Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared
ERIC Educational Resources Information Center
von Helversen, Bettina; Rieskamp, Jorg
2009-01-01
The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the…
Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K
2009-07-01
Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.
Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast
Pang, Wei; Coghill, George M.
2015-01-01
In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377
A quantitative risk-based model for reasoning over critical system properties
NASA Technical Reports Server (NTRS)
Feather, M. S.
2002-01-01
This position paper suggests the use of a quantitative risk-based model to help support reeasoning and decision making that spans many of the critical properties such as security, safety, survivability, fault tolerance, and real-time.
ERIC Educational Resources Information Center
Lee, Young-Jin
2017-01-01
Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…
Pargett, Michael; Umulis, David M
2013-07-15
Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.
Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.
Pang, Wei; Coghill, George M
2015-05-01
In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Impact of implementation choices on quantitative predictions of cell-based computational models
NASA Astrophysics Data System (ADS)
Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.
2017-09-01
'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.
Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li
2013-01-21
A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.
Model-Based Linkage Analysis of a Quantitative Trait.
Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H
2017-01-01
Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin
2016-03-01
How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.
Linking agent-based models and stochastic models of financial markets
Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H. Eugene
2012-01-01
It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that “fat” tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting. PMID:22586086
Linking agent-based models and stochastic models of financial markets.
Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H Eugene
2012-05-29
It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that "fat" tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting.
A Statistical Framework for Protein Quantitation in Bottom-Up MS-Based Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas
2009-08-15
Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate themore » methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the opensource proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.« less
NASA Astrophysics Data System (ADS)
Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.
2014-03-01
In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.
Asynchronous adaptive time step in quantitative cellular automata modeling
Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan
2004-01-01
Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901
QUANTITATIVE PROCEDURES FOR NEUROTOXICOLOGY RISK ASSESSMENT
In this project, previously published information on biologically based dose-response model for brain development was used to quantitatively evaluate critical neurodevelopmental processes, and to assess potential chemical impacts on early brain development. This model has been ex...
Modeling with Young Students--Quantitative and Qualitative.
ERIC Educational Resources Information Center
Bliss, Joan; Ogborn, Jon; Boohan, Richard; Brosnan, Tim; Mellar, Harvey; Sakonidis, Babis
1999-01-01
A project created tasks and tools to investigate quality and nature of 11- to 14-year-old pupils' reasoning with quantitative and qualitative computer-based modeling tools. Tasks and tools were used in two innovative modes of learning: expressive, where pupils created their own models, and exploratory, where pupils investigated an expert's model.…
Code of Federal Regulations, 2014 CFR
2014-07-01
... PM2.5 violations”) must be based on quantitative analysis using the applicable air quality models... either: (i) Quantitative methods that represent reasonable and common professional practice; or (ii) A...) The hot-spot demonstration required by § 93.116 must be based on quantitative analysis methods for the...
A Quantitative Cost Effectiveness Model for Web-Supported Academic Instruction
ERIC Educational Resources Information Center
Cohen, Anat; Nachmias, Rafi
2006-01-01
This paper describes a quantitative cost effectiveness model for Web-supported academic instruction. The model was designed for Web-supported instruction (rather than distance learning only) characterizing most of the traditional higher education institutions. It is based on empirical data (Web logs) of students' and instructors' usage…
Wignall, Jessica A; Muratov, Eugene; Sedykh, Alexander; Guyton, Kathryn Z; Tropsha, Alexander; Rusyn, Ivan; Chiu, Weihsueh A
2018-05-01
Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data. As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models. We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays. QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q 2 of 0.25-0.45, mean model errors of 0.70-1.11 log 10 units, and applicability domains covering >80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue.org. An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals. https://doi.org/10.1289/EHP2998.
Modeling noisy resonant system response
NASA Astrophysics Data System (ADS)
Weber, Patrick Thomas; Walrath, David Edwin
2017-02-01
In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.
2017-12-01
Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.
Chen, Ran; Zhang, Yuntao; Sahneh, Faryad Darabi; Scoglio, Caterina M; Wohlleben, Wendel; Haase, Andrea; Monteiro-Riviere, Nancy A; Riviere, Jim E
2014-09-23
Quantitative characterization of nanoparticle interactions with their surrounding environment is vital for safe nanotechnological development and standardization. A recent quantitative measure, the biological surface adsorption index (BSAI), has demonstrated promising applications in nanomaterial surface characterization and biological/environmental prediction. This paper further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors, enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model, and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1976-01-01
A hydrologic planning model is developed based on remotely sensed inputs. Data from LANDSAT 1 are used to supply the model's quantitative parameters and coefficients. The use of LANDSAT data as information input to all categories of hydrologic models requiring quantitative surface parameters for their effects functioning is also investigated.
Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul
2017-02-01
Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2017-05-01
A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.
Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2017-05-07
A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.
Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...
Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...
NASA Astrophysics Data System (ADS)
Qiu, Zeyang; Liang, Wei; Wang, Xue; Lin, Yang; Zhang, Meng
2017-05-01
As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor.
A statistical framework for protein quantitation in bottom-up MS-based proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas
2009-08-15
ABSTRACT Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and confidence measures. Challenges include the presence of low-quality or incorrectly identified peptides and widespread, informative, missing data. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model for protein abundance in terms of peptide peak intensities, applicable to both label-based and label-free quantitation experiments. The model allows for both random and censoring missingness mechanisms and provides naturally for protein-level estimates and confidence measures. The model is also used to derive automated filtering and imputation routines. Three LC-MS datasets are used tomore » illustrate the methods. Availability: The software has been made available in the open-source proteomics platform DAnTE (Polpitiya et al. (2008)) (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu« less
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Samaniego, Luis; Mai, Juliane; Kumar, Rohini; Thober, Stephan; Zink, Matthias; Schäfer, David; Savenije, Hubert H. G.; Hrachowitz, Markus
2016-03-01
Heterogeneity of landscape features like terrain, soil, and vegetation properties affects the partitioning of water and energy. However, it remains unclear to what extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated into the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge-based model constraints reduces model uncertainty, and whether (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge-based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as an overall measure of model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 %, respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. In addition, it was shown that suitable semi-quantitative prior constraints in combination with the transfer-function-based regularization approach of mHM can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
USDA-ARS?s Scientific Manuscript database
Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and human health effect...
Quantitative self-assembly prediction yields targeted nanomedicines
NASA Astrophysics Data System (ADS)
Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.
2018-02-01
Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.
An evidential reasoning extension to quantitative model-based failure diagnosis
NASA Technical Reports Server (NTRS)
Gertler, Janos J.; Anderson, Kenneth C.
1992-01-01
The detection and diagnosis of failures in physical systems characterized by continuous-time operation are studied. A quantitative diagnostic methodology has been developed that utilizes the mathematical model of the physical system. On the basis of the latter, diagnostic models are derived each of which comprises a set of orthogonal parity equations. To improve the robustness of the algorithm, several models may be used in parallel, providing potentially incomplete and/or conflicting inferences. Dempster's rule of combination is used to integrate evidence from the different models. The basic probability measures are assigned utilizing quantitative information extracted from the mathematical model and from online computation performed therewith.
Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology
A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...
ERIC Educational Resources Information Center
Zhang, Jiabei
2011-01-01
The purpose of this study was to analyze quantitative needs for more adapted physical education (APE) teachers based on both market- and prevalence-based models. The market-based need for more APE teachers was examined based on APE teacher positions funded, while the prevalence-based need for additional APE teachers was analyzed based on students…
Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram
2008-04-01
A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.
Jin, Yan; Huang, Jing-feng; Peng, Dai-liang
2009-01-01
Ecological compensation is becoming one of key and multidiscipline issues in the field of resources and environmental management. Considering the change relation between gross domestic product (GDP) and ecological capital (EC) based on remote sensing estimation, we construct a new quantitative estimate model for ecological compensation, using county as study unit, and determine standard value so as to evaluate ecological compensation from 2001 to 2004 in Zhejiang Province, China. Spatial differences of the ecological compensation were significant among all the counties or districts. This model fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors. PMID:19353749
Jin, Yan; Huang, Jing-feng; Peng, Dai-liang
2009-04-01
Ecological compensation is becoming one of key and multidiscipline issues in the field of resources and environmental management. Considering the change relation between gross domestic product (GDP) and ecological capital (EC) based on remote sensing estimation, we construct a new quantitative estimate model for ecological compensation, using county as study unit, and determine standard value so as to evaluate ecological compensation from 2001 to 2004 in Zhejiang Province, China. Spatial differences of the ecological compensation were significant among all the counties or districts. This model fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors.
Deployment of e-health services - a business model engineering strategy.
Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R
2010-01-01
We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.
NASA Astrophysics Data System (ADS)
Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert
2015-08-01
Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.
Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S
2016-06-01
Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34) of patients with peripheral-zone and whole-gland models, respectively, compared with ADC alone. Model-based CBS maps for cancer detection showed improved visualization of cancer location and extent. Conclusion Quantitative multiparametric MR imaging models developed by using coregistered correlative histopathologic data yielded a voxel-wise CBS that outperformed single quantitative MR imaging parameters for detection of prostate cancer, especially when the models were assessed at the individual level. (©) RSNA, 2016 Online supplemental material is available for this article.
Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.
Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L
2017-10-01
The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Y; Mao, J; Lin, J; Yu, H; Peters, S; Shebley, M
2016-01-01
This subteam under the Drug Metabolism Leadership Group (Innovation and Quality Consortium) investigated the quantitative role of circulating inhibitory metabolites in drug–drug interactions using physiologically based pharmacokinetic (PBPK) modeling. Three drugs with major circulating inhibitory metabolites (amiodarone, gemfibrozil, and sertraline) were systematically evaluated in addition to the literature review of recent examples. The application of PBPK modeling in drug interactions by inhibitory parent–metabolite pairs is described and guidance on strategic application is provided. PMID:27642087
Fielding-Miller, Rebecca; Dunkle, Kristin L; Cooper, Hannah L F; Windle, Michael; Hadley, Craig
2016-01-01
Transactional sex is associated with increased risk of HIV and gender based violence in southern Africa and around the world. However the typical quantitative operationalization, "the exchange of gifts or money for sex," can be at odds with a wide array of relationship types and motivations described in qualitative explorations. To build on the strengths of both qualitative and quantitative research streams, we used cultural consensus models to identify distinct models of transactional sex in Swaziland. The process allowed us to build and validate emic scales of transactional sex, while identifying key informants for qualitative interviews within each model to contextualize women's experiences and risk perceptions. We used logistic and multinomial logistic regression models to measure associations with condom use and social status outcomes. Fieldwork was conducted between November 2013 and December 2014 in the Hhohho and Manzini regions. We identified three distinct models of transactional sex in Swaziland based on 124 Swazi women's emic valuation of what they hoped to receive in exchange for sex with their partners. In a clinic-based survey (n = 406), consensus model scales were more sensitive to condom use than the etic definition. Model consonance had distinct effects on social status for the three different models. Transactional sex is better measured as an emic spectrum of expectations within a relationship, rather than an etic binary relationship type. Cultural consensus models allowed us to blend qualitative and quantitative approaches to create an emicly valid quantitative scale grounded in qualitative context. Copyright © 2015 Elsevier Ltd. All rights reserved.
A quantitative model of optimal data selection in Wason's selection task.
Hattori, Masasi
2002-10-01
The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.
Wu, Zujian; Pang, Wei; Coghill, George M
2015-01-01
Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.
Testing process predictions of models of risky choice: a quantitative model comparison approach
Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard
2013-01-01
This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472
Oxidative DNA damage background estimated by a system model of base excision repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, B A; Wilson, III, D M
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less
Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases
Zhang, Hongpo
2018-01-01
Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on traditional model has low accuracy. The variance of model prediction based on shallow neural network is larger. In this paper, cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It ensures the accuracy of model prediction while guaranteeing stability. Thirty experiments were performed independently on the Statlog (Heart) and Heart Disease Database data sets in the UCI database. Experimental results showed that the mean of prediction accuracy was 91.26% and 89.78%, respectively. The variance of prediction accuracy was 5.78 and 4.46, respectively. PMID:29854369
Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard
2011-01-01
Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method frequently correspond to subregions of visible spots that may represent post-translational modifications or co-migrating proteins that cannot be visually resolved from adjacent, more abundant proteins on the gel image. Thus, it is possible that this image-based approach may actually improve the realized resolution of the gel, revealing differentially expressed proteins that would not have even been detected as spots by modern spot-based analyses.
Conflicts Management Model in School: A Mixed Design Study
ERIC Educational Resources Information Center
Dogan, Soner
2016-01-01
The object of this study is to evaluate the reasons for conflicts occurring in school according to perceptions and views of teachers and resolution strategies used for conflicts and to build a model based on the results obtained. In the research, explanatory design including quantitative and qualitative methods has been used. The quantitative part…
Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative st...
Human judgment vs. quantitative models for the management of ecological resources.
Holden, Matthew H; Ellner, Stephen P
2016-07-01
Despite major advances in quantitative approaches to natural resource management, there has been resistance to using these tools in the actual practice of managing ecological populations. Given a managed system and a set of assumptions, translated into a model, optimization methods can be used to solve for the most cost-effective management actions. However, when the underlying assumptions are not met, such methods can potentially lead to decisions that harm the environment and economy. Managers who develop decisions based on past experience and judgment, without the aid of mathematical models, can potentially learn about the system and develop flexible management strategies. However, these strategies are often based on subjective criteria and equally invalid and often unstated assumptions. Given the drawbacks of both methods, it is unclear whether simple quantitative models improve environmental decision making over expert opinion. In this study, we explore how well students, using their experience and judgment, manage simulated fishery populations in an online computer game and compare their management outcomes to the performance of model-based decisions. We consider harvest decisions generated using four different quantitative models: (1) the model used to produce the simulated population dynamics observed in the game, with the values of all parameters known (as a control), (2) the same model, but with unknown parameter values that must be estimated during the game from observed data, (3) models that are structurally different from those used to simulate the population dynamics, and (4) a model that ignores age structure. Humans on average performed much worse than the models in cases 1-3, but in a small minority of scenarios, models produced worse outcomes than those resulting from students making decisions based on experience and judgment. When the models ignored age structure, they generated poorly performing management decisions, but still outperformed students using experience and judgment 66% of the time. © 2016 by the Ecological Society of America.
The application of time series models to cloud field morphology analysis
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.
1987-01-01
A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.
Monakhova, Yulia B; Mushtakova, Svetlana P
2017-05-01
A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.
A quantitative framework for the forward design of synthetic miRNA circuits.
Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D
2014-11-01
Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.
Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow
NASA Technical Reports Server (NTRS)
Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.
1999-01-01
The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.
NASA Astrophysics Data System (ADS)
Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.
2014-04-01
Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.
NASA Astrophysics Data System (ADS)
Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong
2018-01-01
Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.
Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang
2014-12-01
The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.
Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.
Bedner, Mary; Duewer, David L
2011-08-15
Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.
NASA Astrophysics Data System (ADS)
Nijzink, R. C.; Samaniego, L.; Mai, J.; Kumar, R.; Thober, S.; Zink, M.; Schäfer, D.; Savenije, H. H. G.; Hrachowitz, M.
2015-12-01
Heterogeneity of landscape features like terrain, soil, and vegetation properties affect the partitioning of water and energy. However, it remains unclear to which extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated in the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge based model constraints reduces model uncertainty; and (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both, the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as overall measure for model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 % respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. Besides, it was shown that suitable semi-quantitative prior constraints in combination with the transfer function based regularization approach of mHM, can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P
2017-12-05
The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.
