification has transformed the classical protein chemistry with premise to accelerate discovery. These combined with the ability of the oral fluids such as whole saliva (WS) and gingival crevicular fluid (GCF) to reflect both systemic and locally derived proteins have generated significant interest to characterize these fluids more extensively by MS technology. This chapter deals with the experimental details of preanalytical steps using multidimensional protein separation combined with MS analysis of WS and GCF to achieve detailed protein composition at qualitative and quantitative levels. These approaches are interfaced with gold standard "stable-isotope" labeling technologies for large-scale quantitative MS analysis which is a prerequisite to determine accurate alterations in protein levels as a function of disease progression. The latter incorporates two stable-isotope chemistries one specific for cysteine containing proteins and the other universal amine-specific reagent in conjunction with oral fluids in health and periodontal disease to perform quantitative MS analysis. In addition, specific preanalytical steps demanded by the oral fluids such as GCF and WS for sample preparations to overcome limitations and uncertainties are elaborated for reliable large-scale quantitative MS analysis.

  16. Spatial Quantitation of Drugs in tissues using Liquid Extraction Surface Analysis Mass Spectrometry Imaging

    PubMed Central

    Swales, John G.; Strittmatter, Nicole; Tucker, James W.; Clench, Malcolm R.; Webborn, Peter J. H.; Goodwin, Richard J. A.

    2016-01-01

    Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported. PMID:27883030

  17. Spatial Quantitation of Drugs in tissues using Liquid Extraction Surface Analysis Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Swales, John G.; Strittmatter, Nicole; Tucker, James W.; Clench, Malcolm R.; Webborn, Peter J. H.; Goodwin, Richard J. A.

    2016-11-01

    Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported.

  18. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry.

    PubMed

    Ellis, Shane R; Bruinen, Anne L; Heeren, Ron M A

    2014-02-01

    Mass spectrometry imaging (MSI) has evolved into a valuable tool across many fields of chemistry, biology, and medicine. However, arguably its greatest disadvantage is the difficulty in acquiring quantitative data regarding the surface concentration of the analyte(s) of interest. These difficulties largely arise from the high dependence of the ion signal on the localized chemical and morphological environment and the difficulties associated with calibrating such signals. The development of quantitative MSI approaches would correspond to a giant leap forward for the field, particularly for the biomedical and pharmaceutical fields, and is thus a highly active area of current research. In this review, we outline the current progress being made in the development and application of quantitative MSI workflows with a focus on biomedical applications. Particular emphasis is placed on the various strategies used for both signal calibration and correcting for various ion suppression effects that are invariably present in any MSI study. In addition, the difficulties in validating quantitative-MSI data on a pixel-by-pixel basis are highlighted.

  19. Spatial Quantitation of Drugs in tissues using Liquid Extraction Surface Analysis Mass Spectrometry Imaging.

    PubMed

    Swales, John G; Strittmatter, Nicole; Tucker, James W; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2016-11-24

    Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported.

  20. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  1. Quantitative thin-layer chromatography/mass spectrometry analysis of caffeine using a surface sampling probe electrospray ionization tandem mass spectrometry system.

    PubMed

    Ford, Michael J; Deibel, Michael A; Tomkins, Bruce A; Van Berkel, Gary J

    2005-07-15

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 mum/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 muL) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by approximately 8% or more) than the literature values.

  2. High-resolution mass spectrometry method for the detection, characterization and quantitation of pharmaceuticals in water.

    PubMed

    Pinhancos, Rebeca; Maass, Sara; Ramanathan, Dil M

    2011-11-01

    The presence of pharmaceuticals in drinking water is an emerging environmental concern. In most environmental testing laboratories, LC-MS/MS assays based on selected reaction monitoring are used as part of a battery of tests used to assure water quality. Although LC-MS/MS continues to be the best tool for detecting pharmaceuticals in water, the combined use of hybrid high-resolution mass spectrometry (HRMS) and ultrahigh pressure liquid chromatography (UHPLC) is starting to become a practical tool to study emerging environmental contaminants. The hybrid LTQ-orbitrap mass spectrometer is suitable for integrated quantitative and qualitative bioanalysis because of the following reasons: (1) the ability to collect full-scan HRMS spectra with scan speeds suitable for UHPLC separations, (2) routine measurement of mass with less than 5 ppm mass accuracy, (3) high mass resolving power, and (4) ability to perform on-the-fly polarity switching in the linear ion trap (LTQ). In the present work, we provide data demonstrating the application of UHPLC-LTQ-orbitrap for the detection, characterization and quantification of pharmaceuticals and their metabolites in drinking water.

  3. Validation of the Mass-Extraction-Window for Quantitative Methods Using Liquid Chromatography High Resolution Mass Spectrometry.

    PubMed

    Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand

    2016-03-15

    A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.

  4. Quantitation of Free Metanephrines in Plasma by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Heideloff, Courtney; Payto, Drew; Wang, Sihe

    2016-01-01

    Plasma metanephrines are measured to aid in the diagnosis of pheochromocytomas. In patients with pheochromocytomas there is excessive production of catecholamines and metanephrines. Measurement of plasma free metanephrines is one of the first-line clinical tests that are used for the diagnosis and follow-up of pheochromocytoma. We describe here a liquid chromatography-tandem mass spectrometry method to measure free metanephrines in plasma. Free metanephrine and normetanephrine are extracted via solid-phase extraction. After extraction and evaporation, the reconstituted supernatant is analyzed by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS/MS is set to selective reaction monitoring mode (180.1 → 148.1 m/z for metanephrine, 183.1 → 168.1 for d3-metanephrine, 166.1 → 134.1 m/z for normetanephrine, and 169.1 → 137.2 m/z for d3-normetanephrine) with positive electrospray ionization. Quantitation is based on peak area ratio of the analyte to its respective deuterated internal standard. The assay is linear from 5.9 to 4090.0 pg/mL for metanephrine and 22.0 to 4386.7 pg/mL for normetanephrine with precision of <6 % over the ranges.

  5. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    PubMed

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  6. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong

    2012-01-01

    A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.

  7. A gas chromatography-mass spectrometry method for the quantitation of clobenzorex.

    PubMed

    Cody, J T; Valtier, S

    1999-01-01

    Drugs metabolized to amphetamine or methamphetamine are potentially significant concerns in the interpretation of amphetamine-positive urine drug-testing results. One of these compounds, clobenzorex, is an anorectic drug that is available in many countries. Clobenzorex (2-chlorobenzylamphetamine) is metabolized to amphetamine by the body and excreted in the urine. Following administration, the parent compound was detectable for a shorter time than the metabolite amphetamine, which could be detected for days. Because of the potential complication posed to the interpretation of amphetamin-positive drug tests following administration of this drug, the viability of a current amphetamine procedure using liquid-liquid extraction and conversion to the heptafluorobutyryl derivative followed by gas chromatography-mass spectrometry (GC-MS) analysis was evaluated for identification and quantitation of clobenzorex. Qualitative identification of the drug was relatively straightforward. Quantitative analysis proved to be a far more challenging process. Several compounds were evaluated for use as the internal standard in this method, including methamphetamine-d11, fenfluramine, benzphetamine, and diphenylamine. Results using these compounds proved to be less than satisfactory because of poor reproducibility of the quantitative values. Because of its similar chromatographic properties to the parent drug, the compound 3-chlorobenzylamphetamine (3-Cl-clobenzorex) was evaluated in this study as the internal standard for the quantitation of clobenzorex. Precision studies showed 3-Cl-clobenzorex to produce accurate and reliable quantitative results (within-run relative standard deviations [RSDs] < 6.1%, between-run RSDs < 6.0%). The limits of detection and quantitation for this assay were determined to be 1 ng/mL for clobenzorex.

  8. Facilitated Diffusion of Acetonitrile Revealed by Quantitative Breath Analysis Using Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Li, Ming; Ding, Jianhua; Gu, Haiwei; Zhang, Yan; Pan, Susu; Xu, Ning; Chen, Huanwen; Li, Hongmei

    2013-01-01

    By using silver cations (Ag+) as the ionic reagent in reactive extractive electrospray ionization mass spectrometry (EESI-MS), the concentrations of acetonitrile in exhaled breath samples from the volunteers including active smokers, passive smokers, and non-smokers were quantitatively measured in vivo, without any sample pretreatment. A limit of detection (LOD) and relative standard deviation (RSD) were 0.16 ng/L and 3.5% (n = 8), respectively, for the acetonitrile signals in MS/MS experiments. Interestingly, the concentrations of acetonitrile in human breath continuously increased for 1–4 hours after the smoker finished smoking and then slowly decreased to the background level in 7 days. The experimental data of a large number of (> 165) samples indicated that the inhaled acetonitrile is excreted most likely by facilitated diffusion, instead of simple diffusion reported previously for other volatile compounds. PMID:23386969

  9. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Thomas, Mathew; Laskin, Julia

    2014-02-04

    Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization, or nano-DESI, is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section.

  10. Facilitated diffusion of acetonitrile revealed by quantitative breath analysis using extractive electrospray ionization mass spectrometry.

    PubMed

    Li, Ming; Ding, Jianhua; Gu, Haiwei; Zhang, Yan; Pan, Susu; Xu, Ning; Chen, Huanwen; Li, Hongmei

    2013-01-01

    By using silver cations (Ag⁺) as the ionic reagent in reactive extractive electrospray ionization mass spectrometry (EESI-MS), the concentrations of acetonitrile in exhaled breath samples from the volunteers including active smokers, passive smokers, and non-smokers were quantitatively measured in vivo, without any sample pretreatment. A limit of detection (LOD) and relative standard deviation (RSD) were 0.16 ng/L and 3.5% (n = 8), respectively, for the acetonitrile signals in MS/MS experiments. Interestingly, the concentrations of acetonitrile in human breath continuously increased for 1-4 hours after the smoker finished smoking and then slowly decreased to the background level in 7 days. The experimental data of a large number of (> 165) samples indicated that the inhaled acetonitrile is excreted most likely by facilitated diffusion, instead of simple diffusion reported previously for other volatile compounds.

  11. Quantitative imaging of selenoprotein with multi-isotope imaging mass spectrometry (MIMS).

    PubMed

    Tang, Shiow-Shih; Guillermier, Christelle; Wang, Mei; Poczatek, Joseph Collin; Suzuki, Noriyuki; Loscalzo, Joseph; Lechene, Claude

    2014-11-01

    Multi-isotope imaging mass spectrometry (MIMS) allows high resolution quantitative imaging of protein and nucleic acid synthesis at the level of a single cell using stable isotope labels. We employed MIMS to determine the compartmental localization of selenoproteins tagged with stable isotope selenium compounds in human aortic endothelial cells (HAEC), and to compare the efficiency of labeling (to determine the ideal selenium source) from these compounds: [(82)Se]-selenite, [(77)Se]-seleno-methionine, and [(76)Se]-methyl-selenocysteine. We found that all three selenium sources appear to be localized in the nucleus as well as in the cytoplasm in HAEC. Seleno-methionine appears to be a better source for (seleno)protein synthesis. For MIMS detection, we compared freeze-drying to thin layer vs. thin sectioning for sample preparation. MIMS provides a unique and novel way to dissect selenoprotein synthesis in cells.

  12. Field-assisted paper spray mass spectrometry for the quantitative evaluation of imatinib levels in plasma.

    PubMed

    D'Aronco, Sara; Calandra, Eleonora; Crotti, Sara; Toffoli, Giuseppe; Marangon, Elena; Posocco, Bianca; Traldi, Pietro; Agostini, Marco

    Drug levels in patients' bloodstreams vary among individuals and consequently therapeutic drug monitoring (TDM) is fundamental to controlling the effective therapeutic range. For TDM purposes, different analytical approaches have been used, mainly based on immunoassay, liquid chromatography- ultraviolet, liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. More recently a matrix-assisted laser desorption/ionisation method has been proposed for the determination of irinotecan levels in the plasma of subjects under therapy and this method has been cross- validated by comparison with data achieved by LC-MS/MS. However, to reach an effective point-of-care monitoring of plasma drug concentrations, a TDM platform technology for fast, accurate, low-cost assays is required. In this frame, recently the use of paper spray mass spectrometry, which is becoming a popular and widely employed MS method, has been proposed. In this paper we report the results obtained by the development of a paper spray-based method for quantitative analysis in plasma samples of imatinib, a new generation of anticancer drug. Preliminary experiments showed that poor sensitivity, reproducibility and linear response were obtained by the "classical" paper spray set-up. In order to achieve better results, it was thought of interest to operate in presence of a higher and more homogeneous electrical field. For this aim, a stainless steel needle connected with the high voltage power supply was mounted below the paper triangle. Furthermore, in order to obtain valid quantitative data, we analysed the role of the different equilibria participating to the phenomena occurring in paper spray experiments, depending either on instrumental parameters or on the chemical nature of analyte and solvents. A calibration curve was obtained by spiking plasma samples containing different amounts of imatinib (1) with known amounts of deuterated imatinib (1d3) as

  13. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.

  14. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (<30 Da) with low proton affinity and collision-induced dissociation efficiency, which are usually poorly visible by conventional ion trap mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.

  15. Direct quantitative analysis of nicotine alkaloids from biofluid samples using paper spray mass spectrometry.

    PubMed

    Wang, He; Ren, Yue; McLuckey, Morgan N; Manicke, Nicholas E; Park, Jonghyuck; Zheng, Lingxing; Shi, Riyi; Cooks, R Graham; Ouyang, Zheng

    2013-12-03

    The determination of tobacco derived nicotine alkaloids in biofluid samples is of great importance to testing for tobacco use, tobacco cessation treatment, and studies on exposure to secondhand smoke. Paper spray mass spectrometry (MS) has been adapted for direct, quantitative analysis of tobacco alkaloids from biofluid samples, such as blood, urine, and saliva in liquid and dried form. Limits of quantitation as low as several nanograms per milliliter were obtained for nicotine, cotinine, trans-3'-hydroxycotinine, and anabasine. Direct analysis of fresh blood samples has also been achieved with improved sensitivity using print paper substrates of high density. Quantitation of the cotinine in the blood of a rat was performed with both direct analysis using paper spray and a traditional analysis protocol using liquid chromatography MS. Comparable results were obtained and the precision of the two methods was similar. The paper spray MS method is rapid and shows potential for significantly improved analytical efficiency in clinical laboratories as well as for point-of-care tobacco use assessment.

  16. Relative quantitation of transfer RNAs using liquid chromatography mass spectrometry and signature digestion products.

    PubMed

    Castleberry, Colette M; Limbach, Patrick A

    2010-09-01

    Transfer ribonucleic acids (tRNAs) are challenging to identify and quantify from unseparated mixtures. Our lab previously developed the signature digestion approach for identifying tRNAs without specific separation. Here we describe the combination of relative quantification via enzyme-mediated isotope labeling with this signature digestion approach for the relative quantification of tRNAs. These quantitative signature digestion products were characterized using liquid chromatography mass spectrometry (LC-MS), and we find that up to 5-fold changes in tRNA abundance can be quantified from sub-microgram amounts of total tRNA. Quantitative tRNA signature digestion products must (i) incorporate an isotopic label during enzymatic digestion; (ii) have no m/z interferences from other signature digestion products in the sample and (iii) yield a linear response during LC-MS analysis. Under these experimental conditions, the RNase T1, A and U2 signature digestion products that potentially could be used for the relative quantification of Escherichia coli tRNAs were identified, and the linearity and sequence identify of RNase T1 signature digestion products were experimentally confirmed. These RNase T1 quantitative signature digestion products were then used in proof-of-principle experiments to quantify changes arising due to different culturing media to 17 tRNA families. This method enables new experiments where information regarding tRNA identity and changes in abundance are desired.

  17. Serum Insulin-like Growth Factor I Quantitation by Mass Spectrometry: Insights for Protein Quantitation with this Technology

    PubMed Central

    Ho, Chung Shun; Chan, Michael Ho Ming

    2016-01-01

    Liquid chromatography mass spectrometry (LC-MS) is a widely used technique in the clinical laboratory, especially for small molecule quantitation in biological specimens, for example, steroid hormones and therapeutic drugs. Analysis of circulating macromolecules, including proteins and peptides, is largely dominated by traditional enzymatic, spectrophotometric, or immunological assays in clinical laboratories. However, these methodologies are known to be subjected to interfering substances, for example heterophilic antibodies, as well as subjected to non-specificity issues. In recent years, there has been a growing interest in using LC-MS platforms for protein analysis in the clinical setting, due to the superior specificity compared to immunoassay, and the possibility of simultaneous quantitation of multiple proteins. Different analytical approaches are possible using LC-MS-based methodology, including accurate mass measurement of intact molecules, protein digestion followed by detection of proteolytic peptides, and in combination with immunoaffinity purification. Proteins with different complexity, isoforms, variants, or chemical alteration can be simultaneously analysed by LC-MS, either by targeted or non-targeted approaches. While the LC-MS platform offers a more specific determination of proteins, there remain issues of LC-MS assay harmonization, correlation with current existing platforms, and the potential impact in making clinical decision. In this review, the clinical utility, historical aspect, and challenges in using LC-MS for protein analysis in the clinical setting will be discussed, using insulin-like growth factor (IGF) as an example. PMID:28149264

  18. Serum Insulin-like Growth Factor I Quantitation by Mass Spectrometry: Insights for Protein Quantitation with this Technology.

    PubMed

    Kam, Richard Kin Ting; Ho, Chung Shun; Chan, Michael Ho Ming

    2016-12-01

    Liquid chromatography mass spectrometry (LC-MS) is a widely used technique in the clinical laboratory, especially for small molecule quantitation in biological specimens, for example, steroid hormones and therapeutic drugs. Analysis of circulating macromolecules, including proteins and peptides, is largely dominated by traditional enzymatic, spectrophotometric, or immunological assays in clinical laboratories. However, these methodologies are known to be subjected to interfering substances, for example heterophilic antibodies, as well as subjected to non-specificity issues. In recent years, there has been a growing interest in using LC-MS platforms for protein analysis in the clinical setting, due to the superior specificity compared to immunoassay, and the possibility of simultaneous quantitation of multiple proteins. Different analytical approaches are possible using LC-MS-based methodology, including accurate mass measurement of intact molecules, protein digestion followed by detection of proteolytic peptides, and in combination with immunoaffinity purification. Proteins with different complexity, isoforms, variants, or chemical alteration can be simultaneously analysed by LC-MS, either by targeted or non-targeted approaches. While the LC-MS platform offers a more specific determination of proteins, there remain issues of LC-MS assay harmonization, correlation with current existing platforms, and the potential impact in making clinical decision. In this review, the clinical utility, historical aspect, and challenges in using LC-MS for protein analysis in the clinical setting will be discussed, using insulin-like growth factor (IGF) as an example.

  19. Species Determination and Quantitation in Mixtures Using MRM Mass Spectrometry of Peptides Applied to Meat Authentication

    PubMed Central

    Gunning, Yvonne; Watson, Andrew D.; Rigby, Neil M.; Philo, Mark; Peazer, Joshua K.; Kemsley, E. Kate

    2016-01-01

    We describe a simple protocol for identifying and quantifying the two components in binary mixtures of species possessing one or more similar proteins. Central to the method is the identification of 'corresponding proteins' in the species of interest, in other words proteins that are nominally the same but possess species-specific sequence differences. When subject to proteolysis, corresponding proteins will give rise to some peptides which are likewise similar but with species-specific variants. These are 'corresponding peptides'. Species-specific peptides can be used as markers for species determination, while pairs of corresponding peptides permit relative quantitation of two species in a mixture. The peptides are detected using multiple reaction monitoring (MRM) mass spectrometry, a highly specific technique that enables peptide-based species determination even in complex systems. In addition, the ratio of MRM peak areas deriving from corresponding peptides supports relative quantitation. Since corresponding proteins and peptides will, in the main, behave similarly in both processing and in experimental extraction and sample preparation, the relative quantitation should remain comparatively robust. In addition, this approach does not need the standards and calibrations required by absolute quantitation methods. The protocol is described in the context of red meats, which have convenient corresponding proteins in the form of their respective myoglobins. This application is relevant to food fraud detection: the method can detect 1% weight for weight of horse meat in beef. The corresponding protein, corresponding peptide (CPCP) relative quantitation using MRM peak area ratios gives good estimates of the weight for weight composition of a horse plus beef mixture. PMID:27685654

  20. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    SciTech Connect

    Owens, J; Hok, S; Alcaraz, A; Koester, C

    2008-11-13

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  1. Quantitative analysis of tetramethylenedisulfotetramine (tetramine) spiked into beverages by liquid chromatography-tandem mass spectrometry with validation by gas chromatography-mass spectrometry.

    PubMed

    Owens, Janel; Hok, Saphon; Alcaraz, Armando; Koester, Carolyn

    2009-05-27

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD(50) = 0.1 mg/kg) used in hundreds of deliberate and accidental food poisoning events in China. This paper describes a method for the quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water, with cleanup by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography-mass spectrometry (GC-MS) operated in selected ion monitoring mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 μg/mL by LC-MS/MS versus 0.15 μg/mL for GC-MS. Fortifications of the beverages at 2.5 and 0.25 μg/mL were recovered ranging from 73 to 128% by liquid-liquid extraction for GC-MS analysis, from 13 to 96% by SPE, and from 10 to 101% by liquid-liquid extraction for LC-MS/MS analysis.

  2. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics.

    PubMed

    Mortensen, Peter; Gouw, Joost W; Olsen, Jesper V; Ong, Shao-En; Rigbolt, Kristoffer T G; Bunkenborg, Jakob; Cox, Jürgen; Foster, Leonard J; Heck, Albert J R; Blagoev, Blagoy; Andersen, Jens S; Mann, Matthias

    2010-01-01

    Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment, called MSQuant, which allows visualization and validation of peptide identification results directly on the raw mass spectrometric data. MSQuant iteratively recalibrates MS data thereby significantly increasing mass accuracy leading to fewer false positive peptide identifications. Algorithms to increase data quality include an MS(3) score for peptide identification and a post-translational modification (PTM) score that determines the probability that a modification such as phosphorylation is placed at a specific residue in an identified peptide. MSQuant supports relative protein quantitation based on precursor ion intensities, including element labels (e.g., (15)N), residue labels (e.g., SILAC and ICAT), termini labels (e.g., (18)O), functional group labels (e.g., mTRAQ), and label-free ion intensity approaches. MSQuant is available, including an installer and supporting scripts, at http://msquant.sourceforge.net .

  3. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry

    PubMed Central

    Sharma, Priyamvada; Bharat, Venkatesh; Murthy, Pratima

    2015-01-01

    Background & objectives: Alcohol misuse has now become a serious public health problem and early intervention is important in minimizing the harm. Biochemical markers of recent and high levels of alcohol consumption can play an important role in providing feedback regarding the health consequences of alcohol misuse. Existing markers are not sensitive to recent consumption and in detecting early relapse. Ethyl glucuronide (EtG), a phase-II metabolite of ethanol is a promising marker of recent alcohol use and can be detected in body fluids. In this study an analytical technique for quantitation of EtG in body fluids using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS) was developed and validated. Methods: De-proteinization of serum and urine samples was done with perchloric acid and hydrochloric acid, respectively. Serum samples were passed through phospholipids removal cartridges for further clean up. EtG was isolated using amino propyl solid phase extraction columns. Chromatographic separation was achieved by gas chromatography with mass spectrometry. Results: Limit of detection and limit of quantitation were 50 and 150 ng/ml for urine and 80 and 210 ng/ml for serum, respectively. Signal to noise ratio was 3:1, mean absolute recovery was 80-85 per cent. Significant correlation was obtained between breath alcohol and serum EtG levels (r=0.853) and urine EtG and time since last abuse (r = -0.903) in clinical samples. Interpretation & conclusions: In the absence of other standardized techniques to quantitate EtG in biological samples, this GC-MS method was found to have high throughput and was sensitive and specific. PMID:25857498

  4. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry.

    PubMed

    Sharma, Priyamvada; Bharat, Venkatesh; Murthy, Pratima

    2015-01-01

    Alcohol misuse has now become a serious public health problem and early intervention is important in minimizing the harm. Biochemical markers of recent and high levels of alcohol consumption can play an important role in providing feedback regarding the health consequences of alcohol misuse. Existing markers are not sensitive to recent consumption and in detecting early relapse. Ethyl glucuronide (EtG), a phase-II metabolite of ethanol is a promising marker of recent alcohol use and can be detected in body fluids. In this study an analytical technique for quantitation of EtG in body fluids using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS) was developed and validated. De-proteinization of serum and urine samples was done with perchloric acid and hydrochloric acid, respectively. Serum samples were passed through phospholipids removal cartridges for further clean up. EtG was isolated using amino propyl solid phase extraction columns. Chromatographic separation was achieved by gas chromatography with mass spectrometry. Limit of detection and limit of quantitation were 50 and 150 ng/ml for urine and 80 and 210 ng/ml for serum, respectively. Signal to noise ratio was 3:1, mean absolute recovery was 80-85 per cent. Significant correlation was obtained between breath alcohol and serum EtG levels (r=0.853) and urine EtG and time since last abuse (r = -0.903) in clinical samples. In the absence of other standardized techniques to quantitate EtG in biological samples, this gc - ms method was found to have high throughput and was sensitive and specific.

  5. Quantitation of benzodiazepines in whole blood by electron impact-gas chromatography-mass spectrometry.

    PubMed

    Tiscione, Nicholas B; Shan, Xiaoqin; Alford, Ilene; Yeatman, Dustin Tate

    2008-10-01

    Benzodiazepines are frequently encountered in forensic toxicology. A literature search was conducted to find a simple method using electron impact-gas chromatography-mass spectrometry (EI-GC-MS) to examine whole blood specimens for the most commonly encountered benzodiazepines in the United States. A recently published method was identified in the literature search and used as a starting point for development of a new procedure to be used for routine analysis of forensic toxicology case samples. The procedure was then developed and validated as a rapid and efficient method for the screening and quantitation of benzodiazepines in blood using liquid-liquid extraction and EI-GC-MS in selective ion monitoring mode. Materials and instrumentation common to most forensic toxicology laboratories were utilized while obtaining LODs from 5 to 50 ng/mL and LOQs of 50 ng/mL or less using 1 mL of sample. Target compounds were chosen based on availability and common use in the United States and include diazepam, desalkylflurazepam, nordiazepam, midazolam, oxazepam, temazepam, lorazepam, clonazepam, and alprazolam (relative elution order). The linear range (r2 > 0.990) was validated from 50 to 1000 ng/mL for all analytes. The CV of replicate analyses at both 50 and 200 ng/mL was less than 4%. Quantitative accuracy was within +/- 16% at 50 ng/mL and within +/- 7% at 200 ng/mL. The validated method provides an efficient procedure for the quantitation of a broad range of the most common benzodiazepines in blood at meaningful limits of detection and quantitation using standard laboratory equipment and a small amount of sample.

  6. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry.

    PubMed

    Hindle, Ralph; Noestheden, Matthew; Peru, Kerry; Headley, John

    2013-04-19

    This study details the development of a routine method for quantitative analysis of oil sands naphthenic acids, which are a complex class of compounds found naturally and as contaminants in oil sands process waters from Alberta's Athabasca region. Expanding beyond classical naphthenic acids (CnH2n-zO2), those compounds conforming to the formula CnH2n-zOx (where 2≥x≤4) were examined in commercial naphthenic acid and environmental water samples. HPLC facilitated a five-fold reduction in ion suppression when compared to the more commonly used flow injection analysis. A comparison of 39 model naphthenic acids revealed significant variability in response factors, demonstrating the necessity of using naphthenic acid mixtures for quantitation, rather than model compounds. It was also demonstrated that naphthenic acidic heterogeneity (commercial and environmental) necessitates establishing a single NA mix as the standard against which all quantitation is performed. The authors present the first ISO17025 accredited method for the analysis of naphthenic acids in water using HPLC high resolution accurate mass time-of-flight mass spectrometry. The method detection limit was 1mg/L total oxy-naphthenic acids (Sigma technical mix). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    PubMed

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  8. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Quantitation of the Noncovalent Cellular Retinol-Binding Protein, Type 1 Complex Through Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Yu, Jianshi; Kane, Maureen A.

    2017-01-01

    Native mass spectrometry (MS) has become a valuable tool in probing noncovalent protein-ligand interactions in a sample-efficient way, yet the quantitative application potential of native MS has not been fully explored. Cellular retinol binding protein, type I (CrbpI) chaperones retinol and retinal in the cell, protecting them from nonspecific oxidation and delivering them to biosynthesis enzymes where the bound (holo-) and unbound (apo-) forms of CrbpI exert distinct biological functions. Using nanoelectrospray, we developed a native MS assay for probing apo- and holo-CrbpI abundance to facilitate exploring their biological functions in retinoid metabolism and signaling. The methods were developed on two platforms, an Orbitrap-based Thermo Exactive and a Q-IMS-TOF-based Waters Synapt G2S, where similar ion behaviors under optimized conditions were observed. Overall, our results suggested that within the working range ( 1-10 μM), gas-phase ions in the native state linearly correspond to solution concentration and relative ion intensities of the apo- and holo-protein ions can linearly respond to the solution ratios, suggesting native MS is a viable tool for relative quantitation in this system.

  10. Quantitative analysis of chemical warfare agent degradation products in beverages by liquid chromatography tandem mass spectrometry.

    PubMed

    Owens, Janel; Koester, Carolyn

    2009-09-23

    Though chemical warfare agents (CWAs) have been banned by the Chemical Weapons Convention, the threat that such chemicals may be used, including their deliberate addition to food, remains. In such matrixes, CWAs may hydrolyze to phosphonic acids, which are good surrogate markers of CWA contamination. The method described here details the extraction of five CWA degradation products, including methylphosphonic acid (MPA), ethyl-MPA, isopropyl-MPA, cyclohexyl-MPA, and pinacolyl-MPA, from five different beverages by strata-X solid phase extraction cartridges. Samples were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS) with multiple reaction monitoring. The limit of quantitation ranged from 0.05 to 0.5 ng on-column, and the limit of detection was >0.02 ng on-column. Beverages were fortified with the five phosphonic acids at 1 microg/mL and 0.25 microg/mL and quantitated using both an internally standardized method and matrix-matched standards. Reasonable recoveries (>50%) were achieved for ethyl, isopropyl, cyclohexyl, and pinacolyl-MPA for most matrixes.

  11. Deciphering lymphoma pathogenesis via state-of-the-art mass spectrometry-based quantitative proteomics.

    PubMed

    Psatha, Konstantina; Kollipara, Laxmikanth; Voutyraki, Chrysanthi; Divanach, Peter; Sickmann, Albert; Rassidakis, George Z; Drakos, Elias; Aivaliotis, Michalis

    2017-03-15

    Mass spectrometry-based quantitative proteomics specifically applied to comprehend the pathogenesis of lymphoma has incremental value in deciphering the heterogeneity in complex deregulated molecular mechanisms/pathways of the lymphoma entities, implementing the current diagnostic and therapeutic strategies. Essential global, targeted and functional differential proteomics analyses although still evolving, have been successfully implemented to shed light on lymphoma pathogenesis to discover and explore the role of potential lymphoma biomarkers and drug targets. This review aims to outline and appraise the present status of MS-based quantitative proteomic approaches in lymphoma research, introducing the current state-of-the-art MS-based proteomic technologies, the opportunities they offer in biological discovery in human lymphomas and the related limitation issues arising from sample preparation to data evaluation. It is a synopsis containing information obtained from recent research articles, reviews and public proteomics repositories (PRIDE). We hope that this review article will aid, assimilate and assess all the information aiming to accelerate the development and validation of diagnostic, prognostic or therapeutic targets for an improved and empowered clinical proteomics application in lymphomas in the nearby future. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Quantitative cross-linking/mass spectrometry reveals subtle protein conformational changes

    PubMed Central

    2016-01-01

    Quantitative cross-linking/mass spectrometry (QCLMS) probes protein structural dynamics in solution by quantitatively comparing the yields of cross-links between different conformational statuses. We have used QCLMS to understand the final maturation step of the proteasome lid and also to elucidate the structure of complement C3(H2O). Here we benchmark our workflow using a structurally well-described reference system, the human complement protein C3 and its activated cleavage product C3b. We found that small local conformational changes affect the yields of cross-linking residues that are near in space while larger conformational changes affect the detectability of cross-links. Distinguishing between minor and major changes required robust analysis based on replica analysis and a label-swapping procedure. By providing workflow, code of practice and a framework for semi-automated data processing, we lay the foundation for QCLMS as a tool to monitor the domain choreography that drives binary switching in many protein-protein interaction networks. PMID:27976756

  13. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry

    PubMed Central

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments. PMID:17010211

  14. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  15. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  16. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma*

    PubMed Central

    Sengupta, Deepanwita; Byrum, Stephanie D.; Avaritt, Nathan L.; Davis, Lauren; Shields, Bradley; Mahmoud, Fade; Reynolds, Matthew; Orr, Lisa M.; Mackintosh, Samuel G.; Shalin, Sara C.; Tackett, Alan J.

    2016-01-01

    Normal cell growth is characterized by a regulated epigenetic program that drives cellular activities such as gene transcription, DNA replication, and DNA damage repair. Perturbation of this epigenetic program can lead to events such as mis-regulation of gene transcription and diseases such as cancer. To begin to understand the epigenetic program correlated to the development of melanoma, we performed a novel quantitative mass spectrometric analysis of histone post-translational modifications mis-regulated in melanoma cell culture as well as patient tumors. Aggressive melanoma cell lines as well as metastatic melanoma were found to have elevated histone H3 Lys27 trimethylation (H3K27me3) accompanied by overexpressed methyltransferase EZH2 that adds the specific modification. The altered epigenetic program that led to elevated H3K27me3 in melanoma cell culture was found to directly silence transcription of the tumor suppressor genes RUNX3 and E-cadherin. The EZH2-mediated silencing of RUNX3 and E-cadherin transcription was also validated in advanced stage human melanoma tissues. This is the first study focusing on the detailed epigenetic mechanisms leading to EZH2-mediated silencing of RUNX3 and E-cadherin tumor suppressors in melanoma. This study underscores the utility of using high resolution mass spectrometry to identify mis-regulated epigenetic programs in diseases such as cancer, which could ultimately lead to the identification of biological markers for diagnostic and prognostic applications. PMID:26621846

  17. Mass Spectrometry-based Quantitative Proteomic Profiling of Human Pancreatic and Hepatic Stellate Cell Lines

    PubMed Central

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Conwell, Darwin L.; Steen, Hanno

    2013-01-01

    The functions of the liver and the pancreas differ; however, chronic inflammation in both organs is associated with fibrosis. Evidence suggests that fibrosis in both organs is partially regulated by organ-specific stellate cells. We explore the proteome of human hepatic stellate cells (hHSC) and human pancreatic stellate cells (hPaSC) using mass spectrometry (MS)-based quantitative proteomics to investigate pathophysiologic mechanisms. Proteins were isolated from whole cell lysates of immortalized hHSC and hPaSC. These proteins were tryptically digested, labeled with tandem mass tags (TMT), fractionated by OFFGEL, and subjected to MS. Proteins significantly different in abundance (P < 0.05) were classified via gene ontology (GO) analysis. We identified 1223 proteins and among them, 1222 proteins were quantifiable. Statistical analysis determined that 177 proteins were of higher abundance in hHSC, while 157 were of higher abundance in hPaSC. GO classification revealed that proteins of relatively higher abundance in hHSC were associated with protein production, while those of relatively higher abundance in hPaSC were involved in cell structure. Future studies using the methodologies established herein, but with further upstream fractionation and/or use of enhanced MS instrumentation will allow greater proteome coverage, achieving a comprehensive proteomic analysis of hHSC and hPaSC. PMID:23528454

  18. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry.

    PubMed

    Qu, Miao; An, Bo; Shen, Shichen; Zhang, Ming; Shen, Xiaomeng; Duan, Xiaotao; Balthasar, Joseph P; Qu, Jun

    2017-11-01

    In the last decade, the advancement of liquid chromatography mass spectrometry (LC/MS) techniques has enabled their broad application in protein characterization, both quantitatively and qualitatively. Owing to certain important merits of LC/MS techniques (e.g., high selectivity, flexibility, and rapid method development), LC/MS assays are often deemed as preferable alternatives to conventional methods (e.g., ligand-binding assays) for the analysis of protein biotherapeutics. At the discovery and development stages, LC/MS is generally employed for two purposes absolute quantification of protein biotherapeutics in biological samples and qualitative characterization of proteins. For absolute quantification of a target protein in bio-matrices, recent work has led to improvements in the efficiency of LC/MS method development, sample treatment, enrichment and digestion, and high-performance low-flow-LC separation. These advances have enhanced analytical sensitivity, specificity, and robustness. As to qualitative analysis, a range of techniques have been developed to characterize intramolecular disulfide bonds, glycosylation, charge variants, primary sequence heterogeneity, and the drug-to-antibody ratio of antibody drug conjugate (ADC), which has enabled a refined ability to assess product quality. In this review, we will focus on the discussion of technical challenges and strategies of LC/MS-based quantification and characterization of biotherapeutics, with the emphasis on the analysis of antibody-based biotherapeutics such as monoclonal antibodies (mAbs) and ADCs. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:734-754, 2017. © 2016 Wiley Periodicals, Inc.

  19. The role of quantitative mass spectrometry in the discovery of pancreatic cancer biomarkers for translational science.

    PubMed

    Ansari, Daniel; Aronsson, Linus; Sasor, Agata; Welinder, Charlotte; Rezeli, Melinda; Marko-Varga, György; Andersson, Roland

    2014-04-05

    In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment.

  20. Quantitative analysis of diclazuril in animal plasma by liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Croubels, Siska; Cherlet, Marc; De Backer, Patrick

    2002-01-01

    A novel, sensitive and specific method for the quantitative determination of diclazuril in animal plasma using liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with negative ion detection is presented. Extraction of the samples was performed with a rapid deproteinization step using acetonitrile. Chromatography of diclazuril and the internal standard was achieved on a Nucleosil ODS 5-microm column, using a gradient elution with 0.01 M ammonium acetate and acetonitrile. To obtain the highest sensitivity and specificity possible, the mass spectrometer was operated in the multiple reaction monitoring (MRM) mode. The method was validated according to the requirements defined by the European Community. Calibration curves using plasma fortified between 1-100 ng/mL and 100-2000 ng/mL showed good linear correlation (r >or= 0.9991, goodness-of-fit coefficient quantitative determination of diclazuril in plasma samples from treated sheep, demonstrating the usefulness of the developed method for application in the field of pharmacology and pharmacokinetics. Copyright 2002 John Wiley & Sons, Ltd.

  1. The role of quantitative mass spectrometry in the discovery of pancreatic cancer biomarkers for translational science

    PubMed Central

    2014-01-01

    In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment. PMID:24708694

  2. Quantitation of opioids in whole blood by electron impact-gas chromatography-mass spectrometry.

    PubMed

    Tiscione, Nicholas B; Shan, Xiaoqin; Alford, Ilene; Yeatman, Dustin Tate

    2011-03-01

    Opioids are frequently encountered in Forensic Toxicology casework. A PubMed literature search was conducted to find a method using electron impact-gas chromatography-mass spectrometry to examine whole blood specimens. A previously published method was identified, and an updated version was provided by the State of North Carolina Office of the Chief Medical Examiner. This procedure was used as a starting point for development and validation of a refined procedure to be used in the Palm Beach County Sheriff's Office Forensic Toxicology laboratory for routine analysis of antemortem forensic toxicology case samples. Materials and instrumentation common to most forensic toxicology laboratories were utilized while obtaining detection limits from 1 to 10 ng/mL and quantitation limits of 2.5 to 10 ng/mL using 1 mL of whole blood. Target compounds were chosen based on applicability to the method as well as availability and common use in the United States and include dihydrocodeine, codeine, morphine, hydrocodone, 6-monoacetylmorphine, hydromorphone, oxycodone, and oxymorphone. Each analyte demonstrated two zero-order linear ranges (r(2) > 0.990) over the concentrations evaluated (from 2.5 to 500 ng/mL). The coefficient of variation of replicate analyses was less than 12%. Quantitative accuracy was within ± 27% at 2.5 ng/mL, ± 11% at 10 ng/mL, and ± 8% at 50 ng/mL. The validated method provides a more sensitive procedure for the quantitation of common opioids in blood using standard laboratory equipment and a small amount of sample.

  3. A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis.

    PubMed

    Tucker, George; Loh, Po-Ru; Berger, Bonnie

    2013-10-04

    Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely

  4. Comparison of Different Time of Flight-Mass Spectrometry Modes for Small Molecule Quantitative Analysis.

    PubMed

    Chindarkar, Nandkishor S; Park, Hyung-Doo; Stone, Judith A; Fitzgerald, Robert L

    2015-01-01

    Currently, the use of time of flight (TOF)-mass spectrometry (MS) in quantitative analysis of small molecules is rare. Recently, the quantitative performance of TOF mass analyzers has improved due to the advancements in TOF technology. We evaluated a Q-TOF-MS in different modes, i.e., Q-TOF-full scan (Q-TOF-FS), Q-TOF-enhanced-full scan (Q-TOF-En-FS), MS(E), Q-TOF-targeted (Q-TOF-TGT), Q-TOF-enhanced-targeted (Q-TOF-En-TGT), and compared their quantitative performance against a unit resolution LC-MS-MS (tandem quadrupole) platform. The five modes were investigated for sensitivity, linearity, signal-to-noise ratio, recovery and precision using 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) as a model compound in electrospray ionization (ESI) with negative polarity. Preliminary studies indicated that Q-TOF-FS mode was the least linear and precise; hence, it was eliminated from further investigation. Total imprecision in remaining four modes was <10%. The Q-TOF-En-FS and Q-TOF-En-TGT showed better signal intensity than their respective modes without enhancement. Overall, peak signal intensity was the highest in MS(E) mode, whereas the signal-to-noise ratio was the best in the Q-TOF-En-TGT mode. Relatively, MS(E) and Q-TOF-En-TGT modes were the best overall performers compared with the other modes. Both MS(E) and Q-TOF-En-TGT modes showed excellent precision (coefficient of variation <6%), patient correlation (r > 0.99) and linearity (range, 5-455 ng/mL) for THC-COOH analysis when compared with LC-MS-MS. We also investigated the performance of the same four modes using methamphetamine in positive ESI. Quantitative data obtained by Q-TOF-En-TGT and MS(E), using both positive and negative ESI, suggest that these modes performed better than the other modes. While unit resolution LC-MS-MS remains the optimal technique for quantification, our data showed that Q-TOF-MS can also be used to quantify small molecules in complex biological specimens.