A quantitative quantum chemical model of the Dewar-Knott color rule for cationic diarylmethanes
NASA Astrophysics Data System (ADS)
Olsen, Seth
2012-04-01
We document the quantitative manifestation of the Dewar-Knott color rule in a four-electron, three-orbital state-averaged complete active space self-consistent field (SA-CASSCF) model of a series of bridge-substituted cationic diarylmethanes. We show that the lowest excitation energies calculated using multireference perturbation theory based on the model are linearly correlated with the development of hole density in an orbital localized on the bridge, and the depletion of pair density in the same orbital. We quantitatively express the correlation in the form of a generalized Hammett equation.
Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.
Sammut, Eva C; Villa, Adriana D M; Di Giovine, Gabriella; Dancy, Luke; Bosio, Filippo; Gibbs, Thomas; Jeyabraba, Swarna; Schwenke, Susanne; Williams, Steven E; Marber, Michael; Alfakih, Khaled; Ismail, Tevfik F; Razavi, Reza; Chiribiri, Amedeo
2018-05-01
This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and established risk factors, potentially representing an important step forward in the translation of quantitative CMR perfusion analysis to the clinical setting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Qin, Ting Xin; Huang, Shuai; Wu, Jian Song; Meng, Xin Yan
2018-06-01
Some factors can affect the consequences of oil pipeline accident and their effects should be analyzed to improve emergency preparation and emergency response. Although there are some qualitative analysis models of risk factors' effects, the quantitative analysis model still should be researched. In this study, we introduce a Bayesian network (BN) model of risk factors' effects analysis in an oil pipeline accident case that happened in China. The incident evolution diagram is built to identify the risk factors. And the BN model is built based on the deployment rule for factor nodes in BN and the expert knowledge by Dempster-Shafer evidence theory. Then the probabilities of incident consequences and risk factors' effects can be calculated. The most likely consequences given by this model are consilient with the case. Meanwhile, the quantitative estimations of risk factors' effects may provide a theoretical basis to take optimal risk treatment measures for oil pipeline management, which can be used in emergency preparation and emergency response.
ERIC Educational Resources Information Center
Murphy, Gregory J.
2012-01-01
This quantitative study explores the 2010 recommendation of the Educational Funding Advisory Board to consider the Evidence-Based Adequacy model of school funding in Illinois. This school funding model identifies and costs research based practices necessary in a prototypical school and sets funding levels based upon those practices. This study…
Design-based and model-based inference in surveys of freshwater mollusks
Dorazio, R.M.
1999-01-01
Well-known concepts in statistical inference and sampling theory are used to develop recommendations for planning and analyzing the results of quantitative surveys of freshwater mollusks. Two methods of inference commonly used in survey sampling (design-based and model-based) are described and illustrated using examples relevant in surveys of freshwater mollusks. The particular objectives of a survey and the type of information observed in each unit of sampling can be used to help select the sampling design and the method of inference. For example, the mean density of a sparsely distributed population of mollusks can be estimated with higher precision by using model-based inference or by using design-based inference with adaptive cluster sampling than by using design-based inference with conventional sampling. More experience with quantitative surveys of natural assemblages of freshwater mollusks is needed to determine the actual benefits of different sampling designs and inferential procedures.
Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J
2018-04-03
Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.
A quantitative analysis of the F18 flight control system
NASA Technical Reports Server (NTRS)
Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann
1993-01-01
This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.
NASA Astrophysics Data System (ADS)
Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea
2017-12-01
Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.
NASA Astrophysics Data System (ADS)
Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea
2018-06-01
Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.
Examination of Modeling Languages to Allow Quantitative Analysis for Model-Based Systems Engineering
2014-06-01
x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF ACRONYMS AND ABBREVIATIONS BOM Base Object Model BPMN Business Process Model & Notation DOD...SysML. There are many variants such as the Unified Profile for DODAF/MODAF (UPDM) and Business Process Model & Notation ( BPMN ) that have origins in
Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-09-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2 = 0.9346 for A. niger , R 2 = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.
Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-01-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758
Agent-based modeling as a tool for program design and evaluation.
Lawlor, Jennifer A; McGirr, Sara
2017-12-01
Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mid-Frequency Reverberation Measurements with Full Companion Environmental Support
2014-12-30
acoustic modeling is based on measured stratification and observed wave amplitudes on the New Jersey shelf during the SWARM experiment.3 Ray tracing is...wave model then gives quantitative results for the clutter. 2. Swarm NLIW model and ray tracing Nonlinear internal waves are very common on the...receiver in order to give quantitative clutter to reverberation. To picture the mechanism, a set of rays was launched from a source at range zero and
A Quantitative Geochemical Target for Modeling the Formation of the Earth and Moon
NASA Technical Reports Server (NTRS)
Boyce, Jeremy W.; Barnes, Jessica J.; McCubbin, Francis M.
2017-01-01
The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.
ERIC Educational Resources Information Center
Wolusky, G. Anthony
2016-01-01
This quantitative study used a web-based questionnaire to assess the attitudes and perceptions of online and hybrid faculty towards student-centered asynchronous virtual teamwork (AVT) using the technology acceptance model (TAM) of Davis (1989). AVT is online student participation in a team approach to problem-solving culminating in a written…
Quantitative Evaluation of a Planetary Renderer for Terrain Relative Navigation
NASA Astrophysics Data System (ADS)
Amoroso, E.; Jones, H.; Otten, N.; Wettergreen, D.; Whittaker, W.
2016-11-01
A ray-tracing computer renderer tool is presented based on LOLA and LROC elevation models and is quantitatively compared to LRO WAC and NAC images for photometric accuracy. We investigated using rendered images for terrain relative navigation.
NASA Astrophysics Data System (ADS)
Qi, Pan; Shao, Wenbin; Liao, Shusheng
2016-02-01
For quantitative defects detection research on heat transfer tube in nuclear power plants (NPP), two parts of work are carried out based on the crack as the main research objects. (1) Production optimization of calibration tube. Firstly, ASME, RSEM and homemade crack calibration tubes are applied to quantitatively analyze the defects depth on other designed crack test tubes, and then the judgment with quantitative results under crack calibration tube with more accuracy is given. Base on that, weight analysis of influence factors for crack depth quantitative test such as crack orientation, length, volume and so on can be undertaken, which will optimize manufacture technology of calibration tubes. (2) Quantitative optimization of crack depth. Neural network model with multi-calibration curve adopted to optimize natural crack test depth generated in in-service tubes shows preliminary ability to improve quantitative accuracy.
From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses
Zenker, Sven; Rubin, Jonathan; Clermont, Gilles
2007-01-01
The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses. We outline possible steps toward translating this computational approach to the bedside, to supplement today's evidence-based medicine with a quantitatively founded model-based medicine that integrates mechanistic knowledge with patient-specific information. PMID:17997590
Li, Yuanpeng; Li, Fucui; Yang, Xinhao; Guo, Liu; Huang, Furong; Chen, Zhenqiang; Chen, Xingdan; Zheng, Shifu
2018-08-05
A rapid quantitative analysis model for determining the glycated albumin (GA) content based on Attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy (FTIR) combining with linear SiPLS and nonlinear SVM has been developed. Firstly, the real GA content in human serum was determined by GA enzymatic method, meanwhile, the ATR-FTIR spectra of serum samples from the population of health examination were obtained. The spectral data of the whole spectra mid-infrared region (4000-600 cm -1 ) and GA's characteristic region (1800-800 cm -1 ) were used as the research object of quantitative analysis. Secondly, several preprocessing steps including first derivative, second derivative, variable standardization and spectral normalization, were performed. Lastly, quantitative analysis regression models were established by using SiPLS and SVM respectively. The SiPLS modeling results are as follows: root mean square error of cross validation (RMSECV T ) = 0.523 g/L, calibration coefficient (R C ) = 0.937, Root Mean Square Error of Prediction (RMSEP T ) = 0.787 g/L, and prediction coefficient (R P ) = 0.938. The SVM modeling results are as follows: RMSECV T = 0.0048 g/L, R C = 0.998, RMSEP T = 0.442 g/L, and R p = 0.916. The results indicated that the model performance was improved significantly after preprocessing and optimization of characteristic regions. While modeling performance of nonlinear SVM was considerably better than that of linear SiPLS. Hence, the quantitative analysis model for GA in human serum based on ATR-FTIR combined with SiPLS and SVM is effective. And it does not need sample preprocessing while being characterized by simple operations and high time efficiency, providing a rapid and accurate method for GA content determination. Copyright © 2018 Elsevier B.V. All rights reserved.
Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg
2017-09-18
Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.
Nie, Quandeng; Xu, Xiaoyi; Zhang, Qi; Ma, Yuying; Yin, Zheng; Shang, Luqing
2018-06-07
A three-dimensional quantitative structure-activity relationships model of enterovirus A71 3C protease inhibitors was constructed in this study. The protein-ligand interaction fingerprint was analyzed to generate a pharmacophore model. A predictive and reliable three-dimensional quantitative structure-activity relationships model was built based on the Flexible Alignment of AutoGPA. Moreover, three novel compounds (I-III) were designed and evaluated for their biochemical activity against 3C protease and anti-enterovirus A71 activity in vitro. III exhibited excellent inhibitory activity (IC 50 =0.031 ± 0.005 μM, EC 50 =0.036 ± 0.007 μM). Thus, this study provides a useful quantitative structure-activity relationships model to develop potent inhibitors for enterovirus A71 3C protease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Using enterprise architecture to analyse how organisational structure impact motivation and learning
NASA Astrophysics Data System (ADS)
Närman, Pia; Johnson, Pontus; Gingnell, Liv
2016-06-01
When technology, environment, or strategies change, organisations need to adjust their structures accordingly. These structural changes do not always enhance the organisational performance as intended partly because organisational developers do not understand the consequences of structural changes in performance. This article presents a model-based analysis framework for quantitative analysis of the effect of organisational structure on organisation performance in terms of employee motivation and learning. The model is based on Mintzberg's work on organisational structure. The quantitative analysis is formalised using the Object Constraint Language (OCL) and the Unified Modelling Language (UML) and implemented in an enterprise architecture tool.
Li, Chen; Nagasaki, Masao; Ueno, Kazuko; Miyano, Satoru
2009-04-27
Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules - Rule I and Rule II - to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested. The quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Dwyer, John L.
1993-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.
Weldon, Steve M.; Matera, Damian; Lee, ChungWein; Yang, Haichun; Fryer, Ryan M.; Fogo, Agnes B.; Reinhart, Glenn A.
2016-01-01
Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model. To validate the specificity of SHG for detecting fibrillar collagen components in IF, co-localization studies for collagens type I, III, and IV were performed using IHC. In addition, we examined the correlation, dynamic range, sensitivity, and ability of polarized SRM and SHG-based morphometry to detect an anti-fibrotic effect of three different treatment regimens. Comparisons were made across three separate studies in which animals were treated with three mechanistically distinct pharmacologic agents: enalapril (ENA, 15, 30, 60 mg/kg), mycophenolate mofetil (MMF, 2, 20 mg/kg) or the connective tissue growth factor (CTGF) neutralizing antibody, EX75606 (1, 3, 10 mg/kg). Our results demonstrate a strong co-localization of the SHG signal with fibrillar collagens I and III but not non-fibrillar collagen IV. Quantitative IF, calculated as percent cortical area of fibrosis, demonstrated similar response profile for both polarized SRM and SHG-based morphometry. The two methodologies exhibited a strong correlation across all three pharmacology studies (r2 = 0.89–0.96). However, compared with polarized SRM, SHG-based morphometry delivered a greater dynamic range and absolute magnitude of reduction of IF after treatment. In summary, we demonstrate that SHG-based morphometry in unstained kidney tissues is comparable to polarized SRM for quantitation of fibrillar collagens, but with an enhanced sensitivity to detect treatment-induced reductions in IF. Thus, performing SHG-based morphometry on unstained kidney tissue is a reliable alternative to traditional polarized SRM for quantitative analysis of IF. PMID:27257917
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby
2017-01-01
Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.
Explanation Constraint Programming for Model-based Diagnosis of Engineered Systems
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Brownston, Lee; Burrows, Daniel
2004-01-01
We can expect to see an increase in the deployment of unmanned air and land vehicles for autonomous exploration of space. In order to maintain autonomous control of such systems, it is essential to track the current state of the system. When the system includes safety-critical components, failures or faults in the system must be diagnosed as quickly as possible, and their effects compensated for so that control and safety are maintained under a variety of fault conditions. The Livingstone fault diagnosis and recovery kernel and its temporal extension L2 are examples of model-based reasoning engines for health management. Livingstone has been shown to be effective, it is in demand, and it is being further developed. It was part of the successful Remote Agent demonstration on Deep Space One in 1999. It has been and is being utilized by several projects involving groups from various NASA centers, including the In Situ Propellant Production (ISPP) simulation at Kennedy Space Center, the X-34 and X-37 experimental reusable launch vehicle missions, Techsat-21, and advanced life support projects. Model-based and consistency-based diagnostic systems like Livingstone work only with discrete and finite domain models. When quantitative and continuous behaviors are involved, these are abstracted to discrete form using some mapping. This mapping from the quantitative domain to the qualitative domain is sometimes very involved and requires the design of highly sophisticated and complex monitors. We propose a diagnostic methodology that deals directly with quantitative models and behaviors, thereby mitigating the need for these sophisticated mappings. Our work brings together ideas from model-based diagnosis systems like Livingstone and concurrent constraint programming concepts. The system uses explanations derived from the propagation of quantitative constraints to generate conflicts. Fast conflict generation algorithms are used to generate and maintain multiple candidates whose consistency can be tracked across multiple time steps.
Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S
2015-11-13
The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science. Copyright © 2015 Elsevier B.V. All rights reserved.
Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He
2017-07-01
This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (P<0.01), and the intensity of blood activating biopotency was significantly correlated with the content of free anthraquinone (P<0.01). In summary, the combined use of multi-component simultaneous quantitative analysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.
Newman, M C; McCloskey, J T; Tatara, C P
1998-01-01
Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900
NASA Astrophysics Data System (ADS)
Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.
2009-11-01
Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.
Rainbow trout-based assays for estrogenicity are currently being used for development of predictive models based upon quantitative structure activity relationships. A predictive model based on a single species raises the question of whether this information is valid for other spe...
Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro
2017-01-01
In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software “Kongoh” for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1–4 persons’ contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI’s contribution in true contributors and non-contributors by using 2–4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI’s contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples. PMID:29149210
Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro; Tamaki, Keiji
2017-01-01
In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software "Kongoh" for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1-4 persons' contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI's contribution in true contributors and non-contributors by using 2-4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI's contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples.
PHYSIOLOCIGALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT
PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING AND MODE OF ACTION IN DOSE-RESPONSE ASSESSMENT. Barton HA. Experimental Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA
Dose-response analysis requires quantitatively linking infor...
NASA Astrophysics Data System (ADS)
Bosca, Ryan J.; Jackson, Edward F.
2016-01-01
Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
Rakvongthai, Yothin; El Fakhri, Georges
2017-07-01
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrated urban systems model with multiple transportation supply agents.
DOT National Transportation Integrated Search
2012-10-01
This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...
Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun
2011-08-22
Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.
Lehnert, Teresa; Figge, Marc Thilo
2017-01-01
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.
Lehnert, Teresa; Figge, Marc Thilo
2017-01-01
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071
Quantitative methods to direct exploration based on hydrogeologic information
Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.
2006-01-01
Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.
Preschool Teachers' Views about Classroom Management Models
ERIC Educational Resources Information Center
Sahin-Sak, Ikbal Tuba; Sak, Ramazan; Tezel-Sahin, Fatma
2018-01-01
This survey-based quantitative study investigates 310 Turkish preschool teachers' views about classroom management, using the following six models of disciplinary strategy: behavioral change theory, Dreikurs' social discipline model, Canter's assertive discipline model, the Glasser model of discipline, Kounin's model, and Gordon's teacher…
Quantitative Prediction of Systemic Toxicity Points of Departure (OpenTox USA 2017)
Human health risk assessment associated with environmental chemical exposure is limited by the tens of thousands of chemicals little or no experimental in vivo toxicity data. Data gap filling techniques, such as quantitative models based on chemical structure information, are c...
Woskie, Susan R; Bello, Dhimiter; Gore, Rebecca J; Stowe, Meredith H; Eisen, Ellen A; Liu, Youcheng; Sparer, Judy A; Redlich, Carrie A; Cullen, Mark R
2008-09-01
Because many occupational epidemiologic studies use exposure surrogates rather than quantitative exposure metrics, the UMass Lowell and Yale study of autobody shop workers provided an opportunity to evaluate the relative utility of surrogates and quantitative exposure metrics in an exposure response analysis of cross-week change in respiratory function. A task-based exposure assessment was used to develop several metrics of inhalation exposure to isocyanates. The metrics included the surrogates, job title, counts of spray painting events during the day, counts of spray and bystander exposure events, and a quantitative exposure metric that incorporated exposure determinant models based on task sampling and a personal workplace protection factor for respirator use, combined with a daily task checklist. The result of the quantitative exposure algorithm was an estimate of the daily time-weighted average respirator-corrected total NCO exposure (microg/m(3)). In general, these four metrics were found to be variable in agreement using measures such as weighted kappa and Spearman correlation. A logistic model for 10% drop in FEV(1) from Monday morning to Thursday morning was used to evaluate the utility of each exposure metric. The quantitative exposure metric was the most favorable, producing the best model fit, as well as the greatest strength and magnitude of association. This finding supports the reports of others that reducing exposure misclassification can improve risk estimates that otherwise would be biased toward the null. Although detailed and quantitative exposure assessment can be more time consuming and costly, it can improve exposure-disease evaluations and is more useful for risk assessment purposes. The task-based exposure modeling method successfully produced estimates of daily time-weighted average exposures in the complex and changing autobody shop work environment. The ambient TWA exposures of all of the office workers and technicians and 57% of the painters were found to be below the current U.K. Health and Safety Executive occupational exposure limit (OEL) for total NCO of 20 microg/m(3). When respirator use was incorporated, all personal daily exposures were below the U.K. OEL.
Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches.
Arazi, Arnon; Pendergraft, William F; Ribeiro, Ruy M; Perelson, Alan S; Hacohen, Nir
2013-10-31
Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
2015-12-07
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
Physiologically based pharmacokinetic (PBPK) modeling considering methylated trivalent arsenicals
PBPK modeling provides a quantitative biologically-based framework to integrate diverse types of information for application to risk analysis. For example, genetic polymorphisms in arsenic metabolizing enzymes (AS3MT) can lead to differences in target tissue dosimetry for key tri...
Agent-Based Computational Modeling to Examine How Individual Cell Morphology Affects Dosimetry
Cell-based models utilizing high-content screening (HCS) data have applications for predictive toxicology. Evaluating concentration-dependent effects on cell fate and state response is a fundamental utilization of HCS data.Although HCS assays may capture quantitative readouts at ...
In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.
Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie
2010-06-07
Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Evaluation of the capabilities of satellite imagery for monitoring regional air pollution episodes
NASA Technical Reports Server (NTRS)
Barnes, J. C.; Bowley, C. J.; Burke, H. H. K.
1979-01-01
A comparative analysis of satellite visible channel imagery and ground based aerosol measurements is carried out for three cases representing a significant pollution episodes based on low surface visibility and high sulfate levels. The feasibility of detecting pollution episodes from space is also investigated using a simulation model. The model results are compared to quantitative information derived from digitized satellite data. The results show that when levels are or = 30 micrograms/cu, a haze pattern that correlates closely with the area of reported low surface visibilities and high micrograms sulfate levels can be detected in satellite visible channel imagery. The model simulation demonstrates the potential of the satellite to monitor the magnitude and areal extent of pollution episodes. Quantitative information on total aerosol amount derived from the satellite digitized data using the atmospheric radiative transfer model agrees well with the results obtained from the ground based measurements.
1993-01-01
animals in toxicology research, the application of pharmacokinetics and physiologically based pharmacokinetic mdels in chemical risk assessment, selected...metaplasia Neurotoxicity Nonmutagenic carcinogens Ozone P450 PBPK modeling Perfluorohexane Peroxisome proliferators Pharmacokinetics Pharmacokinetic models...Physiological modeling Physiologically based pharmacokinetic modeling Polycyclic organic matter Quantitative risk assessment RAIRM model Rats
20180312 - Structure-based QSAR Models to Predict Systemic Toxicity Points of Departure (SOT)
Human health risk assessment associated with environmental chemical exposure is limited by the tens of thousands of chemicals with little or no experimental in vivo toxicity data. Data gap filling techniques, such as quantitative structure activity relationship (QSAR) models base...
Quantitative biologically-based models describing key events in the continuum from arsenic exposure to the development of adverse health effects provide a framework to integrate information obtained across diverse research areas. For example, genetic polymorphisms in arsenic met...
Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.
Vakanski, Aleksandar; Ferguson, Jake M; Lee, Stephen
2017-06-01
The article proposes a set of metrics for evaluation of patient performance in physical therapy exercises. Taxonomy is employed that classifies the metrics into quantitative and qualitative categories, based on the level of abstraction of the captured motion sequences. Further, the quantitative metrics are classified into model-less and model-based metrics, in reference to whether the evaluation employs the raw measurements of patient performed motions, or whether the evaluation is based on a mathematical model of the motions. The reviewed metrics include root-mean square distance, Kullback Leibler divergence, log-likelihood, heuristic consistency, Fugl-Meyer Assessment, and similar. The metrics are evaluated for a set of five human motions captured with a Kinect sensor. The metrics can potentially be integrated into a system that employs machine learning for modelling and assessment of the consistency of patient performance in home-based therapy setting. Automated performance evaluation can overcome the inherent subjectivity in human performed therapy assessment, and it can increase the adherence to prescribed therapy plans, and reduce healthcare costs.
Zanotti, Simona; Mora, Marina
2018-01-01
An in vitro model of muscle fibrosis, based on the use of primary human fibroblasts isolated from muscle biopsies of patients affected by Duchenne muscular dystrophies (DMD) and cultivated in monolayer and 3D conditions, is used to test the potential antifibrotic activity of pirfenidone (PFD). This in vitro model may be usefully also to evaluate the toxicity and efficacy of other candidate molecules for the treatment of fibrosis. The drug toxicity is evaluated using a colorimetric assay based on the conversion of tetrazolium salt (MTT) to insoluble formazan, while the effect of the drug on cell proliferation is measured with the bromodeoxyuridine incorporation assay. The efficacy of the drug is evaluated in fibroblast monolayers by quantitating synthesis and deposition of intracellular collagen with a spectrophotometric picrosirius red-based assay, and by quantitating cell migration using a "scratch" assay. The efficacy of PFD as antifibrotic drug is also evaluated in a 3D fibroblast model by measuring diameters and number of nodules.
SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens.
Peters, Susan; Vermeulen, Roel; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans
2016-08-01
The use of measurement data in occupational exposure assessment allows more quantitative analyses of possible exposure-response relations. We describe a quantitative exposure assessment approach for five lung carcinogens (i.e. asbestos, chromium-VI, nickel, polycyclic aromatic hydrocarbons (by its proxy benzo(a)pyrene (BaP)) and respirable crystalline silica). A quantitative job-exposure matrix (JEM) was developed based on statistical modeling of large quantities of personal measurements. Empirical linear models were developed using personal occupational exposure measurements (n = 102306) from Europe and Canada, as well as auxiliary information like job (industry), year of sampling, region, an a priori exposure rating of each job (none, low, and high exposed), sampling and analytical methods, and sampling duration. The model outcomes were used to create a JEM with a quantitative estimate of the level of exposure by job, year, and region. Decreasing time trends were observed for all agents between the 1970s and 2009, ranging from -1.2% per year for personal BaP and nickel exposures to -10.7% for asbestos (in the time period before an asbestos ban was implemented). Regional differences in exposure concentrations (adjusted for measured jobs, years of measurement, and sampling method and duration) varied by agent, ranging from a factor 3.3 for chromium-VI up to a factor 10.5 for asbestos. We estimated time-, job-, and region-specific exposure levels for four (asbestos, chromium-VI, nickel, and RCS) out of five considered lung carcinogens. Through statistical modeling of large amounts of personal occupational exposure measurement data we were able to derive a quantitative JEM to be used in community-based studies. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...
2016-12-15
We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less
ERIC Educational Resources Information Center
Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral
2018-01-01
The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…
Virus replication as a phenotypic version of polynucleotide evolution.
Antoneli, Fernando; Bosco, Francisco; Castro, Diogo; Janini, Luiz Mario
2013-04-01
In this paper, we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius et al. (Bull. Math. Biol. 46:239-262, 1985), in their study of polynucleotide evolution. By taking into account beneficial effects, we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model, which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull et al. (J. Virol. 18:2930-2939, 2007), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium", and transient. Finally, based on these quantitative results, we are able to draw some qualitative conclusions.
Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways
Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...
New Statistical Techniques for Evaluating Longitudinal Models.
ERIC Educational Resources Information Center
Murray, James R.; Wiley, David E.
A basic methodological approach in developmental studies is the collection of longitudinal data. Behavioral data cen take at least two forms, qualitative (or discrete) and quantitative. Both types are fallible. Measurement errors can occur in quantitative data and measures of these are based on error variance. Qualitative or discrete data can…
Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni
2009-04-01
c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.
Comparison of Global and Mode of Action-Based Models for Aquatic Toxicity
The ability to estimate aquatic toxicity for a wide variety of chemicals is a critical need for ecological risk assessment and chemical regulation. The consensus in the literature is that mode of action (MOA) based QSAR (Quantitative Structure Activity Relationship) models yield ...
Quantitative biologically-based models describing key events in the continuum from arsenic exposure to the development of adverse health effects provide a framework to integrate information obtained across diverse research areas. For example, genetic polymorphisms in arsenic me...
Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales
Zhang, Yonghe
2010-01-01
Ionocovalency (IC), a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table. PMID:21151444
Elayavilli, Ravikumar Komandur; Liu, Hongfang
2016-01-01
Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological framework. The ICEPO ontology is available for download at http://openbionlp.org/mutd/supplementarydata/ICEPO/ICEPO.owl.
Xu, Y.; Xia, J.; Miller, R.D.
2006-01-01
Multichannel analysis of surface waves is a developing method widely used in shallow subsurface investigations. The field procedures and related parameters are very important for successful applications. Among these parameters, the source-receiver offset range is seldom discussed in theory and normally determined by empirical or semi-quantitative methods in current practice. This paper discusses the problem from a theoretical perspective. A formula for quantitatively evaluating a layered homogenous elastic model was developed. The analytical results based on simple models and experimental data demonstrate that the formula is correct for surface wave surveys for near-surface applications. ?? 2005 Elsevier B.V. All rights reserved.
Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke
2017-04-01
Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.
Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data
McKenzie, D.; Peterson, D.L.; Agee, James K.
2000-01-01
Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of qualitative and quantitative methods when requisite data for fully quantitative models are unavailable. They can be tested by comparing new, independent fire history reconstructions against their predictions and can be continually updated, as better fire history data become available.
Model of Values-Based Management Process in Schools: A Mixed Design Study
ERIC Educational Resources Information Center
Dogan, Soner
2016-01-01
The aim of this paper is to evaluate the school administrators' values-based management behaviours according to the teachers' perceptions and opinions and, accordingly, to build a model of values-based management process in schools. The study was conducted using explanatory design which is inclusive of both quantitative and qualitative methods.…
Suicide in the Media: A Quantitative Review of Studies Based on Nonfictional Stories
ERIC Educational Resources Information Center
Stack, Steven
2005-01-01
Research on the effect of suicide stories in the media on suicide in the real world has been marked by much debate and inconsistent findings. Recent narrative reviews have suggested that research based on nonfictional models is more apt to uncover imitative effects than research based on fictional models. There is, however, substantial variation…
Translational PK/PD of Anti-Infective Therapeutics
Rathi, Chetan; Lee, Richard E.; Meibohm, Bernd
2016-01-01
Translational PK/PD modeling has emerged as a critical technique for quantitative analysis of the relationship between dose, exposure and response of antibiotics. By combining model components for pharmacokinetics, bacterial growth kinetics and concentration-dependent drug effects, these models are able to quantitatively capture and simulate the complex interplay between antibiotic, bacterium and host organism. Fine-tuning of these basic model structures allows to further account for complicating factors such as resistance development, combination therapy, or host responses. With this tool set at hand, mechanism-based PK/PD modeling and simulation allows to develop optimal dosing regimens for novel and established antibiotics for maximum efficacy and minimal resistance development. PMID:27978987
Czochralski crystal growth: Modeling study
NASA Technical Reports Server (NTRS)
Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.
1986-01-01
The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.
Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability
Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...
Wang, Kai; Liu, Menglong; Su, Zhongqing; Yuan, Shenfang; Fan, Zheng
2018-08-01
To characterize fatigue cracks, in the undersized stage in particular, preferably in a quantitative and precise manner, a two-dimensional (2D) analytical model is developed for interpreting the modulation mechanism of a "breathing" crack on guided ultrasonic waves (GUWs). In conjunction with a modal decomposition method and a variational principle-based algorithm, the model is capable of analytically depicting the propagating and evanescent waves induced owing to the interaction of probing GUWs with a "breathing" crack, and further extracting linear and nonlinear wave features (e.g., reflection, transmission, mode conversion and contact acoustic nonlinearity (CAN)). With the model, a quantitative correlation between CAN embodied in acquired GUWs and crack parameters (e.g., location and severity) is obtained, whereby a set of damage indices is proposed via which the severity of the crack can be evaluated quantitatively. The evaluation, in principle, does not entail a benchmarking process against baseline signals. As validation, the results obtained from the analytical model are compared with those from finite element simulation, showing good consistency. This has demonstrated accuracy of the developed analytical model in interpreting contact crack-induced CAN, and spotlighted its application to quantitative evaluation of fatigue damage. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J.
2014-01-01
Purpose: The model-based quantitative analysis of high-speed videoendoscopy (HSV) data at a low frame rate of 2,000 frames per second was assessed for its clinical adequacy. Stepwise regression was employed to evaluate the HSV parameters using harmonic models and their relationships to the Voice Handicap Index (VHI). Also, the model-based HSV…
Building a Database for a Quantitative Model
NASA Technical Reports Server (NTRS)
Kahn, C. Joseph; Kleinhammer, Roger
2014-01-01
A database can greatly benefit a quantitative analysis. The defining characteristic of a quantitative risk, or reliability, model is the use of failure estimate data. Models can easily contain a thousand Basic Events, relying on hundreds of individual data sources. Obviously, entering so much data by hand will eventually lead to errors. Not so obviously entering data this way does not aid linking the Basic Events to the data sources. The best way to organize large amounts of data on a computer is with a database. But a model does not require a large, enterprise-level database with dedicated developers and administrators. A database built in Excel can be quite sufficient. A simple spreadsheet database can link every Basic Event to the individual data source selected for them. This database can also contain the manipulations appropriate for how the data is used in the model. These manipulations include stressing factors based on use and maintenance cycles, dormancy, unique failure modes, the modeling of multiple items as a single "Super component" Basic Event, and Bayesian Updating based on flight and testing experience. A simple, unique metadata field in both the model and database provides a link from any Basic Event in the model to its data source and all relevant calculations. The credibility for the entire model often rests on the credibility and traceability of the data.
Professional Learning: A Fuzzy Logic-Based Modelling Approach
ERIC Educational Resources Information Center
Gravani, M. N.; Hadjileontiadou, S. J.; Nikolaidou, G. N.; Hadjileontiadis, L. J.
2007-01-01
Studies have suggested that professional learning is influenced by two key parameters, i.e., climate and planning, and their associated variables (mutual respect, collaboration, mutual trust, supportiveness, openness). In this paper, we applied analysis of the relationships between the proposed quantitative, fuzzy logic-based model and a series of…
Surface plasmon resonance microscopy: achieving a quantitative optical response
Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.