  5. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry

    PubMed Central

    Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J.; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A.

    2017-01-01

    The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies. PMID:28266621

  6. Identification of CRM1-dependent Nuclear Export Cargos Using Quantitative Mass Spectrometry.

    PubMed

    Thakar, Ketan; Karaca, Samir; Port, Sarah A; Urlaub, Henning; Kehlenbach, Ralph H

    2013-03-01

    Chromosome region maintenance 1/exportin1/Exp1/Xpo1 (CRM1) is the major transport receptor for the export of proteins from the nucleus. It binds to nuclear export signals (NESs) that are rich in leucines and other hydrophobic amino acids. The prediction of NESs is difficult because of the extreme recognition flexibility of CRM1. Furthermore, proteins can be exported upon binding to an NES-containing adaptor protein. Here we present an approach for identifying targets of the CRM1-export pathway via quantitative mass spectrometry using stable isotope labeling with amino acids in cell culture. With this approach, we identified >100 proteins from HeLa cells that were depleted from cytosolic fractions and/or enriched in nuclear fractions in the presence of the selective CRM1-inhibitor leptomycin B. Novel and validated substrates are the polyubiquitin-binding protein sequestosome 1, the cancerous inhibitor of protein phosphatase 2A (PP2A), the guanine nucleotide-binding protein-like 3-like protein, the programmed cell death protein 2-like protein, and the cytosolic carboxypeptidase 1 (CCP1). We identified a functional NES in CCP1 that mediates direct binding to the export receptor CRM1. The method will be applicable to other nucleocytoplasmic transport pathways, as well as to the analysis of nucleocytoplasmic shuttling proteins under different growth conditions.

  7. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry.

    PubMed

    Liu, Hongcheng; Manuilov, Anton V; Chumsae, Chris; Babineau, Michelle L; Tarcsa, Edit

    2011-07-01

    A method including protein A purification, limited Lys-C digestion, and mass spectrometry analysis was used in the study to quantify a recombinant monoclonal antibody in cynomolgus monkey serum. The same antibody that was isotopically labeled was used as an internal standard. Interferences from serum proteins were first significantly reduced by protein A purification and then by limited Lys-C digestion of protein A bound IgG, including both monkey and the recombinant IgG. Fab fragment of the recombinant human IgG was analyzed directly by LC-MS, while monkey IgG and the Fc fragment of the recombinant human IgG remained bound to protein A resin. Quantitation was achieved by measuring the peak intensity of the Fab from the recombinant human IgG and comparing it to that of the Fab from the stable isotope-labeled internal standard. The results were in good agreement with the values from ELISA. LC-MS can therefore be used as a complementary approach to ELISA to quantify recombinant monoclonal antibodies in serum for pharmacokinetics studies and it can also be used where specific reagents such as antigens are not readily available for ELISA.

  8. Quantitative analysis of denatured collagen by collagenase digestion and subsequent MALDI-TOF mass spectrometry.

    PubMed

    Nimptsch, Ariane; Schibur, Stephanie; Ihling, Christian; Sinz, Andrea; Riemer, Thomas; Huster, Daniel; Schiller, Jürgen

    2011-03-01

    Collagens are the most abundant proteins in vertebrate tissues and constitute significant moieties of the extracellular matrix (ECM). The determination of the collagen content is of relevance not only in the field of native tissue research, but also regarding the quality assessment of bioengineered tissues. Here, we describe a quantitative method to assess small amounts of collagen based on MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry (MS) subsequent to digestion of collagen with clostridial collagenase (clostridiopeptidase A) in order to obtain characteristic oligopeptides. Among the resulting peptides, Gly-Pro-Hyp, which is highly indicative of collagen, has been used to assess the amount of collagen by comparing the Gly-Pro-Hyp peak intensities with the intensities of a spiked tripeptide (Arg-Gly-Asp). The approach presented herein is both simple and convenient and allows the determination of collagen in microgram quantities. In tissue samples such as cartilage, the actual collagen content has additionally been determined for comparative purposes by nuclear magnetic resonance spectroscopy subsequent to acidic hydrolysis. Both methods give consistent data within an experimental error of ±10%. Although the differentiation of the different collagen types cannot be achieved by this approach, the overall collagen contents of tissues can be easily determined.

  9. Liquid chromatography/tandem mass spectrometry method for quantitation of cremophor el and its applications.

    PubMed

    Vijaya Bhaskar, V; Middha, Anil

    2013-01-01

    A rapid sensitive and selective MRM based method for the determination of Cremophor EL (CrEL) in rat plasma was developed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). CrEL and polypropylene glycol (internal standard) were extracted from rat plasma with acetonitrile and analysed on C18 column (XBridge, 50 × 4.6 mm, 3.5  μ m). The most abundant molecular ions corresponding to PEG oligomers at m/z 828, 872, 916 and 960 with daughter ion at m/z 89 were selected for multiple reaction monitoring (MRM) in electrospray mode of ionisation. Plasma concentrations of CrEL were quantified after administration through oral and intravenous routes in male sprague dawley rats at a dose of 0.26 g/kg. The standard curve was linear (0.9972) over the concentration range of 1.00 to 200  μ g/mL. The lower limit of quantitation for CrEL was 1.00  μ g/mL using 50  μ L plasma. The coefficient of variation and relative error for inter and intra assay at three QC levels were 0.69 to 9.21 and -7.60 to 4.74 respectively. A novel proposal was conveyed to the scientific community, where formulation excipient can be analysed as qualifier in the analysis of NCEs to address the spiky plasma concentration profiles.

  10. Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients.

    PubMed

    Qiu, Yunping; Zhou, Bingsen; Su, Mingming; Baxter, Sarah; Zheng, Xiaojiao; Zhao, Xueqing; Yen, Yun; Jia, Wei

    2013-04-12

    Breast cancer accounts for the largest number of newly diagnosed cases in female cancer patients. Although mammography is a powerful screening tool, about 20% of breast cancer cases cannot be detected by this method. New diagnostic biomarkers for breast cancer are necessary. Here, we used a mass spectrometry-based quantitative metabolomics method to analyze plasma samples from 55 breast cancer patients and 25 healthy controls. A number of 30 patients and 20 age-matched healthy controls were used as a training dataset to establish a diagnostic model and to identify potential biomarkers. The remaining samples were used as a validation dataset to evaluate the predictive accuracy for the established model. Distinct separation was obtained from an orthogonal partial least squares-discriminant analysis (OPLS-DA) model with good prediction accuracy. Based on this analysis, 39 differentiating metabolites were identified, including significantly lower levels of lysophosphatidylcholines and higher levels of sphingomyelins in the plasma samples obtained from breast cancer patients compared with healthy controls. Using logical regression, a diagnostic equation based on three metabolites (lysoPC a C16:0, PC ae C42:5 and PC aa C34:2) successfully differentiated breast cancer patients from healthy controls, with a sensitivity of 98.1% and a specificity of 96.0%.

  11. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry.

    PubMed

    Chen, Stephen S; Williamson, James R

    2013-02-22

    The ribosome is an essential and highly complex biological system in all living cells. A large body of literature on the assembly of the ribosome in vitro is available, but a clear picture of this process inside the cell has yet to emerge. Here, we directly characterized in vivo ribosome assembly intermediates and associated assembly factors from wild-type Escherichia coli cells using a general quantitative mass spectrometry (qMS) approach. The presence of distinct populations of ribosome assembly intermediates was verified using an in vivo stable isotope pulse-labeling approach, and their exact ribosomal protein contents were characterized against an isotopically labeled standard. The model-free clustering analysis of the resultant protein levels for the different ribosomal particles produced four 30S assembly groups that correlate very well with previous in vitro assembly studies of the small ribosomal subunit and six 50S assembly groups that clearly define an in vivo assembly landscape for the larger ribosomal subunit. In addition, de novo proteomics identified a total of 21 known and potentially new ribosome assembly factors co-localized with various ribosomal particles. These results represent new in vivo assembly maps of the E. coli 30S and 50S subunits, and the general qMS approach should prove to be a solid platform for future studies of ribosome biogenesis across a host of model organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Mapping Biological Networks from Quantitative Data-Independent Acquisition Mass Spectrometry: Data to Knowledge Pipelines.

    PubMed

    Crowgey, Erin L; Matlock, Andrea; Venkatraman, Vidya; Fert-Bober, Justyna; Van Eyk, Jennifer E

    2017-01-01

    Data-independent acquisition mass spectrometry (DIA-MS) strategies and applications provide unique advantages for qualitative and quantitative proteome probing of a biological sample allowing constant sensitivity and reproducibility across large sample sets. These advantages in LC-MS/MS are being realized in fundamental research laboratories and for clinical research applications. However, the ability to translate high-throughput raw LC-MS/MS proteomic data into biological knowledge is a complex and difficult task requiring the use of many algorithms and tools for which there is no widely accepted standard and best practices are slowly being implemented. Today a single tool or approach inherently fails to capture the full interpretation that proteomics uniquely supplies, including the dynamics of quickly reversible chemically modified states of proteins, irreversible amino acid modifications, signaling truncation events, and, finally, determining the presence of protein from allele-specific transcripts. This chapter highlights key steps and publicly available algorithms required to translate DIA-MS data into knowledge.

  13. A quantitative multiplexed mass spectrometry assay for studying the kinetic of residue-specific histone acetylation.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J

    2014-12-01

    Histone acetylation is involved in gene regulation and, most importantly, aberrant regulation of histone acetylation is correlated with major human diseases. Although many lysine acetyltransferases (KATs) have been characterized as being capable of acetylating multiple lysine residues on histones, how different factors such as enzyme complexes or external stimuli (e.g. KAT activators or inhibitors) alter KAT specificity remains elusive. In order to comprehensively understand how the homeostasis of histone acetylation is maintained, a method that can quantitate acetylation levels of individual lysines on histones is needed. Here we demonstrate that our mass spectrometry (MS)-based method accomplishes this goal. In addition, the high throughput, high sensitivity, and high dynamic range of this method allows for effectively and accurately studying steady-state kinetics. Based on the kinetic parameters from in vitro enzymatic assays, we can determine the specificity and selectivity of a KAT and use this information to understand what factors influence histone acetylation. These approaches can be used to study the enzymatic mechanisms of histone acetylation as well as be adapted to other histone modifications. Understanding the post-translational modification of individual residues within the histones will provide a better picture of chromatin regulation in the cell.

  14. HDL Proteome in Hemodialysis Patients: A Quantitative Nanoflow Liquid Chromatography-Tandem Mass Spectrometry Approach

    PubMed Central

    Badiou, Stéphanie; Patrier, Laure; Canaud, Bernard; Maudelonde, Thierry; Cristol, Jean-Paul; Solassol, Jérôme

    2012-01-01

    Aside from a decrease in the high-density lipoprotein (HDL) cholesterol levels, qualitative abnormalities of HDL can contribute to an increase in cardiovascular (CV) risk in end-stage renal disease (ESRD) patients undergoing chronic hemodialysis (HD). Dysfunctional HDL leads to an alteration of reverse cholesterol transport and the antioxidant and anti-inflammatory properties of HDL. In this study, a quantitative proteomics approach, based on iTRAQ labeling and nanoflow liquid chromatography mass spectrometry analysis, was used to generate detailed data on HDL-associated proteins. The HDL composition was compared between seven chronic HD patients and a pool of seven healthy controls. To confirm the proteomics results, specific biochemical assays were then performed in triplicate in the 14 samples as well as 46 sex-matched independent chronic HD patients and healthy volunteers. Of the 122 proteins identified in the HDL fraction, 40 were differentially expressed between the healthy volunteers and the HD patients. These proteins are involved in many HDL functions, including lipid metabolism, the acute inflammatory response, complement activation, the regulation of lipoprotein oxidation, and metal cation homeostasis. Among the identified proteins, apolipoprotein C-II and apolipoprotein C-III were significantly increased in the HDL fraction of HD patients whereas serotransferrin was decreased. In this study, we identified new markers of potential relevance to the pathways linked to HDL dysfunction in HD. Proteomic analysis of the HDL fraction provides an efficient method to identify new and uncharacterized candidate biomarkers of CV risk in HD patients. PMID:22470525

  15. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins.

    PubMed

    Lowenthal, Mark S; Markey, Sanford P; Dosemeci, Ayse

    2015-06-05

    Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.

  16. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3) in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  17. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  18. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    SciTech Connect

    Wu, Si; Brown, Joseph N.; Tolic, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J.; Pevzner, Pavel A.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2014-05-31

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  19. Complex mixtures of antibodies generated from a single production qualitatively and quantitatively evaluated by native Orbitrap mass spectrometry.

    PubMed

    Thompson, Natalie J; Hendriks, Linda J A; de Kruif, John; Throsby, Mark; Heck, Albert J R

    2014-01-01

    Composite antibody mixtures designed to combat diseases present a new, rapidly emerging technology in the field of biopharmaceuticals. The combination of multiple antibodies can lead to increased effector response and limit the effect of escape variants that can propagate the disease. However, parallel development of analytical technologies is required to provide fast, thorough, accurate, and robust characterization of these mixtures. Here, we evaluate the utility of native mass spectrometry on an Orbitrap platform with high mass resolving power to characterize composite mixtures of up to 15 separate antibodies. With this technique, unambiguous identification of each antibody in the mixtures was achieved. Mass measurements of the intact antibodies varied 7 ppm on average, allowing highly reproducible identification and quantitation of each compound in these complex mixtures. We show that with the high mass-resolving power and robustness of this technology, high-resolution native mass spectrometry can be used efficiently even for batch-to batch characterization.

  20. A general method for targeted quantitative cross-linking mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  1. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    PubMed

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  2. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.

    PubMed

    You, Changjun; Wang, Yinsheng

    2016-02-16

    The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription

  3. Quantitative Mass Spectrometry Reveals Plasticity of Metabolic Networks in Mycobacterium smegmatis *

    PubMed Central

    Chopra, Tarun; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; McKinney, John D.

    2014-01-01

    Mycobacterium tuberculosis has a remarkable ability to persist within the human host as a clinically inapparent or chronically active infection. Fatty acids are thought to be an important carbon source used by the bacteria during long term infection. Catabolism of fatty acids requires reprogramming of metabolic networks, and enzymes central to this reprogramming have been targeted for drug discovery. Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, is often used as a model system because of the similarity of basic cellular processes in these two species. Here, we take a quantitative proteomics-based approach to achieve a global view of how the M. smegmatis metabolic network adjusts to utilization of fatty acids as a carbon source. Two-dimensional liquid chromatography and mass spectrometry of isotopically labeled proteins identified a total of 3,067 proteins with high confidence. This number corresponds to 44% of the predicted M. smegmatis proteome and includes most of the predicted metabolic enzymes. Compared with glucose-grown cells, 162 proteins showed differential abundance in acetate- or propionate-grown cells. Among these, acetate-grown cells showed a higher abundance of proteins that could constitute a functional glycerate pathway. Gene inactivation experiments confirmed that both the glyoxylate shunt and the glycerate pathway are operational in M. smegmatis. In addition to proteins with annotated functions, we demonstrate carbon source-dependent differential abundance of proteins that have not been functionally characterized. These proteins might play as-yet-unidentified roles in mycobacterial carbon metabolism. This study reveals several novel features of carbon assimilation in M. smegmatis, which suggests significant functional plasticity of metabolic networks in this organism. PMID:24997995

  4. Quantitation of Cotinine in Nonsmoker Saliva Using Chip Based Nanoelectrospray Tandem Mass Spectrometry

    SciTech Connect

    Tomkins, Bruce A; Van Berkel, Gary J; Jenkins, Roger A; Counts, Richard Wayne

    2006-01-01

    A new analytical procedure was developed for the quantitation of nonsmoker salivary cotinine. Small volumes of saliva were diluted with water, fortified with cotinine-d{sub 3} (internal standard), then passed through small extraction columns. The analyte and internal standard were eluted with 0.1% (v/v) acetic acid/acetonitrile. Aliquots of each extract were analyzed directly, without chromatographic separation, using chip-based (NanoMate{sup TM}) nanospray tandem mass spectrometry. The calculated detection limit was 0.49 ng cotinine/mL saliva. This method was used to quantify salivary cotinine collected from nonsmoking human subjects living in one of three environmental tobacco smoke (ETS) exposure categories or 'cells': 1. smoking home/smoking workplace; 2. smoking home/nonsmoking workplace; and 3. nonsmoking home/smoking workplace. Samples were collected during five sequential days, including Saturday, as part of a larger study to evaluate potential variability in exposure to ETS. Salivary cotinine measurements were made for the purpose of excluding misclassified smokers and for comparison with known levels of exposure to airborne nicotine in each exposure category. The concentrations observed were consistent with those reported from other large studies reported elsewhere. A non-parametric statistical test was applied to the data within each cell. No statistically significant differences were found between the mean cotinine concentrations collected on a weekday as compared to those collected on a weekend day. When the non-parametric test was applied to the three cells, a statistically significant difference was observed between cell 1 compared to cells 2 and 3. The salivary cotinine concentrations were thus statistically invariant over a five-day exposure period, and they were greatest under the conditions of smoking home and smoking workplace.

  5. Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis.

    PubMed

    Chopra, Tarun; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; McKinney, John D

    2014-11-01

    Mycobacterium tuberculosis has a remarkable ability to persist within the human host as a clinically inapparent or chronically active infection. Fatty acids are thought to be an important carbon source used by the bacteria during long term infection. Catabolism of fatty acids requires reprogramming of metabolic networks, and enzymes central to this reprogramming have been targeted for drug discovery. Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, is often used as a model system because of the similarity of basic cellular processes in these two species. Here, we take a quantitative proteomics-based approach to achieve a global view of how the M. smegmatis metabolic network adjusts to utilization of fatty acids as a carbon source. Two-dimensional liquid chromatography and mass spectrometry of isotopically labeled proteins identified a total of 3,067 proteins with high confidence. This number corresponds to 44% of the predicted M. smegmatis proteome and includes most of the predicted metabolic enzymes. Compared with glucose-grown cells, 162 proteins showed differential abundance in acetate- or propionate-grown cells. Among these, acetate-grown cells showed a higher abundance of proteins that could constitute a functional glycerate pathway. Gene inactivation experiments confirmed that both the glyoxylate shunt and the glycerate pathway are operational in M. smegmatis. In addition to proteins with annotated functions, we demonstrate carbon source-dependent differential abundance of proteins that have not been functionally characterized. These proteins might play as-yet-unidentified roles in mycobacterial carbon metabolism. This study reveals several novel features of carbon assimilation in M. smegmatis, which suggests significant functional plasticity of metabolic networks in this organism.

  6. Quantitation of endogenous nucleoside triphosphates and nucleosides in human cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Thomas, Dominique; Herold, Nikolas; Keppler, Oliver T; Geisslinger, Gerd; Ferreirós, Nerea

    2015-05-01

    Nucleosides and nucleoside triphosphates are the building blocks of nucleic acids and important bioactive metabolites, existing in all living cells. In the present study, two liquid chromatography tandem mass spectrometry methods were developed to quantify both groups of compounds from the same sample with a shared extraction procedure. After a simple protein precipitation with methanol, the nucleosides were separated with reversed phase chromatography on an Atlantis T3 column while for the separation of the nucleoside triphosphates, an anion exchange column (BioBasic AX) was used. No addition of ion pair reagent was required. A 5500 QTrap was used as analyzer, operating as triple quadrupole. The analytical method for the nucleoside triphosphates has been validated according to the guidelines of the US Food and Drug Administration. The lower limit of quantification values were determined as 10 pg on column (0.5 ng/mL in the injection solution) for deoxyadenosine triphosphate and deoxyguanosine triphosphate, 20 pg (1 ng/mL) for deoxycytidine triphosphate and thymidine triphosphate, 100 pg (5 ng/mL) for cytidine triphosphate and guanosine triphosphate, and 500 pg (25 ng/mL) for adenosine triphosphate und uridine triphosphate respectively. This methodology has been applied to the quantitation of nucleosides and nucleoside triphosphates in primary human CD4 T lymphocytes and macrophages. As expected, the concentrations for ribonucleosides and ribonucleoside triphophates were considerably higher than those obtained for the deoxy derivatives. Upon T cell receptor activation, the levels of all analytes, with the notable exceptions of deoxyadenosine triphosphate and deoxyguanosine triphosphate, were found to be elevated in CD4 T cells.

  7. Quantitation of Insulin Analogues in Serum Using Immunoaffinity Extraction, Liquid Chromatography, and Tandem Mass Spectrometry.

    PubMed

    Van Der Gugten, J Grace; Wong, Sophia; Holmes, Daniel T

    2016-01-01

    Insulin analysis is used in combination with glucose, C-peptide, beta-hydroxybutyrate, and proinsulin determination for the investigation of adult hypoglycemia. The most common cause is the administration of too much insulin or insulin secretagogue to a diabetic patient or inadequate caloric intake after administration of either. Occasionally there is a question as to whether hypoglycemia has been caused by an exogenous insulin-whether by accident, intent, or even malicious intent. While traditionally this was confirmed by a low or undetectable C-peptide in a hypoglycemic specimen, this finding is not entirely specific and would also be expected in the context of impaired counter-regulatory response, fatty acid oxidation defects, and liver failure-though beta-hydroxybutyrate levels can lend diagnostic clarity. For this reason, insulin is often requested. However, popular automated chemiluminescent immunoassays for insulin have distinctly heterogeneous performance in detecting analogue synthetic insulins with cross-reactivities ranging from near 0 % to greater than 100 %. The ability to detect synthetic insulins is vendor-specific and varies between insulin products. Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS) offers a means to circumvent these analytical issues and both quantify synthetic insulins and identify the specific type. We present an immunoaffinity extraction and LC-MS/MS method capable of independent identification and quantitation of native sequence insulins (endogenous, Insulin Regular, Insulin NPH), and analogues Glargine, Lispro, Detemir, and Aspart with an analytical sensitivity for endogenous insulin of between 1 and 2 μU/mL in patient serum samples.

  8. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry.

    PubMed

    Serna, Jorge; García-Seisdedos, David; Alcázar, Alberto; Lasunción, Miguel Ángel; Busto, Rebeca; Pastor, Óscar

    2015-07-01

    Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  10. Towards cracking the epigenetic code using a combination of high-throughput epigenomics and quantitative mass spectrometry-based proteomics.

    PubMed

    Stunnenberg, Hendrik G; Vermeulen, Michiel

    2011-07-01

    High-throughput genomic sequencing and quantitative mass spectrometry (MS)-based proteomics technology have recently emerged as powerful tools, increasing our understanding of chromatin structure and function. Both of these approaches require substantial investments and expertise in terms of instrumentation, experimental methodology, bioinformatics, and data interpretation and are, therefore, usually applied independently from each other by dedicated research groups. However, when applied reiteratively in the context of epigenetics research these approaches are strongly synergistic in nature.

  11. Stable isotope pulse-chase monitored by quantitative mass spectrometry applied to E. coli 30S ribosome assembly kinetics.

    PubMed

    Bunner, Anne E; Williamson, James R

    2009-10-01

    Stable isotope mass spectrometry has become a widespread tool in quantitative biology. Pulse-chase monitored by quantitative mass spectrometry (PC/QMS) is a recently developed stable isotope approach that provides a powerful means of studying the in vitro self-assembly kinetics of macromolecular complexes. This method has been applied to the Escherichia coli 30S ribosomal subunit, but could be applied to any stable self-assembling complex that can be reconstituted from its component parts and purified from a mixture of components and complex. The binding rates of 18 out of the 20 ribosomal proteins have been measured at several temperatures using PC/QMS. Here, PC/QMS experiments on 30S ribosomal subunit assembly are described, and the potential application of the method to other complexes is discussed. A variation on the PC/QMS experiment is introduced that enables measurement of kinetic cooperativity between proteins. In addition, several related approaches to stable isotope labeling and quantitative mass spectrometry data analysis are compared and contrasted.

  12. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  13. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  14. Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2011-01-01

    Edman degradation is a long-established technique for N-terminal sequencing of proteins and cleavage fragments. However, for accurate data analysis and amino acid assignments, Edman sequencing proceeds on samples of single proteins only and so lacks high-throughput capabilities. We describe a new method for the high-throughput determination of N-terminal sequences of multiple protein fragments in solution. Proteolytic processing can change the activity of bioactive proteins and also reveal cryptic binding sites and generate proteins with new functions (neoproteins) not found in the parent molecule. For example, extracellular matrix (ECM) protein processing often produces multiple proteolytic fragments with the generation of cryptic binding sites and neoproteins by ECM protein processing being well documented. The exact proteolytic cleavage sites need to be identified to fully understand the functions of the cleavage fragments and biological roles of proteases in vivo. However, the identification of cleavage sites in complex high molecular proteins such as those composing the ECM is not trivial. N-terminal microsequencing of proteolytic fragments is the usual method employed, but it suffers from poor resolution of sodium dodecylsulfate-polyacrylamide gel electrophoresis gels and is inefficient at identifying multiple cleavages, requiring preparation of numerous gels or membrane slices for analysis. We recently developed Amino-Terminal Oriented Mass spectrometry of Substrates (ATOMS) to overcome these limitations as a complement for N-terminal sequencing. ATOMS employs isotopic labeling and quantitative tandem mass spectrometry to identify cleavage sites in a fast and accurate manner. We successfully used ATOMS to identify nearly 100 cleavage sites in the ECM proteins laminin and fibronectin. Presented herein is the detailed step-by-step protocol for ATOMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Quantitation of aflatoxins from corn and other food related materials by direct analysis in real time - mass spectrometry (DART-MS)

    USDA-ARS?s Scientific Manuscript database

    Ambient ionization coupled to mass spectrometry continues to be applied to new analytical problems, facilitating the rapid and convenient analysis of a variety of analytes. Recently, demonstrations of ambient ionization mass spectrometry applied to quantitative analysis of mycotoxins have been shown...

  16. Analysis on the go: quantitation of drugs of abuse in dried urine with digital microfluidics and miniature mass spectrometry.

    PubMed

    Kirby, Andrea E; Lafrenière, Nelson M; Seale, Brendon; Hendricks, Paul I; Cooks, R Graham; Wheeler, Aaron R

    2014-06-17

    We report the development of a method coupling microfluidics and a miniature mass spectrometer, applied to quantitation of drugs of abuse in urine. A custom digital microfluidic system was designed to deliver droplets of solvent to dried urine samples and then transport extracted analytes to an array of nanoelectrospray emitters for analysis. Tandem mass spectrometry (MS/MS) detection was performed using a fully autonomous 25 kg instrument. Using the new method, cocaine, benzoylecgonine, and codeine can be quantified from four samples in less than 15 min from (dried) sample to analysis. The figures of merit for the new method suggest that it is suitable for on-site screening; for example, the limit of quantitation (LOQ) for cocaine is 40 ng/mL, which is compatible with the performance criteria for laboratory analyses established by the United Nations Office on Drugs and Crime. More importantly, the LOQ of the new method is superior to the 300 ng/mL cutoff values used by the only other portable analysis systems we are aware of (relying on immunoassays). This work serves as a proof-of-concept for integration of microfluidics with miniature mass spectrometry. The system is attractive for the quantitation of drugs of abuse from urine and, more generally, may be useful for a wide range of applications that would benefit from portable, quantitative, on-site analysis.

  17. Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry.

    PubMed

    Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin

    2010-02-01

    Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages.

  18. Rapid Detection of Ampicillin Resistance in Escherichia coli by Quantitative Mass Spectrometry

    PubMed Central

    Findeisen, P.; Miethke, T.; Jäger, E.; Ahmad-Nejad, P.

    2012-01-01

    Early targeted antimicrobial therapy helps decrease costs and prevents the spread of antimicrobial resistance, including in Escherichia coli, the most frequent Gram-negative bacterium that causes sepsis. Therefore, rapid susceptibility testing represents the major prerequisite for knowledge-based successful antimicrobial treatment. To accelerate testing for antibiotic susceptibility, we have developed a new mass spectrometry-based assay for antibiotic susceptibility testing (MAAST). For proof of principle, we present an ampicillin susceptibility test for E. coli with a turnaround time of 90 min upon growth detection. PMID:22322351

  19. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  20. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry

    PubMed Central

    Nemes, Peter; Rubakhin, Stanislav S.; Aerts, Jordan T.; Sweedler, Jonathan V.

    2013-01-01

    Single-cell mass spectrometry (MS) empowers metabolomic investigations by decreasing analytical dimensions to the size of individual cells and subcellular structures. We describe a protocol for investigating and quantifying metabolites in individual isolated neurons using single-cell capillary electrophoresis hyphenated to electrospray ionization time-of-flight MS. The protocol requires ~2 h for sample preparation, neuron isolation, and metabolite extraction, and 1 h for metabolic measurement. The approach was used to detect more than 300 distinct compounds in the mass range of typical metabolites in various individual neurons (25–500-µm in diameter) isolated from the sea slug (Aplysia californica) central and rat (Rattus norvegicus) peripheral nervous systems. A subset of identified compounds was sufficient to reveal metabolic differences among freshly isolated neurons of different types and changes in the metabolite profiles of cultured neurons. The protocol can be applied to the characterization of the metabolome in a variety of smaller cells and/or subcellular domains. PMID:23538882

  1. Quantitative analysis of biomolecules by time-of-flight secondary-ion mass spectrometry: Fundamental considerations

    SciTech Connect

    Muddiman, D.C.; Nicola, A.J.; Proctor, A.

    1995-12-31

    Static Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) has been applied to investigate an extensive assortment of analytical systems; from semiconductors to DNA sequencing. Recently, the TOF-SIMS method has been successfully applied to real biological systems. This report focuses on some important aspects that must be taken into consideration when conducting measurements on biomaterials in order to observe the potential the TOF-SIMS method affords. The current data are presented using Cyclosporin A (CsA, 1202 Da) and cocaine (303 Da) as model compounds. CsA is observed in the TOF-SIMS mass spectrum predominately as a Ag-cationized species and cocaine as a protonated species; thus, they are complementary probe molecules.

  2. Quantitative analysis of the tumor suppressor dendrogenin A using liquid chromatography tandem mass spectrometry.

    PubMed

    Noguer, Emmanuel; Soules, Régis; Netter, Claude; Nagarathinam, Citra; Leignadier, Julie; Huc-Claustre, Emilie; Serhan, Nizar; Rives, Arnaud; de Medina, Philippe; Silvente-Poirot, Sandrine; Poirot, Marc

    2017-07-03

    Dendrogenin A (DDA) was recently identified as a mammalian cholesterol metabolite that displays tumor suppressor and neurostimulating properties at low doses. In breast tumors, DDA levels were found to be decreased compared to normal tissues, evidencing a metabolic deregulation of DDA production in cancers. DDA is an amino-oxysterol that contains three protonatable nitrogen atoms. This makes it physico-chemically different from other oxysterols and it therefore requires specific analytical methods We have previously used a two-step method for the quantification of DDA in biological samples: 1) DDA purification from a Bligh and Dyer extract by RP-HPLC using a 250×4.6mm column, followed by 2) nano-electrospray ionization mass spectrometry (MS) fragmentation to analyze the HPLC fraction of interest. We report here the development a liquid chromatography tandem mass spectrometry method for the analysis of DDA and its analogues. This new method is fast (10min), resolving (peak width <4s) and has a weak carryover (<0.01%). We show that this technique efficiently separates DDA from its C17 isomer and other steroidal alkaloids from the same family establishing a proof of concept for the analysis of this family of amino-oxysterols. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present.

    PubMed

    Bantscheff, Marcus; Lemeer, Simone; Savitski, Mikhail M; Kuster, Bernhard

    2012-09-01

    Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.

  4. Quantitative analysis of phenibut in rat brain tissue extracts by liquid chromatography-tandem mass spectrometry.

    PubMed

    Grinberga, Solveiga; Zvejniece, Liga; Liepinsh, Edgars; Dambrova, Maija; Pugovics, Osvalds

    2008-12-01

    Phenibut (3-phenyl-4-aminobutyric acid) is a gamma-aminobutyric acid mimetic drug, which is used clinically as a mood elevator and tranquilizer. In the present work, a rapid, selective and sensitive liquid chromatography-tandem mass spectrometry method for quantification of phenibut in biological matrices has been developed. The method is based on protein precipitation with acidic acetonitrile followed by isocratic chromatographic separation using acetonitrile-formic acid (0.1% in water; 8:92, v/v) mobile phase on a reversed-phase column. Detection of the analyte was performed by electrospray ionization mass spectrometry in multiple reaction monitoring mode with the precursor-to-product ion transition m/z 180.3 --> m/z 117.2. The calibration curve was linear over the concentration range 50-2000 ng/mL. The lower limit of quantification for phenibut in rat brain extracts was 50 ng/mL. Acceptable precision and accuracy were obtained over the whole concentration range. The validated method was successfully applied in a pharmacological study to analyze phenibut concentration in rat brain tissue extract samples.

  5. Chemical modification of deoxyribonucleic acids: Quantitation of 3-methylthymidine and O4-methylthymidine by tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wood, Joe M.; Hoke, Steven H., II; Graham Cooks, R.; Chae, Whi-Gun; Chang, Ching-Jer

    1991-12-01

    Quantitation of 3-methylthymidine and O4-methylthymidine generated in the reaction of calf thymus DNA with methyl methanesulfonate (MeMS) and 1-methyl-1nitrosourea (MeNU) by mass spectrometry is reported. Quantitative precision of 7% or better is achieved on samples of 10-12 -10-13 mole in the HPLC and a final stage of separation before quantification by tandem mass spectrometry using desorption chemical ionization. Synthetic CD3-labeled nucleosides were used as internal standards for mass spectral quantification. A unique mass spectrometric scanning procedure, which allowed simultaneous MS--MS product ion analysis of both the analyte and the internal standard, was utilized to enchance precision and accuracy in these low level determinations. MeNU (a potent carcinogen) resulted in 18&%; 3-methylation and 0.17% O4-methylation of deoxythymidine whereas MeMS (a weak carcinogen) produced only 6.8% 3-methylation and 0.005% of deoxythymidine. These results demonstrate that the sensitivity and accuracy of this method should be adequate for the detection and quantification of methyl-nucleosides at the sub-picomole level at which mutation is induced in cell cultures.

  6. Liquid chromatography tandem mass spectrometry applied to quantitation of the organophosphorus nerve agent VX in microdialysates from blood probes.

    PubMed

    Stubbs, S J; Read, R W

    2010-05-15

    VX (O-ethyl-S-[2(di-isopropylamino)ethyl] methylphosphonothiolate) is a low volatility organophosphorus (OP) nerve agent and therefore the most likely route of exposure is via percutaneous absorption. Microdialysis has been used as a tool to study percutaneous poisoning by VX in the anesthetised guinea pig. A liquid chromatography tandem mass spectrometry (LC-MS-MS) method using positive electrospray ionisation (ESI) was used to quantitate VX in microdialysate samples collected from microdialysis probes, implanted into a blood vessel of anesthetised guinea pigs. The method resulted from modification of a LC-MS-MS method previously developed for the analysis of dermal microdialysates. Modification increased the sensitivity of the method, allowing quantitation of the trace levels of VX in blood microdialysates, over the range 0.002-1 ng/ml, with linear calibration. Quantitative results have been used to determine the time course of VX concentrations in the blood of guinea pigs following percutaneous poisoning.

  7. The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry.

    PubMed

    Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S

    2013-11-15

    Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm(2) additive on spot with relative standard deviations in the range 3-14%. The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd.

  8. The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry

    PubMed Central

    Da Costa, Caitlyn; Reynolds, James C; Whitmarsh, Samuel; Lynch, Tom; Creaser, Colin S

    2013-01-01

    RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm2 additive on spot with relative standard deviations in the range 3–14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24097398

  9. Quantitative Organic Acids in Urine by Two Dimensional Gas Chromatography-Time of Flight Mass Spectrometry (GCxGC-TOFMS).

    PubMed

    Sweetman, Lawrence; Ashcraft, Paula; Bennett-Firmin, Jeanna

    2016-01-01

    Seventy-six organic acids in urine specimens are determined with quantitative two dimensional Gas Chromatography-Time of Flight Mass Spectrometry (GCxGC-TOFMS). The specimen is treated with urease to remove urea then derivatized to form pentafluorobenzyl oximes (PFBO) of oxoacids. The sample is then treated with ethyl alcohol to precipitate proteins and centrifuged. After drying the supernatant, the organic acids are derivatized to form volatile trimethylsilyl (TMS) derivatives for separation by capillary two dimensional Gas Chromatography (GCxGC) with temperature programming and modulation. Detection is by Time of Flight Mass Spectrometry (TOFMS) with identification of the organic acids by their mass spectra. Organic acids are quantitated by peak areas of reconstructed ion chromatograms with internal standards and calibration curves. Organic acids are quantified to determine abnormal patterns for the diagnosis of more than 100 inherited disorders of organic acid metabolism. Characteristic abnormal metabolites are quantified to monitor dietary and other modes of treatment for patients who are diagnosed with specific organic acid disorders.

  10. Statistical Analysis of ATM-Dependent Signaling in Quantitative Mass Spectrometry Phosphoproteomics.

    PubMed

    Waardenberg, Ashley J

    2017-01-01

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase, which when perturbed is associated with modified protein signaling that ultimately leads to a range of neurological and DNA repair defects. Recent advances in phospho-proteomics coupled with high-resolution mass-spectrometry provide new opportunities to dissect signaling pathways that ATM utilize under a number of conditions. This chapter begins by providing a brief overview of ATM function, its various regulatory roles and then leads into a workflow focused on the use of the statistical programming language R, together with code, for the identification of ATM-dependent substrates in the cytoplasm. This chapter cannot cover statistical properties in depth nor the range of possible methods in great detail, but instead aims to equip researchers with a set of tools to perform analysis between two conditions through examples with R functions.

  11. Hybrid Quadrupole-Orbitrap mass spectrometry for quantitative measurement of quorum sensing inhibition.

    PubMed

    Todd, Daniel A; Zich, David B; Ettefagh, Keivan A; Kavanaugh, Jeffrey S; Horswill, Alexander R; Cech, Nadja B

    2016-08-01

    Drug resistant bacterial infections cause significant morbidity and mortality worldwide, and new strategies are needed for the treatment of these infections. The anti-virulence approach, which targets non-essential virulence factors in bacteria, has been proposed as one way to combat the problem of antibiotic resistance. Virulence in methicillin-resistant Staphylococcus aureus (MRSA) and many other Gram-positive bacterial pathogens is controlled by the quorum sensing system. Thus, there is excellent therapeutic potential for compounds that target this system. With this project, we have developed and validated a novel approach for measuring quorum sensing inhibition in vitro. Ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS) was employed to directly measure one of the important outputs of the quorum sensing system in MRSA, auto-inducing peptide I (AIP I) in bacterial cultures. The method for AIP detection was validated and demonstrated limits of detection and quantification of range of 0.0035μM and 0.10μM, respectively. It was shown that the known quorum sensing inhibitor ambuic acid inhibited AIP I production by a clinically relevant strain of MRSA, with an IC50 value of 2.6±0.2μM. The new method performed similarly to previously published methods using GFP reporter assays, but has the advantage of being applicable without the need for engineering of a reporter strain. Additionally, the mass spectrometry-based method could be applicable in situations where interference by the inhibitor prevents the application of fluorescence-based methods.

  12. Quantitative Analysis and Fingerprint Profiles for Quality Control of Fructus Schisandrae by Gas Chromatography: Mass Spectrometry

    PubMed Central

    Xia, Yong-Gang; Yang, Bing-You; Liang, Jun; Yang, Qi; Wang, Di; Kuang, Hai-Xue

    2014-01-01

    This paper describes a simple, rapid, and effective quality assessment method for Fructus Schisandrae by gas chromatography-mass spectrum (GC-MS). The method was established by using specific lignan fingerprint profiles and quantitation of characteristic compounds in this herbal medicine. The GC-MS fingerprints of 15 batches of Schisandra samples from different regions of China showed similar lignan profiles. Five peaks were selected as characteristic peaks, and all of these were identified by using GC-MS techniques. The relative retention times of these characteristic peaks in the GC-MS fingerprint were established as an important parameter for identification of Schisandra samples. Meanwhile, relative peak areas may be a feasible approach to discriminate the S. chinensis and S. sphenanthera. Finally, these pharmacologically active constituents in the titled plant, schisandrins A–C and schizandrols A and B, were quantitatively determined using a validated GC-MS method. PMID:24574919

  13. Quantitative analysis of polypropyleneglycol mixtures by desorption/ionization on porous silicon mass spectrometry

    NASA Astrophysics Data System (ADS)

    Okuno, Shoji; Wada, Yoshinao; Arakawa, Ryuichi

    2005-02-01

    Mixtures of diol and triol types of polypropyleneglycol (PPG) bearing two and three hydroxyl end groups were analyzed quantitatively by matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS) with the conventional dried droplet method. The reproducibility of MALDI mass spectra depended on the factors regarding sample preparation such as the analyte/matrix ratio, and the type of solvent and/or chemical matrix employed. For DIOS, the analyte concentration and the selection of solvents were important for good reproducibility. Optimization of these factors allowed reliable quantification of the polymer mixtures. Under optimized conditions, DIOS would be suitable than MALDI for this purpose.