2016-01-01
Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542
Fu, Guifang; Dai, Xiaotian; Symanzik, Jürgen; Bushman, Shaun
2017-01-01
Leaf shape traits have long been a focus of many disciplines, but the complex genetic and environmental interactive mechanisms regulating leaf shape variation have not yet been investigated in detail. The question of the respective roles of genes and environment and how they interact to modulate leaf shape is a thorny evolutionary problem, and sophisticated methodology is needed to address it. In this study, we investigated a framework-level approach that inputs shape image photographs and genetic and environmental data, and then outputs the relative importance ranks of all variables after integrating shape feature extraction, dimension reduction, and tree-based statistical models. The power of the proposed framework was confirmed by simulation and a Populus szechuanica var. tibetica data set. This new methodology resulted in the detection of novel shape characteristics, and also confirmed some previous findings. The quantitative modeling of a combination of polygenetic, plastic, epistatic, and gene-environment interactive effects, as investigated in this study, will improve the discernment of quantitative leaf shape characteristics, and the methods are ready to be applied to other leaf morphology data sets. Unlike the majority of approaches in the quantitative leaf shape literature, this framework-level approach is data-driven, without assuming any pre-known shape attributes, landmarks, or model structures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
A mixed model for the relationship between climate and human cranial form.
Katz, David C; Grote, Mark N; Weaver, Timothy D
2016-08-01
We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei
2018-05-01
Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.
ERIC Educational Resources Information Center
Owens, Susan T.
2017-01-01
Technology is becoming an integral tool in the classroom and can make a positive impact on how the students learn. This quantitative comparative research study examined gender-based differences among secondary Advanced Placement (AP) Statistic students comparing Educational Testing Service (ETS) College Board AP Statistic examination scores…
Quantitative 13C NMR characterization of fast pyrolysis oils
Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.
2016-10-20
Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.
Quantitative 13C NMR characterization of fast pyrolysis oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.
Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.
Source-to-Outcome Microbial Exposure and Risk Modeling Framework
A Quantitative Microbial Risk Assessment (QMRA) is a computer-based data-delivery and modeling approach that integrates interdisciplinary fate/transport, exposure, and impact models and databases to characterize potential health impacts/risks due to pathogens. As such, a QMRA ex...
Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...
ERIC Educational Resources Information Center
Aslan, Dolgun; Günay, Rafet
2016-01-01
This study was conducted with the aim of evaluating the curricula that constitute the basis of education provision at high schools in Turkey from the perspective of the teachers involved. A descriptive survey model, a quantitative research method was employed in this study. An item-based curriculum evaluation model was employed as part of the…
NASA Astrophysics Data System (ADS)
Zou, Wen-bo; Chong, Xiao-meng; Wang, Yan; Hu, Chang-qin
2018-05-01
The accuracy of NIR quantitative models depends on calibration samples with concentration variability. Conventional sample collecting methods have some shortcomings especially the time-consuming which remains a bottleneck in the application of NIR models for Process Analytical Technology (PAT) control. A study was performed to solve the problem of sample selection collection for construction of NIR quantitative models. Amoxicillin and potassium clavulanate oral dosage forms were used as examples. The aim was to find a normal approach to rapidly construct NIR quantitative models using an NIR spectral library based on the idea of a universal model [2021]. The NIR spectral library of amoxicillin and potassium clavulanate oral dosage forms was defined and consisted of spectra of 377 batches of samples produced by 26 domestic pharmaceutical companies, including tablets, dispersible tablets, chewable tablets, oral suspensions, and granules. The correlation coefficient (rT) was used to indicate the similarities of the spectra. The samples’ calibration sets were selected from a spectral library according to the median rT of the samples to be analyzed. The rT of the samples selected was close to the median rT. The difference in rT of those samples was 1.0% to 1.5%. We concluded that sample selection is not a problem when constructing NIR quantitative models using a spectral library versus conventional methods of determining universal models. The sample spectra with a suitable concentration range in the NIR models were collected quickly. In addition, the models constructed through this method were more easily targeted.
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Lindgren, Eric A.
2018-04-01
This paper expands on the objective and motivation for NDE-based characterization and includes a discussion of the current approach using model-assisted inversion being pursued within the Air Force Research Laboratory (AFRL). This includes a discussion of the multiple model-based methods that can be used, including physics-based models, deep machine learning, and heuristic approaches. The benefits and drawbacks of each method is reviewed and the potential to integrate multiple methods is discussed. Initial successes are included to highlight the ability to obtain quantitative values of damage. Additional steps remaining to realize this capability with statistical metrics of accuracy are discussed, and how these results can be used to enable probabilistic life management are addressed. The outcome of this initiative will realize the long-term desired capability of NDE methods to provide quantitative characterization to accelerate certification of new materials and enhance life management of engineered systems.
Fusing Quantitative Requirements Analysis with Model-based Systems Engineering
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven
2006-01-01
A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.
Obesity prevention: Comparison of techniques and potential solution
NASA Astrophysics Data System (ADS)
Zulkepli, Jafri; Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura
2014-12-01
Over the years, obesity prevention has been a broadly studied subject by both academicians and practitioners. It is one of the most serious public health issue as it can cause numerous chronic health and psychosocial problems. Research is needed to suggest a population-based strategy for obesity prevention. In the academic environment, the importance of obesity prevention has triggered various problem solving approaches. A good obesity prevention model, should comprehend and cater all complex and dynamics issues. Hence, the main purpose of this paper is to discuss the qualitative and quantitative approaches on obesity prevention study and to provide an extensive literature review on various recent modelling techniques for obesity prevention. Based on these literatures, the comparison of both quantitative and qualitative approahes are highlighted and the justification on the used of system dynamics technique to solve the population of obesity is discussed. Lastly, a potential framework solution based on system dynamics modelling is proposed.
Hou, Zhifei; Sun, Guoxiang; Guo, Yong
2016-01-01
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard.
NASA Astrophysics Data System (ADS)
Setiani, C.; Waluya, S. B.; Wardono
2018-03-01
The purposes of this research are: (1) to identify learning quality in Model Eliciting Activities (MEAs) using a Metaphorical Thinking (MT) approach regarding qualitative and quantitative; (2) to analyze mathematical literacy of students based on Self-Efficacy (SE). This research is mixed method concurrent embedded design with qualitative research as the primary method. The quantitative research used quasi-experimental with non-equivalent control group design. The population is VIII grade students of SMP Negeri 3 Semarang Indonesia. Quantitative data is examined by conducting completeness mean test, standard completeness test, mean differentiation test and proportional differentiation test. Qualitative data is analyzed descriptively. The result of this research shows that MEAs learning using MT approach accomplishes good criteria both quantitatively and qualitatively. Students with low self-efficacy can identify problems, but they are lack ability to arrange problem-solving strategy on mathematical literacy questions. Students with medium self-efficacy can identify information provided in issues, but they find difficulties to use math symbols in making a representation. Students with high self-efficacy are excellent to represent problems into mathematical models as well as figures by using appropriate symbols and tools, so they can arrange strategy easily to solve mathematical literacy questions.
Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A
2002-03-15
For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.
NASA Astrophysics Data System (ADS)
Barone, Fabrizio; Giordano, Gerardo
2018-02-01
We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.
Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.
Henley, B C; Shin, D C; Zhang, R; Marmarelis, V Z
Compartmental and data-based modeling of cerebral hemodynamics are alternative approaches that utilize distinct model forms and have been employed in the quantitative study of cerebral hemodynamics. This paper examines the relation between a compartmental equivalent-circuit and a data-based input-output model of dynamic cerebral autoregulation (DCA) and CO2-vasomotor reactivity (DVR). The compartmental model is constructed as an equivalent-circuit utilizing putative first principles and previously proposed hypothesis-based models. The linear input-output dynamics of this compartmental model are compared with data-based estimates of the DCA-DVR process. This comparative study indicates that there are some qualitative similarities between the two-input compartmental model and experimental results.
Quantitative validation of an air-coupled ultrasonic probe model by Interferometric laser tomography
NASA Astrophysics Data System (ADS)
Revel, G. M.; Pandarese, G.; Cavuto, A.
2012-06-01
The present paper describes the quantitative validation of a finite element (FE) model of the ultrasound beam generated by an air coupled non-contact ultrasound transducer. The model boundary conditions are given by vibration velocities measured by laser vibrometry on the probe membrane. The proposed validation method is based on the comparison between the simulated 3D pressure field and the pressure data measured with interferometric laser tomography technique. The model details and the experimental techniques are described in paper. The analysis of results shows the effectiveness of the proposed approach and the possibility to quantitatively assess and predict the generated acoustic pressure field, with maximum discrepancies in the order of 20% due to uncertainty effects. This step is important for determining in complex problems the real applicability of air-coupled probes and for the simulation of the whole inspection procedure, also when the component is designed, so as to virtually verify its inspectability.
Zhang, Tisheng; Niu, Xiaoji; Ban, Yalong; Zhang, Hongping; Shi, Chuang; Liu, Jingnan
2015-01-01
A GNSS/INS deeply-coupled system can improve the satellite signals tracking performance by INS aiding tracking loops under dynamics. However, there was no literature available on the complete modeling of the INS branch in the INS-aided tracking loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an effort on the INS branch in modeling and parameter optimization of phase-locked loops (PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the transfer function between all known error sources and the PLL tracking error, which can be used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the carrier phase tracking error. Based on that, a steady-state error model is proposed to design INS-aided PLLs and to analyze their tracking performance. Based on the modeling and error analysis, an integrated deeply-coupled hardware prototype is developed, with the optimization of the aiding information. Finally, the performance of the INS-aided PLLs designed based on the proposed steady-state error model is evaluated through the simulation and road tests of the hardware prototype. PMID:25569751
EPA CENTER FOR EXPOSURE ASSESSMENT MODELING (CEAM)
The EPA Center for Exposure Assessment Modeling (CEAM) supports the Agency and professional community in environmental, risk-based decision-making by expanding their applications expertise for quantitatively assessing pollutant exposure via aquatic, terrestrial, and multimedia pa...
Human Spaceflight Architecture Model (HSFAM) Data Dictionary
NASA Technical Reports Server (NTRS)
Shishko, Robert
2016-01-01
HSFAM is a data model based on the DoDAF 2.02 data model with some for purpose extensions. These extensions are designed to permit quantitative analyses regarding stakeholder concerns about technical feasibility, configuration and interface issues, and budgetary and/or economic viability.
Reverse engineering systems models of regulation: discovery, prediction and mechanisms.
Ashworth, Justin; Wurtmann, Elisabeth J; Baliga, Nitin S
2012-08-01
Biological systems can now be understood in comprehensive and quantitative detail using systems biology approaches. Putative genome-scale models can be built rapidly based upon biological inventories and strategic system-wide molecular measurements. Current models combine statistical associations, causative abstractions, and known molecular mechanisms to explain and predict quantitative and complex phenotypes. This top-down 'reverse engineering' approach generates useful organism-scale models despite noise and incompleteness in data and knowledge. Here we review and discuss the reverse engineering of biological systems using top-down data-driven approaches, in order to improve discovery, hypothesis generation, and the inference of biological properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
Computer simulation of the metastatic progression.
Wedemann, Gero; Bethge, Anja; Haustein, Volker; Schumacher, Udo
2014-01-01
A novel computer model based on a discrete event simulation procedure describes quantitatively the processes underlying the metastatic cascade. Analytical functions describe the size of the primary tumor and the metastases, while a rate function models the intravasation events of the primary tumor and metastases. Events describe the behavior of the malignant cells until the formation of new metastases. The results of the computer simulations are in quantitative agreement with clinical data determined from a patient with hepatocellular carcinoma in the liver. The model provides a more detailed view on the process than a conventional mathematical model. In particular, the implications of interventions on metastasis formation can be calculated.
Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan
2015-06-01
Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.
Lackey, Daniel P; Carruth, Eric D; Lasher, Richard A; Boenisch, Jan; Sachse, Frank B; Hitchcock, Robert W
2011-11-01
Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.
Stenner, A Jackson; Fisher, William P; Stone, Mark H; Burdick, Donald S
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726
To label or not to label: applications of quantitative proteomics in neuroscience research.
Filiou, Michaela D; Martins-de-Souza, Daniel; Guest, Paul C; Bahn, Sabine; Turck, Christoph W
2012-02-01
Proteomics has provided researchers with a sophisticated toolbox of labeling-based and label-free quantitative methods. These are now being applied in neuroscience research where they have already contributed to the elucidation of fundamental mechanisms and the discovery of candidate biomarkers. In this review, we evaluate and compare labeling-based and label-free quantitative proteomic techniques for applications in neuroscience research. We discuss the considerations required for the analysis of brain and central nervous system specimens, the experimental design of quantitative proteomic workflows as well as the feasibility, advantages, and disadvantages of the available techniques for neuroscience-oriented questions. Furthermore, we assess the use of labeled standards as internal controls for comparative studies in humans and review applications of labeling-based and label-free mass spectrometry approaches in relevant model organisms and human subjects. Providing a comprehensive guide of feasible and meaningful quantitative proteomic methodologies for neuroscience research is crucial not only for overcoming current limitations but also for gaining useful insights into brain function and translating proteomics from bench to bedside. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a Model for Some Aspects of University Policy. Technical Report.
ERIC Educational Resources Information Center
Goossens, J. L. M.; And Others
A method to calculate the need for academic staff per faculty, based on educational programs and numbers of students, is described which is based on quantitative relations between programs, student enrollment, and total budget. The model is described schematically and presented in a mathematical form adapted to computer processing. Its application…
Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David
2003-12-31
This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits.
Knight, Jo; North, Bernard V; Sham, Pak C; Curtis, David
2003-01-01
This paper presents a method of performing model-free LOD-score based linkage analysis on quantitative traits. It is implemented in the QMFLINK program. The method is used to perform a genome screen on the Framingham Heart Study data. A number of markers that show some support for linkage in our study coincide substantially with those implicated in other linkage studies of hypertension. Although the new method needs further testing on additional real and simulated data sets we can already say that it is straightforward to apply and may offer a useful complementary approach to previously available methods for the linkage analysis of quantitative traits. PMID:14975142
Primdahl, Jørgen; Vesterager, Jens Peter; Finn, John A; Vlahos, George; Kristensen, Lone; Vejre, Henrik
2010-06-01
Agri-Environment Schemes (AES) to maintain or promote environmentally-friendly farming practices were implemented on about 25% of all agricultural land in the EU by 2002. This article analyses and discusses the actual and potential use of impact models in supporting the design, implementation and evaluation of AES. Impact models identify and establish the causal relationships between policy objectives and policy outcomes. We review and discuss the role of impact models at different stages in the AES policy process, and present results from a survey of impact models underlying 60 agri-environmental schemes in seven EU member states. We distinguished among three categories of impact models (quantitative, qualitative or common sense), depending on the degree of evidence in the formal scheme description, additional documents, or key person interviews. The categories of impact models used mainly depended on whether scheme objectives were related to natural resources, biodiversity or landscape. A higher proportion of schemes dealing with natural resources (primarily water) were based on quantitative impact models, compared to those concerned with biodiversity or landscape. Schemes explicitly targeted either on particular parts of individual farms or specific areas tended to be based more on quantitative impact models compared to whole-farm schemes and broad, horizontal schemes. We conclude that increased and better use of impact models has significant potential to improve efficiency and effectiveness of AES. (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fettahlıoğlu, Pınar; Aydoğdu, Mustafa
2018-04-01
The purpose of this research is to investigate the effect of using argumentation and problem-based learning approaches on the development of environmentally responsible behaviours among pre-service science teachers. Experimental activities were implemented for 14 weeks for 52 class hours in an environmental education class within a science teaching department. A mixed method was used as a research design; particularly, a special type of Concurrent Nested Strategy was applied. The quantitative portion was based on the one-group pre-test and post-test models, and the qualitative portion was based on the holistic multiple-case study method. The quantitative portion of the research was conducted with 34 third-year pre-service science teachers studying at a state university. The qualitative portion of the study was conducted with six pre-service science teachers selected among the 34 pre-service science teachers based on the pre-test results obtained from an environmentally responsible behaviour scale. t tests for dependent groups were used to analyse quantitative data. Both descriptive and content analyses of the qualitative data were performed. The results of the study showed that the use of the argumentation and problem-based learning approaches significantly contributed to the development of environmentally responsible behaviours among pre-service science teachers.