  14. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry.

    PubMed

    Hopfgartner, Gérard; Bourgogne, Emmanuel

    2003-01-01

    To support pharmacokinetic and drug metabolism studies, LC-MS/MS plays more and more an essential role for the quantitation of drugs and their metabolites in biological matrices. With the new challenges encountered in drug discovery and drug development, new strategies are put in place to achieve high-throughput analysis, using serial and parallel approaches. To speed-up method development and validation, generic approaches with the direct injection of biological fluids is highly desirable. Column-switching, using various packing materials for the extraction columns, is widely applied. Improvement of mass spectrometers performance, and in particular triple quadrupoles, also strongly influences sample preparation strategies, which remain a key element in the bioanalytical process. Copyright 2003 Wiley Periodicals, Inc., Mass Spec Rev 22:195-214, 2003; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mas.10050

  15. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2015-04-07

    This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide.

  16. Structural profiling and quantitation of glycosyl inositol phosphoceramides in plants with Fourier transform mass spectrometry.

    PubMed

    Blaas, Nina; Humpf, Hans-Ulrich

    2013-05-08

    Glycosyl inositol phosphoceramides (GIPC) are the main sphingolipids in plants, and optimization of their extraction and detection is still in the focus of research. Mass spectrometry provides new options for the analysis and structural elucidation of this complex class of lipids. The coupling of linear ion trap and orbitrap (LTQ Orbitrap) enabled various fragmentation experiments (MS(2), MS(3)) by collision-induced dissociation (CID) and pulsed-Q dissociation (PQD). For structural analysis, GIPC-fragment ions were detected in the positive and negative ion mode with exact masses; therefore, fragmentation patterns were observed and finally structures have been characterized regarding polar head group, fatty acid, and sphingoid base. GIPC profiling was performed for spinach, white cabbage, sunflower seeds, and soybeans. The total GIPC concentration in these plants ranged from 1.1 to 88.4 μg/100 g dry weight with t18:1/h24:0 as the main ceramide structure and hexose-hexuronic acid-inositol phosphate and N-acetylhexosamine-hexuronic acid-inositol phosphate as polar head groups.

  17. Nano-scale liquid chromatography coupled to tandem mass spectrometry using the multiple reaction monitoring mode based quantitative platform for analyzing multiple enzymes associated with central metabolic pathways of Saccharomyces cerevisiae using ultra fast mass spectrometry.

    PubMed

    Matsuda, Fumio; Ogura, Tairo; Tomita, Atsumi; Hirano, Ichiro; Shimizu, Hiroshi

    2015-01-01

    A widely targeted quantitative proteome analysis of Saccharomyces cerevisiae enzymes was performed employing an ultra fast mass spectrometry (UFMS). Nano-liquid chromatography-UFMS analysis of trypsin digested peptide samples derived from yeast strains successfully determined relative abundances of 303 peptides of 137 proteins. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Quantitative analysis of synthetic polymers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Chen, Hui; He, Meiyu; Pei, Jian; He, Haifeng

    2003-12-01

    Quantitative analyses of synthetic polymers were accomplished using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). Many factors have hindered the development of quantitative measurement of polymers via MALDI TOF MS, e.g., laser power, matrix, cation salt, and cocrystallization. By probing the optimal conditions, two sets of polymers were studied. Fair repeatability of the samples ensures acceptable results. In set 1, two poly(ethylene glycols) with different end groups showed equal desorption/ionization efficiencies. Two synthetic polymers in set 2 with different chemical properties resulted in different MALDI responses. Good linearity was achieved by plotting the relationship between the sample concentration ratio and the total signal intensity ratio in both sets.

  19. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    PubMed

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  20. Multiplexed Isobaric Tagging Protocols for Quantitative Mass Spectrometry Approaches to Auditory Research.

    PubMed

    Vetter, Douglas E; Basappa, Johnvesly

    2016-01-01

    Modern biologists have at their disposal a large array of techniques used to assess the existence and relative or absolute quantity of any molecule of interest in a sample. However, implementing most of these procedures can be a daunting task for the first time, even in a lab with experienced researchers. Just choosing a protocol to follow can take weeks while all of the nuances are examined and it is determined whether a protocol will (a) give the desired results, (b) result in interpretable and unbiased data, and (c) be amenable to the sample of interest. We detail here a robust procedure for labeling proteins in a complex lysate for the ultimate differential quantification of protein abundance following experimental manipulations. Following a successful outcome of the labeling procedure, the sample is submitted for mass spectrometric analysis, resulting in peptide quantification and protein identification. While we will concentrate on cells in culture, we will point out procedures that can be used for labeling lysates generated from tissues, along with any minor modifications required for such samples. We will also outline, but not fully document, other strategies used in our lab to label proteins prior to mass spectrometric analysis, and describe under which conditions each procedure may be desirable. What is not covered in this chapter is anything but the most brief introduction to mass spectrometry (instrumentation, theory, etc.), nor do we attempt to cover much in the way of software used for post hoc analysis. These two topics are dependent upon one's resources, and where applicable, one's collaborators. We strongly encourage the reader to seek out expert advice on topics not covered here.

  1. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices.

    PubMed

    Hopfgartner, Gérard; Tonoli, David; Varesio, Emmanuel

    2012-03-01

    Quantitative and qualitative high-resolution (HR) dependent and independent acquisition schemes on a QqTOF MS (with resolving power 20,000-40,000) were investigated for the analysis of pharmaceutical compounds in biological fluids. High-resolution selected reaction monitoring (HR-SRM) was found to be linear over three orders of magnitude for quantitative analysis of paracetamol in human plasma, offering a real alternative to triple quadrupole LC-SRM/MS. Metabolic stability of talinolol in microsomes was characterized by use of three different acquisition schemes: (i) information-dependent acquisition (IDA) with a TOF MS experiment as survey scan and product-ion scan as dependent scan; (ii) MS(ALL) by collecting TOF mass spectra with and without fragmentation by alternating the collision energy of the collision cell between a low (i.e., 10 eV) and high setting (i.e., 40 eV); and (iii) a novel independent acquisition mode referred to as "sequential window acquisition of all theoretical fragment-ion spectra" (SWATH) or "global precursor ions scan mode" (GPS) in which sequential precursor ions windows (typically 20 u) are used to collect the same spectrum precursor and fragment ions using a collision energy range. SWATH or GPS was found to be superior to IDA or MS(ALL) in combination with UHPLC for qualitative analysis but requires a rapidly acquiring mass spectrometer. Finally, the GPS concept was used for QUAL/QUAN analysis (i.e. integration of qualitative and quantitative analysis) of bosentan and its metabolites in urine over a concentration range from 5 to 2,500 ng mL(-1).

  2. Identification and quantitation of urinary dicarboxylic acids as their dicyclohexyl esters in disease states by gas chromatography mass spectrometry.

    PubMed

    Norman, E J; Berry, H K; Denton, M D

    1979-12-01

    Clinical studies were conducted by gas chromatography mass spectrometry selected ion monitoring of urinary dicarboxylic acids as dicyclohexyl esters. The dicyclohexyl esters of the dicarboxylic acids give characteristic electron impact mass spectra suitable for selected ion monitoring. The mass spectra exhibit a prominent acid + 1H ion and an (acid + 1H)-H2O ion for use as quantitating and confirming ions. The cyclohexyl esters are stable for days at room temperature and have excellent chromatographic properties. Dicarboxylic acid quantitation is performed within one hour using only 50 microliter of unpurified urine. A rapid method specifically for methylmalonic acid quantitation is described which has assisted physicians in the diagnosis of pernicious anemia and methylmalonic aciduria. This procedure is applicable for screening urinary organic acids for detection of inborn errors of metabolism. The detection of a child with elevated medium length dicarboxylic acids in the terminal urine specimen is reported. This condition, previously described as an inborn error, is attributed to a terminal event. Finally, an increase in urinary succinic acid paralleling putrescine levels is described during a response to cancer chemotherapy.

  3. Simultaneous screening and quantitation of 18 antihistamine drugs in blood by liquid chromatography ionspray tandem mass spectrometry.

    PubMed

    Gergov, M; Robson, J N; Ojanperä, I; Heinonen, O P; Vuori, E

    2001-09-15

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the simultaneous screening and quantitation of 18 antihistamine drugs in blood samples. Sample pretreatment involved liquid-liquid extraction of the basic antihistamines followed by a second extraction of the acidic antihistamines. The recoveries were 43-113% for basic drugs and 23-66% for acidic drugs. The combined extracts were run by LC on C(18) reversed phase column using acetonitrile-ammonium acetate mobile phase at pH 3.2. The mass spectrometric analysis was performed with a triple stage quadrupole mass analyzer. Screening was performed using multiple reaction monitoring (MRM) and any compounds tentatively identified as antihistamine drugs were then automatedly verified by their Product Ion Spectra in a subsequent MS/MS run. Quantitation was based on the MRM data from the screening step. In validation tests, the method showed good linearity at the relevant concentrations. The attained limits of quantitation varied between 0.0005 and 0.01mg/l in blood and were lower than the therapeutic concentrations (C(max)). The limits for identification by Product Ion Spectra were also lower than C(max), except for clemastine, which has exceptionally low concentrations in blood. The intra-assay relative standard deviations were better than 10% and the inaccuracy varied between 39% for levocabastine and 5% for cyclizine, the majority of the values being <20%.

  4. Isotopologue Distributions of Peptide Product Ions by Tandem Mass Spectrometry: Quantitation of Low Levels of Deuterium Incorporation1

    PubMed Central

    Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.

    2007-01-01

    Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791

  5. Protocol: A simple protocol for quantitative analysis of bio-oils through gas- chromatography/mass spectrometry.

    PubMed

    Bartoli, Mattia; Rosi, Luca; Frediani, Marco; Frediani, Piero

    2016-01-01

    A new and simple protocol for quantitative analysis of bio-oils using gas-chromatography/mass spectrometry is suggested. Compounds were identified via their mass spectra, and then unavailable response factors were calculated with respect to diphenyl as the internal standard using a modified method previously suggested for gas chromatography with flame ionization detection. This new protocol was applied to the characterization of bio-oils obtained from the pyrolysis of woods of different sources or using different pyrolysis procedures. This protocol allowed evaluation of the yields of products from poplar pyrolysis (among 50% and 99%), while a reduced amounts of products were identified from the pyrolysis of cellulose (between 46% and 58%). The main product was always acetic acid, but it was formed in very large yields from poplar while lower yields were obtained from cellulose.

  6. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    NASA Astrophysics Data System (ADS)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  7. Quantitation of slow release triptorelin in beagle dog plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Han, Jiangbin; Sun, Jiye; Sha, Chunjie; Zhang, Jinfeng; Gai, Yunyun; Li, Youxin; Liu, Wanhui

    2012-07-01

    A sensitive method based on liquid chromatography-tandem mass spectrometry has been developed for the determination of triptorelin levels in beagle dog plasma. Plasma samples were applied to Oasis(®) HLB solid-phase extraction (SPE) cartridges. Extracted samples were evaporated under a stream of nitrogen and then reconstituted with 100 μl methanol:water:formic acid (60:40:0.08, v/v/v). The separation was achieved on a Venusil MP-C18 column (2.1 mm × 50 mm, 3 μm, Agela) with a gradient elution. Detection utilized a Qtrap5500 system operated in the positive ion mode with multiple reaction monitoring of the analyte at m/z 656.5→249.1 and of the I.S. at m/z 510.8→120.1. The proposed method was validated by assessing the specificity, linearity, precision and accuracy, recovery, matrix effects, and stability. Linear calibration curves were obtained in the concentration range of 0.01-10 ng/ml (the correlation coefficients were above 0.995). The lower limit of quantification (LLOQ) of the method was 0.01 ng/ml. The method was successfully applied to a pharmacokinetic study of a slow release triptorelin formulation in beagle dogs following a single intramuscular injection. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Commercially available antibodies can be applied in quantitative multiplexed peptide immunoaffinity enrichment targeted mass spectrometry assays

    PubMed Central

    Schoenherr, Regine M.; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Kennedy, Jacob; Yan, Ping; Lin, Chenwei; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    Immunoaffinity enrichment of peptides coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM) enables highly specific, sensitive, and precise quantification of peptides and post-translational modifications. Major obstacles to developing a large number of immuno-MRM assays are the poor availability of monoclonal antibodies (mAbs) validated for immunoaffinity enrichment of peptides and the cost and lead time of developing the antibodies de novo. Although many thousands of mAbs are commercially offered, few have been tested for application to immunoaffinity enrichment of peptides. In this study we tested the success rate of using commercially available mAbs for peptide immuno-MRM assays. We selected 105 commercial mAbs (76 targeting non-modified “pan” epitopes, 29 targeting phosphorylation) to proteins associated with the DNA damage response network. We found that 8 of the 76 pan (11%) and 5 of the 29 phospho-specific mAbs (17%) captured tryptic peptides (detected by LC-MS/MS) of their protein targets from human cell lysates. Seven of these mAbs were successfully used to configure and analytically characterize immuno-MRM assays. By applying selection criteria upfront, the results indicate that a screening success rate of up to 24% is possible, establishing the feasibility of screening a large number of catalog antibodies to provide readily-available assay reagents. PMID:27094115

  9. Quantitative determination of trisiloxane surfactants in beehive environments based on liquid chromatography coupled to mass spectrometry.

    PubMed

    Chen, Jing; Mullin, Christopher A

    2013-08-20

    Organosilicone surfactants are increasingly being applied to agricultural agro-ecosystems as spray adjuvants, and were recently shown to impact the learning ability of honey bees. Here we developed a method for analyzing three trisiloxane surfactants (single polyethoxylate (EO) chain and end-capped with methyl, acetyl, or hydroxyl groups; TSS-CH3, TSS-COCH3, or TSS-H) in beehive matrices based on liquid chromatography coupled to mass spectrometry (LC-MS) and the QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach from less than 2 g of honey, pollen, or beeswax. Recoveries for each oligomer (2-13 EO) were between 66 and 112% in all matrices. Average method detection limits (MDL) were 0.53, 0.60, 0.56 ng/g in honey, 0.63, 0.81, 0.78 ng/g in pollen, and 0.51, 0.69, 0.63 ng/g in beeswax. Five honey, 10 pollen, and 10 beeswax samples were analyzed. Trisiloxane surfactants were detected in every beeswax and 60% of the pollen samples. Total trisiloxane surfactant concentrations were up to 390 and 39 ng/g in wax and pollen. The described method is proved suitable for analyzing trisiloxane surfactants in beehive samples. The presence of trisiloxane surfactants in North American beehives calls for renewed effort to investigate the consequence of these adjuvants to bee health and the ongoing global bee decline.

  10. Spatial Localization and Quantitation of Androgens in Mouse Testis by Mass Spectrometry Imaging

    PubMed Central

    2016-01-01

    Androgens are essential for male development and reproductive function. They are transported to their site of action as blood-borne endocrine hormones but can also be produced within tissues to act in intracrine and paracrine fashions. Because of this, circulating concentrations may not accurately reflect the androgenic influence within specific tissue microenvironments. Mass spectrometry imaging permits regional analysis of small molecular species directly from tissue surfaces. However, due to poor ionization and localized ion suppression, steroid hormones are difficult to detect. Here, derivatization with Girard T reagent was used to charge-tag testosterone and 5α-dihydrotestosterone allowing direct detection of these steroids in mouse testes, in both basal and maximally stimulated states, and in rat prostate. Limits of detection were ∼0.1 pg for testosterone. Exemplary detection of endogenous steroids was achieved by matrix-assisted laser desorption ionization and either Fourier transform ion cyclotron resonance detection (at 150 μm spatial resolution) or quadrupole-time-of-flight detection (at 50 μm spatial resolution). Structural confirmation was achieved by collision induced fragmentation following liquid extraction surface analysis and electrospray ionization. This application broadens the scope for derivatization strategies on tissue surfaces to elucidate local endocrine signaling in health and disease. PMID:27676129

  11. Quantitation of retinaldehyde in small biological samples using ultrahigh-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Wang, Jinshan; Yoo, Hong Sik; Obrochta, Kristin M; Huang, Priscilla; Napoli, Joseph L

    2015-09-01

    We report an ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to quantify all-trans-retinal in biological samples of limited size (15-35mg), which is especially advantageous for use with adipose. To facilitate recovery, retinal and the internal standard 3,4-didehydroretinal were derivatized in situ into their O-ethyloximes. UHPLC resolution combined with high sensitivity and specificity of MS/MS allowed quantification of retinal-O-ethyloximes with a 5-fmol lower limit of detection and a linear range from 5fmol to 1pmol. This assay revealed that extraocular concentrations of retinal range from approximately 2 to 40pmol/g in multiple tissues-the same range as all-trans-retinoic acid. All-trans-retinoic acid has high affinity (kd⩽0.4nM) for its nuclear receptors (RARα, -β, and -γ), whereas retinal has low (if any) affinity for these receptors, making it unlikely that these retinal concentrations would activate RAR. We also show that the copious amount of vitamin A used in chow diets increases retinal in adipose depots 2- to 5-fold relative to levels in adipose of mice fed a vitamin A-sufficient diet, as recommended for laboratory rodents. This assay also is proficient for quantifying conversion of retinol into retinal in vitro and, therefore, provides an efficient method to study metabolism of retinol in vivo and in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ.

  13. Quantitation of ibuprofen in blood using gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Huber, Gerry; Garg, Uttam

    2010-01-01

    Ibuprofen is a non-narcotic, non-steroidal anti-inflammatory drug used for the treatment of pain, fever, and inflammatory diseases such as rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. It is also used for induction of closure of patent ductus arteriosus (PDA) in neonates. Although the exact mechanism of action of ibuprofen is not known, it is believed to mediate its therapeutic effects through the inhibition of cyclooxygenase and subsequently by the inhibition of prostacyclin production. As the drug has a number of side effects, which correlate to its circulating concentration, monitoring of ibuprofen in plasma or serum is desired for patients receiving high-dose therapy. Chromatographic methods are frequently used for the assay of ibuprofen, as no immunoassays are currently available.In the method described, the drug is extracted from the serum or plasma using methylene chloride and phosphate buffer (pH 6). Meclofenamic acid is used as an internal standard. The organic phase containing the drug is separated and dried under stream of nitrogen. After trimethylsilyl derivatization, analysis is done using gas-chromatography/ mass spectrometry (GC-MS). Quantification of the drug in a sample is achieved by comparing responses of the unknown sample to the responses of the calibrators using selected ion monitoring.

  14. [Quantitative measurement of oxalic acid in urine by liquid chromatography combined with tandem mass spectrometry].

    PubMed

    Dong, J; Zhang, Y S; Guo, Z G; Liu, G H; Zhang, X B; Sun, W; Xiao, H; Ji, Z G

    2017-07-11

    Objective: To find a suitable method for the determination of oxalic acid in the urine of patients with stones, in order to provide a new method and basis for the prevention and treatment of stone. Methods: Liquid chromatography combined with tandem mass spectrometry was used to analyze oxalic acid in urine directly.The accuracy, stability, repeatability and other indicators of the results were tested. Results: The results showed a good linear relationship with the concentration of oxalic acid in urine. y=58.524x-15.246 (R(2)=0.979 02). The results were stable, reproducible (the intra-day and inter-day coefficient of variation was less than 10% and 15%, respectively), and the accuracy was comparable with that of the enzyme method (N=20, R=0.93). Conclusion: Using the method of this study to detect the content of oxalic acid in urine has the advantages of simple operation, good repeatability, accurate results, and low price. It is worth to be popularized and applied in clinical practice.

  15. Laser Ablation/Ionisation Mass Spectrometry: Sensitive and Quantitative Chemical Depth Profiling of Solid Materials.

    PubMed

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-01-01

    Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed.

  16. Ultra-fast cyclosporin A quantitation in whole blood by Laser Diode Thermal Desorption-tandem mass spectrometry; comparison with High Performance Liquid Chromatography-tandem mass spectrometry.

    PubMed

    Jourdil, Jean-François; Picard, Pierre; Meunier, Cécile; Auger, Serge; Stanke-Labesque, Françoise

    2013-12-17

    In the last decade the quantitation of immunosuppressive drugs has seen vast improvements in analytical methods, optimizing time, accuracy of analysis and cost. Laser Diode Thermal Desorption (LDTD) coupled to Atmospheric Pressure Chemical ionization-tandem mass spectrometry (APCI-MS/MS) represents a technological breakthrough that removes the chromatographic separation step and thereby significantly increases the analytical throughput for the quantitation of cyclosporin A (CsA) in whole blood for therapeutic drug monitoring (TDM). A simple protein precipitation step was used prior to depositing 5 μL of the extract on a 96-well LazWell™ plate and CsA was quantified by LDTD-APCI-MS/MS. The laser pattern was set to ramp from 0 to 45% laser power within 2 s. The APCI parameters were set to negative needle voltage (-2 μA), carrier gas temperature (30°C) and air flow rate (3 L min(-1)). The negative ion single reaction monitoring transitions for CsA and its internal standard cyclosporin D (CsD) were respectively m/z 1201.1/1088.9 and m/z 1214.8/1102.8; obtained with a collision energy of -40 V. The analysis was achieved within 9 s from sample to sample. The extraction procedure yielded high recovery (92%; RSD=9.4%, n=6). The lower limit of quantitation was fixed at the first level of calibration: 23.5 ng mL(-1) (accuracy=112.3%; RSD=9.6%; n=6) and a blank+6 point linear regression up to 965 ng mL(-1) was used. Using 4 levels of quality control (QC), intra-day assays (n=6) ranged from 93.5 to 95.7% (bias) and from 3.4 to 13.1% (RSD) while inter-day assays (n=6) ranged from 92.9 to 105.3% (bias) and from 4.9 to 7.5% (RSD). An inter-sample contamination of CsA of 2.3% was calculated that was considered negligible with respect to the range of CsA concentrations. Whole blood samples (120) from patients under CsA treatment were analyzed by LDTD-APCI-MS/MS and HPLC-ESI-MS/MS, the gold standard reference method for CsA quantification. Both methods agreed (P≥0.99), with a

  17. Simultaneous quantitative analysis of isobars by tandem mass spectrometry from unresolved chromatographic peaks.

    PubMed

    Kushnir, Mark M; Rockwood, Alan L; Nelson, Gordon J

    2004-05-01

    A method was developed for the simultaneous quantitation of isobars from unresolved chromatographic peaks. The method is based on differences in branching ratios of ion abundances in their tandem mass spectra and an assumption that the product ion mass spectra of a mixture can be considered as a linear combination of the spectra of individual constituents. We present analytical equations and a matrix-based approach for deconvoluting the concentration of individual components from the total peak intensity for two and three isobars and also a matrix-based generalization to any number of compounds. The feasibility of the simultaneous analysis of mixtures containing two compounds was assessed. The approach was evaluated for the analysis of structural isomers of methylmalonic and succinic acids in human plasma and urine samples for a group of 270 samples. The linear regression equation, standard error and correlation coefficient for the agreement with a traditional method utilizing chromatographic separation of the isomers were y = 0.999x - 0.005, 0.024 micro mol l(-1), and 0.985, respectively. The utility of a spectral contrast angle as a predictor of analysis feasibility was evaluated.

  18. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Kim, Yong-Sam; Oh, Na Ree; Ji, Eun Sun; Kim, Kwang Hoe; Lee, Yeon Jung; Kim, Sung Ho; Yoo, Jong Shin

    2013-11-07

    A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins.

  19. Development of liquid chromatography-tandem mass spectrometry methods for the quantitation of Anisakis simplex proteins in fish.

    PubMed

    Fæste, Christiane Kruse; Moen, Anders; Schniedewind, Björn; Haug Anonsen, Jan; Klawitter, Jelena; Christians, Uwe

    2016-02-05

    The parasite Anisakis simplex is present in many marine fish species that are directly used as food or in processed products. The anisakid larvae infect mostly the gut and inner organs of fish but have also been shown to penetrate into the fillet. Thus, human health can be at risk, either by contracting anisakiasis through the consumption of raw or under-cooked fish, or by sensitisation to anisakid proteins in processed food. A number of different methods for the detection of A. simplex in fish and products thereof have been developed, including visual techniques and PCR for larvae tracing, and immunological assays for the determination of proteins. The recent identification of a number of anisakid proteins by mass spectrometry-based proteomics has laid the groundwork for the development of two quantitative liquid chromatography-tandem mass spectrometry methods for the detection of A. simplex in fish that are described in the present study. Both, the label-free semi-quantitative nLC-nESI-Orbitrap-MS/MS (MS1) and the heavy peptide-applying absolute-quantitative (AQUA) LC-TripleQ-MS/MS (MS2) use unique reporter peptides derived from anisakid hemoglobin and SXP/RAL-2 protein as analytes. Standard curves in buffer and in salmon matrix showed limits of detection at 1μg/mL and 10μg/mL for MS1 and 0.1μg/mL and 2μg/mL for MS2. Preliminary method validation included the assessment of sensitivity, repeatability, reproducibility, and applicability to incurred and naturally-contaminated samples for both assays. By further optimization and full validation in accordance with current recommendations the LC-MS/MS methods could be standardized and used generally as confirmative techniques for the detection of A. simplex protein in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High Sensitivity Quantitative Lipidomics Analysis of Fatty Acids in Biological Samples by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Quehenberger, Oswald; Armando, Aaron M.; Dennis, Edward A.

    2011-01-01

    Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids is achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. PMID:21787881

  1. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul

    2016-10-01

    Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.

  2. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry.

    PubMed

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%-12.3% for intra-day and 0.9%-7.8% for inter-day) and good accuracy (91%-109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Elemental quantitation of carbon via production of polyatomic anions in gas chromatography-plasma assisted reaction chemical ionization mass spectrometry.

    PubMed

    Haferl, Peter J; Zheng, Kunyu; Wang, Haopeng; Jorabchi, Kaveh

    2017-06-01

    Elemental mass spectrometry offers quantitation and isotopic analysis without the need for compound-specific standards. We have recently introduced plasma assisted reaction chemical ionization (PARCI) as an efficient elemental ionization method for halogens. Here, we report a new ionization chemistry in PARCI for facile quantitation of elemental carbon in gas chromatography eluates. We demonstrate that in-plasma reactions of organic compounds followed by afterglow ionization lead to formation of polyatomic anions (CN(-), OCN(-), and CO3(-)), among which CN(-) offers the best analytical sensitivity with a detection limit of ~25 pg (21 pg/s) carbon on column. Using a mixture of pesticides with wide variations in structures and heteroatom content, we demonstrate that CN(-) ion response is quantitatively correlated with the carbon concentration over two orders of magnitude (r (2) = 0.985). We show that the novel GC-PARCI-MS method provides recoveries within 80-120% using a single standard for all analytes, highlighting the strength of elemental quantitation. Further, the ability of GC-PARCI-MS to identify (13)C-tagged molecules without a priori knowledge of chemical formulas of analytes is demonstrated. Graphical abstract ᅟ.

  4. CSF-PR 2.0: An Interactive Literature Guide to Quantitative Cerebrospinal Fluid Mass Spectrometry Data from Neurodegenerative Disorders.

    PubMed

    Guldbrandsen, Astrid; Farag, Yehia; Kroksveen, Ann Cathrine; Oveland, Eystein; Lereim, Ragnhild R; Opsahl, Jill A; Myhr, Kjell-Morten; Berven, Frode S; Barsnes, Harald

    2017-02-01

    The rapidly growing number of biomedical studies supported by mass spectrometry based quantitative proteomics data has made it increasingly difficult to obtain an overview of the current status of the research field. A better way of organizing the biomedical proteomics information from these studies and making it available to the research community is therefore called for. In the presented work, we have investigated scientific publications describing the analysis of the cerebrospinal fluid proteome in relation to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Based on a detailed set of filtering criteria we extracted 85 data sets containing quantitative information for close to 2000 proteins. This information was made available in CSF-PR 2.0 (http://probe.uib.no/csf-pr-2.0), which includes novel approaches for filtering, visualizing and comparing quantitative proteomics information in an interactive and user-friendly environment. CSF-PR 2.0 will be an invaluable resource for anyone interested in quantitative proteomics on cerebrospinal fluid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Accurate quantitation of choline and ethanolamine plasmalogen molecular species in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Otoki, Yurika; Kato, Shunji; Kimura, Fumiko; Furukawa, Katsutoshi; Yamashita, Shinji; Arai, Hiroyuki; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2017-02-05

    Concentration of both choline plasmalogen (PC-Pls) and ethanolamine Pls (PE-Pls) in human plasma/serum has been getting attention to, since certain patients including those with neurodegenerative disorders, have been reported to exhibit reduced levels of specific Pls species. However, despite using liquid chromatography-tandem mass spectrometry (LC-MS/MS), accurate quantitation of Pls is still difficult because of less product ion from PC-Pls and quantitative issues (e.g., extraction recoveries and matrix effects). The present study aimed to develop a method for accurate identification and quantitation of Pls molecular species using LC-MS/MS operated in the multiple reaction monitoring mode. The LC-MS/MS conditions in the presence of sodium, and the extraction method using methanol protein precipitation were optimized. Under the optimal condition, Pls was detected at femtomole levels. The recoveries of Pls from human plasma were nearly 100%, and matrix effects were not observed. The novel method enabled determination of each Pls species in human plasma at the concentrations of 0.5-13.6μM. Then the PC-Pls and PE-Pls species in the plasma of both healthy subjects and patients with Alzheimer's disease were quantitated. The method developed herein represents a powerful tool for analyzing Pls, which may provide a better understanding of their physiological roles in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantitative analysis of plasma caffeic and ferulic acid equivalents by liquid chromatography tandem mass spectrometry.

    PubMed

    Guy, Philippe A; Renouf, Mathieu; Barron, Denis; Cavin, Christophe; Dionisi, Fabiola; Kochhar, Sunil; Rezzi, Serge; Williamson, Gary; Steiling, Heike

    2009-12-01

    A validated method was developed for the simultaneous determination of the hydroxycinnamates caffeic acid (CA), dihydrocaffeic acid (DHCA), ferulic acid (FA), dihydroferulic acid (DHFA), and isoferulic acid (IFA) in human plasma as metabolites derived from coffee consumption. The method includes a protein precipitation step prior to enzymatic hydrolysis of the conjugated metabolites (sulfate, glucuronide, and/or ester) back to their aglycone forms. After liquid-liquid extraction, the reconstituted extract was analysed by high-performance liquid chromatography coupled to negative electrospray ionisation tandem mass spectrometry. Calibration curves were constructed from spiked human plasma samples in the range of 0-4800 nM for each of the targeted analytes. Two internal standards, 3-(4-hydroxyphenyl)-propionic acid (500 nM) and 1,3-dicaffeoylquinic acid (200 nM), were spiked at the beginning of the sample preparation and before analysis, respectively. Good performance data were obtained with limits of detection and quantification of the five hydroxycinnamates ranging between 1-15 nM and 3-50 nM, respectively. Within and between-days precisions were respectively calculated between 8-18% and 8-30% (at 50 nM added initially), between 6-9% and 6-12% (at 200 nM), and between 5-9% and 5-9% (at 500 nM). Precision calculated from different analysts ranged from 18% to 44% (at 50 nM), from 8% to 16% (at 200 nM), and from 4% to 8% (at 500 nM). Using this method, we determined plasma levels in humans and measured the efficiency of deconjugation using our enzymatic cocktail.

  7. Quantitative imaging of inositol distribution in yeast using multi-isotope imaging mass spectrometry (MIMS).

    PubMed

    Saiardi, A; Guillermier, C; Loss, O; Poczatek, J C; Lechene, C

    2014-11-01

    Despite the widely recognized importance of the several species of inositol polyphosphates in cell biology, inositol has not been successfully imaged and quantified inside cells using traditional spectrophotometry. Multi-isotope imaging mass spectrometry (MIMS) technology, however, has facilitated direct imaging and measurement of cellular inositol. After pulsing cells with inositol labeled with the stable isotope Carbon-13 ((13)C), the label was detected in subcellular volumes by MIMS. The tridimensional localization of (13)C within the cell illustrated cellular distribution and local accumulation of inositol. In parallel, we performed control experiments with (13)C-Glucose to compare a different (13)C distribution pattern. Because many functions recently attributed to inositol polyphosphates are localized in the nucleus, we analyzed its relative nuclear concentration. We engineered yeast with human thymidine permease and viral thymidine kinase, then fed them with (15)N-thymidine. This permitted direct analysis of the nuclear DNA through the detection of the (15)N isotopic signal. We found practically no co-localization between inositol signal ((13)C-isotope) and nuclear signal ((15)N-isotope). The (13)C-tag (inositol) accumulation was highest at the plasma membrane and in cytoplasmic domains. In time-course labeling experiments performed with wild type yeast (WT) or modified yeast unable to synthesize inositol from glucose (ino1Δ), the half-time of labeled inositol accumulation was ~1 hour in WT and longer in ino1Δ. These studies should serve as a template to study metabolism and physiological role of inositol using genetically modified yeasts.

  8. Quantitative profiling of perfluoroalkyl substances by ultrahigh-performance liquid chromatography and hybrid quadrupole time-of-flight mass spectrometry.

    PubMed

    Picó, Yolanda; Farré, Marinella; Barceló, Damià

    2015-06-01

    The accurate determination of perfluoroalkyl substances (PFSAs) in water, sediment, fish, meat, and human milk was achieved by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QqTOF-MS) with an ABSciex Triple TOF®. A group of 21 PFSAs was selected as target to evaluate the quantitative possibilities. Full scan MS acquisition data allows quantification at relevant low levels (0.1-50 ng L(-1) in water, 0.05-2 ng g(-1) in sediments, 0.01-5 ng g(-1) in fish and meat, and 0.005-2 ng g(-1) in human milk depending on the compound). Automatic information dependent acquisition product ion mass spectrometry (IDA-MS/MS) confirms the identity even for those compounds that presented only one product ion. The preparation of a homemade database using the extracted ion chromatogram (XIC) Manager of the software based upon retention time, accurate mass, isotopic pattern, and MS/MS library searching achieves not only the successful identification of PFSAs but also of some pharmaceuticals, such as acetaminophen, ibuprofen, salicylic acid, and gemfibrozid. Mean recoveries and relative standard deviation (RSD) were 67-99% (9-16% RSD) for water, 62-103% (8-18% RSD) for sediment, 60-95% (8-17% RSD) for fish, 64-95% (8-15% RSD) for meat, and 63-95% (8-16%) for human milk. The quantitative data obtained for 60 samples by UHPLC-QqTOF-MS agree with those obtained by LC-MS/MS with a triple quadrupole (QqQ).

  9. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Bielawski, Jacek; Szulc, Zdzislaw M; Hannun, Yusuf A; Bielawska, Alicja

    2006-06-01

    There has been a recent explosion in research concerning novel bioactive sphingolipids (SPLs) such as ceramide (Cer), sphingosine (Sph) and sphingosine 1-phosphate (Sph-1P) that necessitates development of accurate and user-friendly methodology for analyzing and quantitating the endogenous levels of these molecules. ESI/MS/MS methodology provides a universal tool used for detecting and monitoring changes in SPL levels and composition from biological materials. Simultaneous ESI/MS/MS analysis of sphingoid bases (SBs), sphingoid base 1-phosphates (SB-1Ps), Cers and sphingomyelins (SMs) is performed on a Thermo Finnigan TSQ 7000 triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) positive ionization mode. Biological materials (cells, tissues or physiological fluids) are fortified with internal standards (ISs), extracted into a one-phase neutral organic solvent system, and analyzed by a Surveyor/TSQ 7000 LC/MS system. Qualitative analysis of SPLs is performed by a Parent Ion scan of a common fragment ion characteristic for a particular class of SPLs. Quantitative analysis is based on calibration curves generated by spiking an artificial matrix with known amounts of target synthetic standards and an equal amount of IS. The calibration curves are constructed by plotting the peak area ratios of analyte to the respective IS against concentration using a linear regression model. This robust analytical procedure can determine the composition of endogenous sphingolipids (ESPLs) in varied biological materials and achieve a detection limit at 1 pmol or lower level. This and related methodology are already defining unexpected specialization and specificity in the metabolism and function of distinct subspecies of individual bioactive SPLs.

  10. Simultaneous quantitation of paracetamol, caffeine, pseudoephedrine, chlorpheniramine and cloperastine in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Hao; Zhang, Chao; Wang, Jiang; Jiang, Yao; Fawcett, J Paul; Gu, Jingkai

    2010-02-05

    A rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous quantitation of paracetamol, caffeine, pseudoephedrine, chlorpheniramine and cloperastine in human plasma has been developed and validated. After sample preparation by liquid-liquid extraction, the analytes and internal standard (diphenhydramine) were analyzed by reversed-phase HPLC on a Venusil Mp-C(18) column (50mmx4.6mm, 5microm) using formic acid:10mM ammonium acetate:methanol (1:40:60, v/v/v) as mobile phase in a run time of 2.6min. Detection was carried out by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode. The method was linear for all analytes over the following concentration (ng/ml) ranges: paracetamol 5.0-2000; caffeine 10-4000; pseudoephedrine 0.25-100; chlorpheniramine 0.05-20; cloperastine 0.10-40. Intra- and inter-day precisions (as relative standard deviation) were all < or =11.3% with accuracy (as relative error) of +/-5.0%. The method was successfully applied to a study of the pharmacokinetics of the five analytes after administration of a combination oral dose to healthy Chinese volunteers.

  11. A Structural Mass Spectrometry Strategy for the Relative Quantitation of Ligands on Mixed Monolayer-Protected Gold Nanoparticles

    PubMed Central

    Harkness, Kellen M.; Hixson, Brian C.; Fenn, Larissa S.; Turner, Brian N.; Rape, Amanda C.; Simpson, Carrie A.; Huffman, Brian J.; Okoli, Tracy C.; McLean, John A.; Cliffel, David E.

    2010-01-01

    It is becoming increasingly common to use gold nanoparticles (AuNPs) protected by a heterogeneous mixture of thiolate ligands, but many ligand mixtures on AuNPs cannot be properly characterized due to the inherent limitations of commonly used spectroscopic techniques. Using ion mobility-mass spectrometry (IM-MS), we have developed a strategy which allows measurement of the relative quantity of ligands on AuNP surfaces. This strategy is used for the characterization of three samples of mixed-ligand AuNPs: tiopronin:glutathione (avg. diam. 2.5 nm), octanethiol:decanethiol (avg. diam. 3.6 nm), and tiopronin:11-mercaptoundecyl(poly ethylene glycol) (avg. diam. 2.5 nm). For validation purposes, the results obtained for tiopronin:glutathione AuNPs were compared to parallel measurements using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) without ion mobility separation. Relative quantitation measurements for NMR and IM-MS were in excellent agreement, with an average difference of less than 1% relative abundance. IM-MS and MS without ion mobility separation were not comparable, due to a lack of ion signals for MS. The other two mixed-ligand AuNPs provide examples of measurements which cannot be performed using NMR spectroscopy. PMID:20968282

  12. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

    PubMed Central

    Marelli, Marcello; Smith, Jennifer J.; Jung, Sunhee; Yi, Eugene; Nesvizhskii, Alexey I.; Christmas, Rowan H.; Saleem, Ramsey A.; Tam, Yuen Yi C.; Fagarasanu, Andrei; Goodlett, David R.; Aebersold, Ruedi; Rachubinski, Richard A.; Aitchison, John D.

    2004-01-01

    We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis. PMID:15596542

  13. A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry

    PubMed Central

    Trompelt, Kerstin; Steinbeck, Janina; Terashima, Mia; Hippler, Michael

    2014-01-01

    The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions. PMID:24686495

  14. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, James

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  15. Quantitation of midazolam in human plasma by automated chip-based infusion nanoelectrospray tandem mass spectrometry.

    PubMed

    Kapron, James T; Pace, Ellen; Van Pelt, Colleen K; Henion, Jack

    2003-01-01

    An automated chip-based infusion nanoelectrospray ionization (nanoESI) platform was used to demonstrate reproducible quantitation of drug molecules from biological matrices. Three sample preparation strategies were explored including protein precipitation of plasma with acetonitrile, de-salting of the plasma, and a combination of protein precipitation with subsequent de-salting of the dried and reconstituted extract. The best results were obtained when fortified human plasma samples containing midazolam were precipitated with acetonitrile containing alprazolam as the internal standard (IS). The supernatant was concentrated to dryness, reconstituted in aqueous acid, and de-salted by automated reversed-phase solid-phase extraction (SPE) prior to infusion nanoESI-MS/MS. Analyses employed a triple quadrupole mass spectrometer operated in selected reaction monitoring (SRM) mode. Each sample was infused for approximately 10 s and the resulting ion current profiles were integrated. Area ratios were used for regression analysis of standard samples (1.5-500 ng/mL). Quality control samples (3, 250, and 400 ng/mL) in five replicates from three different analysis days demonstrated intra-assay precision (< or =16%), inter-assay precision (< or =5%), and overall accuracy (+/-9% deviation). Infusion reproducibility of the assay was established by analyzing extracts after storage for 24 h at ambient temperature. Control plasma samples from six different sources probed the potential utility of this technique for the analysis of clinical samples. At the lower limit of quantitation (LLQ), variability and mean overall accuracy were < or =13% CV and +/-3% deviation, respectively, while at the upper limit of quantitation (ULQ) variability and mean overall accuracy were < or =9% CV and +/-9% deviation, respectively. Inter-chip variability was established by determining standard sample extracts across five different chips (< or =12% CV). Throughput for the assay was 55 s per sample

  16. Toxin screening in phytoplankton: detection and quantitation using MALDI triple quadrupole mass spectrometry.

    PubMed

    Sleno, Lekha; Volmer, Dietrich A

    2005-03-01

    The investigation of a MALDI triple quadrupole instrument for the analysis of spirolide toxins in phytoplankton samples is described in this study. A high-frequency (kHz) laser was employed for MALDI, generating a semicontinuous ion beam, thus taking advantage of the high duty cycle obtained in sensitive triple quadrupole MRM experiments. Initially, several experimental parameters such as type of organic matrix and concentration, solvent composition, and matrix-to-analyte ratio were optimized, and their impact on sensitivity and precision of the obtained ion currents for a reference spirolide, 13-desmethyl-C, was studied. In all quantitative experiments, excellent linearities in the concentration range between 0.01 and 1.75 microg/mL were obtained, with R2 values of 0.99 or higher. The average precision of the quantitative MALDI measurements was 7.4+/-2.4% RSD. No systematic errors were apparent with this method as shown by a direct comparison to an electrospray LC/MS/MS method. Most importantly, the MALDI technique was very fast; each sample spot was analyzed in less than 5 s as compared to several minutes with the electrospray assay. To demonstrate the potential of the MALDI triple quadrupole method, its application to quantitative analysis in several different phytoplankton samples was investigated, including crude extracts and samples from mass-triggered fractionation experiments. 13-Desmethyl spirolide C was successfully quantified in these complex samples at concentration levels from 0.05 to 90.4 microg/mL (prior to dilution to have samples fall within the dynamic range of the method) without extensive sample preparation steps. The versatility of the MALDI triple quadrupole method was also exhibited for the identification of unknown spirolide analogues. Through the use of dedicated linked scan functions such as precursor ion and neutral loss scans, several spirolide compounds were tentatively identified directly from the crude extract, without the usual time

  17. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples.

  18. A perspective on relative quantitation of a polydisperse polymer using chromatography and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, X. Michael; Maziarz, E. Peter; Quinn, Edmond; Lai, Yu-Chin

    2004-11-01

    High throughput analysis of polymeric materials has become increasingly important in today's medical device industry. Direct matrix-assisted laser desorption ionisation (MALDI)-TOF MS analysis of polymers has been "the method of choice" for industrial analytical chemists due to its high speed, ease of use, and soft ionization. However, using this approach we experience difficulties for the analysis of poly(dimethyl siloxane) samples containing UV curable end groups. For example we observe a considerable amount of fragment products that act as chemical noise to the peaks of interest. This makes it difficult to obtain any meaningful quantitative information about the sample. In this study, we demonstrate that this dilemma can be remedied by coupling gel permeation chromatography (GPC) with MALDI-TOF MS analysis. With this approach a true impurity in the sample is clearly detected throughout the molecular weight distribution where direct analysis provided no information due to the chemical noise of the fragment peaks. This impurity is positively identified from exact mass measurements. The content of this impurity is calculated to be 33.0% by using a multiple data point approach from both GPC and MALDI-TOF analysis.

  19. Potato glycoalkaloids in soil-optimising liquid chromatography-time-of-flight mass spectrometry for quantitative studies.

    PubMed

    Jensen, Pia H; Juhler, René K; Nielsen, Nikoline J; Hansen, Thomas H; Strobel, Bjarne W; Jacobsen, Ole S; Nielsen, John; Hansen, Hans Christian B

    2008-02-22

    Potato glycoalkaloids are produced in high amounts in potato fields during the growth season and losses to soil potentially impact shallow groundwater and via tiles to fresh water ecosystems. A quantitative liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) method for determination and quantification of potato glycoalkaloids and their metabolites in aqueous soil extracts was developed. The LC-ESI-TOF-MS method had linearities up to 2000microg/L for alpha-solanine and alpha-chaconine and up to 760microg/L for solanidine. No matrix effect was observed, and the detection limits found were in the range 2.2-4.7microg/L. The method enabled quantification of the potato glycoalkaloids in environmental samples.

  20. Quantitative analysis of [Dmt(1)]DALDA in ovine plasma by capillary liquid chromatography-nanospray ion-trap mass spectrometry.

    PubMed

    Wan, Haibao; Umstot, Edward S; Szeto, Hazel H; Schiller, Peter W; Desiderio, Dominic M

    2004-04-15

    The synthetic opioid peptide analog Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA; [Dmt= 2',6'-dimethyltyrosine) is a highly potent and selective mu opioid-receptor agonist. A very sensitive and robust capillary liquid chromatography/nanospray ion-trap (IT) mass spectrometry method has been developed to quantify [Dmt(1)]DALDA in ovine plasma, using deuterated [Dmt(1)]DALDA as the internal standard. The standard MS/MS spectra of d(0)- and d(5)-[Dmt(1)]DALDA were obtained, and the collision energy was experimentally optimized to 25%. The product ion [ M + 2H-NH(3)](2+) (m/z 312.2) was used to identify and to quantify the synthetic opioid peptide analog in ovine plasma samples. The MS/MS detection sensitivity for [Dmt(1)]DALDA was 625 amol. A calibration curve was constructed, and quantitative analysis was performed on a series of ovine plasma samples.

  1. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma.

    PubMed

    Figueiredo, Eduardo Costa; Sparrapan, Regina; Sanvido, Gustavo Braga; Santos, Mariane Gonçalves; Arruda, Marco Aurélio Zezzi; Eberlin, Marcos Nogueira

    2011-09-21

    The association of solid phase extraction with molecularly imprinted polymers (MIP) and electrospray ionization mass spectrometry (ESI-MS) is applied to the direct extraction and quantitation of benzodiazepines in human plasma. The target analytes are sequestered by MIP and directly analyzed by ESI-MS. Due to the MIP highly selective extraction, ionic suppression during ESI is minimized; hence no separation is necessary prior to ESI-MS, which greatly increases analytical speed. Benzodiazepines (medazepam, nitrazepam, diazepam, chlordiazepoxide, clonazepam and midazolam) in human plasma were chosen as a proof-of-principle case of drug analyses by MIP-ESI-MS in a complex matrix. MIP-ESI-MS displayed good figures of merits for medazepam, nitrazepam, diazepam, chlordiazepoxide and midazolam, with analytical calibration curves ranging from 10 to 250 μg L(-1) (r > 0.98) with limit of quantification <10 μg L(-1) and acceptable within-day and between-day precision and accuracy.

  2. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  3. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli.

    PubMed

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-10-14

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3' domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3'-domain is unanchored and the 5'-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells.

  4. Simultaneous quantitation of six major quassinoids in Tongkat Ali dietary supplements by liquid chromatography with tandem mass spectrometry.

    PubMed

    Han, Young Min; Jang, Moonhee; Kim, In Sook; Kim, Seung Hyun; Yoo, Hye Hyun

    2015-07-01

    Tongkat Ali (Eurycoma longifolia) is one of the most popular traditional herbs in Southeast Asia and generally consumed as forms of dietary supplements, tea, or drink additives for coffee or energy beverages. In this study, the liquid chromatography with tandem mass spectrometry method for the simultaneous quantitation of six major quassinoids of Tongkat Ali (eurycomanone, 13,21-dihydroeurycomanone, 13α(21)-epoxyeurycomanone, 14,15β-dihydroxyklaineanone, eurycomalactone, and longilactone) was developed and validated. Using the developed method, the content of the six quassinoids was measured in Tongkat Ali containing dietary supplement tablets or capsules, and the resulting data were used to confirm the presence of Tongkat Ali in those products. Among the six quassinoids, eurycomanone was the most abundant quassinoid in all samples tested. The developed method would be useful for the quality assessment of Tongkat Ali containing dietary supplements.

  5. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry.

    PubMed

    Bronsema, Kees J; Bischoff, Rainer; van de Merbel, Nico C

    2012-04-15

    Following the increase in development of protein biopharmaceuticals, there is a growing demand for the sensitive and reliable quantification of these proteins in complex biological matrices such as plasma and serum to support (pre)-clinical research. In this field, ligand binding assays (LBAs) are currently the standard analytical technique, but in recent years, there is a trend towards the use of liquid chromatography hyphenated with (tandem) mass spectrometry (LC-MS/MS). One of the reasons for this trend is the possibility to use internal standards to correct for analytical variability and thus improve the precision and accuracy of the results. In the LC-MS/MS bioanalysis of small molecules, internal standardization is quite straightforward: either a stable-isotope labeled (SIL) form of the analyte or a structural analogue is used. For the quantification of biopharmaceutical proteins, the situation is more complex. Since the protein of interest is digested to a mixture of peptides, one of which is subsequently used for quantification, there are more options for internal standardization. A SIL form or a structural analogue of either the intact protein or the signature peptide can be used. In addition, a modified form of the SIL-peptide internal standard, containing one or more cleavable groups is a possibility, and an internal standard can be generated during the analysis by using differential derivatization techniques. In this paper we provide an overview of the different options for internal standardization in the field of absolute targeted quantification of protein biopharmaceuticals using LC-MS/MS, based on literature from 2003 to 2011. The advantages and disadvantages of the different approaches are evaluated both with regard to the correction they provide for the variability of the different steps of the analysis and with regard to their generic availability. As most of the approaches used lead to acceptable results in terms of accuracy and precision, we

  6. Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry

    PubMed Central

    Sundberg, Mårten; Strage, Emma M.; Bergquist, Jonas; Holst, Bodil S.

    2016-01-01

    Today immunoassays are widely used in veterinary medicine, but lack of species specific assays often necessitates the use of assays developed for human applications. Mass spectrometry (MS) is an attractive alternative due to high specificity and versatility, allowing for species-independent analysis. Targeted MS-based quantification methods are valuable complements to large scale shotgun analysis. A method referred to as parallel reaction monitoring (PRM), implemented on Orbitrap MS, has lately been presented as an excellent alternative to more traditional selected reaction monitoring/multiple reaction monitoring (SRM/MRM) methods. The insulin-like growth factor (IGF)-system is not well described in the cat but there are indications of important differences between cats and humans. In feline medicine IGF–I is mainly analyzed for diagnosis of growth hormone disorders but also for research, while the other proteins in the IGF-system are not routinely analyzed within clinical practice. Here, a PRM method for quantification of IGF–I, IGF–II, IGF binding protein (BP) –3 and IGFBP–5 in feline serum is presented. Selective quantification was supported by the use of a newly launched internal standard named QPrEST™. Homology searches demonstrated the possibility to use this standard of human origin for quantification of the targeted feline proteins. Excellent quantitative sensitivity at the attomol/μL (pM) level and selectivity were obtained. As the presented approach is very generic we show that high resolution mass spectrometry in combination with PRM and QPrEST™ internal standards is a versatile tool for protein quantitation across multispecies. PMID:27907059

  7. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

    PubMed

    Beach, Daniel G; Kerrin, Elliott S; Quilliam, Michael A

    2015-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) has been reported in cyanobacteria and shellfish, raising concerns about widespread human exposure. However, inconsistent results for BMAA analysis have led to controversy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most appropriate method for analysis of BMAA, but the risk of interference from isomers, other sample components, and the electrospray background is still present. We have investigated differential mobility spectrometry (DMS) as an ion filter to improve selectivity in the hydrophilic interaction liquid chromatographic (HILIC)-MS/MS determination of BMAA. We obtained standards for two BMAA isomers not previously analyzed by HILIC-MS, β-amino-N-methylalanine and 3,4-diaminobutanoic acid, and the typically used 2,4-diaminobutanoic acid and N-(2-aminoethyl)glycine. DMS separation of BMAA from these isomers was achieved and optimized conditions were used to develop a sensitive and highly selective multidimensional HILIC-DMS-MS/MS method. This work revealed current technical limitations of DMS for trace quantitation, and practical solutions were implemented. Accurate control of low levels of DMS carrier gas modifier was essential, but required external metering. The linearity of our optimized method was excellent from 0.01 to 6 μmol L(-1). The instrumental LOD was 0.4 pg BMAA injected on-column and the estimated method LOD was 20 ng g(-1) dry weight for BMAA in sample matrix. The method was used to analyze cycad plant tissue, a cyanobacterial reference material, and mussel tissues, by use of isotope-dilution quantitation with deuterated BMAA. This confirmed the presence of BMAA and several of its isomers in cycad and mussel tissues, including commercially available mussel tissue reference materials certified for other biotoxins. Graphical Abstract Differential Mobility Spectrometry is used to increases the selectivity of BMAA analysis by HILIC-MS/MS.

  8. Review: mass spectrometry in Russia.

    PubMed

    Zaikin, Vladimir G; Sysoev, Alexander A

    2013-01-01

    The present review covers the main research in the area of mass spectrometry from the 1990s which was about the same time as the Russian Federation emerged from the collapse of the Soviet Union (USSR). It consists of two main parts-application of mass spectrometry to chemistry and related fields and creation and development of mass spectrometric technique. Both traditional and comparatively new mass spectrometric methods were used to solve various problems in organic chemistry (reactivity of gas-phase ions, structure elucidation and problems of identification, quantitative and trace analysis, differentiation of stereoisomers, derivatization approaches etc.), biochemistry (proteomics and peptidomics, lipidomics), medical chemistry (mainly the search of biomarkers, pharmacology, doping control), environmental, petrochemistry, polymer chemistry, inorganic and physical chemistry, determination of natural isotope ratio etc. Although a lot of talented mass spectrometrists left Russia and moved abroad after the collapse of the Soviet Union, the vitality of the mass spectral community proved to be rather high, which allowed the continuation of new developments in the field of mass spectrometric instrumentation. They are devoted to improvements in traditional magnetic sector mass spectrometers and the development of new ion source types, to analysis and modification of quadrupole, time-of-flight (ToF) and ion cyclotron resonance (ICR) analyzers. The most important achievements are due to the creation of multi-reflecting ToF mass analyzers. Special attention was paid to the construction of compact mass spectrometers, particularly for space exploration, of combined instruments, such as ion mobility spectrometer/mass spectrometer and accelerating mass spectrometers. The comparatively young Russian Mass Spectrometry Society is working hard to consolidate the mass spectrometrists from Russia and foreign countries, to train young professionals on new appliances and regularly

  9. Liquid matrix deposition on conductive hydrophobic surfaces for tuning and quantitation in UV-MALDI mass spectrometry.

    PubMed

    Palmblad, Magnus; Cramer, Rainer

    2007-04-01

    With its highly fluctuating ion production matrix-assisted laser desorption/ionization (MALDI) poses many practical challenges for its application in mass spectrometry. Instrument tuning and quantitative ion abundance measurements using ion signal alone depend on a stable ion beam. Liquid MALDI matrices have been shown to be a promising alternative to the commonly used solid matrices. Their application in areas where a stable ion current is essential has been discussed but only limited data have been provided to demonstrate their practical use and advantages in the formation of stable MALDI ion beams. In this article we present experimental data showing high MALDI ion beam stability over more than two orders of magnitude at high analytical sensitivity (low femtomole amount prepared) for quantitative peptide abundance measurements and instrument tuning in a MALDI Q-TOF mass spectrometer. Samples were deposited on an inexpensive conductive hydrophobic surface and shrunk to droplets <10 nL in size. By using a sample droplet <10 nL it was possible to acquire data from a single irradiated spot for roughly 10,000 shots with little variation in ion signal intensity at a laser repetition rate of 5-20 Hz.

  10. Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time-of-flight mass spectrometry.

    PubMed

    Song, Yong-Xi; Liu, Shi-Ping; Jin, Zhao; Qin, Jian-Fei; Jiang, Zhi-Yuan

    2013-09-30

    A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS) method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R² > 0.9995) within the test ranges. The overall limits of detection (LODs) and limits of quantification (LOQs) were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs) for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs) less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  11. Quantitative determination of cyclic polylactic acid oligomers in serum by direct injection liquid chromatography tandem mass spectrometry.

    PubMed

    Osaka, Issey; Yoshimoto, Arihumi; Watanabe, Mikio; Takama, Masashi; Murakami, Masahiro; Kawasaki, Hideya; Arakawa, Ryuichi

    2008-07-15

    Polylactic acid (PLA) is a biodegradable polymer, currently used in pharmaceutical and surgical devices. There is a concern that cyclic polylactic acid (CPLA), which is a by-product of PLA synthesis, may be introduced into the human body as an undesirable contaminant. We carried out a quantitation investigation of the CPLA heptamer (CPLA-7) by liquid chromatography mass spectrometry (LC-MS). We found that CPLA-7 binds strongly with serum proteins and that only 62% of CPLA-7 was recovered after routine deproteination; therefore, we directly injected serum into the LC-MS/MS system after passage through a bovine serum albumin (BSA)-coated chromatographic column and found the recovery of CPLA-7 was improved to 84%, and that the detection (S/N=3) and quantitation limit (S/N=10 and below 15% relative standard deviation) were 1.5 and 2.5 ng/mL, respectively. We conclude that direct injection LC-MS/MS, using a BSA column, is a simple and effective quantitative analysis method for CPLA in serum.

  12. Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Brust, Hanneke; van Asten, Arian; Koeberg, Mattijs; Dalmolen, Jan; van der Heijden, Antoine; Schoenmakers, Peter

    2014-04-18

    After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between post-explosion and naturally degraded PETN could be achieved based on the relative amounts of the degradation products. This information can be used as evidence when investigating a possible relationship between a suspect and a post-explosion crime scene. The present work focuses on accurate quantitation of PETN and its degradation products, using PETriN, PEDiN and PEMN standards specifically synthesized for this purpose. With the use of these standards, the ionization behavior of these compounds was studied, and a quantitative method was developed. Quantitation of PETN and trace levels of its degradation products was shown to be possible with accuracy between 85.7% and 103.7% and a precision ranging from 1.3% to 11.5%. The custom-made standards resulted in a more robust and reliable method to discriminate between post-explosion and naturally-degraded PETN. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine.

    PubMed

    Kohler, Isabelle; Schappler, Julie; Rudaz, Serge

    2013-05-30

    The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL(-1) for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10-1000 ng mL(-1) and 21-1000 ng mL(-1), respectively.

  14. Development and validation of the liquid chromatography-tandem mass spectrometry method for quantitative estimation of candesartan from human plasma

    PubMed Central

    Prajapati, Shailesh T.; Patel, Pratik K.; Patel, Marmik; Chauhan, Vijendra B.; Patel, Chhaganbhai N.

    2011-01-01

    Introduction: A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for estimation of candesartan in human plasma using the protein precipitation technique. Materials and Methods: The chromatographic separation was performed on reverse phase using a Betasil C8 (100 × 2.1 mm) 5-μm column, mobile phase of methanol:ammonium tri-floro acetate buffer with formic acid (60:40 v/v) and flow rate of 0.45 ml/min. The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 441.2 → 263.2 and 260.2 → 116.1 were used to measure candesartan by using propranolol as an internal standard. Results: The linearity of the developed method was achieved in the range of 1.2–1030 ng/ml (r2 ≥ 0.9996) for candesartan. Conclusion: The developed method is simple, rapid, accurate, cost-effective and specific; hence, it can be applied for routine analysis in pharmaceutical industries. PMID:23781443

  15. Quantitative determination of phencyclidine in pigmented and nonpigmented hair by ion-trap mass spectrometry.

    PubMed

    Slawson, M H; Wilkins, D G; Foltz, R L; Rollins, D E

    1996-10-01

    A sensitive and specific method has been developed for the quantitative analysis of phencyclidine (PCP) in pigmented and nonpigmented rat hair. After the addition of PCP-d5 as the internal standard, hair samples (10 mg) were digested overnight in 1N NaOH at 30 degrees C. Digested solutions were then extracted using a solid-phase procedure with Bond Elut CertifyTM extraction columns. Reconstituted extracts were analyzed on a Finnigan ion trap (MagnumTM) mass spectrometer in the electron ionization mode using helium as the carrier gas, and a DB-5 MS (30 m x 0.25-mm i.d.; 25-microns film thickness) capillary column. The assay is linear from 0.1 to 50 ng/mg with a correlation coefficient of > 0.99 and is capable of detecting 25 pg of PCP on column. The accuracy of this assay was estimated using fortified hair standards at PCP concentrations of 0.5 and 10 ng/mg. Intra-assay coefficients of variation were determined to be less than 6% at 0.5, 2, and 10 ng/mg. Interassay coefficients of variation were determined to be less than 15% at 0.5, 2, and 10 ng/mg. The method has been used to evaluate PCP incorporation into Long-Evans rat hair but could also be used to evaluate the incorporation of PCP into human hair. Male rats were shaved prior to dosing such that both pigmented and nonpigmented hair was collected. Animals were administered 12 mg/kg PCP by intraperitoneal injection daily for five days. Fourteen days after the first dose, pigmented and nonpigmented hair were collected and analyzed for PCP. The mean plus or minus the standard error of the mean (n = 5) concentrations of PCP in pigmented and nonpigmented hair were 14.33 +/- 1.43 ng/mg of hair and 0.47 +/- 0.04 ng/mg of hair, respectively. This method is also being used to evaluate PCP as a model xenobiotic for studies of the incorporation of xenobiotics into hair.

  16. Semi-quantitative analysis of microstructures by secondary ion mass spectrometry

    SciTech Connect

    Phinney, D L

    2005-02-14

    The focus of this review is on trace-element quantitation of microstructures in solids. This review is aimed at the non-specialist who wants to know how SIMS quantitation is achieved. Despite 35 years of SIMS research and applications, SIMS quantitation remains a fundamentally empirical enterprise and is based on standards. The most used standards are ''bulk standards''--solids with a homogeneous distribution of a trace element--and ion-implanted solids. The SIMS systematics of bulk standards and ion-implanted solids are reviewed.

  17. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  18. Enhanced sample preparation for quantitation of microcystins by matrix-assisted laser desorption/ionisation-time of flight mass spectrometry.

    PubMed

    Puddick, Jonathan; Prinsep, Michèle R; Wood, Susanna A; Craig Cary, S; Hamilton, David P

    2012-01-01

    Microcystins (MCs) are a group of cyanotoxins which pose a serious health threat when present in aquatic systems. Quantitative analysis of MCs by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry has potential for the processing of large numbers of samples quickly and economically. The existing method uses an expensive internal standard and protocols that are incompatible with automated sample preparation and data acquisition. To produce a MALDI-TOF sample preparation technique for the quantitation of MCs that not only maintains reproducibility and sensitivity, but is also compatible with an automated work-flow. Seven different MALDI-TOF sample preparations were assessed for signal reproducibility (coefficient of variation) and sensitivity (method detection limit) using a cost-effective internal standard (angiotensin I). The best preparation was then assessed for its quantitative performance using three different MC congeners ([Dha⁷] MC-LR, MC-RR and MC-YR). The sensitivity of six of the preparations was acceptable, as was the reproducibility for two thin-layer preparations performed on a polished steel target. Both thin-layer preparations could be used with a MALDI-TOF mass spectrometer that automatically acquires data, and one could be used in an automated sample preparation work-flow. Further investigation using the thin-layer spot preparation demonstrated that linear quantification of three different MC congeners was possible. The study demonstrates that with different sample preparation methods and modern instrumentation, large numbers of samples can be analysed rapidly for MCs at low cost. Copyright © 2011 John Wiley & Sons, Ltd.

  19. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  20. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  1. Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion

    PubMed Central

    Fair, Justin D.; Bailey, William F.; Felty, Robert A.; Gifford, Amy E.; Shultes, Benjamin; Volles, Leslie H.

    2010-01-01

    Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern. PMID:20885969

  2. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  3. A sensitive liquid chromatography/mass spectrometry-based assay for quantitation of amino-containing moieties in lipid A

    PubMed Central

    Kalhorn, Thomas F.; Kiavand, Anahita; Cohen, Ilana E.; Nelson, Amanda K.; Ernst, Robert K.

    2009-01-01

    A novel sensitive liquid chromatography/mass spectrometry-based assay was developed for the quantitation of aminosugars, including 2-amino-2-deoxyglucose (glucosamine, GlcN), 2-amino-2-deoxygalactose (galactosamine, GalN), and 4-amino-4-deoxyarabinose (aminoarabinose, AraN), and for ethanolamine (EtN), present in lipid A. This assay enables the identification and quantitation of all amino-containing moieties present in lipopolysaccharide or lipid A from a single sample. The method was applied to the analysis of lipid A (endotoxin) isolated from a variety of biosynthetic and regulatory mutants of Salmonella enterica serovar Typhimurium and Francisella tularensis subspecies novicida. Lipid A is treated with trifluoroacetic acid to liberate and deacetylate individual aminosugars and mass tagged with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, which reacts with primary and secondary amines. The derivatives are separated using reversed-phase chromatography and analyzed using a single quadrupole mass spectrometer to detect quantities as small as 20 fmol. GalN was detected only in Francisella and AraN only in Salmonella, while GlcN was detected in lipid A samples from both species of bacteria. Additionally, we found an approximately 10-fold increase in the level of AraN in lipid A isolated from Salmonella grown in magnesium-limited versus magnesium-replete conditions. Salmonella with defined mutations in lipid A synthesis and regulatory genes were used to further validate the assay. Salmonella with null mutations in the phoP, pmrE, and prmF genes were unable to add AraN to their lipid A, while Salmonella with constitutively active phoP and pmrA exhibited AraN modification of lipid A even in the normally repressive magnesium-replete growth condition. The described assay produces excellent repeatability and reproducibility for the detection of amino-containing moieties in lipid A from a variety of bacterial sources. PMID:19130491

  4. High-throughput quantitative analysis of domoic acid directly from mussel tissue using Laser Ablation Electrospray Ionization - tandem mass spectrometry.

    PubMed

    Beach, Daniel G; Walsh, Callee M; McCarron, Pearse

    2014-12-15

    Eliminating sample extraction or liquid chromatography steps from methods for analysis of the neurotoxin Domoic Acid (DA) in shellfish could greatly increase throughput in food safety testing laboratories worldwide. To this end, we have investigated the use of Laser Ablation Electrospray Ionization (LAESI) with tandem mass spectrometry (MS/MS) detection for DA analysis directly from mussel tissue homogenates without sample extraction, cleanup or separation. DA could be selectively detected directly from mussel tissue homogenates using MS/MS in selected reaction monitoring scan mode. The quantitative capabilities of LAESI-MS/MS for DA analysis from mussel tissue were evaluated by analysis of four mussel tissue reference materials using matrix-matched calibration. Linear response was observed from 1 mg/kg to 40 mg/kg and the method limit of detection was 1 mg/kg. Results for DA analysis in tissue within the linear range were in good agreement with two established methods, LC-UV and LC-MS/MS (recoveries from 103 to 125%). Beyond the linear range, extraction and clean-up were required to achieve good quantitation. Most notable is the extremely rapid analysis time of about 10 s per sample by LAESI-MS/MS, which corresponds to a significant increase in sample throughput compared with existing methodology for routine DA analysis. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    PubMed

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  6. Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry.

    PubMed

    Nelson, Bryant C; Sharpless, Katherine E; Sander, Lane C

    2006-12-01

    Two different isotope-dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods for the quantitative determination of folic acid (FA) in multivitamin/multielement tablets are reported. These methods represent distinct improvements in terms of speed and specificity over most existing microbiological and chromatographic methods for the determination of FA in dietary supplements. The first method utilizes an aqueous/organic-based extraction solvent combined with positive-ion mode LC/MS/MS detection of protonated [M + H]+ FA molecules and the second method utilizes a pure aqueous-based extraction solvent combined with negative-ion mode LC/MS/MS detection of deprotonated [M - H]- FA molecules. The LC/MS/MS methods exhibit comparable linear dynamic ranges (> or =3 orders of magnitude), limits of detection (0.02 ng on-column) and limits of quantification (0.06 ng on-column) for FA. Two methods employing different extraction and different MS detection modes were developed to allow method cross-validation. Successful validation of each measurement procedure supports the use of either method for the certification of FA levels in dietary supplements. The accuracy and precision of each measurement procedure were evaluated by applying each method to the quantitative determination of FA in a NIST standard reference material (NIST SRM 3280 multivitamin/multielement tablets). The FA measurement accuracy for both methods was > or =95% (based on the manufacturer's assessment of the FA level in SRM 3280) with corresponding measurement precision values (% RSD) of approximately 1%.

  7. Coumarin and furanocoumarin quantitation in citrus peel via ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS).

    PubMed

    Dugrand, Audray; Olry, Alexandre; Duval, Thibault; Hehn, Alain; Froelicher, Yann; Bourgaud, Frédéric

    2013-11-13

    Coumarins and furanocoumarins are secondary metabolites commonly found in citrus plants. These molecules are allelochemical compounds in plants that have controversial effects on humans, such as phototoxicity and the commonly described interactions with drugs, referred to as the "grapefruit juice effect". Thus, it is important to develop a reliable method to identify and quantitate the coumarins and furanocoumarins in citrus extracts. For this purpose, we herein describe an ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS)-based method. We first developed a rapid UPLC method (20 min) to separate the isomers of each furanocoumarin. A subsequent single ion monitoring MS detection method was performed to distinguish between the molecules, which were possibly coeluting but had different molecular weights. The method was successfully used to separate and quantitate 6 coumarins and 21 furanocoumarins in variable amounts within peel extracts (flavedo and albedo) of 6 varieties of Citrus (sweet orange, lemon, grapefruit, bergamot, pummelo, and clementine). This method combines high selectivity and sensitivity in a rapid analysis and is useful for fingerprinting Citrus species via their coumarin and furanocoumarin contents.

  8. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry.

    PubMed

    Zhao, Xiaoyong; Shen, Shanshan; Wu, Datong; Cai, Pengfei; Pan, Yuanjiang

    2017-09-08

    Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantitative Gingival Crevicular Fluid Proteome in Health and Periodontal Disease Using Stable-Isotope Chemistries and Mass Spectrometry

    PubMed Central

    Carneiro, Leandro G.; Nouh, Hesham; Salih, Erdjan

    2014-01-01

    Aim Application of quantitative stable-isotope-labeling chemistries and mass spectrometry (MS) to determine alterations in gingival crevicular fluid (GCF) proteome in periodontal disease. Materials and Methods Quantitative proteome of GCF from 40 healthy individuals versus 40 patients with periodontal disease was established using 320 GCF samples and stable-isotope-labeling reagents, ICAT and mTRAQ, with MS technology and validated by enzyme-linked immunosorbent methods. Results We have identified 238 distinct proteins of which 180 were quantified in GCF of both healthy and periodontal patients with additional 26 and 32 distinct proteins that were found only in GCF of healthy or periodontal patients. In addition, 42 pathogenic bacterial proteins and 11 yeast proteins were quantified. The data highlighted a series of proteins not quantified previously by large-scale MS approaches in GCF with relevance to periodontal disease, such as host derived Ig alpha-2 chain C, Kallikrein-4, S100-A9, transmembrane proteinase 13, peptidase S1 domain, several collagen types and pathogenic bacterial proteins e.g., formamidase, leucine amidopeptidase and virulence factor OMP85. Conclusions The innovative analytical approaches provided detailed novel changes in both host and microbial derived GCF proteomes of periodontal patients. The study defined 50 host and 16 pathogenic bacterial proteins significantly elevated in periodontal disease most of which were novel with significant potential for application in the clinical arena of periodontal disease. PMID:24738839

  10. Quantitative characterization of galectin-3-C affinity mass spectrometry measurements: Comprehensive data analysis, obstacles, shortcuts and robustness.

    PubMed

    Haramija, Marko; Peter-Katalinić, Jasna

    2017-10-30

    Affinity mass spectrometry (AMS) is an emerging tool in the field of the study of protein•carbohydrate complexes. However, experimental obstacles and data analysis are preventing faster integration of AMS methods into the glycoscience field. Here we show how analysis of direct electrospray ionization mass spectrometry (ESI-MS) AMS data can be simplified for screening purposes, even for complex AMS spectra. A direct ESI-MS assay was tested in this study and binding data for the galectin-3C•lactose complex were analyzed using a comprehensive and simplified data analysis approach. In the comprehensive data analysis approach, noise, all protein charge states, alkali ion adducts and signal overlap were taken into account. In a simplified approach, only the intensities of the fully protonated free protein and the protein•carbohydrate complex for the main protein charge state were taken into account. In our study, for high intensity signals, noise was negligible, sodiated protein and sodiated complex signals cancelled each other out when calculating the Kd value, and signal overlap influenced the Kd value only to a minor extent. Influence of these parameters on low intensity signals was much higher. However, low intensity protein charge states should be avoided in quantitative AMS analyses due to poor ion statistics. The results indicate that noise, alkali ion adducts, signal overlap, as well as low intensity protein charge states, can be neglected for preliminary experiments, as well as in screening assays. One comprehensive data analysis performed as a control should be sufficient to validate this hypothesis for other binding systems as well. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGES

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; ...

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  12. Absolute Phosphorylation Stoichiometry Analysis by Motif-Targeting Quantitative Mass Spectrometry.

    PubMed

    Tsai, Chia-Feng; Ku, Wei-Chi; Chen, Yu-Ju; Ishihama, Yasushi

    2017-01-01

    Direct measurement of site-specific phosphorylation stoichiometry can unambiguously distinguish whether the degree of phosphorylation is regulated by upstream kinase/phosphatase activity or by transcriptional regulation to alter protein expression level. Here, we describe a motif-targeting quantitative proteomic approach that integrates dephosphorylation, isotope tag labeling, and enzymatic kinase reaction for large-scale phosphorylation stoichiometry measurement of the human proteome.

  13. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  14. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  15. Mass spectrometry for malaria diagnosis.

    PubMed

    Demirev, Plamen A

    2004-11-01

    A physical method currently being developed for malaria parasite detection and diagnosis in blood is reviewed in this article. The method - direct laser desorption mass spectrometry - is based on the detection of heme (iron protoporphyrin) as a unique qualitative and quantitative molecular biomarker for malaria. In infected erythrocytes, the parasite sequesters heme in a molecular crystal (hemozoin) - a volume of highly concentrated and purified biomarker molecules. Laser desorption mass spectrometry detects only heme from hemozoin in parasite-infected blood, and not heme that is bound to hemoglobin or other proteins in uninfected blood samples. The method requires only a drop of blood with minimal sample preparation. Laser desorption mass spectrometry may become a rapid and high-throughput tool for specific and sensitive pan-malaria detection at levels below 10 parasites/mul of blood.

  16. Factors That Contribute to Assay Variation in Quantitative Analysis of Sex Steroid Hormones Using Liquid and Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Xu, Xia; Veenstra, Timothy D.

    2012-01-01

    The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…

  17. Rapid qualitative and quantitative analysis of proanthocyanidin oligomers and polymers by ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS)

    USDA-ARS?s Scientific Manuscript database

    We developed a rapid method with ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analysis of plant proanthocyanidins (PAs) directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymeriza...

  18. Factors That Contribute to Assay Variation in Quantitative Analysis of Sex Steroid Hormones Using Liquid and Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Xu, Xia; Veenstra, Timothy D.

    2012-01-01

    The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…

  19. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry.

    PubMed

    Wu, Haifeng; Guo, Jian; Chen, Shilin; Liu, Xin; Zhou, Yan; Zhang, Xiaopo; Xu, Xudong

    2013-01-01

    Over the past few years, the applications of liquid chromatography coupled with mass spectrometry (LC-MS) in natural product analysis have been dramatically growing because of the increasingly improved separation and detection capabilities of LC-MS instruments. In particular, novel high-resolution hybrid instruments linked to ultra-high-performance LC and the hyphenations of LC-MS with other separation or analytical techniques greatly aid unequivocal identification and highly sensitive quantification of natural products at trace concentrations in complex matrices. With the aim of providing an up-to-date overview of LC-MS applications on the analysis of plant-derived compounds, papers published within the latest years (2007-2012) involving qualitative and quantitative analysis of phytochemical constituents and their metabolites are summarized in the present review. After briefly describing the general characteristics of natural products analysis, the most remarkable features of LC-MS and sample preparation techniques, the present paper mainly focuses on screening and characterization of phenols (including flavonoids), alkaloids, terpenoids, steroids, coumarins, lignans, and miscellaneous compounds in respective herbs and biological samples, as well as traditional Chinese medicine (TCM) prescriptions using tandem mass spectrometer. Chemical fingerprinting analysis using LC-MS is also described. Meanwhile, instrumental peculiarities and methodological details are accentuated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Online nanoliquid chromatography-mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis.

    PubMed

    Kalay, Hakan; Ambrosini, Martino; van Berkel, Patrick H C; Parren, Paul W H I; van Kooyk, Yvette; García Vallejo, Juan J

    2012-04-01

    The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans. Characterization of glycans has classically been performed by mass spectrometry (MS) with external standardization. Here, we report a new method for the simultaneous quantification and characterization of the N-glycans on glycoproteins without the need for external standardization. This method, which we call glycan nanoprofiling, uses nanoLC-coupled electrospray ionization (ESI)-MS with an intercalated nanofluorescence reader and provides effective single glycan separation with subpicomolar sensitivity. The method relies on the isolation and coumaric derivatization of enzymatically released glycans collected by solid phase extraction with porous graphitized carbon and their separation over polyamide-based nanoHPLC prior to serial nanofluorescence and nanoelectrospray mass spectrometric analysis. Glycan nanoprofiling is a broadly applicable and powerful approach that is sufficient to identify and quantify many glycan oligomers in a single run. Glycan nanoprofiling was successfully applied to resolve the glycans of monoclonal antibodies, showing that this method is a fast and sensitive alternative to available methods.

  1. Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)—Nanoautography with stable isotope tracers

    NASA Astrophysics Data System (ADS)

    McMahon, Greg; Glassner, Brian J.; Lechene, Claude P.

    2006-07-01

    We describe some technical aspects of the application of multi-isotope imaging mass spectrometry (MIMS) to biological research, particularly the use of isotopic tags to localize and measure their incorporation into intracellular compartments. We touch on sample preparation, on image formation, on drift correction and on extraction of quantitative data from isotope ratio imaging. We insist on the wide variety of sample types that can be used, ranging from whole cells prepared directly on Si supports, to thin sections of cells and tissues on Si supports, to ultrathin TEM sections on carbon-coated grid. We attempt to dispel the myth of difficulties in sample preparation, which we view as a needless deterrent to the application of MIMS to the general biological community. We present protocols for the extraction of isotope ratio data from mass images. We illustrate the benefits of using sequential image plane acquisition followed by the application of an autocorrelation algorithm (nanotracking) to remove the effects of specimen drift. We insist on the advantages to display the isotope ratios as hue saturation intensity images.

  2. The Development of Sputtered Neutral Mass Spectrometry for the Quantitative Depth Profiling of Compound Semiconductor Materials

    DTIC Science & Technology

    1985-12-15

    using a quadrupole mass spectrometer based instrument. Most of the remaining mass peaks observed arise from neutral beam sputtering of the sample...IP by about 4eV.) Furthermore, we do not observe any significant evidence for molecular ions in the SNMS spectrum. Either sputtered neutral molecules...are not ionized in the plasma or they are dissociated into atomic ion and neutral *: fragments by collisions with plasma gas molecules. What we do find

  3. Quantitative Proteomics using Nano-LC with High Accuracy Mass Spectrometry

    SciTech Connect

    Pasa-Tolic, Liljiana; Jacobs, Jon M.; Qian, Weijun; Smith, Richard D.

    2008-01-29

    Despite significant advances in LC-MS based technologies, challenges remain in implementing a proteomics platform for routine clinical applications. These include the needed robustness as well as the sensitivity and dynamic range of detection to both effectively address extremely small tissue samples, for example microdissected or biopsy tissues, or high dynamic range samples, such as blood plasma. Other key components include providing the needed throughput to enable statistically meaningful number of analyses for clinical setting within a robust platform that utilizes effective quantitative approaches for high accuracy and reproducibility. This chapter describes the key components of a nanoLC- MS based technological approach that is designed to target these challenges by virtue of enhancing sensitivity, dynamic range coverage, and throughput, for the generation of robust quantitative measurements in support of clinical studies.

  4. Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    González, Susana; Petrović, Mira; Radetic, Maja; Jovancic, Petar; Ilic, Vesna; Barceló, Damià

    2008-05-01

    A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified.

  5. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed.

  6. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  7. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  8. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  9. Development of a Postcolumn Infused-Internal Standard Liquid Chromatography Mass Spectrometry Method for Quantitative Metabolomics Studies.

    PubMed

    Liao, Hsiao-Wei; Chen, Guan-Yuan; Wu, Ming-Shiang; Liao, Wei-Chih; Lin, Ching-Hung; Kuo, Ching-Hua

    2017-02-03

    Quantitative metabolomics has become much more important in clinical research in recent years. Individual differences in matrix effects (MEs) and the injection order effect are two major factors that reduce the quantification accuracy in liquid chromatography-electrospray ionization-mass spectrometry-based (LC-ESI-MS) metabolomics studies. This study proposed a postcolumn infused-internal standard (PCI-IS) combined with a matrix normalization factor (MNF) strategy to improve the analytical accuracy of quantitative metabolomics. The PCI-IS combined with the MNF method was applied for a targeted metabolomics study of amino acids (AAs). D8-Phenylalanine was used as the PCI-IS, and it was postcolumn-infused into the ESI interface for calibration purposes. The MNF was used to bridge the AA response in a standard solution with the plasma samples. The MEs caused signal changes that were corrected by dividing the AA signal intensities by the PCI-IS intensities after adjustment with the MNF. After the method validation, we evaluated the method applicability for breast cancer research using 100 plasma samples. The quantification results revealed that the 11 tested AAs exhibit an accuracy between 88.2 and 110.7%. The principal component analysis score plot revealed that the injection order effect can be successfully removed, and most of the within-group variation of the tested AAs decreased after the PCI-IS correction. Finally, targeted metabolomics studies on the AAs showed that tryptophan was expressed more in malignant patients than in the benign group. We anticipate that a similar approach can be applied to other endogenous metabolites to facilitate quantitative metabolomics studies.