NASA Astrophysics Data System (ADS)
Mayes, R.; Lyford, M. E.; Myers, J. D.
2009-12-01
The Quantitative Reasoning in STEM (QR STEM) project is a state level Mathematics and Science Partnership Project (MSP) with a focus on the mathematics and statistics that underlies the understanding of complex global scientific issues. This session is a companion session to the QR STEM: The Science presentation. The focus of this session is the quantitative reasoning aspects of the project. As students move from understandings that range from local to global in perspective on issues of energy and environment, there is a significant increase in the need for mathematical and statistical conceptual understanding. These understandings must be accessible to the students within the scientific context, requiring the special understandings that are endemic within quantitative reasoning. The QR STEM project brings together interdisciplinary teams of higher education faculty and middle/high school teachers to explore complex problems in energy and environment. The disciplines include life sciences, physics, chemistry, earth science, statistics, and mathematics. These interdisciplinary teams develop open ended performance tasks to implement in the classroom, based on scientific concepts that underpin energy and environment. Quantitative reasoning is broken down into three components: Quantitative Literacy, Quantitative Interpretation, and Quantitative Modeling. Quantitative Literacy is composed of arithmetic concepts such as proportional reasoning, numeracy, and descriptive statistics. Quantitative Interpretation includes algebraic and geometric concepts that underlie the ability to interpret a model of natural phenomena which is provided for the student. This model may be a table, graph, or equation from which the student is to make predictions or identify trends, or from which they would use statistics to explore correlations or patterns in data. Quantitative modeling is the ability to develop the model from data, including the ability to test hypothesis using statistical procedures. We use the term model very broadly, so it includes visual models such as box models, as well as best fit equation models and hypothesis testing. One of the powerful outcomes of the project is the conversation which takes place between science teachers and mathematics teachers. First they realize that though they are teaching concepts that cross their disciplines, the barrier of scientific language within their subjects restricts students from applying the concepts across subjects. Second the mathematics teachers discover the context of science as a means of providing real world situations that engage students in the utility of mathematics as a tool for solving problems. Third the science teachers discover the barrier to understanding science that is presented by poor quantitative reasoning ability. Finally the students are engaged in exploring energy and environment in a manner which exposes the importance of seeing a problem from multiple interdisciplinary perspectives. The outcome is a democratic citizen capable of making informed decisions, and perhaps a future scientist.
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
NASA Astrophysics Data System (ADS)
Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua
2017-10-01
Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.
Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content.
Zhang, Bo; Ding, Fang; Chen, Tian; Xia, Liang-Hua; Qian, Juan; Lv, Guo-Yi
2014-12-21
To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. A total of 170 subjects were enrolled in this study. All subjects were examined by ultrasound and (1)H-magnetic resonance spectroscopy ((1)H-MRS) on the same day. The ultrasound hepatic/renal echo-intensity ratio and ultrasound hepatic echo-intensity attenuation rate were obtained from ordinary ultrasound images using the MATLAB program. Correlation analysis revealed that the ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate were significantly correlated with (1)H-MRS liver fat content (ultrasound hepatic/renal ratio: r = 0.952, P = 0.000; hepatic echo-intensity attenuation r = 0.850, P = 0.000). The equation for predicting liver fat content by ultrasound (quantitative ultrasound model) is: liver fat content (%) = 61.519 × ultrasound hepatic/renal ratio + 167.701 × hepatic echo-intensity attenuation rate -26.736. Spearman correlation analysis revealed that the liver fat content ratio of the quantitative ultrasound model was positively correlated with serum alanine aminotransferase, aspartate aminotransferase, and triglyceride, but negatively correlated with high density lipoprotein cholesterol. Receiver operating characteristic curve analysis revealed that the optimal point for diagnosing fatty liver was 9.15% in the quantitative ultrasound model. Furthermore, in the quantitative ultrasound model, fatty liver diagnostic sensitivity and specificity were 94.7% and 100.0%, respectively, showing that the quantitative ultrasound model was better than conventional ultrasound methods or the combined ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate. If the (1)H-MRS liver fat content had a value < 15%, the sensitivity and specificity of the ultrasound quantitative model would be 81.4% and 100%, which still shows that using the model is better than the other methods. The quantitative ultrasound model is a simple, low-cost, and sensitive tool that can accurately assess hepatic fat content in clinical practice. It provides an easy and effective parameter for the early diagnosis of mild hepatic steatosis and evaluation of the efficacy of NAFLD treatment.
Internet-based system for simulation-based medical planning for cardiovascular disease.
Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A
2003-06-01
Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.
Sunderland, John J; Christian, Paul E
2015-01-01
The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Tranca, D. E.; Stanciu, S. G.; Hristu, R.; Stoichita, C.; Tofail, S. A. M.; Stanciu, G. A.
2015-01-01
A new method for high-resolution quantitative measurement of the dielectric function by using scattering scanning near-field optical microscopy (s-SNOM) is presented. The method is based on a calibration procedure that uses the s-SNOM oscillating dipole model of the probe-sample interaction and quantitative s-SNOM measurements. The nanoscale capabilities of the method have the potential to enable novel applications in various fields such as nano-electronics, nano-photonics, biology or medicine. PMID:26138665
Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography
Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier
2015-01-01
This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371
ERIC Educational Resources Information Center
Popovich, Karen
2012-01-01
This paper describes the process taken to develop a quantitative-based and Excel™-driven course that combines "BOTH" Management Information Systems (MIS) and Decision Science (DS) modeling outcomes and lays the foundation for upper level quantitative courses such as operations management, finance and strategic management. In addition,…
Bergman, Juraj; Mitrikeski, Petar T.
2015-01-01
Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
Luchins, Daniel
2012-01-01
The quality improvement model currently used in medicine and mental health was adopted from industry, where it developed out of early 20th-century efforts to apply a positivist/quantitative agenda to improving manufacturing. This article questions the application of this model to mental health care. It argues that (1) developing "operational definitions" for something as value-laden as "quality" risks conflating two realms, what we measure with what we value; (2) when measurements that are tied to individuals are aggregated to establish benchmarks and goals, unwarranted mathematical assumptions are made; (3) choosing clinical outcomes is problematic; (4) there is little relationship between process measures and clinical outcomes; and (5) since changes in quality indices do not relate to improved clinical care, management's reliance on such indices provides an illusory sense of control. An alternative model is the older, skill-based/qualitative approach to knowing, which relies on "implicit/ expert" knowledge. These two approaches offer a series of contrasts: quality versus excellence, competence versus expertise, management versus leadership, extrinsic versus intrinsic rewards. The article concludes that we need not totally dispense with the current quality improvement model, but rather should balance quantitative efforts with the older qualitative approach in a mixed methods model.
Biomechanics-based in silico medicine: the manifesto of a new science.
Viceconti, Marco
2015-01-21
In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Woo June; Pepple, Kathryn L.; Zhi, Zhongwei; Wang, Ruikang K.
2015-01-01
Uveitis models in rodents are important in the investigation of pathogenesis in human uveitis and the development of appropriate therapeutic strategies for treatment. Quantitative monitoring of ocular inflammation in small animal models provides an objective metric to assess uveitis progression and/or therapeutic effects. We present a new application of optical coherence tomography (OCT) and OCT-based microangiography (OMAG) to a rat model of acute anterior uveitis induced by intravitreal injection of a killed mycobacterial extract. OCT/OMAG is used to provide noninvasive three-dimensional imaging of the anterior segment of the eyes prior to injection (baseline) and two days post-injection (peak inflammation) in rats with and without steroid treatments. OCT imaging identifies characteristic structural and vascular changes in the anterior segment of the inflamed animals when compared to baseline images. Characteristics of inflammation identified include anterior chamber cells, corneal edema, pupillary membranes, and iris vasodilation. In contrast, no significant difference from the control is observed for the steroid-treated eye. These findings are compared with the histology assessment of the same eyes. In addition, quantitative measurements of central corneal thickness and iris vessel diameter are determined. This pilot study demonstrates that OCT-based microangiography promises to be a useful tool for the assessment and management of uveitis in vivo.
Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model
NASA Astrophysics Data System (ADS)
Zhao, Erdong; Li, Shangqi
2017-08-01
As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.
A Modeling Approach for Burn Scar Assessment Using Natural Features and Elastic Property
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Zhang, Y; Goldgof, D B
2004-04-02
A modeling approach is presented for quantitative burn scar assessment. Emphases are given to: (1) constructing a finite element model from natural image features with an adaptive mesh, and (2) quantifying the Young's modulus of scars using the finite element model and the regularization method. A set of natural point features is extracted from the images of burn patients. A Delaunay triangle mesh is then generated that adapts to the point features. A 3D finite element model is built on top of the mesh with the aid of range images providing the depth information. The Young's modulus of scars ismore » quantified with a simplified regularization functional, assuming that the knowledge of scar's geometry is available. The consistency between the Relative Elasticity Index and the physician's rating based on the Vancouver Scale (a relative scale used to rate burn scars) indicates that the proposed modeling approach has high potentials for image-based quantitative burn scar assessment.« less
Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs).
Ota, Riki; Yamada, Kentaro; Suzuki, Koji; Citterio, Daniel
2018-02-07
The transport efficiency during capillary flow-driven sample transport on microfluidic paper-based analytical devices (μPADs) made from filter paper has been investigated for a selection of model analytes (Ni 2+ , Zn 2+ , Cu 2+ , PO 4 3- , bovine serum albumin, sulforhodamine B, amaranth) representing metal cations, complex anions, proteins and anionic molecules. For the first time, the transport of the analytical target compounds rather than the sample liquid, has been quantitatively evaluated by means of colorimetry and absorption spectrometry-based methods. The experiments have revealed that small paperfluidic channel dimensions, additional user operation steps (e.g. control of sample volume, sample dilution, washing step) as well as the introduction of sample liquid wicking areas allow to increase analyte transport efficiency. It is also shown that the interaction of analytes with the negatively charged cellulosic paper substrate surface is strongly influenced by the physico-chemical properties of the model analyte and can in some cases (Cu 2+ ) result in nearly complete analyte depletion during sample transport. The quantitative information gained through these experiments is expected to contribute to the development of more sensitive μPADs.
Bayram, Jamil D; Zuabi, Shawki
2012-04-01
The interaction between the acute medical consequences of a Multiple Casualty Event (MCE) and the total medical capacity of the community affected determines if the event amounts to an acute medical disaster. There is a need for a comprehensive quantitative model in MCE that would account for both prehospital and hospital-based acute medical systems, leading to the quantification of acute medical disasters. Such a proposed model needs to be flexible enough in its application to accommodate a priori estimation as part of the decision-making process and a posteriori evaluation for total quality management purposes. The concept proposed by de Boer et al in 1989, along with the disaster metrics quantitative models proposed by Bayram et al on hospital surge capacity and prehospital medical response, were used as theoretical frameworks for a new comprehensive model, taking into account both prehospital and hospital systems, in order to quantify acute medical disasters. A quantitative model called the Acute Medical Severity Index (AMSI) was developed. AMSI is the proportion of the Acute Medical Burden (AMB) resulting from the event, compared to the Total Medical Capacity (TMC) of the community affected; AMSI = AMB/TMC. In this model, AMB is defined as the sum of critical (T1) and moderate (T2) casualties caused by the event, while TMC is a function of the Total Hospital Capacity (THC) and the medical rescue factor (R) accounting for the hospital-based and prehospital medical systems, respectively. Qualitatively, the authors define acute medical disaster as "a state after any type of Multiple Casualty Event where the Acute Medical Burden (AMB) exceeds the Total Medical Capacity (TMC) of the community affected." Quantitatively, an acute medical disaster has an AMSI value of more than one (AMB / TMC > 1). An acute medical incident has an AMSI value of less than one, without the need for medical surge. An acute medical emergency has an AMSI value of less than one with utilization of surge capacity (prehospital or hospital-based). An acute medical crisis has an AMSI value between 0.9 and 1, approaching the threshold for an actual medical disaster. A novel quantitative taxonomy in MCE has been proposed by modeling the Acute Medical Severity Index (AMSI). This model accounts for both hospital and prehospital systems, and quantifies acute medical disasters. Prospective applications of various components of this model are encouraged to further verify its applicability and validity.
An experimental approach to identify dynamical models of transcriptional regulation in living cells
NASA Astrophysics Data System (ADS)
Fiore, G.; Menolascina, F.; di Bernardo, M.; di Bernardo, D.
2013-06-01
We describe an innovative experimental approach, and a proof of principle investigation, for the application of System Identification techniques to derive quantitative dynamical models of transcriptional regulation in living cells. Specifically, we constructed an experimental platform for System Identification based on a microfluidic device, a time-lapse microscope, and a set of automated syringes all controlled by a computer. The platform allows delivering a time-varying concentration of any molecule of interest to the cells trapped in the microfluidics device (input) and real-time monitoring of a fluorescent reporter protein (output) at a high sampling rate. We tested this platform on the GAL1 promoter in the yeast Saccharomyces cerevisiae driving expression of a green fluorescent protein (Gfp) fused to the GAL1 gene. We demonstrated that the System Identification platform enables accurate measurements of the input (sugars concentrations in the medium) and output (Gfp fluorescence intensity) signals, thus making it possible to apply System Identification techniques to obtain a quantitative dynamical model of the promoter. We explored and compared linear and nonlinear model structures in order to select the most appropriate to derive a quantitative model of the promoter dynamics. Our platform can be used to quickly obtain quantitative models of eukaryotic promoters, currently a complex and time-consuming process.
Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C
2018-01-01
This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent
2017-03-01
Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.
Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd
2014-11-01
Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.
ERIC Educational Resources Information Center
Alias, Norlidah; Siraj, Saedah; Daud, Mohd Khairul Azman Md; Hussin, Zaharah
2013-01-01
The study examines the effectiveness of Facebook based learning to enhance creativity among Islamic Studies students in the secondary educational setting in Malaysia. It describes the design process by employing the Isman Instructional Design Model. A quantitative study was carried out using experimental method and background survey. The…
NASA Astrophysics Data System (ADS)
Wilson, J. P.; Fischer, W. W.
2010-12-01
Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative humidity (<20%) combined with elevated temperatures (>25°C) could cause sufficient cavitation to reduce hydraulic conductivity by 50%. This suggests that the Early Devonian environments that supported the earliest vascular plants were not subject to prolonged midseason droughts, or, alternatively, that the growing season was short. This places minimum constraints on water availability (e.g., groundwater hydration, relative humidity) in locations where Asteroxylon fossils are found; these environments must have had high relative humidities, comparable to tropical riparian environments. Given these constraints, biome-scale paleovegetation models that place early vascular plants distal to water sources can be revised to account for reduced drought tolerance. Paleoclimate proxies that treat early terrestrial plants as functionally interchangeable can incorporate physiological differences in a quantitatively meaningful way. Application of hydraulic models to fossil plants provides an additional perspective on the 475 million-year history of terrestrial photosynthetic environments and has potential to corroborate other plant-based paleoclimate proxies.
Quantification of Microbial Phenotypes
Martínez, Verónica S.; Krömer, Jens O.