  10. Simultaneous quantitation of urinary cotinine and acrylonitrile-derived mercapturic acids with ultraperformance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Chia-Fang; Uang, Shi-Nian; Chiang, Su-Yin; Shih, Wei-Chung; Huang, Yu-Fang; Wu, Kuen-Yuh

    2012-02-01

    Acrylonitrile (AN), a widely used industrial chemical also found in tobacco smoke, has been classified as a possible human carcinogen (group 2B) by the International Agency for Research on Cancer. AN can be detoxified by glutathione S-transferase (GST) to form glutathione (GSH) conjugates in vivo. It can be metabolically activated by cytochrome P450 2E1 to form 2-cyanoethylene oxide, which can also be detoxified by GST to generate GSH conjugates. The GSH conjugates can be further metabolized to mercapturic acids (MAs), namely, N-acetyl-S-(2-cyanoethyl)cysteine (CEMA), N-acetyl-S-(2-hydroxyethyl)cysteine (HEMA), and N-acetyl-S-(1-cyano-2-hydroxyethyl)cysteine (CHEMA). This study developed an ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method to quantitatively profile the major AN urinary metabolites (CEMA, HEMA, and CHEMA) to assess AN exposure, as well as analyze urinary cotinine (COT) as an indicator for tobacco smoke exposure. The limits of quantitation were 0.1, 0.1, 1.0, and 0.05 μg/L for HEMA, CEMA, CHEMA, and COT, respectively. This method was applied to analyze the three AN-derived MAs in 36 volunteers with no prior occupational AN exposure. Data analysis showed significant correlations between the level of COT and the levels of these MAs, suggesting them as biomarkers for exposure to low levels of AN. The results demonstrate that a highly specific and sensitive UPLC-MS/MS method has been successfully developed to quantitatively profile the major urinary metabolites of AN in humans to assess low AN exposure.

  11. Phenolic compounds from Bursera simaruba Sarg. bark: phytochemical investigation and quantitative analysis by tandem mass spectrometry.

    PubMed

    Maldini, Mariateresa; Montoro, Paola; Piacente, Sonia; Pizza, Cosimo

    2009-03-01

    Phytochemical investigation of the methanolic extract of Bursera simaruba bark led to the isolation of 11 compounds, including lignans yatein, beta-peltatin-O-beta-D-glucopyranoside, hinokinin and bursehernin, and three natural compounds namely 3,4-dimetoxyphenyl-1-O-beta-D-(6-sulpho)-glucopyranoside, 3,4,5-trimetoxyphenyl 1-O-beta-D-(6-sulpho)-glucopyranoside and 3,4-diidroxyphenylethanol-1-O-beta-D-(6-sulpho)-glucopyranoside. Their structures were established by NMR and ESI/MS experiments. Additionally, an LC-ESI/MS qualitative study on the phenolic compounds and an LC-ESI/MS/MS quantitative study on the lignans found in the methanolic extract of B. simaruba bark were performed to give value to the plant as source of these biological active compounds. Quantitative analyses results confirmed that compounds yatein, beta-peltatin-O-beta-D-glucopyranoside, hinokinin and bursehernin are major compounds in the bark and, in particular, beta-peltatin-O-beta-D-glucopyranoside appears to be the most abundant.

  12. Generalized multiple internal standard method for quantitative liquid chromatography mass spectrometry.

    PubMed

    Hu, Yuan-Liang; Chen, Zeng-Ping; Chen, Yao; Shi, Cai-Xia; Yu, Ru-Qin

    2016-05-06

    In this contribution, a multiplicative effects model for generalized multiple-internal-standard method (MEMGMIS) was proposed to solve the signal instability problem of LC-MS over time. MEMGMIS model seamlessly integrates the multiple-internal-standard strategy with multivariate calibration method, and takes full use of all the information carried by multiple internal standards during the quantification of target analytes. Unlike the existing methods based on multiple internal standards, MEMGMIS does not require selecting an optimal internal standard for the quantification of a specific analyte from multiple internal standards used. MEMGMIS was applied to a proof-of-concept model system: the simultaneous quantitative analysis of five edible artificial colorants in two kinds of cocktail drinks. Experimental results demonstrated that MEMGMIS models established on LC-MS data of calibration samples prepared with ultrapure water could provide quite satisfactory concentration predictions for colorants in cocktail samples from their LC-MS data measured 10days after the LC-MS analysis of the calibration samples. The average relative prediction errors of MEMGMIS models did not exceed 6.0%, considerably better than the corresponding values of commonly used univariate calibration models combined with multiple internal standards. The advantages of good performance and simple implementation render MEMGMIS model a promising alternative tool in quantitative LC-MS assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.

    PubMed

    Soldi, Monica; Cuomo, Alessandro; Bonaldi, Tiziana

    2016-07-01

    Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot-gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain "Arg-C like" digestion products that are more suitable for LC-MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. is a quantitative assessment of methyl-esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059-2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl-esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl-esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation.

  14. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry.

    PubMed

    Schalk, Kathrin; Lang, Christina; Wieser, Herbert; Koehler, Peter; Scherf, Katharina Anne

    2017-03-22

    Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91-603 μg/g flour. In contrast, the 33-mer was absent (

  15. Quantitative proteomic characterization of lung-MSC and bone marrow-MSC using DIA-mass spectrometry.

    PubMed

    Rolandsson Enes, Sara; Åhrman, Emma; Palani, Anitha; Hallgren, Oskar; Bjermer, Leif; Malmström, Anders; Scheding, Stefan; Malmström, Johan; Westergren-Thorsson, Gunilla

    2017-08-24

    Mesenchymal stromal cells (MSC) are ideal candidates for cell therapies, due to their immune-regulatory and regenerative properties. We have previously reported that lung-derived MSC are tissue-resident cells with lung-specific properties compared to bone marrow-derived MSC. Assessing relevant molecular differences between lung-MSC and bone marrow-MSC is important, given that such differences may impact their behavior and potential therapeutic use. Here, we present an in-depth mass spectrometry (MS) based strategy to investigate the proteomes of lung-MSC and bone marrow-MSC. The MS-strategy relies on label free quantitative data-independent acquisition (DIA) analysis and targeted data analysis using a MSC specific spectral library. We identified several significantly differentially expressed proteins between lung-MSC and bone marrow-MSC within the cell layer (352 proteins) and in the conditioned medium (49 proteins). Bioinformatics analysis revealed differences in regulation of cell proliferation, which was functionally confirmed by decreasing proliferation rate through Cytochrome P450 stimulation. Our study reveals important differences within proteome and matrisome profiles between lung- and bone marrow-derived MSC that may influence their behavior and affect the clinical outcome when used for cell-therapy.

  16. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry

    PubMed Central

    Schalk, Kathrin; Lang, Christina; Wieser, Herbert; Koehler, Peter; Scherf, Katharina Anne

    2017-01-01

    Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91–603 μg/g flour. In contrast, the 33-mer was absent (

  17. Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry.

    PubMed

    Hernández-Castellano, Lorenzo E; Argüello, Anastasio; Almeida, André M; Castro, Noemí; Bendixen, Emøke

    2015-01-01

    Colostrum intake is a key factor for newborn ruminant survival because the placenta does not allow the transfer of immune components. Therefore, newborn ruminants depend entirely on passive immunity transfer from the mother to the neonate, through the suckling of colostrum. Understanding the importance of specific colostrum proteins has gained significant attention in recent years. However, proteomics studies of sheep colostrum and their uptake in neonate lambs has not yet been presented. The aim of this study was to describe the proteomes of sheep colostrum and lamb blood plasma, using sodium dodecyl sulfate-PAGE for protein separation and in-gel digestion, followed by liquid chromatography-tandem mass spectrometry of resulting tryptic peptides for protein identification. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics approach was subsequently used to provide relative quantification of how neonatal plasma protein concentrations change as an effect of colostrum intake. The results of this study describe the presence of 70 proteins in the ovine colostrum proteome. Furthermore, colostrum intake resulted in an increase of 8 proteins with important immune functions in the blood plasma of lambs. Further proteomic studies will be necessary, particularly using the selected reaction monitoring approach, to describe in detail the role of specific colostrum proteins for immune transfer to the neonate.

  18. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli

    PubMed Central

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-01-01

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868

  19. A Quantitative Proteomic Workflow for Characterization of Frozen Clinical Biopsies: Laser Capture Microdissection Coupled with Label-Free Mass Spectrometry

    PubMed Central

    Shapiro, John P.; Biswas, Sabyasachi; Merchant, Anand S.; Satoskar, Anjali; Taslim, Cenny; Lin, Shili; Rovin, Brad H.; Sen, Chandan K.; Roy, Sashwati; Freitas, Michael A.

    2013-01-01

    This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a “one-pot” protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3,000–10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery. PMID:23022584

  20. A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry.

    PubMed

    Shapiro, John P; Biswas, Sabyasachi; Merchant, Anand S; Satoskar, Anjali; Taslim, Cenny; Lin, Shili; Rovin, Brad H; Sen, Chandan K; Roy, Sashwati; Freitas, Michael A

    2012-12-21

    This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a "one-pot" protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3000-10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery.

  1. Quantitation of γ-aminobutyric acid in equine plasma by hydrophilic interaction liquid chromatography with tandem mass spectrometry.

    PubMed

    Yi, Rong; Zhao, Sarah; Kong, Noel; Zhang, Julia; Loganathan, Devan; Mérette, Sandrine; Morrissey, Barbara

    2017-08-01

    γ-Aminobutyric acid is the principal inhibitory neurotransmitter in the central nervous system and regulates the neuronal excitability. There has been anecdotal evidence that γ-aminobutyric acid has been used within a few hours prior to competition in equine sports to calm down nervous horses. However, regulating the use of γ-aminobutyric acid is challenging because it is an endogenous substance in the horse. γ-Aminobutyric acid is usually present at low ng/mL levels in equine plasma; therefore, a sensitive method has to be developed to quantify these low background levels. Measuring low concentrations of endogenous γ-aminobutyric acid is essential to establish a threshold that can be used to differentiate levels attributable to exogenous administrations of γ-aminobutyric acid. A hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry method was developed and validated for the quantitation of γ-aminobutyric acid in equine plasma. Calibrators were prepared in artificial surrogate matrix consisting of 35 mg/mL equine serum albumin in phosphate buffered saline. Samples were prepared by protein precipitation with acetonitrile. Utilizing this methodology, a total of 403 equine plasma samples collected post-competition from horses participating in equestrian events in Canada were analyzed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. From "clinical proteomics" to "clinical chemistry proteomics": considerations using quantitative mass-spectrometry as a model approach.

    PubMed

    Lehmann, Sylvain; Poinot, Pauline; Tiers, Laurent; Junot, Christophe; Becher, François; Hirtz, Christophe

    2011-10-08

    Clinical Proteomics biomarker discovery programs lead to the selection of putative new biomarkers of human pathologies. Following an initial discovery phase, validation of these candidates in larger populations is a major task that recently started relying upon the use of mass spectrometry approaches, especially in cases where classical immune-detection methods were lacking. Thanks to highly sensitive spectrometers, adapted measurement methods like selective reaction monitoring (SRM) and various pre-fractionation methods, the quantitative detection of protein/peptide biomarkers in low concentrations is now feasible from complex biological fluids. This possibility leads to the use of similar methodologies in clinical biology laboratories, within a new proteomic field that we shall name "Clinical Chemistry Proteomics" (CCP). Such evolution of Clinical Proteomics adds important constraints with regards to the in vitro diagnostic (IVD) application. As measured values of analytes will be used to diagnose, follow-up and adapt patient treatment on a routine basis; medical utility, robustness, reference materials and clinical feasibility are among the new issues of CCP to consider.

  3. Ultra Performance Liquid Chromatography with Tandem Mass Spectrometry for the Quantitation of Seventeen Sedative Hypnotics in Six Common Toxicological Matrices.

    PubMed

    Mata, Dani C; Davis, John F; Figueroa, Ariana K; Stanford, Mary June

    2016-01-01

    An ultra performance liquid chromatography triple quadrupole mass spectrometry (LC-MS-MS) method for the quantification of 14 benzodiazepines and three sedative hypnotics is presented. The fast and inexpensive assay was developed for California's Orange County Crime Lab for use in antemortem (AM) and postmortem casework. The drugs were rapidly cleaned up from AM blood, postmortem blood, urine, liver, brain and stomach contents using DPX(®) Weak Anion Exchange (DPX WAX) tips fitted on a pneumatic extractor, which can process up to 48 samples at one time. Assay performance was determined for validation based on recommendations by the Scientific Working Group for Forensic Toxicology for linearity, limit of quantitation, limit of detection, bias, precision (within run and between run), dilution integrity, carry-over, selectivity, recovery, ion suppression and extracted sample stability. Linearity was verified using the therapeutic and toxic ranges of all 17 analytes. Final verification of the method was confirmed by four analysts using 20 blind matrix matched samples. All results were within 20% of each other and the expected value.

  4. Quantitative determination of methamphetamine in oral fluid by liquid-liquid extraction and gas chromatography/mass spectrometry.

    PubMed

    Bahmanabadi, L; Akhgari, M; Jokar, F; Sadeghi, H B

    2017-02-01

    Methamphetamine abuse is one of the most medical and social problems many countries face. In spite of the ban on the use of methamphetamine, it is widely available in Iran's drug black market. There are many analytical methods for the detection of methamphetamine in biological specimen. Oral fluid has become a popular specimen to test for the presence of methamphetamine. The purpose of the present study was to develop a method for the extraction and detection of methamphetamine in oral fluid samples using liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS) methods. An analytical study was designed in that blank and 50 authentic oral fluid samples were collected to be first extracted by LLE and subsequently analysed by GC/MS. The method was fully validated and showed an excellent intra- and inter-assay precision (reflex sympathetic dystrophy ˂ 10%) for external quality control samples. Recovery with LLE methods was 96%. Limit of detection and limit of quantitation were 5 and 15 ng/mL, respectively. The method showed high selectivity, no additional peak due to interfering substances in samples was observed. The introduced method was sensitive, accurate and precise enough for the extraction of methamphetamine from oral fluid samples in forensic toxicology laboratories.

  5. Mass spectrometry-based, label-free quantitative proteomics of round spermatids in mice

    PubMed Central

    WANG, HAILONG; LI, YAN; YANG, LIJUAN; YU, BAOFENG; YAN, PING; PANG, MIN; LI, XIAOBING; YANG, HONG; ZHENG, GUOPING; XIE, JUN; GUO, RUI

    2014-01-01

    Round haploid spermatids are formed at the completion of meiosis. These spermatids then undergo morphological and cytological changes during spermiogenesis. Although sperm proteomes have been extensively studied, relatively few studies have specifically investigated the proteome of round spermatids. We developed a label-free quantitative method in combination with 2D-nano-LC-ESI-MS/MS to investigate the proteome of round spermatids in mice. Analysis of the proteomic data identified 2,331 proteins in the round spermatids. Functional classification of the proteins based on Gene Ontology terms and enrichment analysis further revealed the following: 504 of the identified proteins are predicted to be involved in the generation of precursor metabolites and energy; 343 proteins in translation and protein targeting; 298 proteins in nucleotide and nucleic acid metabolism; 275 and 289 proteins in transport and cellular component organization, respectively. A number of the identified proteins were associated with cytoskeleton organization (183), protein degradation (116) and response to stimulus (115). KEGG pathway analysis identified 68 proteins that are annotated as components of the ribosomal pathway and 17 proteins were related to aminoacyl-tRNA biosynthesis. The round spermatids also contained 28 proteins involved in the proteasome pathway and 40 proteins in the lysosome pathway. A total of 60 proteins were annotated as parts of the spliceosome pathway, in which heterogeneous nuclear RNA is converted to mRNA. Approximately 94 proteins were identified as actin-binding proteins, involved in the regulation of the actin cytoskeleton. In conclusion, using a label-free shotgun proteomic approach, we identified numerous proteins associated with spermiogenesis in round spermatids. PMID:25109358

  6. Mass spectrometry-based, label-free quantitative proteomics of round spermatids in mice.

    PubMed

    Wang, Hailong; Li, Yan; Yang, Lijuan; Yu, Baofeng; Yan, Ping; Pang, Min; Li, Xiaobing; Yang, Hong; Zheng, Guoping; Xie, Jun; Guo, Rui

    2014-10-01

    Round haploid spermatids are formed at the completion of meiosis. These spermatids then undergo morphological and cytological changes during spermiogenesis. Although sperm proteomes have been extensively studied, relatively few studies have specifically investigated the proteome of round spermatids. We developed a label-free quantitative method in combination with 2D-nano-LC-ESI-MS/MS to investigate the proteome of round spermatids in mice. Analysis of the proteomic data identified 2,331 proteins in the round spermatids. Functional classification of the proteins based on Gene Ontology terms and enrichment analysis further revealed the following: 504 of the identified proteins are predicted to be involved in the generation of precursor metabolites and energy; 343 proteins in translation and protein targeting; 298 proteins in nucleotide and nucleic acid metabolism; 275 and 289 proteins in transport and cellular component organization, respectively. A number of the identified proteins were associated with cytoskeleton organization (183), protein degradation (116) and response to stimulus (115). KEGG pathway analysis identified 68 proteins that are annotated as components of the ribosomal pathway and 17 proteins were related to aminoacyl-tRNA biosynthesis. The round spermatids also contained 28 proteins involved in the proteasome pathway and 40 proteins in the lysosome pathway. A total of 60 proteins were annotated as parts of the spliceosome pathway, in which heterogeneous nuclear RNA is converted to mRNA. Approximately 94 proteins were identified as actin‑binding proteins, involved in the regulation of the actin cytoskeleton. In conclusion, using a label-free shotgun proteomic approach, we identified numerous proteins associated with spermiogenesis in round spermatids.

  7. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  8. Identification and quantitation of amphetamines, cocaine, opiates, and phencyclidine in oral fluid by liquid chromatography-tandem mass spectrometry.

    PubMed

    Fritch, Dean; Blum, Kristen; Nonnemacher, Sheena; Haggerty, Brenda J; Sullivan, Matthew P; Cone, Edward J

    2009-01-01

    Analytical methods for measuring multiple licit and illicit drugs and metabolites in oral fluid require high sensitivity, specificity, and accuracy. With the limited volume available for testing, comprehensive methodology is needed for simultaneous measurement of multiple analytes in a single aliquot. This report describes the validation of a semi-automated method for the simultaneous extraction, identification, and quantitation of 21 analytes in a single oral fluid aliquot. The target compounds included are amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-amphetamine, 3,4-methylenedioxyethylamphetamine, pseudoephedrine, cocaine, benzoylecgonine, codeine, norcodeine, 6-acetylcodeine, morphine, 6-acetylmorphine, hydrocodone, norhydrocodone, dihydrocodeine, hydromorphone, oxycodone, noroxycodone, oxymorphone, and phencyclidine. Oral fluid specimens were collected with the Intercept device and extracted by solid-phase extraction (SPE). Drug recovery from the Intercept device averaged 84.3%, and SPE extraction efficiency averaged 91.2% for the 21 analytes. Drug analysis was performed by liquid chromatography-tandem mass spectrometry in the positive electrospray mode using ratios of qualifying product ions within +/-25% of calibration standards. Matrix ion suppression ranged from -57 to 8%. The limit of quantitation ranged from 0.4 to 5 ng/mL using 0.2 mL of diluted oral fluid sample. Application of the method was demonstrated by testing oral fluid specimens from drug abuse treatment patients. Thirty-nine patients tested positive for various combinations of licit and illicit drugs and metabolites. In conclusion, this validated method is suitable for simultaneous measurement of 21 licit and illicit drugs and metabolites in oral fluid.

  9. Discovery of Mouse Spleen Signaling Responses to Anthrax using Label-Free Quantitative Phosphoproteomics via Mass Spectrometry*

    PubMed Central

    Manes, Nathan P.; Dong, Li; Zhou, Weidong; Du, Xiuxia; Reghu, Nikitha; Kool, Arjan C.; Choi, Dahan; Bailey, Charles L.; Petricoin, Emanuel F.; Liotta, Lance A.; Popov, Serguei G.

    2011-01-01

    Inhalational anthrax is caused by spores of the bacterium Bacillus anthracis (B. anthracis), and is an extremely dangerous disease that can kill unvaccinated victims within 2 weeks. Modern antibiotic-based therapy can increase the survival rate to ∼50%, but only if administered presymptomatically (within 24–48 h of exposure). To discover host signaling responses to presymptomatic anthrax, label-free quantitative phosphoproteomics via liquid chromatography coupled to mass spectrometry was used to compare spleens from uninfected and spore-challenged mice over a 72 h time-course. Spleen proteins were denatured using urea, reduced using dithiothreitol, alkylated using iodoacetamide, and digested into peptides using trypsin, and the resulting phosphopeptides were enriched using titanium dioxide solid-phase extraction and analyzed by nano-liquid chromatography-Linear Trap Quadrupole-Orbitrap-MS(/MS). The fragment ion spectra were processed using DeconMSn and searched using both Mascot and SEQUEST resulting in 252,626 confident identifications of 6248 phosphopeptides (corresponding to 5782 phosphorylation sites). The precursor ion spectra were deisotoped using Decon2LS and aligned using MultiAlign resulting in the confident quantitation of 3265 of the identified phosphopeptides. ANOVAs were used to produce a q-value ranked list of host signaling responses. Late-stage (48–72 h postchallenge) Sterne strain (lethal) infections resulted in global alterations to the spleen phosphoproteome. In contrast, ΔSterne strain (asymptomatic; missing the anthrax toxin) infections resulted in 188 (5.8%) significantly altered (q<0.05) phosphopeptides. Twenty-six highly tentative phosphorylation responses to early-stage (24 h postchallenge) anthrax were discovered (q<0.5), and ten of these originated from eight proteins that have known roles in the host immune response. These tentative early-anthrax host response signaling events within mouse spleens may translate into presymptomatic

  10. Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry.

    PubMed

    Manes, Nathan P; Dong, Li; Zhou, Weidong; Du, Xiuxia; Reghu, Nikitha; Kool, Arjan C; Choi, Dahan; Bailey, Charles L; Petricoin, Emanuel F; Liotta, Lance A; Popov, Serguei G

    2011-03-01

    Inhalational anthrax is caused by spores of the bacterium Bacillus anthracis (B. anthracis), and is an extremely dangerous disease that can kill unvaccinated victims within 2 weeks. Modern antibiotic-based therapy can increase the survival rate to ∼50%, but only if administered presymptomatically (within 24-48 h of exposure). To discover host signaling responses to presymptomatic anthrax, label-free quantitative phosphoproteomics via liquid chromatography coupled to mass spectrometry was used to compare spleens from uninfected and spore-challenged mice over a 72 h time-course. Spleen proteins were denatured using urea, reduced using dithiothreitol, alkylated using iodoacetamide, and digested into peptides using trypsin, and the resulting phosphopeptides were enriched using titanium dioxide solid-phase extraction and analyzed by nano-liquid chromatography-Linear Trap Quadrupole-Orbitrap-MS(/MS). The fragment ion spectra were processed using DeconMSn and searched using both Mascot and SEQUEST resulting in 252,626 confident identifications of 6248 phosphopeptides (corresponding to 5782 phosphorylation sites). The precursor ion spectra were deisotoped using Decon2LS and aligned using MultiAlign resulting in the confident quantitation of 3265 of the identified phosphopeptides. ANOVAs were used to produce a q-value ranked list of host signaling responses. Late-stage (48-72 h postchallenge) Sterne strain (lethal) infections resulted in global alterations to the spleen phosphoproteome. In contrast, ΔSterne strain (asymptomatic; missing the anthrax toxin) infections resulted in 188 (5.8%) significantly altered (q<0.05) phosphopeptides. Twenty-six highly tentative phosphorylation responses to early-stage (24 h postchallenge) anthrax were discovered (q<0.5), and ten of these originated from eight proteins that have known roles in the host immune response. These tentative early-anthrax host response signaling events within mouse spleens may translate into presymptomatic

  11. Quantitation of sirolimus using liquid chromatography-tandem mass spectrometry (LC-MS-MS).

    PubMed

    Korecka, Magdalena; Shaw, Leslie M

    2010-01-01

    A multiple reaction monitoring positive ion HPLC method with tandem mass spectrometric detection (MS-MS) for determination of sirolimus in human blood samples is described. This method utilizes an online cleanup step that provides simple and rapid sample preparation with a switching valve technique. This procedure includes: instrumentation, API 3000 triple quadrupole with turbo-ion spray (Applied Biosystems, Foster City, CA); HPLC system (Agilent Technologies series 1100, Wilmington, DE); two position switching valve (Valco, Houston, TX); 10 mm guard cartridge (C(18)) used as an extraction column (Perkin Elmer, Norwalk, CT); analytical column (Nova-Pak C(18) column, 2.1 x 150 mm I.D., 4 microm, Waters Corp, Milford, MA) maintained at 65 degrees C; extraction solution, ammonium acetate (30 mM, pH 5.2), flow rate 1.0 mL/min; eluting solution, methanol:30 mM ammonium acetate buffer (pH 5.2, 97:3 v/v), flow rate 0.8 mL/min with 1/3 of the flow split post-column into the MS-MS; total run-time 3.5 min. Sample preparation is based on simple protein precipitation with a mixture of methanol and zinc sulfate (7:3, v/v) followed by online sample cleanup. This procedure provides a decreased sample preparation time by a factor of four compared to a method that uses an SPE column. The first and third quadrupoles were set to detect the ammonium adduct ion and a high mass fragment of sirolimus (m/z 931.8-->864.6), and of an internal standard (ascomycin) (m/z 809.5-->756.5). The lower limit of quantification of this method is 2.5 microg/L. The quantification of drug is made from standard curve using peak-area ratio of analyte vs. internal standard. Calibration curve is constructed using non-weighted linear through zero regression.

  12. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies.

    PubMed

    Gao, Lan; Li, Jing; Kasserra, Claudia; Song, Qi; Arjomand, Ali; Hesk, David; Chowdhury, Swapan K

    2011-07-15

    Determination of the pharmacokinetics and absolute bioavailability of an experimental compound, SCH 900518, following a 89.7 nCi (100 μg) intravenous (iv) dose of (14)C-SCH 900518 2 h post 200 mg oral administration of nonradiolabeled SCH 900518 to six healthy male subjects has been described. The plasma concentration of SCH 900518 was measured using a validated LC-MS/MS system, and accelerator mass spectrometry (AMS) was used for quantitative plasma (14)C-SCH 900518 concentration determination. Calibration standards and quality controls were included for every batch of sample analysis by AMS to ensure acceptable quality of the assay. Plasma (14)C-SCH 900518 concentrations were derived from the regression function established from the calibration standards, rather than directly from isotopic ratios from AMS measurement. The precision and accuracy of quality controls and calibration standards met the requirements of bioanalytical guidance (U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Guidance for Industry: Bioanalytical Method Validation (ucm070107), May 2001. http://www.fda.gov/downloads/Drugs/GuidanceCompilanceRegulatoryInformation/Guidances/ucm070107.pdf ). The AMS measurement had a linear response range from 0.0159 to 9.07 dpm/mL for plasma (14)C-SCH 900158 concentrations. The CV and accuracy were 3.4-8.5% and 94-108% (82-119% for the lower limit of quantitation (LLOQ)), respectively, with a correlation coefficient of 0.9998. The absolute bioavailability was calculated from the dose-normalized area under the curve of iv and oral doses after the plasma concentrations were plotted vs the sampling time post oral dose. The mean absolute bioavailability of SCH 900518 was 40.8% (range 16.8-60.6%). The typical accuracy and standard deviation in AMS quantitative analysis of drugs from human plasma samples have been reported for the first time, and the impact of these

  13. Simultaneous quantitation of amphetamines and opiates in human hair by liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hsiu-Chuan; Liu, Ray H; Lin, Dong-Liang

    2015-04-01

    In this study, an incubation, solid-phase extraction (SPE) and LC-MS-MS procedure was developed, validated and used for simultaneous analysis of amphetamine (AP), methamphetamine (MA), morphine (MOR), codeine (COD), 6-acetylmorphine (6-AM) and 6-acetylcodeine (6-AC) in hair. Hair samples were initially cut into sections, washed with dichloromethane, then sonicated in a methanol-trifluoroacetic acid mixture. The resulting solutions were processed with a SPE procedure before undergoing LC-MS-MS analysis. Mass spectrometric analysis was performed in positive-ion, multiple reactions monitoring (MRM) mode, using appropriate collision energy for each selected precursor ion. The overall protocol, when applied to the analysis of hair (50 mg) samples fortified with 100-10,000 pg/mg of the analytes, was found to achieve 55.5-74.6% recovery of the six analytes with the following analytical parameters: (i) intra- and interday precision/accuracy data for the six analytes in the 1.6-7.6%/-6.0-12.8% and 1.3-6.6%/-6.9-9.3% ranges, respectively; (ii) r(2) > 0.998 for all six analytes and (iii) LOD 2 pg/mg for AP and MA, and 8 pg/mg for MOR, COD, 6-AM and 6-AC; LOQ 10 pg/mg for all six analytes. This method was then utilized to (i) analyze hair samples collected from 86 self-reported drug users and (ii) evaluate the deposition pattern of drugs in head hairs from four female MA and heroin users in a rehabilitation facility. This relatively simple protocol was found superior over the GC-MS methods we have previously developed and utilized in our laboratory for the analysis of these six analytes.

  14. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Evaluation and Quantitation of Intact Wax Esters of Human Meibum by Gas-Liquid Chromatography-Ion Trap Mass Spectrometry

    PubMed Central

    Butovich, Igor A.; Arciniega, Juan C.; Lu, Hua; Molai, Mike

    2012-01-01

    Purpose. Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Methods. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. Results. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C16–C18 fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C16:0-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C18:0-FA was 43:57. Interestingly, C17:0-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. Conclusions. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum. PMID:22531701

  16. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation*

    PubMed Central

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  17. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  18. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  19. Determination of loperamide in mdr1a/1b knock-out mouse brain tissue using matrix-assisted laser desorption/ionization mass spectrometry and comparison with quantitative electrospray-triple quadrupole mass spectrometry analysis.

    PubMed

    Shin, Young G; Dong, Teresa; Chou, Bilin; Menghrajani, Kapil

    2011-11-01

    Recently matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging has been used to analyze small molecule pharmaceutical compounds directly on tissue sections to determine spatial distribution within target tissue and organs. The data presented to date usually indicate relative amounts of drug within the tissue. The determination of absolute amounts is still done using tissue homogenization followed by traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, the quantitative determination of loperamide, an antidiarrheal agent and a P-glycoprotein substrate, in mdr1a/1b (-/-) mouse brain tissue sections using MALDI MS on a quadrupole time-of-flight mass spectrometry is described. 5 mg/mL α-cyano-4-hydroxycinnamic acid in 50% acetonitrile with 0.1% trifluoroacetic acid and 0.5 μM reserpine was used as the MALDI matrix. The calibration curve constructed by the peak intensities of standard samples from MALDI MS was linear from 0.025 to 0.5 μM with r² = 0.9989. The accuracy of calibration curve standards was 78.3-105.9% and the percent deviation was less than 25%. Comparison between direct MALDI tissue analysis and conventional tissue analysis using homogenization followed by electrospray LC-MS/MS was also explored.

  20. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    USDA-ARS?s Scientific Manuscript database

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  1. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  2. A device for automated direct sampling and quantitation from solid-phase sorbent extraction cards by electrospray tandem mass spectrometry.

    PubMed

    Wachs, Timothy; Henion, Jack

    2003-04-01

    A new solid-phase extraction (SPE) device in the 96-well format (SPE Card) has been employed for automated off-line sample preparation of low-volume urine samples. On-line automated analyte elution via SPE and direct quantitation by micro ion spray mass spectrometry is reported. This sample preparation device has the format of a microtiter plate and is molded in a plastic frame which houses 96 separate sandwiched 3M Empore sorbents (0.5-mm-thickness, 8-microm particles) covered on both sides by a microfiber support material. Ninety-six discrete SPE zones, each 7 mm in diameter, are imbedded into the sheet in the conventional 9-mm pitch (spacing) of a 96-well microtiter plate. In this study one-quarter of an SPE Card (24 individual zones) was used merely as a convenience. After automated off-line interference elution of applied human urine from 24 samples, a section of SPE Card is mounted vertically on a computer-controlled X, Y, Z positioner in front of a micro ion spray direct sampling tube equipped with a beveled tip. The beveled tip of this needle robotically penetrates each SPE elution zone (sorbent disk) or stationary phase in a serial fashion. The eluted analytes are sequentially transferred directly to a microelectrosprayer to obtain tandem mass spectrometric (MS/MS) analysis. This strategy precludes any HPLC separation and the associated method development. The quantitative determination of Ritalin (methylphenidate) from fortified human urine samples is demonstrated. A trideuterated internal standard of methylphenidate was used to obtain ion current response ratios between the parent drug and the internal standard. Human control urine samples fortified from 6.6 to 3300 ng/mL (normal therapeutic levels have been determined in other studies to be between 50 and 100 ng/mL urine) were analyzed and a linear calibration curve was obtained with a correlation coefficient of 0.9999, where the precision of the quality control (QC) samples ranged from 9.6% at the 24

  3. Using ProtMAX to create high-mass-accuracy precursor alignments from label-free quantitative mass spectrometry data generated in shotgun proteomics experiments.

    PubMed

    Egelhofer, Volker; Hoehenwarter, Wolfgang; Lyon, David; Weckwerth, Wolfram; Wienkoop, Stefanie

    2013-03-01

    Recently, new software tools have been developed for improved protein quantification using mass spectrometry (MS) data. However, there are still limitations especially in high-sample-throughput quantification methods, and most of these relate to extensive computational calculations. The mass accuracy precursor alignment (MAPA) strategy has been shown to be a robust method for relative protein quantification. Its major advantages are high resolution, sensitivity and sample throughput. Its accuracy is data dependent and thus best suited for precursor mass-to-charge precision of ∼1 p.p.m. This protocol describes how to use a software tool (ProtMAX) that allows for the automated alignment of precursors from up to several hundred MS runs within minutes without computational restrictions. It comprises features for 'ion intensity count' and 'target search' of a distinct set of peptides. This procedure also includes the recommended MS settings for complex quantitative MAPA analysis using ProtMAX (http://www.univie.ac.at/mosys/software.html).

  4. Quantitation of ceramides in nude mouse skin by normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Liou, Yi-Bo; Sheu, Ming-Thau; Liu, Der-Zen; Lin, Shan-Yang; Ho, Hsiu-O

    2010-06-01

    A sensitive and accurate normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) method for determining the standard ceramide [NS] (Cer[NS]) was developed and validated so as to improve the traditional thin-layer chromatography (TLC) technique and LC-electrospray ionization (ESI)-MS method to profile and quantify ceramides in nude mouse skin. Normal-phase LC-APCI-MS was optimized to separate the nine classes of ceramides presented in the stratum corneum (SC) of nude mouse skin. A normal-phase silica column eluted with the gradient system from heptane:acetone/butanol (90:10, v/v) of 75:25 to 100% acetone/butanol (90:10, v/v) (with each solvent containing 0.1% [v/v] triethylamine and 0.1% [v/v] formic acid) at a flow rate of 0.8 ml/min was found to be optimal for analyzing standard Cer[NS]. The analysis of Cer[NS] was validated and employed as the standard for constructing a calibration curve to quantitate all classes of ceramides. This method was applied to profile the classes and contents of ceramides in the SC of nude mouse skin and proved to be workable. It was concluded that this improved method can be used to directly detect and quantify all classes of ceramides in the SC of nude mouse skin and that it is more convenient and labor-saving than the traditional TLC method.

  5. Simultaneous quantitative analysis of eight vitamin D analogues in milk using liquid chromatography-tandem mass spectrometry.

    PubMed

    Gomes, Fabio P; Shaw, P Nicholas; Whitfield, Karen; Hewavitharana, Amitha K

    2015-09-03

    Milk is an important source of nutrients for various risk populations, including infants. The accurate measurement of vitamin D in milk is necessary to provide adequate supplementation advice for risk groups and to monitor regulatory compliance. Currently used liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods are capable of measuring only four analogues of vitamin D in unfortified milk. We report here an accurate quantitative analytical method for eight analogues of vitamin D: Vitamin D2 and D3 (D2 and D3), 25-hydroxy D2 and D3, 24,25-dihydroxy D2 and D3, and 1,25-dihydroxyD2 and D3. In this study, we compared saponification and protein precipitation for the extraction of vitamin D from milk and found the latter to be more effective. We also optimised the pre-column derivatisation using 4-phenyl-l,2,4-triazoline-3,5-dione (PTAD), to achieve the highest sensitivity and accuracy for all major vitamin D forms in milk. Chromatography was optimised to reduce matrix effects such as ion-suppression, and the matrix effects were eliminated using co-eluting stable isotope labelled internal standards for the calibration of each analogue. The analogues, 25-hydroxyD3 (25(OH)D3) and its epimer (3-epi-25(OH)D3) were chromatographically resolved, to prevent over-estimation of 25(OH)D3. The method was validated and subsequently applied for the measurement of total vitamin D levels in human, cow, mare, goat and sheep milk samples. The detection limits, repeatability standard deviations, and recovery ranges were from 0.2 to 0.4 femtomols, 6.30-13.5%, and 88.2-105%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.

    PubMed

    Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon

    2015-11-03

    Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling*

    PubMed Central

    Pellarin, Riccardo; Sali, Andrej; Barlow, Paul N.

    2016-01-01

    The slow but spontaneous and ubiquitous formation of C3(H2O), the hydrolytic and conformationally rearranged product of C3, initiates antibody-independent activation of the complement system that is a key first line of antimicrobial defense. The structure of C3(H2O) has not been determined. Here we subjected C3(H2O) to quantitative cross-linking/mass spectrometry (QCLMS). This revealed details of the structural differences and similarities between C3(H2O) and C3, as well as between C3(H2O) and its pivotal proteolytic cleavage product, C3b, which shares functionally similarity with C3(H2O). Considered in combination with the crystal structures of C3 and C3b, the QCMLS data suggest that C3(H2O) generation is accompanied by the migration of the thioester-containing domain of C3 from one end of the molecule to the other. This creates a stable C3b-like platform able to bind the zymogen, factor B, or the regulator, factor H. Integration of available crystallographic and QCLMS data allowed the determination of a 3D model of the C3(H2O) domain architecture. The unique arrangement of domains thus observed in C3(H2O), which retains the anaphylatoxin domain (that is excised when C3 is enzymatically activated to C3b), can be used to rationalize observed differences between C3(H2O) and C3b in terms of complement activation and regulation. PMID:27250206

  8. A quantitative liquid chromatography tandem mass spectrometry method for metabolomic analysis of Plasmodium falciparum lipid related metabolites.

    PubMed

    Vo Duy, S; Besteiro, S; Berry, L; Perigaud, C; Bressolle, F; Vial, H J; Lefebvre-Tournier, I

    2012-08-20

    Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-(13)C(4) and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d(9)-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r(2)>0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50pmol to 100fmol/3×10(7)cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry.

    PubMed

    Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David

    2009-06-01

    A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.

  10. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  11. Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas Edward; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham

    2011-09-01

    A method is presented for the direct quantitative analysis of therapeutic drugs from dried blood spot samples by mass spectrometry. The method, paper spray mass spectrometry, generates gas phase ions directly from the blood card paper used to store dried blood samples without the need for complex sample preparation and separation; the entire time for preparation and analysis of blood samples is around 30 s. Limits of detection were investigated for a chemically diverse set of some 15 therapeutic drugs; hydrophobic and weakly basic drugs, such as sunitinib, citalopram, and verapamil, were found to be routinely detectable at approximately 1 ng/mL. Samples were prepared by addition of the drug to whole blood. Drug concentrations were measured quantitatively over several orders of magnitude, with accuracies within 10% of the expected value and relative standard deviation (RSD) of around 10% by prespotting an internal standard solution onto the paper prior to application of the blood sample. We have demonstrated that paper spray mass spectrometry can be used to quantitatively measure drug concentrations over the entire therapeutic range for a wide variety of drugs. The high quality analytical data obtained indicate that the technique may be a viable option for therapeutic drug monitoring.

  12. Using quantitative mass spectrometry to better understand the influence of genetics and nutritional perturbations on the virulence potential of Staphylococcus aureus.

    PubMed

    Chapman, Jessica R; Balasubramanian, Divya; Tam, Kayan; Askenazi, Manor; Copin, Richard; Shopsin, Bo; Torres, Victor J; Ueberheide, Beatrix

    2017-02-14

    Staphylococcus aureus (Sa) is the leading cause of a variety of bacterial infections ranging from superficial skin infections to invasive and life threatening diseases such as septic bacteremia, necrotizing pneumonia, and endocarditis. The success of Sa as a human pathogen is due to its ability to adapt to the environment by changing expression, production, or secretion of virulence factors. Although Sa immune evasion is well-studied, the regulation of virulence factors under different nutrient and growth conditions is still not well understood. Here, we used label-free quantitative mass spectrometry to quantify and compare the secreted Sa proteins (i.e. exoproteomes) of master regulator mutants or established reference strains. Different environmental conditions were addressed by growing the bacteria in rich or minimal media at different phases of growth. We observed clear differences in the composition of the exoproteomes depending on the genetic background or growth conditions. The relative abundance of cytotoxins determined in our study correlated well with differences in cytotoxicity measured by lysis of human neutrophils. Our findings demonstrate that label-free quantitative mass spectrometry is a versatile tool for predicting the virulence of bacterial strains and highlights the importance of the experimental design for in vitro studies. Furthermore, the results indicate that label-free proteomics can be used to cluster isolates into groups with similar virulence properties and genetic lineages, highlighting the power of label-free quantitative mass spectrometry to distinguish Sa strains.

  13. Desorption in Mass Spectrometry.

    PubMed

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.

  14. Desorption in Mass Spectrometry

    PubMed Central

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398

  15. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  16. Quantitation of a de-fluorinated analogue of casopitant mesylate by normal-phase liquid chromatography/mass spectrometry.

    PubMed

    Dams, Riet; Bernabe, Elena; Nicoletti, Anna; Loda, Claudio; Martini, Luca; Papini, Damiano

    2010-09-15

    The introduction of Quality by Design (QbD) in Drug Development has resulted in a greater emphasis on chemical process understanding, in particular on the origin and fate of impurities. Therefore, the identification and quantitation of low level impurities in new Active Pharmaceutical Ingredients (APIs) play a crucial role in project progression and this has created a greater need for sensitive and selective analytical methodology. Consequently, scientists are constantly challenged to look for new applications of traditional analytical techniques. In this context a normal-phase liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method was developed to determine the amount of a de-fluorinated analogue impurity in Casopitant Mesylate, a new API under development in GlaxoSmithKline, Verona. Normal-phase LC provided the selectivity needed between our target analyte and Casopitant, while a single quadrupole mass spectrometer was used to ensure the sensitivity needed to detect the impurity at <0.05%w/w. Standard solutions and samples were prepared in heptane/ethanol (50:50, v/v) containing 1% of 2 M NH(3) in ethanol; the mobile phase consisted of heptane/ethanol (95:5, v/v) with isocratic elution (flow rate: 1.0 mL/min, total run time: 23 min). To allow the formation of ions in solutions under normal-phase (apolar) conditions, a post-column infusion of a solution of 0.1% v/v of formic acid in methanol was applied (flow rate: 200 microL/min). The analysis was carried out in positive ion mode, monitoring the impurity by single ion monitoring (SIM). The method was fully validated and its applicability was demonstrated by the analysis of real-life samples. This work is an example of the need for selective and accurate methodology during the development of a new chemical entity in order to develop an appropriate control strategy for impurities to ultimately ensure patient safety. Copyright 2010 John Wiley & Sons, Ltd.

  17. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  18. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  19. A Gas Chromatography-Mass Spectrometry Method for the Detection and Quantitation of Monofluoroacetate in Plants Toxic to Livestock.

    PubMed

    Santos-Barbosa, Joyce M; Lee, Stephen T; Cook, Daniel; Gardner, Dale R; Viana, Luis Henrique; Ré, Nilva

    2017-02-22

    Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography-mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatization of MFA with n-propanol in the presence of sulfuric acid to form propyl fluoroacetate was developed. This method compared favorably to a currently employed high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for the analysis of MFA in plants. The GC-MS method was applied to the analysis of MFA in herbarium specimens of Fridericia elegans, Niedenzuella stannea, N. multiglandulosa, N. acutifolia, and Aenigmatanthera lasiandra. This is the first report of MFA being detected in F. elegans, N. multiglandulosa, N. acutifolia, and A. lasiandra, some of which have been reported to cause sudden death or that are toxic to livestock.

  20. Hybrid instruments for mass spectrometry/mass spectrometry

    SciTech Connect

    Glish, G.L.; McLuckey, S.A.

    1986-01-01

    In order to refine further the technique of mass spectrometry/mass spectrometry efforts are being made to combine the desirable features of sector based tandem instruments with those of triple quadrupole mass spectrometers. This has resulted in the construction of tandem mass spectrometers which incorporate both sector type analyzers and quadrupole mass filters. These so-called hybrid instruments, designed specifically for mass spectrometry/mass spectrometry applications, are appearing in a variety of geometries each with unique features. This review describes the hybrid instruments reported to data and discusses general considerations for evaluating hybrid instruments with regard to application. 100 references.

  1. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends.

    PubMed

    Pröfrock, Daniel; Prange, Andreas

    2012-08-01

    This focal point review provides an overview of recent developments and capabilities of inductively coupled plasma mass spectrometry (ICP-MS) coupled with different separation techniques for applications in the fields of quantitative environmental and bio-analysis. Over the past years numerous technical improvements, which are highlighted in this review, have helped to promote the evolution of ICP-MS to one of the most versatile tools for elemental quantification. In particular, the benefits and possibilities of using state-of-the-art hyphenated ICP-MS approaches for quantitative analysis are demonstrated with a focus on environmental and bio-analytical applications.

  2. Characterization of microbial siderophores by mass spectrometry.

    PubMed

    Pluháček, Tomáš; Lemr, Karel; Ghosh, Dipankar; Milde, David; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.

  3. Quantitative analysis of polar lipids in the nanoliter level of rat serum by liquid chromatography/mass spectrometry/mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Polar lipids in serum, including lysophospholipids (LPLs) and free fatty acids (FFAs), have a broad range of biological activities and require a suitable method for their quantitative analysis. Conventional methods use multistep procedures to simultaneously purify and analyze polar lipids and non-po...

  4. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  5. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  6. A Temporal Examination of the Planktonic and Biofilm Proteome of Whole Cell Pseudomonas aeruginosa PAO1 Using Quantitative Mass Spectrometry*

    PubMed Central

    Park, Amber J.; Murphy, Kathleen; Krieger, Jonathan R.; Brewer, Dyanne; Taylor, Paul; Habash, Marc; Khursigara, Cezar M.

    2014-01-01

    Chronic polymicrobial lung infections are the chief complication in patients with cystic fibrosis. The dominant pathogen in late-stage disease is Pseudomonas aeruginosa, which forms recalcitrant, structured communities known as biofilms. Many aspects of biofilm biology are poorly understood; consequently, effective treatment of these infections is limited, and cystic fibrosis remains fatal. Here we combined in-solution protein digestion of triplicate growth-matched samples with a high-performance mass spectrometry platform to provide the most comprehensive proteomic dataset known to date for whole cell P. aeruginosa PAO1 grown in biofilm cultures. Our analysis included protein–protein interaction networks and PseudoCAP functional information for unique and significantly modulated proteins at three different time points. Secondary analysis of a subgroup of proteins using extracted ion currents validated the spectral counting data of 1884 high-confidence proteins. In this paper we demonstrate a greater representation of proteins related to metabolism, DNA stability, and molecular activity in planktonically grown P. aeruginosa PAO1. In addition, several virulence-related proteins were increased during planktonic growth, including multiple proteins encoded by the pyoverdine locus, uncharacterized proteins with sequence similarity to mammalian cell entry protein, and a member of the hemagglutinin family of adhesins, HecA. Conversely, biofilm samples contained an uncharacterized protein with sequence similarity to an adhesion protein with self-association characteristics (AidA). Increased levels of several phenazine biosynthetic proteins, an uncharacterized protein with sequence similarity to a metallo-beta-lactamase, and lower levels of the drug target gyrA support the putative characteristics of in situ P. aeruginosa infections, including competitive fitness and antibiotic resistance. This quantitative whole cell approach advances the existing P. aeruginosa

  7. Mass-spectrometry-based quantitation of Her2 in gastroesophageal tumor tissue: comparison to IHC and FISH.

    PubMed

    Catenacci, Daniel V T; Liao, Wei-Li; Zhao, Lei; Whitcomb, Emma; Henderson, Les; O'Day, Emily; Xu, Peng; Thyparambil, Sheeno; Krizman, David; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Cecchi, Fabiola; Blackler, Adele; Bang, Yung-Jue; Hart, John; Xiao, Shu-Yuan; Lee, Sang Mee; Burrows, Jon; Hembrough, Todd

    2016-10-01

    Trastuzumab has shown a survival benefit in cases of Her2-positive gastroesophageal cancer (GEC). Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) currently determine eligibility for trastuzumab-based therapy. However, these low-throughput assays often produce discordant or equivocal results. We developed a targeted proteomic assay based on selected reaction monitoring mass spectrometry (SRM-MS) and quantified levels (amol/μg) of Her2-SRM protein in cell lines (n = 27) and GEC tissues (n = 139). We compared Her2-SRM protein expression with IHC/FISH, seeking to determine optimal SRM protein expression cutoffs in order to identify HER2 gene amplification. After demonstrating assay development, precision, and stability, Her2-SRM protein measurement was observed to be highly concordant with the HER2/CEP17 ratio, particularly in a multivariate regression model adjusted for SRM expression of the covariates Met, Egfr, Her3, and HER2 heterogeneity, as well as their interactions (cell lines r (2) = 0.9842; FFPE r (2) = 0.7643). In GEC tissues, Her2-SRM protein was detected at any level in 71.2 % of cases. ROC curves demonstrated that Her2-SRM protein levels have a high specificity (100 %) at an upper-level cutoff of >750 amol/µg and sensitivity of 75 % at a lower-level cutoff of <450 amol/μg for identifying HER2 FISH-amplified tumors. An "equivocal zone" of 450-750 amol/µg of Her2-SRM protein was analogous to IHC2+ but represented fewer cases (9-16 % of cases versus 36-41 %). Compared to IHC, targeted SRM-Her2 proteomics provided more objective and quantitative Her2 expression with excellent HER2/CEP17 FISH correlation and fewer equivocal cases. Along with its multiplex capability for other relevant oncoproteins, these results demonstrate a refined HER2 protein expression assay for clinical application.

  8. Use of proton transfer reaction time-of-flight mass spectrometry for quantitative monitoring of toxic nitramines in the environment

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Zhu, L.; Stenstrøm, Y.; Nielsen, C. J.

    2014-12-01

    Naturally occurring aliphatic amines and industrially emitted aromatic amines and alkanolamines produce toxic nitramines, (R1R2)-N-NO2, when photo-oxidized in the atmosphere in the presence of nitrogen oxides (NOx). Particular concerns arise from amine-based CO2 capture where the amine solution may get nitrated by NOx in the flue gas. An on-line analytical technique for measuring nitramines in industrial emissions and in ambient air is thus in high demand. Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) is a state-of-the-art technique for on-line measurements of volatile organic compounds (VOCs) in air. Herein, we report on the use of high mass resolution proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for on-line analysis of nitramines. We generated a mass spectral library from a series of nitramines and investigated the analytical performance of PTR-ToF-MS in terms of sensitivity, precision, accuracy and detection limit. We will discuss limitations of the innovative technique and propose measurement strategies for future emission and ambient measurements.

  9. [Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry].

    PubMed

    Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi

    2014-06-01

    A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.

  10. Characterization and quantitative amino acids analysis of analgesic peptides in cinobufacini injection by size exclusion chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometry and gas chromatography mass spectrometry.

    PubMed

    Wu, Xu; Si, Nan; Bo, Gao; Hu, Hao; Yang, Jian; Bian, Baolin; Zhao, Hai Yu; Wang, Hongjie

    2015-01-01

    Cinobufacini injection that comes from the water extract of Bufo bufo gargarizans Cantor skin is widely used for cancer treatment in China. Peptide is one of its major types of constituents, however the biological effects and content of this injection are little reported. In present study, the analgesic effect of peptides was determined and evaluated by in-vivo models. To characterize and quantitatively analyze these peptides, a reliable and efficient method combining size exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with amino acid analysis was developed. The peptides presented as a series of analogs with similar molecular weights mostly ranging from 2 to 8 kDa. The amino acid analysis by gas chromatography mass spectrometry (GC-MS) was developed to determine both free and combined amino acids (FAA and CAA) in cinobufacini injection. This method achieved good linearity (R(2) , 0.9909-0.9999) and low limit of detection and quantification. FAA and CAA samples were efficiently analyzed by modified Phenomenex EZ: faast procedure. For the sample analysis, the method showed good repeatability (relative standard deviation, RSD ≤ 10%). For most FAA and CAA the mean recoveries were >80% with RSD <10%. The GC-MS based method is useful for quality assurance of both FAA and CAA in cinobufacini injection.

  11. Real-Time Quantitative Analysis of H2, He, O2, and Ar by Quadrupole Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Harrison, W. W.; Griffin, Timothy P.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.

  12. Real-Time Quantitative Analysis of H2, He, O2, and Ar by Quadrupole Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Harrison, W. W.; Griffin, Timothy P.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.

  13. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry.

    PubMed

    Ueland, Per Magne; Midttun, Oivind; Windelberg, Amrei; Svardal, Asbjørn; Skålevik, Rita; Hustad, Steinar

    2007-01-01

    Derangements of one-carbon metabolism have been related to the development of chronic diseases. Metabolic profiling as part of epidemiological studies in this area should include intermediates involved in the transfer of one-carbon units, cofactors for the relevant enzymes and markers of inflammation, kidney function and smoking. We established five platforms that measured 6-16 analytes each. Platforms A (gas chromatography-mass spectrometry; GC-MS) and B (gas chromatography-tandem mass spectrometry; GC-MS/MS) involved methylchloroformate derivatization of primary amines, thiols and carboxylic acids. Platform C determined basic compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using an ether-linked phenyl reversed-phase column. Platforms D and E (LC-MS/MS) exploited the efficient ionization and high sensitivity obtained for a wide range of analytes, using a mobile phase containing a high concentration of acetic acid. The chromatographic run times ranged from 3 to 8 min. The analyte concentrations ranged from 0.2 nmol/L to 400 micromol/L. Platforms A and B both measured methylmalonic acid, total homocysteine and related amino acids. Platform B also included sarcosine, cystathionine, tryptophan and kynurenine. Platform C was optimized for the measurement of choline and betaine, but also included arginine, asymmetric and symmetric dimethylarginine and creatinine. A diversity of low abundance compounds mainly occurring in the nanomolar range were measured on platform D. These were vitamin B(2) and B(6) species, neopterin, cotinine and tryptophan metabolites. Platform E measured folates and folate catabolites. Approximately 40 analytes related to one-carbon metabolism were determined in less than 1 mL of plasma/serum using five complementary analytical platforms. As a method control, several metabolites were measured on two or more platforms. Logistics and data handling were carried out by specially designed software. This strategy allows profiling

  14. Mass Spectrometry Applications for the Identification and Quantitation of Biomarkers Resulting from Human Exposure to Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Smith, J. Richard; Capacio, Benedict R.

    In recent years, a number of analytical methods using biomedical samples such as blood and urine have been developed for the verification of exposure to chemical warfare agents. The majority of methods utilize gas or liquid chromatography in conjunction with mass spectrometry. In a small number of cases of suspected human exposure to chemical warfare agents, biomedical specimens have been made available for testing. This chapter provides an overview of biomarkers that have been verified in human biomedical samples, details of the exposure incidents, the methods utilized for analysis, and the biomarker concentration levels determined in the blood and/or urine.

  15. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available (12/13)C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for (12)C6 'light' and (13)C6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  16. Application of mass spectrometry in proteomics.

    PubMed

    Guerrera, Ida Chiara; Kleiner, Oliver

    2005-01-01

    Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.

  17. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  18. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  19. Mass spectrometry data from a quantitative analysis of protein expression in gills of immuno-challenged blue mussels (Mytilus edulis).

    PubMed

    Hörnaeus, K; Guillemant, J; Mi, J; Hernroth, B; Bergquist, J; Lind, S Bergström

    2016-09-01

    Here, we provide the dataset associated with our research article on the potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, "Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis)" [1]. Blue mussels were stimulated with lipopolysaccharides and samples were collected at different time points post injection. Protein extracts were prepared from the gills, digested using trypsin and a full in-depth proteome investigation was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Protein identification and quantification was performed using the MaxQuant 1.5.1.2 software, "MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification" [2].

  20. Progress and possible applications of miniaturised separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics.

    PubMed

    Pröfrock, Daniel

    2010-11-01

    The application of miniaturised separation techniques such as capillary LC, nano LC or capillary electrophoresis offers a number of advantages in terms of analytical performance, solvent consumption and the ability to analyse very small sample amounts. These features make them attractive for various bioanalytical tasks, in particular those related to the analysis of proteins and peptides. The skillful combination of such techniques with inductively coupled plasma mass spectrometry (ICP-MS) has recently permitted the design of combined analytical approaches utilising either elemental or molecule-specific detection techniques such as electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry in a highly complementary manner for, as an example, proteomics-orientated research (heteroatom-tagged proteomics). Such hybrid approaches are, in particular, providing promising new options for the fast screening of complex samples for specific metal-containing or--more generally speaking--heteroatom-containing biomolecules, as well as the accurate absolute quantification of biomolecules, which is still an unsolved problem in bioanalysis. Here, progress in as well as the potential and the special requirements of hyphenating miniaturised separation techniques with ICP-MS are reviewed and critically discussed. In addition, selected applications are highlighted to indicate current and possible future trends within this emerging area of research.

  1. Quantitation of protein S-glutathionylation by liquid chromatography-tandem mass spectrometry: correction for contaminating glutathione and glutathione disulfide.

    PubMed

    Bukowski, Michael R; Bucklin, Christopher; Picklo, Matthew J

    2015-01-15

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfide (PSSG) is commonly quantified by reduction of the disulfide and detection of the resultant glutathione species. This methodology is susceptible to contamination by free unreacted cellular glutathione (GSH) species, which are present in 1000-fold greater concentration. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method was developed for quantification of glutathione and glutathione disulfide (GSSG), which was used for the determination of PSSG in biological samples. Analysis of rat liver samples demonstrated that GSH and GSSG coprecipitated with proteins similar to the range for PSSG in the sample. The use of [(13)C2,(5)N]GSH and [(13)C4,(5)N2]GSSG validated these results and demonstrated that the release of GSH from PSSG did not occur during sample preparation and analysis. These data demonstrate that GSH and GSSG contamination must be accounted for when determining PSSG content in cellular/tissue preparations. A protocol for rinsing samples to remove the adventitious glutathione species is demonstrated. The fragmentation patterns for glutathione were determined by high-resolution mass spectrometry, and candidate ions for detection of PSSG on protein and protein fragments were identified.

  2. Quantitative determination of bovine caseinoglycomacropeptide in infant formulas by ultra-high-performance liquid chromatography-electrospray-ionization mass spectrometry.

    PubMed

    Zhang, Jingshun; Ren, Yiping; Ma, Zhenyi; Huang, Baifen; Cai, Zengxuan; Li, Duo

    2011-10-01

    An ultra-high-performance liquid chromatography-electrospray ionization coupled to mass spectrometry method has been developed for determining caseinoglycomacropeptide (CGMP) in infant formulas by selected ion reaction and area monitoring modes. The present study focused on the optimization of sample pretreatment, chromatographic resolution and mass spectrometry parameters. After a simple sample pretreatment, the two genetic variants of caseinoglycomacropeptide, CGMP(A) and CGMP(B), were separated using a BEH300 C(18) column by gradient elution. The established method was extensively validated by determining the linearity (R(2)>0.999), average recovery (95.8-118.4%), inter-day precision (relative standard deviation ≤7.81%) and intra-day precision (relative standard deviation ≤6.99%) based on two scan modes. To further verify the applicability of the method, 21 brands of commercial available infant formulas were analyzed. The results showed that the present method is selective, sensitive and reliable for separating and quantifying two genetic variants (CGMP(A) and CGMP(B)) of caseinoglycomacropeptide in infant formulas with complex matrix.

  3. Quantitative analysis of cytokinins in plants by high performance liquid chromatography: electronspray ionization ion trap mass spectrometry.

    PubMed

    Chen, Weiqi; Gai, Ying; Liu, Shichang; Wang, Renxiao; Jiang, Xiangning

    2010-10-01

    The present paper introduces a highly sensitive and selective method for simultaneous quantification of 12 cytokinins (free form and their conjugates). The method includes a protocol of extraction with methanol/water/formic acid (15/4/1, v/v/v) to the micro-scale samples, pre-purification with solid phase extraction (SPE) cartridges of the extracts, separation with a high performance liquid chromatography (HPLC) and detection by an electrospray ionization ion trap mass spectrometry (ESI-Ion trap-MS) system in a consecutive ion monitoring (CRM) mode at the three stage fragmentation of mass spectrometry (MS(3) ). The lowest detection level of the cytokinins of the method reaches 0.1-2.0 pg with a very wide range of linear regression from 1-512 pg, at the coefficient factors of 0.98-0.99. The feasibility of this method has been proven in the application of the method to the analysis of the trace-amount contents of cytokinins in the micro-scale samples of various types of plant materials, such as aerial parts of rice and poplar leaves etc. 12 endogenous cytokinins had been identified and quantified in the plant tissues, with an acceptable relatively higher recovery rate from 40% to 70%.

  4. Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Keithley, Richard B; Dovichi, Norman J

    2013-08-06

    We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex isobaric tags for relative and absolute quantification (iTRAQ) chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically pumped sheath-flow nanospray interface. This HPLC-cIEF-electrospray-tandem mass spectrometry (ESI-MS/MS) approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX)-RPLC-ESI-MS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated.

  5. Quantitative real-time monitoring of chemical reactions by autosampling flow injection analysis coupled with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Zhu, Zhenqian; Bartmess, John E; McNally, Mary Ellen; Hoffman, Ron M; Cook, Kelsey D; Song, Liguo

    2012-09-04

    Although qualitative and/or semiquantitative real-time monitoring of chemical reactions have been reported with a few mass spectrometric approaches, to our knowledge, no quantitative mass spectrometric approach has been reported so far to have a calibration valid up to molar concentrations as required by process control. This is mostly due to the absence of a practical solution that could well address the sample overloading issue. In this study, a novel autosampling flow injection analysis coupled with an atmospheric pressure chemical ionization mass spectrometry (FIA/APCI-MS) system, consisting of a 1 μL automatic internal sample injector, a postinjection splitter with 1:10 splitting ratio, and a detached APCI source connected to the mass spectrometer using a 4.5 in. long, 0.042 in. inner diameter (ID) stainless-steel capillary, was thus introduced. Using this system together with an optional FIA solvent modifier, e.g., 0.05% (v/v) isopropylamine, a linear quantitative calibration up to molar concentration has been achieved with 3.4-7.2% relative standard deviations (RSDs) for 4 replicates. As a result, quantitative real-time monitoring of a model reaction was successfully performed at the 1.63 M level. It is expected that this novel autosampling FIA/APCI-MS system can be used in quantitative real-time monitoring of a wide range of reactions under diverse reaction conditions.

  6. Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices.

    PubMed

    Zabet-Moghaddam, Masoud; Heinzle, Elmar; Tholey, Andreas

    2004-01-01

    A major problem hampering the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for quantitative measurements is the inhomogeneous distribution of analytes and matrices in solid sample preparations. The use of ionic liquids as matrices for the qualitative and quantitative analysis of low molecular weight compounds like amino acids, sugars and vitamins was investigated. The ionic liquid matrices are composed of equimolar combinations of classical MALDI matrices (sinapinic acid, alpha-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid) with organic bases. These matrix systems allow a homogenous sample preparation with a thin ionic liquid layer having negligible vapour pressure. This leads to a facilitated qualitative and quantitative measurement of the analytes compared with classical solid matrices. Copyright 2003 John Wiley & Sons, Ltd.

  7. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry.

    PubMed

    Kumazawa, Takeshi; Hasegawa, Chika; Uchigasaki, Seisaku; Lee, Xiao-Pen; Suzuki, Osamu; Sato, Keizo

    2011-05-06

    Solid-phase extraction (SPE) using micropipette tips is a useful technique to prepare samples prior to mass spectrometry. However, most commercial SPE tips have loading capacities that are insufficient for quantitative determination. In this paper, we describe a rapid method for quantitative microanalysis of five phenothiazine derivatives, chlorpromazine, levomepromazine, promazine, promethazine and trimeprazine, using a recently introduced C(18) monolithic silica SPE tip, the MonoTip C(18), for extraction from human plasma. The drugs could be extracted within 5 min from 0.1-mL plasma samples, eluted with methanol, and the eluate injected directly into a gas chromatograph prior to mass spectrometry analysis. Only 0.7 mL of solvent was required for each step of the extraction process. The recoveries of the five phenothiazines spiked into plasma were 91-95% and the limits of quantification for each drug were between 0.25 and 2.0 ng/0.1 mL. The maximum intra- and inter-day coefficient of variation was 11%. The validated method was successfully used to quantify the plasma concentration of levemepromazine in a human subject after oral administration of the drug. This new method is expected to have wide applications as a pretreatment for the rapid, quantitative determination of drug concentrations in plasma samples.

  8. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  9. Identification and quantitation of amphetamine, methamphetamine, MDMA, pseudoephedrine, and ephedrine in blood, plasma, and serum using gas chromatography-mass spectrometry (GC/MS).

    PubMed

    Gunn, Josh; Kriger, Scott; Terrell, Andrea R

    2010-01-01

    Amphetamine, methamphetamine, MDMA, pseudoephedrine, and ephedrine are measured in blood, serum, and plasma using gas chromatography coupled to mass spectrometry (GC/MS). Following a simple liquid-liquid extraction, analytes are derivatized with heptafluorobutyric anhydride (HFBA) and 1 microL injected onto a HP-5MS 15-meter capillary column. Quantitation of each analyte is accomplished using a multi-point calibration curve and deuterated internal standards. The method provides a simple, robust, and reliable means to identify and measure these analytes.

  10. Quantitative time-of-flight secondary ion mass spectrometry for the characterization of multicomponent adsorbed protein films

    NASA Astrophysics Data System (ADS)

    Wagner, M. S.; Shen, M.; Horbett, T. A.; Castner, David G.

    2003-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is ideal for the characterization of adsorbed proteins due to its chemical specificity and surface sensitivity. We have employed ToF-SIMS and multivariate analysis to determine the surface composition of adsorbed protein films from binary mixtures, blood serum, and blood plasma. Good correlation between ToF-SIMS data and independent radiolabeling studies was achieved for binary mixtures, though these results depended on the substrate. Qualitative insight into the composition of the serum and plasma protein films was obtained via comparison to standard single protein film spectra. ToF-SIMS and multivariate analysis were able to measure the surface composition of multicomponent adsorbed protein films.

  11. Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: screening and quantitative studies.

    PubMed

    Gómez-Ramos, M M; Ferrer, C; Malato, O; Agüera, A; Fernández-Alba, A R

    2013-04-26

    This work reviews the current state-of-the-art of liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) techniques applied to the analysis of pesticides in fruit-based and vegetable-based matrices. Nowadays, simultaneous trace analysis of hundreds of pesticides from different classes is required, preferably in just one run. The most commonly used QqQ-MS technology presents certain limitations in its application in a cost and effective way when analyzing a large number of pesticides. Thus, this review includes HRMS technology as a reliable complementary alternative allowing the analysis of a wide range of pesticides in food. Its capabilities and limitations in identifying, confirming and quantifying pesticides are discussed. HRMS instruments can adequately address such issues; however, the main drawbacks are as a result of insufficient prior optimization of the operational parameters during non-target analysis in full-scan mode and due to software shortcomings.

  12. Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F-isoprostanes.

    PubMed

    Taylor, Alan W; Bruno, Richard S; Frei, Balz; Traber, Maret G

    2006-03-01

    The F(2)-isoprostanes are products of free-radical-induced oxidation of arachidonic acid (AA) that are stereoisomers of prostaglandin F(2alpha) (PGF(2alpha)). We describe a method for quantitation of several 15-series PGF isomers (15-PGFs) and AA by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS). Plasma samples were subjected to alkaline hydrolysis and acidified, and total (free + esterified) 15-PGFs and AA were extracted with organic solvents. The analytes were separated by gradient reverse-phase HPLC and detected by multiple reaction monitoring on a triple-quadrupole mass spectrometer, using deuterated internal standards for quantitation. The assay had a linear range of 1-40 pg of 8-iso-PGF(2alpha) on column and can quantify as little as 40 pg/mL (0.11 nM) in plasma. Outcomes significantly correlated (p < 0.0001) with data obtained by gas chromatography-mass spectrometry GC-MS or enzyme-linked immunosorbent assay. All plasma 15-PGF isomers increased over time with in vitro cigarette smoke exposure and correlated (p < 0.0001) with each other. The same strong inter-15-PGF correlations were observed in plasma from healthy young adult subjects. The coefficients of variation of HPLC-MS-MS measurements (24-32%) were smaller than those obtained by GC-MS (53%). Thus, HPLC-MS-MS potentially offers greater precision and allows quantitation of more compounds with simpler sample preparation than existing methods. Ours is the first validated quantitative assay using HPLC-tandem MS applied to plasma total 15-PGFs.

  13. Quantitation of Ethyl Glucuronide and Ethyl Sulfate in Urine Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Slawson, Matthew H; Johnson-Davis, Kamisha L

    2016-01-01

    Ethyl glucuronide and ethyl sulfate are minor conjugated metabolites of ethanol that can be detected in urine for several days after last ingestion of ethanol. The monitoring of ethanol use has both clinical and forensic applications and a longer detection window afforded by monitoring these metabolites is obvious. LC-MS/MS is used to analyze diluted urine with deuterated analogs of each analyte as internal standards to ensure accurate quantitation and control for any potential matrix effects. High aqueous HPLC is used to chromatograph the metabolites. Negative ion electrospray is used to introduce the metabolites into the mass spectrometer. Selected reaction monitoring of two product ions for each analyte allows for the calculation of ion ratios which ensures correct identification of each metabolite, while a matrix-matched calibration curve is used for quantitation.

  14. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  15. Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry.

    PubMed

    Driskell, W Jack; Shih, Ming; Needham, Larry L; Barr, Dana B

    2002-01-01

    An isotope dilution gas chromatography-tandem mass spectrometric (GC-MS-MS) method was developed for quantitating the urinary metabolites of the organophosphorus nerve agents sarin, soman, tabun (GA), VX, and GF. Urine samples were concentrated by codistillation with acetonitrile, derivatized by methylation with diazomethane, and analyzed by GC-MS-MS. The limits of detection were less than 4 microg/L for all the analytes except for the GA metabolite, which had a limit of detection of less than 20 microg/L.

  16. Quantitative determination of oxytocin receptor antagonist atosiban in rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Kannan, Vivekanandan; Gadamsetty, Deepak; Rose, Madhankumar; Maria, Stella; Mustafa, Imran; Khedkar, Anand; Dave, Nitesh; Arumugam, Muruganandam; Iyer, Harish

    2010-05-01

    A kinetic study of atosiban was conducted following repeated intravenous administration in Wistar rats. Sample analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) following full validation of an in-house method. Eptifibatide, a cyclic peptide, was used as an internal standard (IS). The analyte and internal standard were extracted using solid phase extraction (SPE) method. Chromatographic separation was carried out using an ACE C18 5 microm 50 mm x 4.6 mm column with gradient elution. Mass spectrometric detection was performed using TSQ Quantum ultra AM. The lower limit of quantification was 0.01 microg/ml when 100 microl rat plasma was used. Plasma concentrations of atosiban were measured at 0 (pre-dose), 2, 15, 30, 45, 60, 120 min at the dosage levels of 0.125 mg/kg (low dose), 0.250 mg/kg (mid dose), and 0.500 mg/kg (high dose), respectively. Atosiban plasma concentration measured at Day 1 showed mean peak atosiban concentration (C(max)) 0.40, 0.57, 1.95 microg/ml for low, mid and high dose treated animals and mean peak concentration on Day 28 was 0.41, 0.88, 1.31microg/ml on Day 28 for low, mid and high dose treated animals.

  17. A Simple and Sensitive Method for Quantitative Measurement of Methylmalonic Acid by Turbulent Flow Chromatography and Tandem Mass Spectrometry

    PubMed Central

    Tecleab, AG; Schofield, RC; Ramanathan, LV; Carlow, Dean C

    2016-01-01

    A simple and sensitive method for the detection of methylmalonic acid in serum without derivatization has been developed. This method implements protein precipitation using methanol followed by additional sample clean up by turbulent flow liquid chromatography (TFLC). The sample was directly injected into the turbulent flow liquid chromatography tandem mass spectrometry system (TFLC-MS/MS) for online extraction followed by HPLC separation. The eluent was transferred to the mass spectrometer and ionized by heated electrospray negative ionization (HESI) and the analyte was quantified using a six-point calibration curve. The validated analytical measurement range (AMR) is 30–1,000 nMol/L. Dilutions of 10 and 200-fold were validated giving a clinical reportable range (CRR) of 30–200,000 nMol/L. The between-day and within-day imprecision values at concentrations spanning the AMR were less than 15%. This method was compared to an established LC-MS/MS method at a CLIA certified national reference laboratory and shows an excellent correlation with our TFLC-MS/MS method. PMID:27833786

  18. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics

    PubMed Central

    Rogers, Richard S; Nightlinger, Nancy S; Livingston, Brittney; Campbell, Phil; Bailey, Robert; Balland, Alain

    2015-01-01

    Regulatory agencies have recently recommended a Quality by Design (QbD) approach for the manufacturing of therapeutic molecules. A QbD strategy requires deep understanding at the molecular level of the attributes that are crucial for safety and efficacy and for insuring that the desired quality of the purified protein drug product is met at the end of the manufacturing process. A mass spectrometry (MS)-based approach to simultaneously monitor the extensive array of product quality attributes (PQAs) present on therapeutic molecules has been developed. This multi-attribute method (MAM) uses a combination of high mass accuracy / high resolution MS data generated by Orbitrap technology and automated identification and relative quantification of PQAs with dedicated software (Pinpoint). The MAM has the potential to replace several conventional electrophoretic and chromatographic methods currently used in Quality Control to release therapeutic molecules. The MAM represents an optimized analytical solution to focus on the attributes of the therapeutic molecule essential for function and implement QbD principles across process development, manufacturing and drug disposition. PMID:26186204

  19. Evaluation of flow-injection tandem mass spectrometry for rapid and high-throughput quantitative determination of B vitamins in nutritional supplements.

    PubMed

    Bhandari, Deepak; Van Berkel, Gary J

    2012-08-29

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B vitamins, viz., B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed. Automated flow injection introduced 1 μL of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and SRM 3280. The quantity determined for each B vitamin in SRM 3280 was within the statistical range provided for the respective certified values. This approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B vitamins, as evidenced by an agreement with the label values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.

  20. Evaluation of Flow-Injection Tandem Mass Spectrometry for Rapid and High-Throughput Quantitative Determination of B-Vitamins in Nutritional Supplements

    SciTech Connect

    Bhandari, Deepak; Van Berkel, Gary J

    2012-01-01

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45 min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.

  1. Qualitative and quantitative determination of YiXinShu Tablet using ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry.

    PubMed

    Sun, Zhi; Li, Zhuolun; Zuo, Lihua; Wang, Zhenhui; Zhou, Lin; Shi, Yingying; Kang, Jian; Zhu, Zhenfeng; Zhang, Xiaojian

    2017-08-24

    To clarify and quantify the chemical profile of YiXinShu Tablet rapidly, a feasible and accurate strategy was developed by applying ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry. A total of 105 components were identified, including 25 phenanthraquinones, 11 lactones, 19 lignans, 24 acids and 26 other compounds. Among them, 26 major compounds were unambiguously detected by comparing with reference standards. And 19 of these compounds in three batches of YiXinShu Tablet were selected for quantitative determination. (Z)-Ligustilide, salvianic acid A, salvianolic acid A, salvianolic acid B and rosmarinic acid were abundant in these three batches with contents over 1.000 mg/g. The established analysis methods were examined to be accurate and feasible. The results show that the ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry method has a powerful qualitative ability and promising quantitative application. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Quantitation of lysergic acid diethylamide in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.

    PubMed

    Cui, Meng; McCooeye, Margaret A; Fraser, Catharine; Mester, Zoltán

    2004-12-01

    A quantitative method was developed for analysis of lysergic acid diethylamide (LSD) in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry (AP MALDI-ITMS). Following solid-phase extraction of LSD from urine samples, extracts were analyzed by AP MALDI-ITMS. The identity of LSD was confirmed by fragmentation of the [M + H](+) ion using tandem mass spectrometry. The quantification of LSD was achieved using stable-isotope-labeled LSD (LSD-d(3)) as the internal standard. The [M + H](+) ion fragmented to produce a dominant fragment ion, which was used for a selected reaction monitoring (SRM) method for quantitative analysis of LSD. SRM was compared with selected ion monitoring and produced a wider linear range and lower limit of quantification. For SRM analysis of samples of LSD spiked in urine, the calibration curve was linear in the range of 1-100 ng/mL with a coefficient of determination, r(2), of 0.9917. This assay was used to determine LSD in urine samples and the AP MALDI-MS results were comparable to the HPLC/ ESI-MS results.

  3. Integrating qualitative and quantitative characterization of traditional Chinese medicine injection by high-performance liquid chromatography with diode array detection and tandem mass spectrometry.

    PubMed

    Xie, Yuan-yuan; Xiao, Xue; Luo, Juan-min; Fu, Chan; Wang, Qiao-wei; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2014-06-01

    The present study aims to describe and exemplify an integrated strategy of the combination of qualitative and quantitative characterization of a multicomponent mixture for the quality control of traditional Chinese medicine injections with the example of Danhong injection (DHI). The standardized chemical profile of DHI has been established based on liquid chromatography with diode array detection. High-performance liquid chromatography coupled with time-of-flight mass spectrometry and high-performance liquid chromatography with electrospray multistage tandem ion-trap mass spectrometry have been developed to identify the major constituents in DHI. The structures of 26 compounds including nucleotides, phenolic acids, and flavonoid glycosides were identified or tentatively characterized. Meanwhile, the simultaneous determination of seven marker constituents, including uridine, adenosine, danshensu, protocatechuic aldehyde, p-coumaric acid, rosmarinic acid, and salvianolic acid B, in DHI was performed by multiwavelength detection based on high-performance liquid chromatography with diode array detection. The integrated qualitative and quantitative characterization strategy provided an effective and reliable pattern for the comprehensive and systematic characterization of the complex traditional Chinese medicine system.

  4. Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Seifar, Reza Maleki; Ras, Cor; Deshmukh, Amit T; Bekers, Katelijne M; Suarez-Mendez, Camilo A; da Cruz, Ana L B; van Gulik, Walter M; Heijnen, Joseph J

    2013-10-11

    A fast, sensitive and specific analytical method, based on ion pair reversed phase ultrahigh performance liquid chromatography tandem mass spectrometry, IP-RP-UHPLC-MS/MS, was developed for quantitative determination of intracellular coenzyme A (CoA), acetyl CoA, succinyl CoA, phenylacetyl CoA, flavin mononucleotide, (FMN), flavin adenine dinucleotide, (FAD), NAD, NADH, NADP, NADPH. Dibutylammonium acetate (DBAA) was used as volatile ion pair reagent in the mobile phase. Addition of DBAA to the sample solutions resulted in an enhanced sensitivity for the phosphorylated coenzymes. Tris (2-carboxyethyl) phosphine hydrochloride (TCEP·HCl), was added to keep CoA in the reduced form. Isotope dilution mass spectrometry (IDMS) was applied for quantitative measurements for which culture derived global U-(13)C-labeled cell extract was used as internal standard. The analytical method was validated by determining the limit of detection, the limit of quantification, repeatability and intermediate precision. The method was successfully applied for quantification of coenzymes in the cell extracts of Saccharomyces cerevisiae.

  5. International Mass Spectrometry Society (IMSS).

    PubMed

    Cooks, R G; Gelpi, E; Nibbering, N M

    2001-02-01

    This paper gives a brief description of the recently formalized International Mass Spectrometry Society (IMSS). It is presented here in order to increase awareness of the opportunities for collaboration in mass spectrometry in an international context. It also describes the recent 15th International Mass Spectrometry Conference, held August/September 2000, in Barcelona. Each of the authors is associated with the IMSS. The 15th Conference, which covers all of mass spectrometry on a triennial basis, was chaired by Professor Emilio Gelpi of the Instituto de Investigaciones Biomedicas, Barcelona. The outgoing and founding President of the IMSS is Professor Graham Cooks, Purdue University, and the incoming President is Professor Nico Nibbering, University of Amsterdam. Similar material has been provided to the Editors of other journals that cover mass spectrometry.

  6. Qualitative and quantitative analysis of anthraquinones in rhubarbs by high performance liquid chromatography with diode array detector and mass spectrometry.

    PubMed

    Wei, Shao-yin; Yao, Wen-xin; Ji, Wen-yuan; Wei, Jia-qi; Peng, Shi-qi

    2013-12-01

    Rhubarb is well known in traditional Chinese medicines (TCMs) mainly due to its effective purgative activity. Anthraquinones, including anthraquinone derivatives and their glycosides, are thought to be the major active components in rhubarb. To improve the quality control method of rhubarb, we studied on the extraction method, and did qualitative and quantitative analysis of widely used rhubarbs, Rheum tanguticum Maxim. ex Balf. and Rheum palmatum L., by HPLC-photodiode array detection (HPLC-DAD) and HPLC-mass spectrum (HPLC-MS) on a Waters SymmetryShield RP18 column (250 mm × 4.6 mm i.d., 5 μm). Amount of five anthraquinones was viewed as the evaluating standard. A standardized characteristic fingerprint of rhubarb was provided. From the quantitative analysis, the rationality was demonstrated for ancestors to use these two species of rhubarb equally. Under modern extraction methods, the amount of five anthraquinones in Rheum tanguticum Maxim. ex Balf. is higher than that in Rheum palmatum L. Among various extraction methods, ultrasonication with 70% methanol for 30 min is a promising one. For HPLC analysis, mobile phase consisted of methanol and 0.1% phosphoric acid in water with a gradient program, the detection wavelength at 280nm for fingerprinting analysis and 254 nm for quantitative analysis are good choices.