2016-01-01
Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis. PMID:27941694
Hou, Zhifei; Sun, Guoxiang; Guo, Yong
2016-01-01
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard. PMID:27529425
Quantitative Decision Support Requires Quantitative User Guidance
NASA Astrophysics Data System (ADS)
Smith, L. A.
2009-12-01
Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output for a given problem is presented. Based on climate science, meteorology, and the details of the question in hand, this approach identifies necessary (never sufficient) conditions required for the rational use of climate model output in quantitative decision support tools. Inasmuch as climate forecasting is a problem of extrapolation, there will always be harsh limits on our ability to establish where a model is fit for purpose, this does not, however, limit us from identifying model noise as such, and thereby avoiding some cases of the misapplication and over interpretation of model output. It is suggested that failure to clearly communicate the limits of today’s climate model in providing quantitative decision relevant climate information to today’s users of climate information, would risk the credibility of tomorrow’s climate science and science based policy more generally.
Identifying influences on model uncertainty: an application using a forest carbon budget model
James E. Smith; Linda S. Heath
2001-01-01
Uncertainty is an important consideration for both developers and users of environmental simulation models. Establishing quantitative estimates of uncertainty for deterministic models can be difficult when the underlying bases for such information are scarce. We demonstrate an application of probabilistic uncertainty analysis that provides for refinements in...
College Students Solving Chemistry Problems: A Theoretical Model of Expertise
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Glynn, Shawn M.
2009-01-01
A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…
A Model for Measuring Effectiveness of an Online Course
ERIC Educational Resources Information Center
Mashaw, Bijan
2012-01-01
As a result of this research, a quantitative model and a procedure have been developed to create an online mentoring effectiveness index (EI). To develop the model, mentoring and teaching effectiveness are defined, and then the constructs and factors of effectiveness are identified. The model's construction is based on the theory that…
Workplace-Based Assessment: Effects of Rater Expertise
ERIC Educational Resources Information Center
Govaerts, M. J. B.; Schuwirth, L. W. T.; Van der Vleuten, C. P. M.; Muijtjens, A. M. M.
2011-01-01
Traditional psychometric approaches towards assessment tend to focus exclusively on quantitative properties of assessment outcomes. This may limit more meaningful educational approaches towards workplace-based assessment (WBA). Cognition-based models of WBA argue that assessment outcomes are determined by cognitive processes by raters which are…
Han, Jinxiang; Huang, Jinzhao
2012-03-01
In this study, based on the resonator model and exciplex model of electromagnetic radiation within the human body, mathematical model of biological order state, also referred to as syndrome in traditional Chinese medicine, was established and expressed as: "Sy = v/ 1n(6I + 1)". This model provides the theoretical foundation for experimental research addressing the order state of living system, especially the quantitative research syndrome in traditional Chinese medicine.
From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models
Zhu, Hao
2017-01-01
Quantitative Structure Activity Relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to Quantitative Structure In vitro-In vivo Relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment. PMID:23086837
Quantitative Agent Based Model of Opinion Dynamics: Polish Elections of 2015
Sobkowicz, Pawel
2016-01-01
We present results of an abstract, agent based model of opinion dynamics simulations based on the emotion/information/opinion (E/I/O) approach, applied to a strongly polarized society, corresponding to the Polish political scene between 2005 and 2015. Under certain conditions the model leads to metastable coexistence of two subcommunities of comparable size (supporting the corresponding opinions)—which corresponds to the bipartisan split found in Poland. Spurred by the recent breakdown of this political duopoly, which occurred in 2015, we present a model extension that describes both the long term coexistence of the two opposing opinions and a rapid, transitory change due to the appearance of a third party alternative. We provide quantitative comparison of the model with the results of polls and elections in Poland, testing the assumptions related to the modeled processes and the parameters used in the simulations. It is shown, that when the propaganda messages of the two incumbent parties differ in emotional tone, the political status quo may be unstable. The asymmetry of the emotions within the support bases of the two parties allows one of them to be ‘invaded’ by a newcomer third party very quickly, while the second remains immune to such invasion. PMID:27171226
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Topology Design for Directional Range Extension Networks with Antenna Blockage
2017-03-19
introduced by pod-based antenna blockages. Using certain modeling approximations, the paper presents a quantitative analysis showing design trade-offs...parameters. Sec- tion IV develops quantitative relationships among key design elements and performance metrics. Section V considers some implications of the...Topology Design for Directional Range Extension Networks with Antenna Blockage Thomas Shake MIT Lincoln Laboratory shake@ll.mit.edu Abstract
Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds.
Si, Hongzong; Lian, Ning; Yuan, Shuping; Fu, Aiping; Duan, Yun-Bo; Zhang, Kejun; Yao, Xiaojun
2009-10-01
Gene expression programming (GEP) is a novel machine learning technique. The GEP is used to build nonlinear quantitative structure-activity relationship model for the prediction of the IC(50) for the imidazopyridine anticoccidial compounds. This model is based on descriptors which are calculated from the molecular structure. Four descriptors are selected from the descriptors' pool by heuristic method (HM) to build multivariable linear model. The GEP method produced a nonlinear quantitative model with a correlation coefficient and a mean error of 0.96 and 0.24 for the training set, 0.91 and 0.52 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones.
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco
Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order tomore » define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.« less
Mingguang, Zhang; Juncheng, Jiang
2008-10-30
Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.
NASA Astrophysics Data System (ADS)
Chen, Shichao; Zhu, Yizheng
2017-02-01
Sensitivity is a critical index to measure the temporal fluctuation of the retrieved optical pathlength in quantitative phase imaging system. However, an accurate and comprehensive analysis for sensitivity evaluation is still lacking in current literature. In particular, previous theoretical studies for fundamental sensitivity based on Gaussian noise models are not applicable to modern cameras and detectors, which are dominated by shot noise. In this paper, we derive two shot noiselimited theoretical sensitivities, Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry, which is a major category of on-axis interferometry techniques in quantitative phase imaging. Based on the derivations, we show that the shot noise-limited model permits accurate estimation of theoretical sensitivities directly from measured data. These results can provide important insights into fundamental constraints in system performance and can be used to guide system design and optimization. The same concepts can be generalized to other quantitative phase imaging techniques as well.
Quantitative analysis of multiple sclerosis: a feasibility study
NASA Astrophysics Data System (ADS)
Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong
2006-03-01
Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.
Soldier Quality of Life Assessment
2016-09-01
ABSTRACT This report documents survey research and modeling of Soldier quality of life (QoL) on contingency base camps by the U.S. Army Natick...Science and Technology Objective Demonstration, was to develop a way to quantify QoL for camps housing fewer than 1000 personnel. A discrete choice survey ... Survey results were analyzed using hierarchical Bayesian logistic regression to develop a quantitative model for estimating QoL based on base camp
Design of Learning Model of Logic and Algorithms Based on APOS Theory
ERIC Educational Resources Information Center
Hartati, Sulis Janu
2014-01-01
This research questions were "how do the characteristics of learning model of logic & algorithm according to APOS theory" and "whether or not these learning model can improve students learning outcomes". This research was conducted by exploration, and quantitative approach. Exploration used in constructing theory about the…
The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...
Designing automation for human use: empirical studies and quantitative models.
Parasuraman, R
2000-07-01
An emerging knowledge base of human performance research can provide guidelines for designing automation that can be used effectively by human operators of complex systems. Which functions should be automated and to what extent in a given system? A model for types and levels of automation that provides a framework and an objective basis for making such choices is described. The human performance consequences of particular types and levels of automation constitute primary evaluative criteria for automation design when using the model. Four human performance areas are considered--mental workload, situation awareness, complacency and skill degradation. Secondary evaluative criteria include such factors as automation reliability, the risks of decision/action consequences and the ease of systems integration. In addition to this qualitative approach, quantitative models can inform design. Several computational and formal models of human interaction with automation that have been proposed by various researchers are reviewed. An important future research need is the integration of qualitative and quantitative approaches. Application of these models provides an objective basis for designing automation for effective human use.
A quantitative model to assess Social Responsibility in Environmental Science and Technology.
Valcárcel, M; Lucena, R
2014-01-01
The awareness of the impact of human activities in society and environment is known as "Social Responsibility" (SR). It has been a topic of growing interest in many enterprises since the fifties of the past Century, and its implementation/assessment is nowadays supported by international standards. There is a tendency to amplify its scope of application to other areas of the human activities, such as Research, Development and Innovation (R + D + I). In this paper, a model of quantitative assessment of Social Responsibility in Environmental Science and Technology (SR EST) is described in detail. This model is based on well established written standards as the EFQM Excellence model and the ISO 26000:2010 Guidance on SR. The definition of five hierarchies of indicators, the transformation of qualitative information into quantitative data and the dual procedure of self-evaluation and external evaluation are the milestones of the proposed model, which can be applied to Environmental Research Centres and institutions. In addition, a simplified model that facilitates its implementation is presented in the article. © 2013 Elsevier B.V. All rights reserved.
Huan, Huan; Wang, Jinsheng; Zhai, Yuanzheng; Xi, Beidou; Li, Juan; Li, Mingxiao
2016-04-15
It has been proved that groundwater vulnerability assessment is an effective tool for groundwater protection. Nowadays, quantitative assessment methods for specific vulnerability are scarce due to limited cognition of complicated contaminant fate and transport processes in the groundwater system. In this paper, process-based simulation model for specific vulnerability to nitrate using 1D flow and solute transport model in the unsaturated vadose zone is presented for groundwater resource protection. For this case study in Jilin City of northeast China, rate constants of denitrification and nitrification as well as adsorption constants of ammonium and nitrate in the vadose zone were acquired by laboratory experiments. The transfer time at the groundwater table t50 was taken as the specific vulnerability indicator. Finally, overall vulnerability was assessed by establishing the relationship between groundwater net recharge, layer thickness and t50. The results suggested that the most vulnerable regions of Jilin City were mainly distributed in the floodplain of Songhua River and Mangniu River. The least vulnerable areas mostly appear in the second terrace and back of the first terrace. The overall area of low, relatively low and moderate vulnerability accounted for 76% of the study area, suggesting the relatively low possibility of suffering nitrate contamination. In addition, the sensitivity analysis showed that the most sensitive factors of specific vulnerability in the vadose zone included the groundwater net recharge rate, physical properties of soil medium and rate constants of nitrate denitrification. By validating the suitability of the process-based simulation model for specific vulnerability and comparing with index-based method by a group of integrated indicators, more realistic and accurate specific vulnerability mapping could be acquired by the process-based simulation model acquiring. In addition, the advantages, disadvantages, constraint conditions and applying prospects of the quantitative approach for specific vulnerability assessment were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi
2017-09-01
Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Parameters for Pesticide QSAR and PBPK/PD Models to inform Human Risk Assessments
Physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) modeling has emerged as an important computational approach supporting quantitative risk assessment of agrochemicals. However, before complete regulatory acceptance of this tool, an assessment of assets and liabi...
Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment
This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
CDMBE: A Case Description Model Based on Evidence
Zhu, Jianlin; Yang, Xiaoping; Zhou, Jing
2015-01-01
By combining the advantages of argument map and Bayesian network, a case description model based on evidence (CDMBE), which is suitable to continental law system, is proposed to describe the criminal cases. The logic of the model adopts the credibility logical reason and gets evidence-based reasoning quantitatively based on evidences. In order to consist with practical inference rules, five types of relationship and a set of rules are defined to calculate the credibility of assumptions based on the credibility and supportability of the related evidences. Experiments show that the model can get users' ideas into a figure and the results calculated from CDMBE are in line with those from Bayesian model. PMID:26421006
NASA Astrophysics Data System (ADS)
Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan
2017-03-01
Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.
NASA Astrophysics Data System (ADS)
Arnold, J.; Gutmann, E. D.; Clark, M. P.; Nijssen, B.; Vano, J. A.; Addor, N.; Wood, A.; Newman, A. J.; Mizukami, N.; Brekke, L. D.; Rasmussen, R.; Mendoza, P. A.
2016-12-01
Climate change narratives for water-resource applications must represent the change signals contextualized by hydroclimatic process variability and uncertainty at multiple scales. Building narratives of plausible change includes assessing uncertainties across GCM structure, internal climate variability, climate downscaling methods, and hydrologic models. Work with this linked modeling chain has dealt mostly with GCM sampling directed separately to either model fidelity (does the model correctly reproduce the physical processes in the world?) or sensitivity (of different model responses to CO2 forcings) or diversity (of model type, structure, and complexity). This leaves unaddressed any interactions among those measures and with other components in the modeling chain used to identify water-resource vulnerabilities to specific climate threats. However, time-sensitive, real-world vulnerability studies typically cannot accommodate a full uncertainty ensemble across the whole modeling chain, so a gap has opened between current scientific knowledge and most routine applications for climate-changed hydrology. To close that gap, the US Army Corps of Engineers, the Bureau of Reclamation, and the National Center for Atmospheric Research are working on techniques to subsample uncertainties objectively across modeling chain components and to integrate results into quantitative hydrologic storylines of climate-changed futures. Importantly, these quantitative storylines are not drawn from a small sample of models or components. Rather, they stem from the more comprehensive characterization of the full uncertainty space for each component. Equally important from the perspective of water-resource practitioners, these quantitative hydrologic storylines are anchored in actual design and operations decisions potentially affected by climate change. This talk will describe part of our work characterizing variability and uncertainty across modeling chain components and their interactions using newly developed observational data, models and model outputs, and post-processing tools for making the resulting quantitative storylines most useful in practical hydrology applications.
Daga, Pankaj R; Bolger, Michael B; Haworth, Ian S; Clark, Robert D; Martin, Eric J
2018-03-05
When medicinal chemists need to improve bioavailability (%F) within a chemical series during lead optimization, they synthesize new series members with systematically modified properties mainly by following experience and general rules of thumb. More quantitative models that predict %F of proposed compounds from chemical structure alone have proven elusive. Global empirical %F quantitative structure-property (QSPR) models perform poorly, and projects have too little data to train local %F QSPR models. Mechanistic oral absorption and physiologically based pharmacokinetic (PBPK) models simulate the dissolution, absorption, systemic distribution, and clearance of a drug in preclinical species and humans. Attempts to build global PBPK models based purely on calculated inputs have not achieved the <2-fold average error needed to guide lead optimization. In this work, local GastroPlus PBPK models are instead customized for individual medchem series. The key innovation was building a local QSPR for a numerically fitted effective intrinsic clearance (CL loc ). All inputs are subsequently computed from structure alone, so the models can be applied in advance of synthesis. Training CL loc on the first 15-18 rat %F measurements gave adequate predictions, with clear improvements up to about 30 measurements, and incremental improvements beyond that.
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.
2013-01-01
ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.