  7. Qualitative and quantitative analysis of branches in dextran using high-performance anion exchange chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-12-04

    Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method.

  8. Mass Spectrometry Applications for Toxicology.

    PubMed

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS(n)) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  9. Mass Spectrometry Applications for Toxicology

    PubMed Central

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  10. Quantitative analysis of THC, 11-OH-THC, and THCCOOH in human hair by negative ion chemical ionization mass spectrometry.

    PubMed

    Wilkins, D; Haughey, H; Cone, E; Huestis, M; Foltz, R; Rollins, D

    1995-10-01

    A sensitive and specific method was developed for the quantitative analysis of delta9-tetrahydrocannabinol (THC), 11 -hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH) in human hair. Deuterated internal standards were added to hair samples, and samples were digested overnight in 1 N NaOH at 37 degrees C. Digest solutions were extracted with a liquid-liquid extraction procedure, which was previously developed in our laboratory for the analysis of plasma and whole blood. Derivatized extracts were analyzed on a Finnigan 4500" mass spectrometer in negative ion chemical ionization mode using methane as the reagent gas, hydrogen as the carrier gas, and a Restek Rtx 200-15M-0.25-microm capillary column. The assay was linear up to 50 ng/mg hair (r, 0.99) for all three compounds and was capable of detecting 10 pg THC and THCCOOH and 100 pg 11-OH-THC on column. The intra-assay precision ranged from 2.1 to 11.2% for the three analytes; the interassay precision ranged from 4.4 to 13.0%. The method was used to detect and quantitate the presence of THC, 11-OH-THC, and THCCOOH in human hair obtained from eight regular users of cannabis. THC, but not 11-OH-THC or THCCOOH, was detectable in the hair shaft above the assay limit of quantitation. Four laboratory wash procedures were also evaluated for their effect on the measured concentration of THC in hair. in seven of eight subjects, a methylene chloride wash procedure substantially reduced the measured THC concentration by up to 50%. The gas chromatographic-mass spectrometric assay is currently being used to support pharmacokinetic studies of drug disposition into the hair of humans and animals.

  11. Quantitative analysis of polysorbates 20 and 40 by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Qi; Meng, Yang; Yang, Huaxin; Xiao, Xinyue; Li, Xiaodong

    2013-12-30

    Polysorbates are nonionic surfactants that consist primarily of fatty acid esters of polyethoxy sorbitan. This study proved that polysorbates can be quantitatively analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Using MALDI-TOF MS, relative intensity and concentration ratios were correlated, and extensive research was conducted to understand the influencing factors. Polysorbate 20 and 40 were mixed in the desired ratios and irradiated with a N2 laser. MALDI-TOF mass spectra were recorded in positive ion mode to test the linearity. All commercial polysorbates were analyzed to determine the relative concentration of the components using the same method. The relative peak intensity ratio as a function of the relative concentration ratio was analyzed, and a reasonably good linearity (R(2) = 0.987 for polysorbate 20) was obtained. This study illustrates the process of converting the analyte signal response into the concentration, supporting the notion that quantitative MALDI-TOF MS can be used to analyze polymers. MALDI-TOF MS analysis of commercial polysorbate formulations revealed a complex mixture of oligomers that was related to the fatty acid composition. Polysorbates 20 and 40 were characterized, and the simultaneous quantitative analysis of polysorbate 20 was reported. This method requires no tedious sample pretreatment. Therefore, it is a promising method for the rapid simultaneous quantitation of polysorbates 20 and 40. Copyright © 2013 John Wiley & Sons, Ltd.

  12. A novel high-throughput method for supported liquid extraction of retinol and alpha-tocopherol from human serum and simultaneous quantitation by liquid chromatography tandem mass spectrometry.

    PubMed

    Hinchliffe, Edward; Rudge, James; Reed, Paul

    2016-07-01

    Measurement of vitamin A (retinol) and E (alpha-tocopherol) in UK clinical laboratories is currently performed exclusively by high-performance liquid chromatography with ultraviolet detection. We investigated whether retinol and alpha-tocopherol could be measured simultaneously by liquid chromatography tandem mass spectrometry. Serum samples (100 μL) were extracted using Isolute + Supported Liquid Extraction plates. Chromatography was performed on a Phenomenex Kinetex Biphenyl 2.6 μm, 50 × 2.1 mm column, and liquid chromatography tandem mass spectrometry on a Waters Acquity TQD. Injection-to-injection time was 4.3 min. The assay was validated according to published guidelines. Patient samples were used to compare liquid chromatography tandem mass spectrometry and high-performance liquid chromatography with ultraviolet detection methods. For retinol and alpha-tocopherol, respectively, the assay was linear up to 6.0 and 80.0 μmol/L, and lower limit of quantification was 0.07 and 0.26 μmol/L. Intra and interassay imprecision were within desirable analytical specifications. Analysis of quality control material aligned to NIST SRM 968e, and relative spiked recovery from human serum, both yielded results within 15% of target values. Method comparison with high-performance liquid chromatography with ultraviolet detection methodology demonstrated a negative bias for retinol and alpha-tocopherol by the liquid chromatography tandem mass spectrometry method. Analysis of United Kingdom National External Quality Assurance Scheme samples yielded mean bias from the target value of +3.0% for retinol and -11.2% for alpha-tocopherol. We have developed a novel, high-throughput method for extraction of retinol and alpha-tocopherol from human serum followed by simultaneous quantitation by liquid chromatography tandem mass spectrometry. The method offers a rapid, sensitive, specific and cost-effective alternative to high-performance liquid chromatography with

  13. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  14. Quantitative fingerprinting by headspace--two-dimensional comprehensive gas chromatography-mass spectrometry of solid matrices: some challenging aspects of the exhaustive assessment of food volatiles.

    PubMed

    Nicolotti, Luca; Cordero, Chiara; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Rubiolo, Patrizia; Bicchi, Carlo

    2013-10-10

    The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a "comprehensive" analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC×GC-MS) and data processing using advanced fingerprinting approaches. Experiments were carried out on roasted hazelnuts and on Gianduja pastes (sugar, vegetable oil, hazelnuts, cocoa, nonfat dried milk, vanilla flavorings) and demonstrated that the information potential of each analysis can better be exploited if suitable quantitation methods are applied. Quantitation approaches through Multiple Headspace Extraction and Standard Addition were compared in terms of performance parameters (linearity, precision, accuracy, Limit of Detection and Limit of Quantitation) under headspace linearity conditions. The results on 19 key analytes, potent odorants, and technological markers, and more than 300 fingerprint components, were used for further processing to obtain information concerning the effect of the matrix on volatile release, and to produce an informative chemical blueprint for use in sensomics and flavoromics. The importance of quantitation approaches in headspace analysis of solid matrices of complex composition, and the advantages of MHE, are also critically discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Multi-allergen Quantitation and the Impact of Thermal Treatment in Industry-Processed Baked Goods by ELISA and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Parker, Christine H; Khuda, Sefat E; Pereira, Marion; Ross, Mark M; Fu, Tong-Jen; Fan, Xuebin; Wu, Yan; Williams, Kristina M; DeVries, Jonathan; Pulvermacher, Brian; Bedford, Binaifer; Zhang, Xi; Jackson, Lauren S

    2015-12-16

    Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products.

  16. Quantitation of amobarbital, butalbital, pentobarbital, phenobarbital, and secobarbital in urine, serum, and plasma using gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Johnson, Leonard L; Garg, Uttam

    2010-01-01

    Barbiturates are central nervous system depressants with sedative and hypnotic properties. Some barbiturates, with longer half-lives, are used as anticonvulsants. Their mechanism of action includes activation of gamma-aminobutyric acid (GABA) mediated neuronal transmission inhibition. Clinically used barbiturates include amobarbital, butalbital, pentobarbital, phenobarbital, secobarbital, and thiopental. Besides their therapeutic use, barbiturates are commonly abused. Their analysis is useful for both clinical and forensic proposes. Gas chromatography mass spectrometry is a commonly used method for the analysis of barbiturates. In the method described here, barbiturates from serum, plasma, or urine are extracted using an acidic phosphate buffer and methylene chloride. Barbital is used as an internal standard. The organic extract is dried and reconstituted with mixture of trimethylanilinium hydroxide (TMAH) and ethylacetate. The extract is injected into a gas chromatogram mass spectrometer where it undergoes "flash methylation" in the hot injection port. Selective ion monitoring and relative retention times are used for the identification and quantitation of barbiturates.

  17. Extractionless and sensitive method for high-throughput quantitation of cetirizine in human plasma samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    de Jager, A D; Hundt, H K L; Swart, K J; Hundt, A F; Els, J

    2002-06-25

    Following a single 10-mg oral dose of cetirizine dihydrochloride to 24 healthy volunteers, the analyte was quantified in human plasma. Protein precipitation using acetonitrile (ACN) was followed by reversed-phase liquid chromatography and tandem mass spectrometry. The MS/MS method was optimised using a PE Sciex API 2000 triple quadrupole mass spectrometer in selected reaction monitoring (SRM) mode, using electrospray with positive ionisation. Oxybutynin was used as the internal standard. The assay method represents a robust, high-throughput, highly specific and sensitive quantitative assay procedure, with 0.5 ng/ml being the lowest plasma concentration that could be reliably quantified. The procedure involves minimal sample preparation, and is well suited to clinical studies of the drug involving large numbers of generated samples. Pre-dose as well as post-dose samples up to and including 48 h were quantified, and the data generated were used to determine the pharmacokinetic profile of the drug.

  18. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  19. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics.

    PubMed

    Smits, Arne H; Jansen, Pascal W T C; Poser, Ina; Hyman, Anthony A; Vermeulen, Michiel

    2013-01-07

    Many cellular proteins assemble into macromolecular protein complexes. The identification of protein-protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein-protein interactions with an accurate determination of the stoichiometry of the identified protein-protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry.

  20. Reductive amination-assisted quantitation of tamoxifen and its metabolites by liquid phase chromatography tandem mass spectrometry.

    PubMed

    Liang, Shih-Shin; Wang, Tsu-Nai; Chiu, Chien-Chih; Kuo, Po-Lin; Huang, Mei-Fang; Liu, Meng-Chieh; Tsai, Eing-Mei

    2016-02-19

    Tamoxifen, a hormonal therapy drug against estrogen receptor-positive breast cancer, can be metabolized by cytochrome P450 enzymes such as CYP3A4 and CYP3A5, and converted to N-desmethyltamoxifen, which is subsequently, metabolized by CYP2D6 and inverted to form 4-hydroxy-N-desmethyltamoxifen (endoxifen). Conventional mass spectrometry (MS) analyses of tamoxifen and its metabolites require isotopic internal standards (ISs). In this study, endoxifen and N-desmethyltamoxifen amine groups were modified by reductive amination with formaldehyde-D2 to produce new metabolite molecules. Both endoxifen and N-desmethyltamoxifen generated their corresponding D2-methyl modified analogs. This method is expected to simplify MS detection and overcome the difficulty in selecting adequate ISs when tamoxifen metabolites are analyzed by absolute quantification. It identified tamoxifen, D2-methyl modified endoxifen, and D2-methyl modified N-desmethyltamoxifen with a linearity ranging from 2 to 5000 ng/mL with correlation coefficient (R(2)) values of 0.9868, 0.9849, and 0.9880, respectively. Furthermore, this reductive amination-based method may enhance the signal intensities of D2-methyl modified N-desmethyltamoxifen and endoxifen, thus facilitating the MS detection.

  1. Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids.

    PubMed

    Nakano, Yosuke; Konya, Yutaka; Taniguchi, Moyu; Fukusaki, Eiichiro

    2017-01-01

    d-Amino acids have recently attracted much attention in various research fields including medical, clinical and food industry due to their important biological functions that differ from l-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. Thus, the aim of this research is to develop a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By optimizing MS/MS parameters, we established a quantification method that allowed the simultaneous analysis of 18 d-amino acids with high sensitivity and reproducibility. Additionally, we applied the method to food sample (vinegar) for the validation, and successfully quantified trace levels of d-amino acids in samples. These results demonstrated the applicability and feasibility of the LC-MS/MS method as a novel, effective tool for d-amino acid measurement in various biological samples. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum.

    PubMed

    Smits, Nathalie G E; Blokland, Marco H; Wubs, Klaas L; Nessen, Merel A; van Ginkel, Leen A; Nielen, Michel W F

    2015-08-01

    The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST.

  3. Quantitative ester analysis in cachaca and distilled spirits by gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Nascimento, Eduardo S P; Cardoso, Daniel R; Franco, Douglas W

    2008-07-23

    An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) microg L(-1), whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.

  4. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics

    PubMed Central

    Smits, Arne H.; Jansen, Pascal W. T. C.; Poser, Ina; Hyman, Anthony A.; Vermeulen, Michiel

    2013-01-01

    Many cellular proteins assemble into macromolecular protein complexes. The identification of protein–protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Here, we describe a robust and easy to implement label-free relative quantification approach that combines the detection of high-confidence protein–protein interactions with an accurate determination of the stoichiometry of the identified protein–protein interactions in a single experiment. We applied this method to two chromatin-associated protein complexes for which the stoichiometry thus far remained elusive: the MBD3/NuRD and PRC2 complex. For each of these complexes, we accurately determined the stoichiometry of the core subunits while at the same time identifying novel interactors and their stoichiometry. PMID:23066101

  5. Quantitative analysis of menthol in human urine using solid phase microextraction and stable isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Huang, Wenlin; Blount, Benjamin C; Watson, Clifford H; Watson, Christina; Chambers, David M

    2017-02-15

    To accurately measure menthol levels in human urine, we developed a method using gas chromatography/electron ionization mass spectrometry with menthol-d4 stable isotope internal standardization. We used solid phase microextraction (SPME) headspace sampling for collection, preconcentration and automation. Conjugated forms of menthol were released using β-glucuronidase/sulfatase to allow for measuring total menthol. Additionally, we processed the specimens without using β-glucuronidase/sulfatase to quantify the levels of unconjugated (free) menthol in urine. This method was developed to verify mentholated cigarette smoking status to study the influence of menthol on smoking behaviour and exposure. This objective was accomplished with this method, which has no carryover or memory from the SPME fiber assembly, a method detection limit of 0.0017μg/mL, a broad linear range of 0.002-0.5μg/mL for free menthol and 0.01-10μg/mL for total menthol, a 7.6% precision and 88.5% accuracy, and an analysis runtime of 17min. We applied this method in analysis of urine specimens collected from cigarette smokers who smoke either mentholated or non-mentholated cigarettes. Among these smokers, the average total urinary menthol levels was three-fold higher (p<0.001) among mentholated cigarette smokers compared with non-mentholated cigarette smokers.

  6. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Hamelin, Elizabeth I; Schulze, Nicholas D; Shaner, Rebecca L; Coleman, Rebecca M; Lawrence, Richard J; Crow, Brian S; Jakubowski, E M; Johnson, Rudolph C

    2014-08-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman), and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid-phase extraction coupled with high-performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3 to 0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101-105%) and high precision (5-8%) for the detection of these five nerve agent hydrolysis products in serum.

  7. A novel, quantitative assay for homocarnosine in cerebrospinal fluid using stable-isotope dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Jansen, Erwin E W; Gibson, K Michael; Shigematsu, Yosuke; Jakobs, Cornelis; Verhoeven, Nanda M

    2006-01-18

    We describe a rapid and sensitive method for the quantification of homocarnosine in physiological fluids, with particular emphasis on cerebrospinal fluid (CSF). Homocarnosine was quantified as the butyl derivative, with (2)H(2)-l-homocarnosine as internal standard. Following deproteinization of CSF samples, supernatants were evaporated to dryness and derivatized with 10% 6M HCl in butanol. Samples were chromatographed on a C(18) column and detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operating in the multiple reaction monitoring mode. The intra- and inter-assay variations were 4.6 and 10.9%, respectively. Mean recovery of homocarnosine at two concentrations was 105%. The limit of detection in CSF approximated 20 nmol/L. CSF homocarnosine is age dependent and ranges from <0.02 to 10 micromol/L. Our method is applicable to the analysis of CSF derived from patients with heritable defects in the GABA pathway, patients with homocarnosinosis or serum carnosinase deficiency, and should be applicable to other model systems in order to further explore the biological role and significance of homocarnosine in mammalian systems.

  8. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain

    PubMed Central

    Zhang, Yangyang; Wang, Jun; Liu, Jian’an; Han, Juanjuan; Xiong, Shaoxiang; Yong, Weidong; Zhao, Zhenwen

    2016-01-01

    Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer’s disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer’s disease (AD). PMID:27142336

  9. Quantitative measurement of dihydrouridine in RNA using isotope dilution liquid chromatography-mass spectrometry (LC/MS).

    PubMed Central

    Dalluge, J J; Hashizume, T; McCloskey, J A

    1996-01-01

    A method has been developed for the microscale determination of 5,6-dihydrouridine, the most common post-transcriptional modification in bacterial and eukaryotic tRNA. The method is based on stable isotope dilution liquid chromatography-mass spectrometry (LC/MS) using [1,3-15N2]dihydrouridine and [1,3-15N2]uridine as internal standards. RNA samples were enzymatically digested to nucleosides before addition of the internal standards and subsequently analyzed by LC/MS with selected ion monitoring of protonated molecular ions of the labeled and unlabeled nucleosides. Sample quantities of approximately 1 pmol tRNA and 5 pmol 23S rRNA were analyzed for mole% dihydrouridine. Dihydrouridine content of Escherichia coli tRNASer(VGA) and tRNAThr(GGU) as controls were measured as 2.03 and 2.84 residues/tRNA molecule, representing accuracies of 98 and 95%. Overall precision values for the analyses of E. coli tRNASer(VGA) and E. coli tRNAThr(GGU), unfractionated tRNA from E. coli and 23S rRNA from E. coli were within the range 0.43-2.4%. The mole% dihydrouridine in unfractionated tRNA and 23S rRNA from E. coli were determined as 1.79 and 0.0396%, corresponding to 1.4 and 1.1 residues/RNA molecule respectively. PMID:8774907

  10. Simultaneous quantitation of acetylsalicylic acid and clopidogrel along with their metabolites in human plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Chhonker, Yashpal S; Pandey, Chandra P; Chandasana, Hardik; Laxman, Tulsankar Sachin; Prasad, Yarra Durga; Narain, V S; Dikshit, Madhu; Bhatta, Rabi S

    2016-03-01

    The interest in therapeutic drug monitoring has increased over the last few years. Inter- and intra-patient variability in pharmacokinetics, plasma concentration related toxicity and success of therapy have stressed the need of frequent therapeutic drug monitoring of the drugs. A sensitive, selective and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous quantification of acetylsalicylic acid (aspirin), salicylic acid, clopidogrel and carboxylic acid metabolite of clopidogrel in human plasma. The chromatographic separations were achieved on Waters Symmetry Shield(TM) C18 column (150 × 4.6 mm, 5 µm) using 3.5 mm ammonium acetate (pH 3.5)-acetonitrile (10:90, v/v) as mobile phase at a flow rate of 0.75 mL/min. The present method was successfully applied for therapeutic drug monitoring of aspirin and clopidogrel in 67 patients with coronary artery disease.

  11. Quantitative determination of 26 steroids in eggs from various species using liquid chromatography-triple quadrupole-mass spectrometry.

    PubMed

    Mi, Xiaoxia; Li, Sicong; Li, Yanhua; Wang, Kaiqiang; Zhu, Dan; Chen, Gang

    2014-08-22

    A method for analyzing 26 types of steroids in egg matrix was developed. The method used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in electrospray ionization mode (ESI). The procedure involved extraction with acetonitrile and removal of phospholipids by zinc chloride (ZnCl₂) followed by SPE cleanup with a Plexa cartridge. The effect of ZnCl₂ on phospholipid removal was directly observed using the post column infusion procedure. The SPE washing and elution conditions were optimized using a shallow gradient procedure. The free and conjugated steroids forms were determined using enzyme hydrolysis. The developed method resulted in satisfactory precision (RSD≤15%), and the limits of quantification were between 0.05 and 25 ng/g depending on the steroid types. The recoveries ranged from 63.2% to 121.5%. Finally, the developed method was successfully applied to compare the steroids in eggs from different species (i.e., hen, duck, quail and pigeon eggs) or different raising system (i.e., normal vs. organic eggs). The steroids can be clearly clustered according to species and raising system. The hierarchical clustering analysis indicated similarity of the steroids among the species. The developed method is sensitive and useful for detection and quantification of steroids in eggs and can be used for residue control programs. In addition, the observed steroid content will provide a fundamental reference for food risk assessment analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry

    PubMed Central

    Hamelin, Elizabeth I.; Schulze, Nicholas D.; Shaner, Rebecca L.; Coleman, Rebecca M.; Lawrence, Richard J.; Crow, Brian S.; Jakubowski, E. M.; Johnson, Rudolph C.

    2015-01-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of the hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman) and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid phase extraction coupled with high performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3–0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101–105%) and high precision (5–8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507

  13. Quantitative determination of the diastereoisomers of hexabromocyclododecane in human plasma using liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Tang, Caiming

    2010-12-01

    A sensitive, simple and feasible method has been developed and validated for the simultaneous determination of three diastereoisomers of hexabromocyclododecane (HBCD) in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). The simple pretreatment generally involved protein precipitation with methanol (MeOH). The separation was performed with a C18 reverse phase column. The mobile phases were 5mM ammonium acetate (NH(4)AC) in water and acetonitrile (ACN). The mass spectrometer was operated using negative electrospray ionization (ESI) source and the data acquisition was carried out with multiple reaction monitoring (MRM) mode. The analyte quantifications were performed by external standard method with matrix-matched calibration curves. The method was partially validated with the evaluations of accuracy, precision, linearity, limit of quantification (LOQ), limit of detection (LOD), recovery, matrix effect and carryover effect. With the present method, the intra-batch accuracies were 94.7-104.3%, 91.9-109.3% and 89.8-105.0% for α-, β- and γ-HBCD, respectively. And the inter-batch accuracies were ranged from 94.2% to 109.7%. Both intra-batch and inter-batch precisions (relative standard deviation, RSD, %) of the analytes were no more than 11.2%. The recoveries were from 79.0% to 108.9% and the LOQ was 10pg/mL for each diastereoisomer. The linear range was 10-10,000pg/mL with the linear correlation coefficient R(2)>0.996. No significant matrix effect and carryover effect of the analytes were observed in this study. This method is in possession of sufficient resolution, high sensitivity as well as selectivity and convenient to be applied to the trace determination of HBCDs in human plasma.

  14. Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis.

    PubMed

    Johnson, Monique E; Hanna, Shannon K; Montoro Bustos, Antonio R; Sims, Christopher M; Elliott, Lindsay C C; Lingayat, Akshay; Johnston, Adrian C; Nikoobakht, Babak; Elliott, John T; Holbrook, R David; Scott, Keana C K; Murphy, Karen E; Petersen, Elijah J; Yu, Lee L; Nelson, Bryant C

    2017-01-24

    For environmental studies assessing uptake of orally ingested engineered nanoparticles (ENPs), a key step in ensuring accurate quantification of ingested ENPs is efficient separation of the organism from ENPs that are either nonspecifically adsorbed to the organism and/or suspended in the dispersion following exposure. Here, we measure the uptake of 30 and 60 nm gold nanoparticles (AuNPs) by the nematode, Caenorhabditis elegans, using a sucrose density gradient centrifugation protocol to remove noningested AuNPs. Both conventional inductively coupled plasma mass spectrometry (ICP-MS) and single particle (sp)ICP-MS are utilized to measure the total mass and size distribution, respectively, of ingested AuNPs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) imaging confirmed that traditional nematode washing procedures were ineffective at removing excess suspended and/or adsorbed AuNPs after exposure. Water rinsing procedures had AuNP removal efficiencies ranging from 57 to 97% and 22 to 83%, while the sucrose density gradient procedure had removal efficiencies of 100 and 93 to 98%, respectively, for the 30 and 60 nm AuNP exposure conditions. Quantification of total Au uptake was performed following acidic digestion of nonexposed and Au-exposed nematodes, whereas an alkaline digestion procedure was optimized for the liberation of ingested AuNPs for spICP-MS characterization. Size distributions and particle number concentrations were determined for AuNPs ingested by nematodes with corresponding confirmation of nematode uptake via high-pressure freezing/freeze substitution resin preparation and large-area SEM imaging. Methods for the separation and in vivo quantification of ENPs in multicellular organisms will facilitate robust studies of ENP uptake, biotransformation, and hazard assessment in the environment.

  15. Quantitation of in vitro α-1 adrenergic receptor antagonist binding capacity to biologic melanin using tandem mass spectrometry.

    PubMed

    Gaynes, Jeffrey S; Micic, Cedomir; Gaynes, Bruce I; Borgia, Jeffrey A

    2013-12-01

    The purpose of this study was to develop methods to allow evaluation of the binding characteristics for a series of α-1 antagonists to biologically-derived melanin. Fresh bovine globes were used to obtain iridal and choroid/retinal pigment epithelial (CRPE) derived melanin. Binding characteristics of chloroquine, tamsulosin and doxazosin were then evaluated in vitro using tandem mass spectroscopy. Tandem mass spectrometry-based assays were developed for three α-1 antagonists that provided linear assay ranges which spanned (minimally) 0.01-10 µg/mL, while exhibiting excellent inter-assay precision and accuracy. When applied to the evaluation of binding characteristics for iridal melanin, mean chloroquine and tamsulosin fractions were found to be 41.9 ± 14.2 pmoles mg(-1) and 25.34 ± 6.186 pmoles mg(-1), respectively. Mean iridal doxazosin binding was found to be 6.36 ± 2.19 pmoles mg(-1). Interestingly, mean levels of tamsulosin, but not doxazosin found bound to choroid/CRPE derived melanin approached that of chloroquine (27.91 µg/mL, 25.68 µg/mL and 5.94 µg/mL for chloroquine, tamsulosin and doxazosin, respectively). One way ANOVA for binding affinity for chloroquine, tamsulosin and doxazosin was statistically significant for both iridal and CRPE-derived melanin (p = 0.0012 and 0.0023), respectively. A Bonferroni post-hoc analysis demonstrated a statistically significant difference in the amount of binding between tamsulosin, doxazosin and chloroquine to iridal but not CRPE derived melanin (p < 0.05). Tamsulosin appears to demonstrate melanin binding affinity which approaches chloroquine and exceeds doxazosin for both iridal and CRPE-derived bovine melanin.

  16. A validated assay to quantitate serotonin in lamb plasma using ultrahigh-performance liquid chromatography-tandem mass spectrometry: applications with LC/MS3.

    PubMed

    Szeitz, András; Nguyen, Tuan-Anh T; Riggs, K Wayne; Rurak, Dan

    2014-08-01

    An ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS) method was developed and validated for the quantification of serotonin (5-HT) in lamb plasma using [(2)d(4)]-serotonin ([(2)d(4)]-5-HT) as an internal standard. Charcoal-stripped human plasma was used as the blank matrix during validation, and 5-HT was quantitated using selected reaction monitoring. The UHPLC/MS/MS system consisted of an Agilent 1290 Infinity ultrahigh-performance liquid chromatograph coupled with an AB SCIEX QTRAP(®) 5500 hybrid linear ion trap triple quadrupole mass spectrometer. The method was validated for accuracy, precision, linearity, lower limit of quantification (LLOQ), selectivity, and other parameters. The LLOQ was 1.0 ng/mL, requiring 100 μL of sample. The method was applied to monitor the 5-HT levels in lamb plasma after the administration of fluoxetine. Tandem mass spectrometry cubed (MS(3)) experiments were also performed to investigate the fragmentation pattern of 5-HT and [(2)d(4)]-5-HT. A liquid chromatography-MS(3) (LC/MS(3)) method was developed, and the UHPLC/MS/MS and the LC/MS(3) methods were compared for performance.

  17. A universal SI-traceable isotope dilution mass spectrometry method for protein quantitation in a matrix by tandem mass tag technology.

    PubMed

    Li, Jiale; Wu, Liqing; Jin, Youxun; Su, Ping; Yang, Bin; Yang, Yi

    2016-05-01

    Isotope dilution mass spectrometry (IDMS), an important metrological method, is widely used for absolute quantification of peptides and proteins. IDMS employs an isotope-labeled peptide or protein as an internal standard although the use of a protein provides improved accuracy. Generally, the isotope-labeled protein is obtained by stable isotope labeling by amino acids in cell culture (SILAC) technology. However, SILAC is expensive, laborious, and time-consuming. To overcome these drawbacks, a novel universal SI-traceable IDMS method for absolute quantification of proteins in a matrix is described with human transferrin (hTRF). The hTRF and a human serum sample were labeled with different tandem mass tags (TMTs). After mixing the TMT-labeled hTRF and serum sample together followed by digestion, the peptides were separated by nano-liquid chromatography and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the signature peptides, we calculated the ratios of reporter ions from the TMT-labeled peptides which, in turn, allowed determination of the mass fraction of hTRF. The recovery ranged from 97% to 105% with a CV of 3.9%. The LOD and LOQ were 1.71 × 10(-5) g/g and 5.69 × 10(-5) g/g of hTRF in human serum, respectively, and the relative expanded uncertainty was 4.7% with a mass fraction of 2.08 mg/g. For comparison, an enzyme-linked immunosorbent assay (ELISA) method for hTRF yielded a mass fraction of 2.03 mg/g. This method provides a starting point for establishing IDMS technology to accurately determine the mass fractions of protein biomarkers in a matrix with traceability to SI units. This technology should support the development of a metrological method useful for quantification of a wide variety of proteins.

  18. Quantitative matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis of synthetic polymers and peptides.

    PubMed

    Hyzak, Lukas; Moos, Rebecca; von Rath, Friederike; Wulf, Volker; Wirtz, Michaela; Melchior, David; Kling, Hans-Willi; Köhler, Michael; Gäb, Siegmar; Schmitz, Oliver J

    2011-12-15

    Matrix-assisted laser desorption ionization (MALDI) is a very powerful and widely used mass spectrometric technique to ionize high molecular weight compounds. The most commonly used dried droplet (DD) technique can lead to a concentration distribution of the analyte on the target and is therefore often not suitable for reproducible analyses. We developed a new solvent-free deposition technique, called compressed sample (CS), to prevent the distribution of the analytes caused by the crystallization of the compounds. The CS technique presented in this work allows the quantitative analysis of synthetic polymers such as derivatized maltosides with correlation coefficients of 0.999 and peptides up to 3500 Da with correlation coefficients of at least 0.982 without the use of stable-isotope-labeled standards.

  19. Quantitative determination of octadecenedioic acid in human skin and transdermal perfusates by gas chromatography-mass spectrometry.

    PubMed

    Judefeind, Anja; Jansen van Rensburg, Peet; Langelaar, Stephan; Wiechers, Johann W; du Plessis, Jeanetta

    2008-07-01

    A gas chromatographic (GC) method with mass spectrometric (MS) detection is developed and validated for the accurate and precise determination of octadecenedioic acid (C18:1 DIOIC) in human skin samples and transdermal perfusates. C18:1 DIOIC is extracted using methanol. The saturated analogue 1,18-octadecanedioic acid (C18:0 DIOIC) is added as internal standard. Prior to analysis, both compounds are converted to their trimethylsilylated derivatives using N,O-bis(trimethylsilyl)trifluoroacetamide with 15% trimethylchlorosilane. Quantitation is performed in selected ion monitoring mode with a limit of quantitation of 250 ng/mL. Linearity with a correlation coefficient of 0.998 is obtained over a concentration range of 250-2000 ng/mL. Values for within-day accuracy range from 94.5% to 102.4%, and from 97.5% to 105.8% for between-day accuracy. Within- and between-day precision values are better than 5% and 7%, respectively. The recovery values from the various matrices vary from 92.6% to 104.0%. The GC-MS method is employed for the determination of C18:1 DIOIC after application of an emulsion containing the active ingredient onto human skin in vitro. The results demonstrate that the method is suitable for the determination of C18:1 DIOIC in human skin samples and transdermal perfusates.

  20. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  1. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  2. Morpheus Spectral Counter: A computational tool for label-free quantitative mass spectrometry using the Morpheus search engine.

    PubMed

    Gemperline, David C; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2016-03-01

    Label-free quantitative MS based on the Normalized Spectral Abundance Factor (NSAF) has emerged as a straightforward and robust method to determine the relative abundance of individual proteins within complex mixtures. Here, we present Morpheus Spectral Counter (MSpC) as the first computational tool that directly calculates NSAF values from output obtained from Morpheus, a fast, open-source, peptide-MS/MS matching engine compatible with high-resolution accurate-mass instruments. NSAF has distinct advantages over other MS-based quantification methods, including a greater dynamic range as compared to isobaric tags, no requirement to align and re-extract MS1 peaks, and increased speed. MSpC features an easy-to-use graphic user interface that additionally calculates both distributed and unique NSAF values to permit analyses of both protein families and isoforms/proteoforms. MSpC determinations of protein concentration were linear over several orders of magnitude based on the analysis of several high-mass accuracy datasets either obtained from PRIDE or generated with total cell extracts spiked with purified Arabidopsis 20S proteasomes. The MSpC software was developed in C# and is open sourced under a permissive license with the code made available at http://dcgemperline.github.io/Morpheus_SpC/.

  3. Morpheus Spectral Counter: A Computational Tool for Label-Free Quantitative Mass Spectrometry using the Morpheus Search Engine

    PubMed Central

    Gemperline, David C.; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2016-01-01

    Label-free quantitative MS based on the Normalized Spectral Abundance Factor (NSAF) has emerged as a straightforward and robust method to determine the relative abundance of individual proteins within complex mixtures. Here, we present Morpheus Spectral Counter (MSpC) as the first computational tool that directly calculates NSAF values from output obtained from Morpheus, a fast, open-source, peptide-MS/MS matching engine compatible with high-resolution accurate-mass instruments. NSAF has distinct advantages over other MS-based quantification methods, including a higher dynamic range as compared to isobaric tags, no requirement to align and re-extract MS1 peaks, and increased speed. MSpC features an easy to use graphic user interface that additionally calculates both distributed and unique NSAF values to permit analyses of both protein families and isoforms/proteoforms. MSpC determinations of protein concentration were linear over several orders of magnitude based on the analysis of several high-mass accuracy datasets either obtained from PRIDE or generated with total cell extracts spiked with purified Arabidopsis 20S proteasomes. The MSpC software was developed in C# and is open sourced under a permissive license with the code made available at http://dcgemperline.github.io/Morpheus_SpC/. PMID:26791624

  4. Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry

    PubMed Central

    Amexis, Georgios; Oeth, Paul; Abel, Kenneth; Ivshina, Anna; Pelloquin, Francois; Cantor, Charles R.; Braun, Andreas; Chumakov, Konstantin

    2001-01-01

    RNA viruses exist as quasispecies, heterogeneous and dynamic mixtures of mutants having one or more consensus sequences. An adequate description of the genomic structure of such viral populations must include the consensus sequence(s) plus a quantitative assessment of sequence heterogeneities. For example, in quality control of live attenuated viral vaccines, the presence of even small quantities of mutants or revertants may indicate incomplete or unstable attenuation that may influence vaccine safety. Previously, we demonstrated the monitoring of oral poliovirus vaccine with the use of mutant analysis by PCR and restriction enzyme cleavage (MAPREC). In this report, we investigate genetic variation in live attenuated mumps virus vaccine by using both MAPREC and a platform (DNA MassArray) based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Mumps vaccines prepared from the Jeryl Lynn strain typically contain at least two distinct viral substrains, JL1 and JL2, which have been characterized by full length sequencing. We report the development of assays for characterizing sequence variants in these substrains and demonstrate their use in quantitative analysis of substrains and sequence variations in mixed virus cultures and mumps vaccines. The results obtained from both the MAPREC and MALDI-TOF methods showed excellent correlation. This suggests the potential utility of MALDI-TOF for routine quality control of live viral vaccines and for assessment of genetic stability and quantitative monitoring of genetic changes in other RNA viruses of clinical interest. PMID:11593021

  5. Evaluation of different strategies for quantitative depth profile analysis of Cu/NiCu layers and multilayers via pulsed glow discharge - Time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Muñiz, Rocío; Lobo, Lara; Németh, Katalin; Péter, László; Pereiro, Rosario

    2017-09-01

    There is still a lack of approaches for quantitative depth-profiling when dealing with glow discharges (GD) coupled to mass spectrometric detection. The purpose of this work is to develop quantification procedures using pulsed GD (PGD) - time of flight mass spectrometry. In particular, research was focused towards the depth profile analysis of Cu/NiCu nanolayers and multilayers electrodeposited on Si wafers. PGDs are characterized by three different regions due to the temporal application of power: prepeak, plateau and afterglow. This last region is the most sensitive and so it is convenient for quantitative analysis of minor components; however, major elements are often saturated, even at 30 W of applied radiofrequency power for these particular samples. For such cases, we have investigated two strategies based on a multimatrix calibration procedure: (i) using the afterglow region for all the sample components except for the major element (Cu) that was analyzed in the plateau, and (ii) using the afterglow region for all the elements measuring the ArCu signal instead of Cu. Seven homogeneous certified reference materials containing Si, Cr, Fe, Co, Ni and Cu have been used for quantification. Quantitative depth profiles obtained with these two strategies for samples containing 3 or 6 multilayers (of a few tens of nanometers each layer) were in agreement with the expected values, both in terms of thickness and composition of the layers.

  6. Mass spectrometry in environmental toxicology.

    PubMed

    Groh, Ksenia J; Suter, Marc J-F

    2014-01-01

    In environmental toxicology, mass spectrometry can be applied to evaluate both exposure to chemicals as well as their effects in organisms. Various ultra-trace techniques are employed today to measure pollutants in different environmental compartments. Increasingly, effect-directed analysis is being applied to focus chemical monitoring on sites of ecotoxicological concern. Mass spectrometry is also very instrumental for studying the interactions of chemicals with organisms on the molecular and cellular level, providing new insights into mechanisms of toxicity. In the future, diverse mass spectrometry-based techniques are expected to become even more widely used in this field, contributing to the refinement of currently used environmental risk assessment strategies.

  7. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.

  8. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    PubMed Central

    Théron, Laëtitia; Centeno, Delphine; Coudy-Gandilhon, Cécile; Pujos-Guillot, Estelle; Astruc, Thierry; Rémond, Didier; Barthelemy, Jean-Claude; Roche, Frédéric; Feasson, Léonard; Hébraud, Michel; Béchet, Daniel; Chambon, Christophe

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation. PMID:28248242

  9. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF.

    PubMed

    Théron, Laëtitia; Centeno, Delphine; Coudy-Gandilhon, Cécile; Pujos-Guillot, Estelle; Astruc, Thierry; Rémond, Didier; Barthelemy, Jean-Claude; Roche, Frédéric; Feasson, Léonard; Hébraud, Michel; Béchet, Daniel; Chambon, Christophe

    2016-10-26

    Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  10. Quantitative analysis of costunolide and dehydrocostuslactone in rat plasma by ultraperformance liquid chromatography-electrospray ionization-mass spectrometry.

    PubMed

    Hu, Fangdi; Feng, Shilan; Wu, Yuqiong; Bi, Yingyan; Wang, Chunming; Li, Wen

    2011-05-01

    Costunolide and dehydrocostuslactone are well-known sesquiterpene lactones contained in many plants used as popular herbs, such as Saussurea lappa and Laurus novocanariensis, and have been considered as potential candidates for the treatment of various types of tumor. In the present work, a sensitive UPLC-MS/MS for the quantification of costunolide and dehydrocostuslactone in biological matrices has been developed. The method is based on protein precipitation with acetonitrile followed by isocratic ultraperformance liquid chromatographic separation using methanol-formic acid (0.1% in water; 70:30, v/v) mobile phase. Detection was performed by ESI mass spectrometry in MRM mode with the precursor-to-product ion transitions m/z 233-187 and m/z 231-185, respectively. The calibration curves of analytes showed good linearity within the established range 0.19-760  ng/mL for costunolide and 0.23-908  ng/mL for dehydrocostuslactone. The lower limits of quantification of costunolide and dehydrocostuslactone were found to be 0.19 and 0.23  ng/mL, respectively. The intra-day and inter-day presicions of this method for the entire validation were less than coefficient of variation of 7% and the accuracy was within ±8% (relative error). The mean extraction recoveries were 73.8 and 75.3%, respectively. The method was found to be precise, accurate and specific during the study, and was successfully used to analyze the pharmacokinetics of costunolide and dehydrocostuslactone.

  11. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    PubMed

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSD<5%), analytical recovery (96.2-98.0%), and sensitivity (limit of detection=0.009 and 0.004 μg mL(-1) for arbutin and hydroquinone, respectively). The results obtained by the validated GC-MS method corresponded well to those obtained by high performance liquid chromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.).

  12. Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine.

    PubMed

    Wan, Lingzhong; Zhu, Haijing; Guan, Yafeng; Huang, Guangming

    2017-07-01

    A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL(-1) and 0.0454-4.194μgL(-1), respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample. Copyright © 2017. Published by Elsevier B.V.

  13. Quantitation of S-Adenosylmethionine and S-Adenosylhomocysteine in Plasma Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    PubMed

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate determination of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in plasma as a diagnostic test. SAM and SAH are key metabolic intermediates of methionine metabolism and the methylation cycle. Determination of SAM and SAH in plasma was performed by high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Calibrators (SAM and SAH) and internal standards ((2)H3-SAM and (2)H4-SAH) were included in each analytical run for calibration. Sample preparation involved combining 20 μL sample with 180 μL of internal standard solution consisting of heavy isotope labeled internal standards in mobile phase A and filtering by ultracentrifugation through a 10 kd MW cutoff membrane. Sample filtrate (3 μL) was injected by a Shimadzu Nexera LC System interfaced with a 5500 QTRAP(®) (AB Sciex). Chromatographic separation was achieved on a 250 mm × 2.0 mm EA:faast column from Phenomenex. Samples were eluted at a flow rate of 0.20 mL/min with a binary gradient with a total run time of 10 min. The source operated in positive ion mode at an ion spray voltage of +5000 V. SAM and SAH resolved by a gradient to 100 % methanol with retention times of 6.0 and 5.7 min, respectively. The observed m/z values of the fragment ions were m/z 399 → 250 for SAM, m/z 385 → 136 for SAH, m/z 402 → 250 for (2)H3-SAM, m/z 203 → 46. The calibration curve was linear over the ranges of 12.5-5000 nmol/L for SAM and SAH.

  14. Quantitative solid phase microextraction--gas chromatography mass spectrometry analysis of five megastigmatrienone isomers in aged wine.

    PubMed

    Slaghenaufi, Davide; Perello, Marie-Claire; Marchand-Marion, Stéphanie; Tempere, Sophie; de Revel, Gilles

    2014-02-27

    Megastigmatrienone is a key flavor compound in tobacco. It has also been detected in wine, where it may contribute to a tobacco/incense aroma, but its importance and concentration in wines had never previously been evaluated. A method was developed and validated for quantifying the five megastigmatrienone isomers in red and white wines. Megastigmatrienone isomers were extracted by headspace solid-phase microextraction (HS-SPME), with a 65 μm film thickness polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber and analyzed using gas chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). Several parameters affecting the length of the adsorption process (i.e., adding salt, extraction time and extraction temperature) were tested. The optimum analytical conditions were established. The LOQ were between 0.06 μg L(-1) and 0.49 μg L(-1) for white wine and 0.11 μg L(-1) and 0.98 μg L(-1) for red wine, repeatability in both types of wine was less than 10% and recovery ranged from 96% for white wine to 94% for red wine. The five isomers of megastigmatrienone were quantified in red and white wines for the first time. Concentrations ranged from 2 μg L(-1) to 41 μg L(-1) in both red and white wines. Initial results revealed a link between wine aging and megastigmatrienone levels, indicating that megastigmatrienone may be a component in wine "bouquet". Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Quantitative Metabolite Profiling of an Amino Group Containing Pharmaceutical in Human Plasma via Precolumn Derivatization and High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Li, Sanwang; Klencsár, Balázs; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2017-02-07

    Quantitative determination of the candidate drug molecule and its metabolites in biofluids and tissues is an inevitable step in the development of new pharmaceuticals. Because of the time-consuming and expensive nature of the current standard technique for quantitative metabolite profiling, i.e., radiolabeling followed by high-performance liquid chromatography (HPLC) with radiodetection, the development of alternative methodologies is of great interest. In this work, a simple, fast, sensitive, and accurate method for the quantitative metabolite profiling of an amino group containing drug (levothyroxine) and its metabolites in human plasma, based on precolumn derivatization followed by HPLC-inductively coupled plasma mass spectrometry (ICPMS), was developed and validated. To introduce a suitable "heteroelement" (defined here as an element that is detectable with ICPMS), an inexpensive and commercially available reagent, tetrabromophthalic anhydride (TBPA) was used for the derivatization of free NH2-groups. The presence of a known number of I atoms in both the drug molecule and its metabolites enabled a cross-validation of the newly developed derivatization procedure and quantification based on monitoring of the introduced Br. The formation of the derivatives was quantitative, providing a 4:1 stoichiometric Br/NH2 ratio. The derivatives were separated via reversed-phase HPLC with gradient elution. Bromine was determined via ICPMS at a mass-to-charge ratio of 79 using H2 as a reaction gas to ensure interference-free detection, and iodine was determined at a mass-to-charge ratio of 127 for cross-validation purposes. The method developed shows a fit-for-purpose accuracy (recovery between 85% and 115%) and precision (repeatability <15% RSD). The limit of quantification (LoQ) for Br was approximately 100 μg/L.

  16. Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry.

    PubMed

    Tong, Louis; Zhou, Xi Yuan; Jylha, Antti; Aapola, Ulla; Liu, Dan Ning; Koh, Siew Kwan; Tian, Dechao; Quah, Joanne; Uusitalo, Hannu; Beuerman, Roger W; Zhou, Lei

    2015-02-06

    Tear proteins are intimately related to the pathophysiology of the ocular surface. Many recent studies have demonstrated that the tear is an accessible fluid for studying eye diseases and biomarker discovery. This study describes a high resolution multiple reaction monitoring (HR-MRM) approach for developing assays for quantification of biologically important tear proteins. Human tear samples were collected from 1000 subjects with no eye complaints (411 male, 589 female, average age: 55.5±14.5years) after obtaining informed consent. Tear samples were collected using Schirmer's strips and pooled into a single global control sample. Quantification of proteins was carried out by selecting "signature" peptides derived by trypsin digestion. A 1-h nanoLC-MS/MS run was used to quantify the tear proteins in HR-MRM mode. Good reproducibility of signal intensity (using peak areas) was demonstrated for all 47 HR-MRM assays with an average coefficient of variation (CV%) of 4.82% (range: 1.52-10.30%). All assays showed consistent retention time with a CV of less than 0.80% (average: 0.57%). HR-MRM absolute quantitation of eight tear proteins was demonstrated using stable isotope-labeled peptides. In this study, we demonstrated for the first time the technique to quantify 47 human tear proteins in HR-MRM mode using approximately 1μl of human tear sample. These multiplexed HR-MRM-based assays show great promise of further development for biomarker validation in human tear samples. Both discovery-based and targeted quantitative proteomics can be achieved in a single quadrupole time-of-flight mass spectrometer platform (TripleTOF 5600 system). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification

    NASA Astrophysics Data System (ADS)

    Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine

    2016-11-01

    The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.

  18. Enhanced Trace-Fiber Color Discrimination by Electrospray Ionization Mass Spectrometry: A Quantitative and Qualitative Tool for the Analysis of Dyes Extracted from Sub-millimeter Nylon Fibers

    SciTech Connect

    2002-09-26

    The application of electrospray-ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color-identity of different samples (i.e., comparative trace-fiber analysis) are shown to be sub-millimeter. Absolute verification of dye-mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound--information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  19. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification.

    PubMed

    Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine

    2016-11-14

    The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.10(8) for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.

  20. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification

    PubMed Central

    Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine

    2016-01-01

    The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells. PMID:27841303

  1. Quantitative analysis of trace-level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow using headspace heart-cutting multidimensional gas chromatography with mass spectrometry.

    PubMed

    Ji, Xiaorong; Zhang, Jing; Guo, Yinlong

    2016-06-01

    This study describes a method for the quantification of trace-level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow by heart-cutting multidimensional gas chromatography with mass spectrometry in selected ion monitoring mode. As the major volatile component in cellulose acetate tow samples, acetone would be overloaded when attempting to perform a high-resolution separation to analyze trace benzene, toluene, ethylbenzene, and xylene. With heart-cutting technology, a larger volume injection was achieved and acetone was easily cut off by employing a capillary column with inner diameter of 0.32 mm in the primary gas chromatography. Only benzene, toluene, ethylbenzene, and xylene were directed to the secondary column to result in an effective separation. The matrix interference was minimized and the peak shapes were greatly improved. Finally, quantitative analysis of benzene, toluene, ethylbenzene, and xylene was performed using an isotopically labeled internal standard. The headspace multidimensional gas chromatography mass spectrometry system was proved to be a powerful tool for analyzing trace volatile organic compounds in complex samples.

  2. Quantitative determination of the neurotoxin β-N-methylamino-L-alanine (BMAA) by capillary electrophoresis-tandem mass spectrometry.

    PubMed

    Kerrin, Elliott S; White, Robert L; Quilliam, Michael A

    2017-02-01

    Recent reports of the widespread occurrence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in cyanobacteria and particularly seafood have raised concerns for public health. LC-MS/MS is currently the analytical method of choice for BMAA determinations but incomplete separation of isomeric and isobaric compounds, matrix suppression and conjugated forms are plausible limitations. In this study, capillary electrophoresis (CE) coupled with MS/MS has been developed as an alternative method for the quantitative determination of free BMAA. Using a bare fused silica capillary, a phosphate buffer (250 mM, pH 3.0) and UV detection, it was possible to separate BMAA from four isomers, but the limit of detection (LOD) of 0.25 μg mL(-1) proved insufficient for analysis of typical samples. Coupling the CE to a triple quadrupole MS was accomplished using a custom sheath-flow interface. The best separation was achieved with a 5 M formic acid in water/acetonitrile (9:1) background electrolyte. Strong acid hydrolysis of lyophilized samples was used to release BMAA from conjugated forms. Field-amplified stacking after injection was achieved by lowering sample ionic strength with a cation-exchange cleanup procedure. Quantitation was accomplished using isotope dilution with deuterium-labelled BMAA as internal standard. An LOD for BMAA in solution of 0.8 ng mL(-1) was attained, which was equivalent to 16 ng g(-1) dry mass in samples using the specified extraction procedure. This was comparable with LC-MS/MS methods. The method displayed excellent resolution of amino acid isomers and had no interference from matrix components. The presence of BMAA in cycad, mussel and lobster samples was confirmed by CE-MS/MS, but not in an in-house cyanobacterial reference material, with quantitative results agreeing with those from LC-MS/MS. Graphical Abstract CE-MS separation and detection of BMAA, its isomers and the internal standard BMAA-d3.

  3. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  4. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  5. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Rapid Quantitation of Ascorbic and Folic Acids in SRM 3280 Multivitamin/Multielement Tablets using Flow-Injection Tandem Mass Spectrometry

    SciTech Connect

    Bhandari, Deepak; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injection volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.

  7. High performance liquid chromatography coupled to mass spectrometry for profiling and quantitative analysis of folate monoglutamates in tomato.

    PubMed

    Tyagi, Kamal; Upadhyaya, Pallawi; Sarma, Supriya; Tamboli, Vajir; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2015-07-15

    Folates are essential micronutrients for animals as they play a major role in one carbon metabolism. Animals are unable to synthesize folates and obtain them from plant derived food. In the present study, a high performance liquid chromatography coupled to mass spectrometric (HPLC-MS/MS) method was developed for the high throughput screening and quantitative analysis of folate monoglutamates in tomato fruits. For folate extraction, several parameters were optimized including extraction conditions, pH range, amount of tri-enzyme and boiling time. After processing the extract was purified using ultra-filtration with 10 kDa membrane filter. The ultra-filtered extract was chromatographed on a RP Luna C18 column using gradient elution program. The method was validated by determining linearity, sensitivity and recovery. This method was successfully applied to folate estimation in spinach, capsicum, and garden pea and demonstrated that this method offers a versatile approach for accurate and fast determination of different folate monoglutamates in vegetables.

  8. Label-free high-throughput screening via mass spectrometry: a single cystathionine quantitative method for multiple applications.

    PubMed

    Holt, Tom G; Choi, Bernard K; Geoghagen, Neil S; Jensen, Kristian K; Luo, Qi; LaMarr, William A; Makara, Gergely M; Malkowitz, Lorraine; Ozbal, Can C; Xiong, Yusheng; Dufresne, Claude; Luo, Ming-Juan

    2009-10-01

    Label-free mass spectrometric (MS) technologies are particularly useful for enzyme assay design for drug discovery screens. MS permits the selective detection of enzyme substrates or products in a wide range of biological matrices without need for derivatization, labeling, or capture technologies. As part of a cardiovascular drug discovery effort aimed at finding modulators of cystathionine beta-synthase (CBS), we used the RapidFire((R)) label-free high-throughput MS (HTMS) technology to develop a high-throughput screening (HTS) assay for CBS activity. The in vitro assay used HTMS to quantify the unlabeled product of the CBS reaction, cystathionine. Cystathionine HTMS analyses were carried out with a throughput of 7 s per sample and quantitation over a linear range of 80-10,000 nM. A compound library of 25,559 samples (or 80 384-well plates) was screened as singlets using the HTMS assay in a period of 8 days. With a hit rate of 0.32%, the actives showed a 90% confirmation rate. The in vitro assay was applied to secondary screens in more complex matrices with no additional analytical development. Our results show that the HTMS method was useful for screening samples containing serum, for cell-based assays, and for liver explants. The novel extension of the in vitro analytical method, without modification, to secondary assays resulted in a significant and advantageous economy of development time for the drug discovery project.

  9. A rapid quantitative method for the analysis of synthetic cannabinoids by liquid chromatography-tandem mass spectrometry.

    PubMed

    Freijo, Tom D; Harris, Steve E; Kala, Subbarao V

    2014-10-01

    Synthetic cannabinoids represent an emerging drug problem in the USA, as these compounds are constantly being modified and rapidly sold as soon as they become available. Laboratories around the world are constantly improving the analytical methods to detect and identify these newly available designer drugs. This study used a simple approach to detect and quantify a variety of synthetic cannabinoids (14 parent compounds and 15 metabolites including series XLR, AM, JWH, UR, RCS, PB, HU and AB-FUBINACA) using LC-MS-MS. Drug-free urine samples spiked with various synthetic cannabinoids and their metabolites were separated on a C18-Hypersil Gold column using an Agilent 1290 ultra-high performance liquid chromatography and detected by an AB Sciex API 4000 tandem mass spectrometer. Studies were carried out to determine limit of detection, limit of quantitation, upper limit of linearity, ion suppression, interference, precision and accuracy to validate the method. Urine samples from patients and known users were hydrolyzed with β-glucuronidase prior to the analysis by LC-MS-MS, and the data are presented. The method described here is rapid, highly sensitive and specific for the identification of a variety of synthetic cannabinoids. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis.

  11. Quantitative Determination of Irinotecan and the Metabolite SN-38 by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry in Different Regions of Multicellular Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Hummon, Amanda B.

    2015-04-01

    A new and simple method was developed to evaluate the distribution of therapeutics in three-dimensional multicellular tumor spheroids (MCTS) by combining serial trypsinization and nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). This methodology was validated with quantitative measurements of irinotecan and its bioactive metabolite, SN-38, in distinct spatial regions of HCT 116 MCTS. Irinotecan showed a time-dependent permeability into MCTS with most of the drug accumulating in the core after 24 h of treatment. The amount of SN-38 detected was 30 times lower than that of the parent drug, and was more abundant in the outer rim and intermediate regions of MCTS where proliferating cells were present. This method can be used to investigate novel and established drugs. It enables investigation of drug penetration properties and identification of metabolites with spatial specificity in MCTS. The new approach has great value in facilitating the drug evaluation process.

  12. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry

    PubMed Central

    2011-01-01

    Background Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. Results Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. Conclusions This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome

  13. A simultaneous quantitative method for vitamins A, D and E in human serum using liquid chromatography-tandem mass spectrometry.

    PubMed

    Albahrani, Ali A; Rotarou, Victor; Roche, Peter J; Greaves, Ronda F

    2016-05-01

    Non-classical roles of fat-soluble vitamins (FSVs) in many pathologies including cancer have been identified. There is also evidence of hormonal interactions between two of these vitamins, A and D. As a result of this enhanced clinical association with disease, translational clinical research and laboratory requests for FSV measurement has significantly increased. However there are still gaps in the analytical methods available for the measurement of these vitamins. This study aimed to develop a method for simultaneous quantification of 25-hydroxyvitamin-D2 (25-OHD2), 25-hydroxyvitamin-D3 (25-OHD3) and its 3-epimer (epi-25-OHD3), retinol and α-tocopherol in human serum using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The procedure was developed and validated across two LC-MS/MS platforms, using commercial calibrators referenced to certified reference materials, controls, and deuterated internal standards. The samples were prepared by liquid-liquid extraction prior to injection and LC separation (using a Pursuit-PFP column) on two Agilent MS/MS systems (6410 and 6490) in electrospray ionisation positive mode with multiple reaction monitoring. Identification and quantification of 25-OHD3 from its 3-epimer as well as 25-OHD2, retinol and α-tocopherol were achieved. The dynamic ranges were 4-160 nmol/L for 25-OHD2 and epi-25-OHD3, 4-200 nmol/L for 25-OHD3, 0.1-4.0μmol/L for retinol and 4-70μmol/L for α-tocopherol with correlation (r(2)) of 0.997-0.998. Based on participation in an external quality assurance program, the overall performance of the simultaneous methods were: imprecision (CV%) and inaccuracy (average bias) 3.0% and 3.2 nmol/L, respectively, for 25-OHD3; 5.0% and 0.04μmol/L, respectively, for retinol; and 4.7% and 0.2μmol/L, respectively, for α-tocopherol. In summary, two simple LC-MS/MS methods were successfully developed and validated for the simultaneous quantification of the three vitamin D metabolites (25-OHD2, 25-OHD3 and 3

  14. Quantitative determination of phosphatidylcholine hydroperoxides during copper oxidation of LDL and HDL by liquid chromatography/mass spectrometry.

    PubMed

    Hui, Shu-Ping; Taguchi, Yudai; Takeda, Seiji; Ohkawa, Futaba; Sakurai, Toshihiro; Yamaki, Shinobu; Jin, Shigeki; Fuda, Hirotoshi; Kurosawa, Takao; Chiba, Hitoshi

    2012-06-01

    1-Palmitoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 16:0/18:2-OOH) and 1-stearoyl-2-linoleoylphosphatidylcholine monohydroperoxide (PC 18:0/18:2-OOH) were measured by liquid chromatography/mass spectrometry (LC/MS) using nonendogenous 1-palmitoyl-2-heptadecenoylphosphatidylcholine monohydroperoxide as an internal standard. The calibration curves for synthetic PC 16:0/18:2-OOH and PC 18:0/18:2-OOH, which were obtained by direct injection of the internal standard into the LC/MS system, were linear throughout the calibration range (0.8-12.8 pmol). Within-day and between-day coefficients of variation were less than 10%, and the recoveries were between 86% and 105%. The limit of detection (LOD) and the limit of quantification (LOQ) were determined using synthetic standards. The LOD (signal-to-noise ratio 3:1) was 0.01 pmol, and the LOQ (signal-to-noise ratio 6:1) was 0.08 pmol for both PC 16:0/18:2-OOH and PC 18:0/18:2-OOH. With use of this method, the concentrations of PC 16:0/18:2-OOH and PC 18:0/18:2-OOH in the lipoprotein fractions during copper-mediated oxidation were determined. We prepared oxLDL and oxHDL by incubating native LDL and native HDL from human plasma (n =  10) with CuSO(4) for up to 4 h. The time course of the PC 16:0/18:2-OOH and PC 18:0/18:2-OOH levels during oxidation consisted of three phases. For oxidized LDL, both compounds exhibited a slow lag phase and a subsequent rapidly increasing propagation phase, followed by a gradually decreasing degradation phase. In contrast, for oxidized HDL, both compounds initially exhibited a prompt propagation phase with a subsequent plateau phase, followed by a rapid degradation phase. The analytical LC/MS method for phosphatidylcholine hydroperoxides might be useful for the analysis of biological samples.

  15. Quantitative Mass Spectrometry-Based Analysis of β-D-Glucosyl-5-Hydroxymethyluracil in Genomic DNA of Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Ji, Debin; Cliffe, Laura; Sabatini, Robert; Wang, Yinsheng

    2014-10-01

    β-D-glucosyl-5-hydroxymethyluracil (base J) is a hyper-modified nucleobase found in the nuclear DNA of kinetoplastid parasites. With replacement of a fraction of thymine in DNA, J is localized primarily in telomeric regions of all organisms carrying this modified base. The biosynthesis of J occurs in two putative steps: first, a specific thymine in DNA is recognized and converted into 5-hydroxymethyluracil (5-HmU) by J-binding proteins (JBP1 and JBP2); a glucosyl transferase (GT) subsequently glucosylates the 5-HmU to yield J. Although several recent studies revealed the roles of internal J in regulating transcription in kinetoplastids, functions of telomeric J and proteins involved in J synthesis remain elusive. Assessing the functions of base J and understanding fully its biosynthesis necessitate the measurement of its level in cells and organisms. In this study, we reported a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS) method, together with the use of a surrogate internal standard (β-D-glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5-gHmdC), for the accurate detection of β-D-glucosyl-5-hydroxymethyl-2'-deoxyuridine (dJ) in Trypanosoma brucei DNA. For comparison, we also measured the level of the precursor for dJ synthesis [i.e. 5-hydroxymethyl-2'-deoxyuridine (5-HmdU)]. We found that base J was not detectable in the JBP-null cells whereas it replaced approximately 0.5% thymine in wild-type cells, which was accompanied with a markedly decreased level of 5-HmdU in JBP1/JBP2-null strain relative to the wild-type strain. These results provided direct evidence supporting that JBP proteins play an important role in oxidizing thymidine to form 5-HmdU, which facilitated the generation of dJ. This is the first report about the application of LC-MS/MS for the quantification of base J. The analytical method built a solid foundation for dissecting the molecular mechanisms of J biosynthesis and assessing the biological functions of base J in the

  16. Quantitative determination of pioglitazone in human serum by direct-injection high-performance liquid chromatography mass spectrometry and its application to a bioequivalence study.

    PubMed

    Xue, Y-J; Turner, Kenneth C; Meeker, Jeff B; Pursley, Janice; Arnold, Mark; Unger, Steve

    2003-10-05

    A simple, high throughput, direct-injection high-performance liquid chromatography tandem mass spectrometry method (LC/MS/MS) has been developed and validated for the quantitation of pioglitazone in human serum. After mixing the internal standard with a sample, a 10 microl portion of the mixture was directly injected into a high-flow LC/MS/MS system, which included an extraction column, an analytical column and a six-port switching valve. The on-line extraction was achieved on an Oasis HLB column (1 mm x 50 mm, 30 microm) with a 100% aqueous loading mobile phase containing 5 mM ammonium acetate (pH 4.0) at a flow rate of 4 ml/min. The extracted analyte was eluted by a mobile phase which contained 5 mM ammonium acetate and acetonitrile. The analytical column was a Luna C18 column (4.6 mm x 50 mm, 5 microm). Detection was achieved by positive ion electrospray tandem mass spectrometry. The lower limit of quantitation of the method was 9 ng/ml. The standard curve, which ranged from 9 to 1350 ng/ml, was fitted by a weighted (1/x2) quadratic regression model. The validation results demonstrated that this method had satisfactory precision and accuracy across the calibration range. There was no evidence of instability of the analyte in human serum following three freeze-thaw cycles, and samples could be stored for at least 2 weeks at -30 degrees C. This method was used to analyze pioglitazone concentrations in human serum samples from a bioequivalence study of a blinded Actos formulation (encapsulated 15 mg tablet) and an Actos 15 mg tablet. The blinded formulation was shown to be bioequivalent to an Actos 15 mg tablet.

  17. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.

    PubMed

    Mroczek, Tomasz

    2016-09-10

    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Qualitative and quantitative analysis on chemical constituents from Curculigo orchioides using ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    He, Yongjing; Dong, Xin; Jia, Xiaoxuan; Li, Mei; Yuan, Tingting; Xu, Hongtao; Qin, Luping; Han, Ting; Zhang, Qiaoyan

    2015-01-01

    A rapid ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF/MS) method was developed for qualitative and quantitative determination of constituents in the rhizome of Curculigo orchioides. Qualitative analysis was performed on a Waters ACQUITY UHPLC @ HSS T3 column (1.8 μm 100 × 2.1mm) using gradient elution with mobile phase of 0.1% formic acid and acetonitrile. Quantitative analysis was performed on an Agilent ZORBAX Eclipse plus C18 column (1.7 μm 100 × 2.1mm) using gradient elution with mobile phase of 0.1% acetic acid and acetonitrile for at least 20 min. Quadrupole TOF/MS in either full scan mode or extracted ion mode was used for qualitative and quantitative analysis of the constituents. According to the mass spectrometric fragmentation mechanism and UHPLC-ESI-Q-TOF-MS data, chemical structures of 45 constituents in the rhizome of Curculigo orchioides, including 19 phenols and phenolic glycosides, 16 lignans and lignan glycosides, 8 triterpenoid saponins, one flavone and one sesquiterpene, were identified tentatively on-line without the time-consuming process of isolation. In addition, 8 phenolic glycosides including 5-hydroxymethylfurfural (HMF), 2-hydroxy-5-(2-hydroxyethyl) phenyl-β-D-glucopyranoside (HPG), anacardoside (ACD), orcinol glucoside (OGD), orcinol-1-O-β-D-apiofuranosyl-(1 → 6)-β-D-glucopyranoside (OAG), 2,6-dimethoxybenzoic acid (DBA), curculigoside (CUR) and curculigine A (CCL) were quantitated in 11 collected samples and 10 commercial samples from different providers. The results show that UHPLC-ESI-Q-TOF-MS is a viable method for analysis and quality evaluation of the constituents from the rhizome of Curculigo orchioides. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  20. [Metal-tag labeling coupled with high performance liquid chromatography-selected ion monitoring mass spectrometry for absolute quantitation of proteins].

    PubMed

    Li, Jiabin; Zhou, Lianqi; Yan, Hui; Li, Nannan; Hao, Feiran; Tian, Fang; Zhang, Yangjun

    2014-04-01

    A novel method has been established based on metal element chelated tags coupled with high performance liquid chromatography-selected ion monitoring mass spectrometry (HPLC-SIM/MS). The labeling efficiency and stability of metal element chelated tags, the chromatographic retention behavior and MS behavior of the labeled peptides, the linear range and accuracy of this method were examined. The results showed that the metal element chelated tag method has high labeling efficiency and high labeling stability, and the labeled peptides with different kinds of metal tags have consistent chromatographic retention behavior. The method of metal tags coupled with HPLC-SIM/MS has high sensitivity with the limit of quantification (LOQ) up to 1 fmol. The linear range for the method was between 1 fmol to 500 fmol with R2 > 0.99, which means the method has a good linearity. Moreover, this method had an average recovery of 117.01%. The method was used in the absolute quantitation of a protein enolase in Thermoanaerobacter tengcongensis (TTE) with a relative standard deviation of 5.74%, which means high precision. All the results showed that this method is accurate and reliable for the absolute quantitation of proteins. This gives us an alternative for the quantitative determination of proteins in relatively simple biological samples.

  1. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  2. Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio-oils by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Michailof, Chrysoula; Sfetsas, Themistoklis; Stefanidis, Stylianos; Kalogiannis, Konstantinos; Theodoridis, Georgios; Lappas, Angelos

    2014-11-21

    Thermal and catalytic pyrolysis are efficient processes for the transformation of biomass to bio-oil, a liquid energy carrier and a general source of chemicals. The elucidation of the bio-oil's composition is essential for a rational design of both its production and utilization process. However, the complex composition of bio-oils hinders their complete qualitative and quantitative analysis, and conventional chromatographic techniques lack the necessary separation power. Two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToFMS) is considered a suitable technique for bio-oil analysis due to its increased separation and resolution capacity. This work presents the tentative qualitative and quantitative analysis of bio-oils resulting from the thermal and catalytic pyrolysis of standard xylan, cellulose, lignin and their mixture by GC×GC-ToFMS. Emphasis is placed on the development of the quantitative method using phenol-d6 as internal standard. During the method development, a standard solution of 39 compounds was used for the determination of the respective Relative Response Factors (RRF) employing statistical methods, ANOVA and WLSLR, for verification of the data. The developed method was applied to the above mentioned bio-oils and their detailed analysis is presented. The different compounds produced and their diverse concentration allows for an elucidation of the pyrolysis mechanism and highlight the effect of the catalyst. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High spatial resolution quantitative imaging by cross-calibration using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Synchrotron micro-X-ray Fluorescence technique.

    PubMed

    Wang, Hao A O; Grolimund, Daniel; Van Loon, Luc R; Barmettler, Kurt D; Borca, Camelia N; Aeschlimann, Beat; Günther, Detlef

    2012-01-01

    High spatial resolution, quantitative chemical imaging is of importance to various scientific communities, however high spatial resolution and robust quantification are not trivial to attain at the same time. In order to achieve microscopic chemical imaging with enhanced quantification capabilities, the current study links the independent and complementary advantages of two micro-analytical techniques - Synchrotron Radiation-based micro X-ray Fluorescence (SR-microXRF) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). A cross-calibration approach is established between these two techniques and validated by one experimental demonstration. In the presented test case, the diffusion pattern of trace level Cs migrating into a heterogeneous geological medium is imaged quantitatively with high spatial resolution. The one-dimensional line scans and the two-dimensional chemical images reveal two distinct types of geochemical domains: calcium carbonate rich domains and clay rich domains. During the diffusion, Cs shows a much higher interfacial reactivity within the clay rich domain, and turns out to be nearly non-reactive in the calcium carbonate domains. Such information obtained on the micrometer scale improves our chemical knowledge concerning reactive solute transport mechanism in heterogeneous media. Related to the chosen demonstration study, the outcome of the quantitative, microscopic chemical imaging contributes to a refined safety assessment of potential host rock materials for deep-geological nuclear waste storage repositories.

  4. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Le, Anthony; Ng, Angelina; Kwan, Tony; Cusmano-Ozog, Kristina; Cowan, Tina M

    2014-01-01

    The quantitation of free amino acids from physiologic samples is essential for diagnosing and monitoring patients with inherited metabolic disorders. Current methods are hindered by long preparative and/or analysis times, expensive reagents, and often suboptimal performance characteristics. To overcome these challenges, a improved method for amino acid analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated. Samples were deproteinized with sulfosalicylic acid and supernatants diluted with tridecafluoroheptanoic acid. Chromatographic separation of amino acids occurred using two columns, with conditions favoring resolution of isobaric compounds and minimizing ion suppression. Eluted compounds were detected by selective reaction monitoring, and quantitated by relating peak areas of amino acids to externally run standards. Validation studies evaluated linearity, within- and between-run imprecision, lower limits of detection and quantification for 33 amino acids, and correlation with the Biochrom 30 Amino Acid Analyzer. Total run time including re-equilibration was 15min per sample. Within-run precision averaged 2.8% for all compounds, with an average linear correlation coefficient of 0.995. The majority of compounds were reliably quantitated at ≤0.1μM. Between-run precision averaged 4.0%. Results showed excellent correlation with the Biochrom 30 amino acid analyzer with an average overall correlation of 0.908. We conclude that our method is extremely sensitive, specific and reproducible and represents an improvement over other currently available technologies.

  5. Qualitative and quantitative end-group analysis of a small molecular weight polyester by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Laine, O; Osterholm, H; Järvinen, H; Wickström, K; Vainiotalo, P

    2000-01-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for qualitative and quantitative end-group analysis of a small molecular weight polyester, poly(2-butyl-2-ethyl-1,3-propylene phthalate). The presence of carboxyl-terminated linear and cyclic polyester oligomers was confirmed with the help of simple sample preparation methods. The presence of carboxyl end-groups in the polyester chains was verified through their formation of carboxylate salts with alkali metal cations. Cyclic oligomers were identified through deuterium exchange of the exchangeable protons of the polyester. Various inorganic salts were tested for salt formation of the carboxyl end-groups, but only the alkali metal salts proved effective. The influence of the alkali metal salts on the results of the quantitative end-group analysis was also studied. The relative amounts of differently terminated and cyclic oligomers were calculated when the alkali metal salts were used with different matrices. The results showed that both the salts and the matrices used in sample preparation can have a marked effect on the quantitative results of the end-group analysis. The measurements were carried out using 2,5-dihydroxybenzoic acid (DHB), 1,8, 9-trihydroxyanthracene (dithranol), and 2-(4-hydroxyphenylazo)benzoic acid (HABA) as matrix compounds. Dithranol and HABA repeatably exhibited similar results, and these results differed from those obtained with DHB probably because of the different ionization mechanisms in the MALDI process. Copyright 2000 John Wiley & Sons, Ltd.

  6. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantitation of Microcystins in Blue-Green Algal Dietary Supplements.

    PubMed

    Parker, Christine H; Stutts, Whitney L; DeGrasse, Stacey L

    2015-12-02

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous detection and quantitation of seven microcystin congeners (1-7) and nodularin-R (8) in blue-green algal dietary supplements. Single-laboratory method validation data were collected in four supplement matrices (capsule, liquid, powder, and tablet) fortified at toxin concentrations from 0.25-2.00 μg/g (ppm). Average recoveries and relative standard deviations (RSD) using matrix-corrected solvent calibration curves were 101% (6% RSD) for all congeners and supplements investigated. Limits of detection (0.006-0.028 μg/g) and quantitation (0.018-0.084 μg/g) were sufficient to confirm the presence of microcystin contamination at the Oregon-mandated guidance concentration of 1.0 μg of microcystin-LReq/g. Quantitated concentrations of microcystin contamination in market-available Aphanizomenon flos-aquae blue-green algal supplements ranged from 0.18-1.87 μg of microcystin-LReq/g for detected congeners microcystin-LR, microcystin-LA, and microcystin-LY (3-5). Microcystin-RR, -YR, -LW, and -LF and nodularin-R (1, 2, and 6-8) were not detected in the supplements examined.

  7. Combination of quantitative analysis and chemometric analysis for the quality evaluation of three different frankincenses by ultra high performance liquid chromatography and quadrupole time of flight mass spectrometry.

    PubMed

    Zhang, Chao; Sun, Lei; Tian, Run-tao; Jin, Hong-yu; Ma, Shuang-Cheng; Gu, Bing-ren

    2015-10-01

    Frankincense has gained increasing attention in the pharmaceutical industry because of its pharmacologically active components such as boswellic acids. However, the identity and overall quality evaluation of three different frankincense species in different Pharmacopeias and the literature have less been reported. In this paper, quantitative analysis and chemometric evaluation were established and applied for the quality control of frankincense. Meanwhile, quantitative and chemometric analysis could be conducted under the same analytical conditions. In total 55 samples from four habitats (three species) of frankincense were collected and six boswellic acids were chosen for quantitative analysis. Chemometric analyses such as similarity analysis, hierarchical cluster analysis, and principal component analysis were used to identify frankincense of three species to reveal the correlation between its components and species. In addition, 12 chromatographic peaks have been tentatively identified explored by reference substances and quadrupole time-of-flight mass spectrometry. The results indicated that the total boswellic acid profiles of three species of frankincense are similar and their fingerprints can be used to differentiate between them.

  8. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  9. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  10. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  11. Qualitative and quantitative analysis of polycyclic polyprenylated acylphloroglucinols from Garcinia species using ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Zhou, Yan; Lee, Stephanie; Choi, Franky Fung Kei; Xu, Gang; Liu, Xin; Song, Jing-Zheng; Li, Song-Lin; Qiao, Chun-Feng; Xu, Hong-Xi

    2010-09-23

    Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a group of natural products isolated from different Garcinia species with a wide range of important biological activities. In this study, an ultra performance liquid chromatography (UPLC) coupled to photodiode-array detection and quadrupole time-of-flight mass spectrometry (Q-TOF) method was developed to characterize 16 PPAPs in 10 Garcinia species. In source dissociation techniques based on cone voltage fragmentation were used to fragment the deprotonated molecules and multiple mass spectrometry (MS/MS) using ramping collision energy were used to further break down the resulting product ions. The resulting characteristic fragment ions were generated by cleavage of C1-C5 bond and C7-C8 bond through concerted pericyclic reaction, which is especially valuable for differentiating three types of PPAPs isomers. As such, two new PPAPs isomers present in minor amount in the extracts of Garcinia oblongifolia were tentatively characterized by comparing their tandem mass spectra to the known ones. In addition, an UPLC-Q-TOF-MS method was validated for the quantitative determination of PPAPs. The method exhibited limits of detection from 2.7 to 21.4 ng mL(-1) and intra-day and inter-day variations were less than 3.7% and the recovery was in the range of 89-107% with RSD less than 9.0%. This UPLC-Q-TOF-MS method has successfully been applied to quantify 16 PPAPs in 32 samples of 10 Garcinia species, which were found to be a rich source of PPAPs.

  12. Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction liquid chromatography coupled to electrospray ionization high resolution mass spectrometry.

    PubMed

    Triebl, Alexander; Trötzmüller, Martin; Eberl, Anita; Hanel, Pia; Hartler, Jürgen; Köfeler, Harald C

    2014-06-20

    A method for a highly selective and sensitive identification and quantitation of lysophosphatidic acid (LPA) and phosphatidic acid (PA) molecular species was developed using hydrophilic interaction liquid chromatography (HILIC) followed by negative-ion electrospray ionization high resolution mass spectrometry. Different extraction methods for the polar LPA and PA species were compared and a modified Bligh & Dyer extraction by addition of 0.1M hydrochloric acid resulted in a ≈1.2-fold increase of recovery for the 7 PA and a more than 15-fold increase for the 6 LPA molecular species of a commercially available natural mix compared to conventional Bligh & Dyer extraction. This modified Bligh & Dyer extraction did not show any artifacts resulting from hydrolysis of natural abundant phospholipids. The developed HILIC method is able to separate all PA and LPA species from major polar membrane lipid classes which might have suppressive effects on the minor abundant lipid classes of interest. The elemental compositions of intact lipid species are provided by the high mass resolution of 100,000 and high mass accuracy below 3ppm of the Orbitrap instrument. Additionally, tandem mass spectra were generated in a parallel data dependent acquisition mode in the linear ion trap to provide structural information at molecular level. Limits of quantitation were identified at 45fmol on column and the dynamic range reaches 20pmol on column, covering the range of natural abundance well. By applying the developed method to mouse brain it can be shown that phosphatidic acid contains less unsaturated fatty acids with PA 34:1 and PA 36:1 as the major species. In contrast, for LPA species a high content of polyunsaturated fatty acids (LPA 20:4 and LPA 22:6) was quantified. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry.

    PubMed

    Lin, Yongfeng; Liu, Runzeng; Hu, Fanbao; Liu, Ruirui; Ruan, Ting; Jiang, Guibin

    2016-02-26

    In this study, a robust method for quick screening, confirmation and quantification analysis of eight fluoroalkyl sulfonates in surface riverine samples was developed using ultra-high performance liquid chromatography-high resolution mass spectrometer (LC-Orbitrap Tribrid HRMS). Weak anion exchange solid phase extraction was optimized to maximum recover perfluoroalkyl sulfonates (PFSAs), fluorotelomer sulfonates and the emerging 6:2 chlorinated polyfluoroalkyl ether sulfonate at the same time. Both qualitative and quantitative purposes could be achieved by simultaneous acquiring full-scan mass spectrum (MS(1)) and data-dependent MS(2) data. The LC-Orbitrap Tribrid HRMS method showed competent method detection limits for all analytes (7.1-62 pg/L) compared with the triple quadrupole mass spectrometry (LC-MS/MS) quantification method (12-54 pg/L), and satisfactory method validation results were also obtained in linearity (R(2)>0.999), trueness (88-118%), precision (2-17%) and recovery (63-103%). A good correlation (R>0.999) was found between the sets of quantified PFSA residue concentrations in thirteen estuary river samples by both the LC-Orbitrap Tribrid HRMS (0.2-440 ng/L) and LC-MS/MS (0.1-424 ng/L) methods, indicating that Orbitrap Tribrid HRMS could be used for reliable quantitative analysis purpose. Moreover, the LC-Orbitrap Tribrid HRMS method could also benefit from its high mass resolution characteristic to eliminate potential environment interferents (e.g., taurodeoxycholate) and to quantify all PFSA isomers based on full-scan MS(1) chromatogram at a narrow MS window (5 part per million). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mass spectrometry guided structural biology.

    PubMed

    Liko, Idlir; Allison, Timothy M; Hopper, Jonathan Ts; Robinson, Carol V

    2016-10-01

    With the convergence of breakthroughs in structural biology, specifically breaking the resolution barriers in cryo-electron microscopy and with continuing developments in crystallography, novel interfaces with other biophysical methods are emerging. Here we consider how mass spectrometry can inform these techniques by providing unambiguous definition of subunit stoichiometry. Moreover recent developments that increase mass spectral resolution enable molecular details to be ascribed to unassigned density within high-resolution maps of membrane and soluble protein complexes. Importantly we also show how developments in mass spectrometry can define optimal solution conditions to guide downstream structure determination, particularly of challenging biomolecules that refuse to crystallise.

  15. Qualitative screening of 116 veterinary drugs in feed by liquid chromatography-high resolution mass spectrometry: potential application to quantitative analysis.

    PubMed

    Boix, Clara; Ibáñez, María; Sancho, Juan V; León, Nuria; Yusá, Vicent; Hernández, Félix

    2014-10-01

    Veterinarian and human pharmaceuticals may be intentionally added to animal feed to enhance animal production. Monitoring these substances is necessary for protecting the consumers. In this work, a screening method covering 116 human and veterinary drugs has been developed and validated in five types of animal feed at 0.02 and 0.2 mg kg(-1). After a simple extraction and dilution, the samples were analysed by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Nearly all compounds tested were detected at 0.02 mg kg(-1), based on the presence of the accurate-mass (de)protonated molecule. However, the identification using a second accurate-mass ion was more problematic at this level. Finally, the procedure was applied to 22 feed samples, where trimethoprim, robenidine, or α- and β-nandrolone were detected and identified. The potential applicability of the method to quantitative analysis of the compounds detected in the samples was