Nakada, Tomohisa; Kudo, Toshiyuki; Kume, Toshiyuki; Kusuhara, Hiroyuki; Ito, Kiyomi
2018-02-01
Serum creatinine (SCr) levels rise during trimethoprim therapy for infectious diseases. This study aimed to investigate whether the elevation of SCr can be quantitatively explained using a physiologically-based pharmacokinetic (PBPK) model incorporating inhibition by trimethoprim on tubular secretion of creatinine via renal transporters such as organic cation transporter 2 (OCT2), OCT3, multidrug and toxin extrusion protein 1 (MATE1), and MATE2-K. Firstly, pharmacokinetic parameters in the PBPK model of trimethoprim were determined to reproduce the blood concentration profile after a single intravenous and oral administration of trimethoprim in healthy subjects. The model was verified with datasets of both cumulative urinary excretions after a single administration and the blood concentration profile after repeated oral administration. The pharmacokinetic model of creatinine consisted of the creatinine synthesis rate, distribution volume, and creatinine clearance (CL cre ), including tubular secretion via each transporter. When combining the models for trimethoprim and creatinine, the predicted increments in SCr from baseline were 29.0%, 39.5%, and 25.8% at trimethoprim dosages of 5 mg/kg (b.i.d.), 5 mg/kg (q.i.d.), and 200 mg (b.i.d.), respectively, which were comparable with the observed values. The present model analysis enabled us to quantitatively explain increments in SCr during trimethoprim treatment by its inhibition of renal transporters. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
The Structure of Psychopathology: Toward an Expanded Quantitative Empirical Model
Wright, Aidan G.C.; Krueger, Robert F.; Hobbs, Megan J.; Markon, Kristian E.; Eaton, Nicholas R.; Slade, Tim
2013-01-01
There has been substantial recent interest in the development of a quantitative, empirically based model of psychopathology. However, the majority of pertinent research has focused on analyses of diagnoses, as described in current official nosologies. This is a significant limitation because existing diagnostic categories are often heterogeneous. In the current research, we aimed to redress this limitation of the existing literature, and to directly compare the fit of categorical, continuous, and hybrid (i.e., combined categorical and continuous) models of syndromes derived from indicators more fine-grained than diagnoses. We analyzed data from a large representative epidemiologic sample (the 2007 Australian National Survey of Mental Health and Wellbeing; N = 8,841). Continuous models provided the best fit for each syndrome we observed (Distress, Obsessive Compulsivity, Fear, Alcohol Problems, Drug Problems, and Psychotic Experiences). In addition, the best fitting higher-order model of these syndromes grouped them into three broad spectra: Internalizing, Externalizing, and Psychotic Experiences. We discuss these results in terms of future efforts to refine emerging empirically based, dimensional-spectrum model of psychopathology, and to use the model to frame psychopathology research more broadly. PMID:23067258
Colored Petri net modeling and simulation of signal transduction pathways.
Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon
2006-03-01
Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.
Charpentier, R.R.; Gautier, D.L.
2011-01-01
The USGS has assessed undiscovered petroleum resources in the Arctic through geological mapping, basin analysis and quantitative assessment. The new map compilation provided the base from which geologists subdivided the Arctic for burial history modelling and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. The assessment relied heavily on analogue modelling, with numerical input as lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated taking geological dependencies into account. Fourteen papers in this Geological Society volume present summaries of various aspects of the CARA. ?? 2011 The Geological Society of London.
Blackboard architecture for medical image interpretation
NASA Astrophysics Data System (ADS)
Davis, Darryl N.; Taylor, Christopher J.
1991-06-01
There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...
Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea
Babbs, Charles F.
2011-01-01
To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton, and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling wave theories. PMID:22028708
A Quantitative Exploration of Preservice Teachers' Intent to Use Computer-based Technology
ERIC Educational Resources Information Center
Kim, Kioh; Jain, Sachin; Westhoff, Guy; Rezabek, Landra
2008-01-01
Based on Bandura's (1977) social learning theory, the purpose of this study is to identify the relationship of preservice teachers' perceptions of faculty modeling of computer-based technology and preservice teachers' intent of using computer-based technology in educational settings. There were 92 participants in this study; they were enrolled in…
NASA Astrophysics Data System (ADS)
Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid
2015-07-01
The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.
Geuna, S
2000-11-20
Quantitative morphology of the nervous system has undergone great developments over recent years, and several new technical procedures have been devised and applied successfully to neuromorphological research. However, a lively debate has arisen on some issues, and a great deal of confusion appears to exist that is definitely responsible for the slow spread of the new techniques among scientists. One such element of confusion is related to uncertainty about the meaning, implications, and advantages of the design-based sampling strategy that characterize the new techniques. In this article, to help remove this uncertainty, morphoquantitative methods are described and contrasted on the basis of the inferential paradigm of the sampling strategy: design-based vs model-based. Moreover, some recommendations are made to help scientists judge the appropriateness of a method used for a given study in relation to its specific goals. Finally, the use of the term stereology to label, more or less expressly, only some methods is critically discussed. Copyright 2000 Wiley-Liss, Inc.
Norinder, U; Högberg, T
1992-04-01
The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.
Simulation Of Combat With An Expert System
NASA Technical Reports Server (NTRS)
Provenzano, J. P.
1989-01-01
Proposed expert system predicts outcomes of combat situations. Called "COBRA", combat outcome based on rules for attrition, system selects rules for mathematical modeling of losses and discrete events in combat according to previous experiences. Used with another software module known as the "Game". Game/COBRA software system, consisting of Game and COBRA modules, provides for both quantitative aspects and qualitative aspects in simulations of battles. COBRA intended for simulation of large-scale military exercises, concepts embodied in it have much broader applicability. In industrial research, knowledge-based system enables qualitative as well as quantitative simulations.
An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes
ERIC Educational Resources Information Center
Kapland, David
2008-01-01
This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…
Developing Model-Making and Model-Breaking Skills Using Direct Measurement Video-Based Activities
ERIC Educational Resources Information Center
Vonk, Matthew; Bohacek, Peter; Militello, Cheryl; Iverson, Ellen
2017-01-01
This study focuses on student development of two important laboratory skills in the context of introductory college-level physics. The first skill, which we call model making, is the ability to analyze a phenomenon in a way that produces a quantitative multimodal model. The second skill, which we call model breaking, is the ability to critically…
ERIC Educational Resources Information Center
Krein, Michael
2011-01-01
After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright…
Umesh Agarwal; Sally A. Ralph
2003-01-01
With the objective of using FT-Raman to quantitatively analyze ethylenic units in lignin in thermomechanical pulps (TMPs), coniferyl alcohol, coniferin, coniferaldehyde, and G-DHP lignin models were used to first demonstrate that the technique was fully capable of quantifying ring conjugated ethylenic units. Based on this result, the amount of ethylenic units in TMP...
Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Porth, Ilga; Chen, Charles; El-Kassaby, Yousry A.
2016-01-01
The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates’ offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter estimates is often questioned as the assumption of “half-sibling” in OP families may often be violated. We compared the pedigree- vs. marker-based genetic models by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the disentanglement of additive from all nonadditive factors through genetic variance decomposition. The marker-based models produced more realistic narrow-sense heritability estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the genomic models showed better prediction accuracies compared to pedigree models and were able to predict individual breeding values for new individuals from untested families, which was not possible using the pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the quantitative genetic parameters of complex traits even under simple and shallow pedigree structure. PMID:26801647
Harju, Mikael; Hamers, Timo; Kamstra, Jorke H; Sonneveld, Edwin; Boon, Jan P; Tysklind, Mats; Andersson, Patrik L
2007-04-01
In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A, and hexabromocyclododecane, have been identified as potential endocrine disruptors. Quantitative structure-activity relationship models were built based on the in vitro potencies of 26 selected BFRs. The in vitro assays included interactions with, for example, androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptor, plus competition with thyroxine for its plasma carrier protein (transthyretin), inhibition of estradiol sulfation via sulfotransferase, and finally, rate of metabolization. The QSAR modeling, a number of physicochemical parameters were calculated describing the electronic, lipophilic, and structural characteristics of the molecules. These include frontier molecular orbitals, molecular charges, polarities, log octanol/water partitioning coefficient, and two- and three-dimensional molecularproperties. Experimental properties were included and measured for PBDEs, such as their individual ultraviolet spectra (200-320 nm) and retention times on three different high-performance liquid chromatography columns and one nonpolar gas chromatography column. Quantitative structure-activity relationship models based on androgen antagonism and metabolic degradation rates generally gave similar results, suggesting that lower-brominated PBDEs with bromine substitutions in ortho positions and bromine-free meta- and para positions had the highest potencies and metabolic degradation rates. Predictions made for the constituents of the technical flame retardant Bromkal 70-5DE found BDE 17 to be a potent androgen antagonist and BDE 66, which is a relevant PBDE in environmental samples, to be only a weak antagonist.
Zou, Jiaqi; Li, Na
2013-09-01
Proper design of nucleic acid sequences is crucial for many applications. We have previously established a thermodynamics-based quantitative model to help design aptamer-based nucleic acid probes by predicting equilibrium concentrations of all interacting species. To facilitate customization of this thermodynamic model for different applications, here we present a generic and easy-to-use platform to implement the algorithm of the model with Microsoft(®) Excel formulas and VBA (Visual Basic for Applications) macros. Two Excel spreadsheets have been developed: one for the applications involving only nucleic acid species, the other for the applications involving both nucleic acid and non-nucleic acid species. The spreadsheets take the nucleic acid sequences and the initial concentrations of all species as input, guide the user to retrieve the necessary thermodynamic constants, and finally calculate equilibrium concentrations for all species in various bound and unbound conformations. The validity of both spreadsheets has been verified by comparing the modeling results with the experimental results on nucleic acid sequences reported in the literature. This Excel-based platform described here will allow biomedical researchers to rationalize the sequence design of nucleic acid probes using the thermodynamics-based modeling even without relevant theoretical and computational skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Geerts, Hugo; Hofmann-Apitius, Martin; Anastasio, Thomas J
2017-11-01
Neurodegenerative diseases such as Alzheimer's disease (AD) follow a slowly progressing dysfunctional trajectory, with a large presymptomatic component and many comorbidities. Using preclinical models and large-scale omics studies ranging from genetics to imaging, a large number of processes that might be involved in AD pathology at different stages and levels have been identified. The sheer number of putative hypotheses makes it almost impossible to estimate their contribution to the clinical outcome and to develop a comprehensive view on the pathological processes driving the clinical phenotype. Traditionally, bioinformatics approaches have provided correlations and associations between processes and phenotypes. Focusing on causality, a new breed of advanced and more quantitative modeling approaches that use formalized domain expertise offer new opportunities to integrate these different modalities and outline possible paths toward new therapeutic interventions. This article reviews three different computational approaches and their possible complementarities. Process algebras, implemented using declarative programming languages such as Maude, facilitate simulation and analysis of complicated biological processes on a comprehensive but coarse-grained level. A model-driven Integration of Data and Knowledge, based on the OpenBEL platform and using reverse causative reasoning and network jump analysis, can generate mechanistic knowledge and a new, mechanism-based taxonomy of disease. Finally, Quantitative Systems Pharmacology is based on formalized implementation of domain expertise in a more fine-grained, mechanism-driven, quantitative, and predictive humanized computer model. We propose a strategy to combine the strengths of these individual approaches for developing powerful modeling methodologies that can provide actionable knowledge for rational development of preventive and therapeutic interventions. Development of these computational approaches is likely to be required for further progress in understanding and treating AD. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Study On The Application Of CBERS-02B To Quantitative Soil Erosion Monitoring
NASA Astrophysics Data System (ADS)
Shi, Mingchang; Xu, Jing; Wang, Lei; Wang, Xiaoyun; Mu, Jing
2010-10-01
Currently, the reduction of soil erosion is an important prerequisite for achieving ecological security. Since real-time and quantitative evaluation on regional soil erosion plays a significant role in reducing the soil erosion, soil erosion models are more and more widely used. Based on RUSLE model, this paper carries out the quantitative soil erosion monitoring in the Xi River Basin and its surrounding areas by using CBERS-02B CCD, DEM, TRMM and other data. Besides, it performs the validation for monitoring results by using remote sensing investigation results in 2005. The monitoring results show that in 2009, the total amount of soil erosion in the study area was 1.94×106t, the erosion area was 2055.2km2 (54.06% of the total area), and the average soil erosion modulus was 509.7t km-2 a-1. As a case using CBERS-02B data for quantitative soil erosion monitoring, this study provides experience on the application of CBERS-02B data in the field of quantitative soil erosion monitoring and also for local soil erosion management.
Pauchard, Y; Smith, M; Mintchev, M
2004-01-01
Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.
A developmental PBPK model is constructed to quantitatively describe the tissue economy of the thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), in the rat. The model is also used to link maternal (THs) to rat fetal tissues via placental transfer. THs are importan...
ERIC Educational Resources Information Center
Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas
2004-01-01
The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…
Toxic Hazards Research Unit Annual Report: 1987
1988-03-01
Low Density Lipoproteins and in Model Membranes 14 Sep Is Cigarette Smoking Neurotoric? Mr. Steven Goden Dr. R. Kutzman 4> ’October 1986 through September 1987 2I ...based pharmcokinetic model phosphoniteo,o-diethylmethyl quantitative structure activity relationship respiratory epithelium Salmonella sensitization j...in Cultured Respiratory Epithelial Cells ----------------------- ------------ 73 6 PHARMACOKINETIC AND PHARMACODYNAMIC MODELING .------------------ 78
Quantitative estimation of the fluorescent parameters for crop leaves with the Bayesian inversion
USDA-ARS?s Scientific Manuscript database
In this study, the fluorescent parameters of crop leaves were retrieved from the leaf hyperspectral measurements by inverting the FluorMODleaf model, which is a leaf-level fluorescence model that is based on the widely used and validated PROSPECT (leaf optical properties) model and can simulate the ...
Image analysis and modeling in medical image computing. Recent developments and advances.
Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T
2012-01-01
Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann
2009-02-01
Pancreatic adenocarcinoma has a five-year survival rate of only 4%, largely because an effective procedure for early detection has not been developed. In this study, mathematical modeling of reflectance and fluorescence spectra was utilized to quantitatively characterize differences between normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma. Initial attempts at separating the spectra of different tissue types involved dividing fluorescence by reflectance, and removing absorption artifacts by applying a "reverse Beer-Lambert factor" when the absorption coefficient was modeled as a linear combination of the extinction coefficients of oxy- and deoxy-hemoglobin. These procedures demonstrated the need for a more complete mathematical model to quantitatively describe fluorescence and reflectance for minimally-invasive fiber-based optical diagnostics in the pancreas.
NASA Astrophysics Data System (ADS)
Cai, Tao; Guo, Songtao; Li, Yongzeng; Peng, Di; Zhao, Xiaofeng; Liu, Yingzheng
2018-04-01
The mechanoluminescent (ML) sensor is a newly developed non-invasive technique for stress/strain measurement. However, its application has been mostly restricted to qualitative measurement due to the lack of a well-defined relationship between ML intensity and stress. To achieve accurate stress measurement, an intensity ratio model was proposed in this study to establish a quantitative relationship between the stress condition and its ML intensity in elastic deformation. To verify the proposed model, experiments were carried out on a ML measurement system using resin samples mixed with the sensor material SrAl2O4:Eu2+, Dy3+. The ML intensity ratio was found to be dependent on the applied stress and strain rate, and the relationship acquired from the experimental results agreed well with the proposed model. The current study provided a physical explanation for the relationship between ML intensity and its stress condition. The proposed model was applicable in various SrAl2O4:Eu2+, Dy3+-based ML measurement in elastic deformation, and could provide a useful reference for quantitative stress measurement using the ML sensor in general.
Chen, Ran; Riviere, Jim E
2017-01-01
Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M
2012-07-01
The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. Fat infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.
Diffusion rate limitations in actin-based propulsion of hard and deformable particles.
Dickinson, Richard B; Purich, Daniel L
2006-08-15
The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.
Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments
NASA Astrophysics Data System (ADS)
Atwal, Gurinder S.; Kinney, Justin B.
2016-03-01
A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.
Timing fungicide application intervals based on airborne Erysiphe necator concentrations
USDA-ARS?s Scientific Manuscript database
Management of grape powdery mildew (Erysiphe necator) and other polycyclic diseases relies on numerous fungicide applications that follow a calendar or model-based application intervals, both of which assume that inoculum is always present. Quantitative molecular assays have been previously develope...
Thermodynamics-based models of transcriptional regulation with gene sequence.
Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing
2015-12-01
Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.
Quantitative Method for Analyzing the Allocation of Risks in Transportation Construction
DOT National Transportation Integrated Search
1979-04-01
The report presents a conceptual model of risk that was developed to analyze the impact on owner's cost of alternate allocations of risk among owner and contractor in mass transit construction. A model and analysis procedure are developed, based on d...
Quantitative prediction of drug side effects based on drug-related features.
Niu, Yanqing; Zhang, Wen
2017-09-01
Unexpected side effects of drugs are great concern in the drug development, and the identification of side effects is an important task. Recently, machine learning methods are proposed to predict the presence or absence of interested side effects for drugs, but it is difficult to make the accurate prediction for all of them. In this paper, we transform side effect profiles of drugs as their quantitative scores, by summing up their side effects with weights. The quantitative scores may measure the dangers of drugs, and thus help to compare the risk of different drugs. Here, we attempt to predict quantitative scores of drugs, namely the quantitative prediction. Specifically, we explore a variety of drug-related features and evaluate their discriminative powers for the quantitative prediction. Then, we consider several feature combination strategies (direct combination, average scoring ensemble combination) to integrate three informative features: chemical substructures, targets, and treatment indications. Finally, the average scoring ensemble model which produces the better performances is used as the final quantitative prediction model. Since weights for side effects are empirical values, we randomly generate different weights in the simulation experiments. The experimental results show that the quantitative method is robust to different weights, and produces satisfying results. Although other state-of-the-art methods cannot make the quantitative prediction directly, the prediction results can be transformed as the quantitative scores. By indirect comparison, the proposed method produces much better results than benchmark methods in the quantitative prediction. In conclusion, the proposed method is promising for the quantitative prediction of side effects, which may work cooperatively with existing state-of-the-art methods to reveal dangers of drugs.
Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search
NASA Astrophysics Data System (ADS)
Chen, Caixia; Shi, Chun
2018-03-01
Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.
Retinal status analysis method based on feature extraction and quantitative grading in OCT images.
Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri
2016-07-22
Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.
Antoniewicz, Maciek R
2015-12-01
Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Song, Na; Du, Yong; He, Bin; Frey, Eric C.
2011-01-01
Purpose: The radionuclide 131I has found widespread use in targeted radionuclide therapy (TRT), partly due to the fact that it emits photons that can be imaged to perform treatment planning or posttherapy dose verification as well as beta rays that are suitable for therapy. In both the treatment planning and dose verification applications, it is necessary to estimate the activity distribution in organs or tumors at several time points. In vivo estimates of the 131I activity distribution at each time point can be obtained from quantitative single-photon emission computed tomography (QSPECT) images and organ activity estimates can be obtained either from QSPECT images or quantification of planar projection data. However, in addition to the photon used for imaging, 131I decay results in emission of a number of other higher-energy photons with significant abundances. These higher-energy photons can scatter in the body, collimator, or detector and be counted in the 364 keV photopeak energy window, resulting in reduced image contrast and degraded quantitative accuracy; these photons are referred to as downscatter. The goal of this study was to develop and evaluate a model-based downscatter compensation method specifically designed for the compensation of high-energy photons emitted by 131I and detected in the imaging energy window. Methods: In the evaluation study, we used a Monte Carlo simulation (MCS) code that had previously been validated for other radionuclides. Thus, in preparation for the evaluation study, we first validated the code for 131I imaging simulation by comparison with experimental data. Next, we assessed the accuracy of the downscatter model by comparing downscatter estimates with MCS results. Finally, we combined the downscatter model with iterative reconstruction-based compensation for attenuation (A) and scatter (S) and the full (D) collimator-detector response of the 364 keV photons to form a comprehensive compensation method. We evaluated this combined method in terms of quantitative accuracy using the realistic 3D NCAT phantom and an activity distribution obtained from patient studies. We compared the accuracy of organ activity estimates in images reconstructed with and without addition of downscatter compensation from projections with and without downscatter contamination. Results: We observed that the proposed method provided substantial improvements in accuracy compared to no downscatter compensation and had accuracies comparable to reconstructions from projections without downscatter contamination. Conclusions: The results demonstrate that the proposed model-based downscatter compensation method is effective and may have a role in quantitative 131I imaging. PMID:21815394
Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard
2011-04-01
Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype-phenotype model, we present here a three-dimensional functional-structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed.
Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard
2011-01-01
Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. Methods The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Key Results Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. Conclusions We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed. PMID:21247905
A Dimensionally Reduced Clustering Methodology for Heterogeneous Occupational Medicine Data Mining.
Saâdaoui, Foued; Bertrand, Pierre R; Boudet, Gil; Rouffiac, Karine; Dutheil, Frédéric; Chamoux, Alain
2015-10-01
Clustering is a set of techniques of the statistical learning aimed at finding structures of heterogeneous partitions grouping homogenous data called clusters. There are several fields in which clustering was successfully applied, such as medicine, biology, finance, economics, etc. In this paper, we introduce the notion of clustering in multifactorial data analysis problems. A case study is conducted for an occupational medicine problem with the purpose of analyzing patterns in a population of 813 individuals. To reduce the data set dimensionality, we base our approach on the Principal Component Analysis (PCA), which is the statistical tool most commonly used in factorial analysis. However, the problems in nature, especially in medicine, are often based on heterogeneous-type qualitative-quantitative measurements, whereas PCA only processes quantitative ones. Besides, qualitative data are originally unobservable quantitative responses that are usually binary-coded. Hence, we propose a new set of strategies allowing to simultaneously handle quantitative and qualitative data. The principle of this approach is to perform a projection of the qualitative variables on the subspaces spanned by quantitative ones. Subsequently, an optimal model is allocated to the resulting PCA-regressed subspaces.
Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen
2014-07-01
Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.
[A new method of processing quantitative PCR data].
Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun
2003-05-01
Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip
2018-02-01
We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.
How to quantitatively evaluate safety of driver behavior upon accident? A biomechanical methodology
Zhang, Wen; Cao, Jieer
2017-01-01
How to evaluate driver spontaneous reactions in various collision patterns in a quantitative way is one of the most important topics in vehicle safety. Firstly, this paper constructs representative numerical crash scenarios described by impact velocity, impact angle and contact position based on finite element (FE) computation platform. Secondly, a driver cabin model is extracted and described in the well validated multi-rigid body (MB) model to compute the value of weighted injury criterion to quantitatively assess drivers’ overall injury under certain circumstances. Furthermore, based on the coupling of FE and MB, parametric studies on various crash scenarios are conducted. It is revealed that the WIC (Weighted Injury Criteria) value variation law under high impact velocities is quite distinct comparing with the one in low impact velocities. In addition, the coupling effect can be elucidated by the fact that the difference of WIC value among three impact velocities under smaller impact angles tends to be distinctly higher than that under larger impact angles. Meanwhile, high impact velocity also increases the sensitivity of WIC under different collision positions and impact angles. Results may provide a new methodology to quantitatively evaluate driving behaviors and serve as a significant guiding step towards collision avoidance for autonomous driving vehicles. PMID:29240789
How to quantitatively evaluate safety of driver behavior upon accident? A biomechanical methodology.
Zhang, Wen; Cao, Jieer; Xu, Jun
2017-01-01
How to evaluate driver spontaneous reactions in various collision patterns in a quantitative way is one of the most important topics in vehicle safety. Firstly, this paper constructs representative numerical crash scenarios described by impact velocity, impact angle and contact position based on finite element (FE) computation platform. Secondly, a driver cabin model is extracted and described in the well validated multi-rigid body (MB) model to compute the value of weighted injury criterion to quantitatively assess drivers' overall injury under certain circumstances. Furthermore, based on the coupling of FE and MB, parametric studies on various crash scenarios are conducted. It is revealed that the WIC (Weighted Injury Criteria) value variation law under high impact velocities is quite distinct comparing with the one in low impact velocities. In addition, the coupling effect can be elucidated by the fact that the difference of WIC value among three impact velocities under smaller impact angles tends to be distinctly higher than that under larger impact angles. Meanwhile, high impact velocity also increases the sensitivity of WIC under different collision positions and impact angles. Results may provide a new methodology to quantitatively evaluate driving behaviors and serve as a significant guiding step towards collision avoidance for autonomous driving vehicles.
Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages
NASA Astrophysics Data System (ADS)
Samartin, Stéphanie; Heiri, Oliver; Joos, Fortunat; Renssen, Hans; Franke, Jörg; Brönnimann, Stefan; Tinner, Willy
2017-02-01
Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000-5,000 years ago and estimated to have been 1-2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions.
A conductive grating sensor for online quantitative monitoring of fatigue crack.
Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun
2018-05-01
Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.
A conductive grating sensor for online quantitative monitoring of fatigue crack
NASA Astrophysics Data System (ADS)
Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun
2018-05-01
Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.
Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul
2016-12-01
Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Quantitative Study on Corrosion of Steel Strands Based on Self-Magnetic Flux Leakage.
Xia, Runchuan; Zhou, Jianting; Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhang, Zeyu
2018-05-02
This paper proposed a new computing method to quantitatively and non-destructively determine the corrosion of steel strands by analyzing the self-magnetic flux leakage (SMFL) signals from them. The magnetic dipole model and three growth models (Logistic model, Exponential model, and Linear model) were proposed to theoretically analyze the characteristic value of SMFL. Then, the experimental study on the corrosion detection by the magnetic sensor was carried out. The setup of the magnetic scanning device and signal collection method were also introduced. The results show that the Logistic Growth model is verified as the optimal model for calculating the magnetic field with good fitting effects. Combined with the experimental data analysis, the amplitudes of the calculated values ( B xL ( x,z ) curves) agree with the measured values in general. This method provides significant application prospects for the evaluation of the corrosion and the residual bearing capacity of steel strand.
NASA Astrophysics Data System (ADS)
Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.
We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.
Naik, P K; Singh, T; Singh, H
2009-07-01
Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.
Making predictions of mangrove deforestation: a comparison of two methods in Kenya.
Rideout, Alasdair J R; Joshi, Neha P; Viergever, Karin M; Huxham, Mark; Briers, Robert A
2013-11-01
Deforestation of mangroves is of global concern given their importance for carbon storage, biogeochemical cycling and the provision of other ecosystem services, but the links between rates of loss and potential drivers or risk factors are rarely evaluated. Here, we identified key drivers of mangrove loss in Kenya and compared two different approaches to predicting risk. Risk factors tested included various possible predictors of anthropogenic deforestation, related to population, suitability for land use change and accessibility. Two approaches were taken to modelling risk; a quantitative statistical approach and a qualitative categorical ranking approach. A quantitative model linking rates of loss to risk factors was constructed based on generalized least squares regression and using mangrove loss data from 1992 to 2000. Population density, soil type and proximity to roads were the most important predictors. In order to validate this model it was used to generate a map of losses of Kenyan mangroves predicted to have occurred between 2000 and 2010. The qualitative categorical model was constructed using data from the same selection of variables, with the coincidence of different risk factors in particular mangrove areas used in an additive manner to create a relative risk index which was then mapped. Quantitative predictions of loss were significantly correlated with the actual loss of mangroves between 2000 and 2010 and the categorical risk index values were also highly correlated with the quantitative predictions. Hence, in this case the relatively simple categorical modelling approach was of similar predictive value to the more complex quantitative model of mangrove deforestation. The advantages and disadvantages of each approach are discussed, and the implications for mangroves are outlined. © 2013 Blackwell Publishing Ltd.
Grass Grows, the Cow Eats: A Simple Grazing Systems Model with Emergent Properties
ERIC Educational Resources Information Center
Ungar, Eugene David; Seligman, Noam G.; Noy-Meir, Imanuel
2004-01-01
We describe a simple, yet intellectually challenging model of grazing systems that introduces basic concepts in ecology and systems analysis. The practical is suitable for high-school and university curricula with a quantitative orientation, and requires only basic skills in mathematics and spreadsheet use. The model is based on Noy-Meir's (1975)…
Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja
2016-11-01
Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-09-01
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-01-01
Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037
PRIORITIZING FUTURE RESEACH ON OFF-LABEL PRESCRIBING: RESULTS OF A QUANTITATIVE EVALUATION
Walton, Surrey M.; Schumock, Glen T.; Lee, Ky-Van; Alexander, G. Caleb; Meltzer, David; Stafford, Randall S.
2015-01-01
Background Drug use for indications not approved by the Food and Drug Administration exceeds 20% of prescribing. Available compendia indicate that a minority of off-label uses are well supported by evidence. Policy makers, however, lack information to identify where systematic reviews of the evidence or other research would be most valuable. Methods We developed a quantitative model for prioritizing individual drugs for future research on off-label uses. The base model incorporated three key factors, 1) the volume of off-label use with inadequate evidence, 2) safety, and 3) cost and market considerations. Nationally representative prescribing data were used to estimate the number of off-label drug uses by indication from 1/2005 through 6/2007 in the United States, and these indications were then categorized according to the adequacy of scientific support. Black box warnings and safety alerts were used to quantify drug safety. Drug cost, date of market entry, and marketing expenditures were used to quantify cost and market considerations. Each drug was assigned a relative value for each factor, and the factors were then weighted in the final model to produce a priority score. Sensitivity analyses were conducted by varying the weightings and model parameters. Results Drugs that were consistently ranked highly in both our base model and sensitivity analyses included quetiapine, warfarin, escitalopram, risperidone, montelukast, bupropion, sertraline, venlafaxine, celecoxib, lisinopril, duloxetine, trazodone, olanzapine, and epoetin alfa. Conclusion Future research into off-label drug use should focus on drugs used frequently with inadequate supporting evidence, particularly if further concerns are raised by known safety issues, high drug cost, recent market entry, and extensive marketing. Based on quantitative measures of these factors, we have prioritized drugs where targeted research and policy activities have high potential value. PMID:19025425
Some suggested future directions of quantitative resource assessments
Singer, D.A.
2001-01-01
Future quantitative assessments will be expected to estimate quantities, values, and locations of undiscovered mineral resources in a form that conveys both economic viability and uncertainty associated with the resources. Historically, declining metal prices point to the need for larger deposits over time. Sensitivity analysis demonstrates that the greatest opportunity for reducing uncertainty in assessments lies in lowering uncertainty associated with tonnage estimates. Of all errors possible in assessments, those affecting tonnage estimates are by far the most important. Selecting the correct deposit model is the most important way of controlling errors because the dominance of tonnage-deposit models are the best known predictor of tonnage. Much of the surface is covered with apparently barren rocks and sediments in many large regions. Because many exposed mineral deposits are believed to have been found, a prime concern is the presence of possible mineralized rock under cover. Assessments of areas with resources under cover must rely on extrapolation from surrounding areas, new geologic maps of rocks under cover, or analogy with other well-explored areas that can be considered training tracts. Cover has a profound effect on uncertainty and on methods and procedures of assessments because geology is seldom known and geophysical methods typically have attenuated responses. Many earlier assessment methods were based on relationships of geochemical and geophysical variables to deposits learned from deposits exposed on the surface-these will need to be relearned based on covered deposits. Mineral-deposit models are important in quantitative resource assessments for two reasons: (1) grades and tonnages of most deposit types are significantly different, and (2) deposit types are present in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Grade and tonnage models and development of quantitative descriptive, economic, and deposit density models will help reduce the uncertainty of these new assessments.
Scherr, M K; Seitz, M; Müller-Lisse, U G; Ingrisch, M; Reiser, M F; Müller-Lisse, U L
2010-12-01
Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. 27 patients (age, 65±4 years; PSA 11.0±6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level p<0.05) discriminated bROIs vs. cROIs and cROIs vs. tzROIs, respectively. PMTT discriminated best between bROIs (11.8±3.0 s) and cROIs (24.3±9.6 s) (p<0.0001), while PF, PV, PS, EFR, IV, IMTT also differed significantly (p 0.00002-0.0136). Discrimination between cROIs and tzROIs was insignificant for all parameters except PV (14.3±2.5 ml vs. 17.6±2.6 ml, p<0.05). Besides MRI, MRS and DWI quantitative, 2-compartment MRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Julkunen, Petro; Kiviranta, Panu; Wilson, Wouter; Jurvelin, Jukka S; Korhonen, Rami K
2007-01-01
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.
Toni Lyn Morelli; Susan C. Carr
2011-01-01
We conducted a literature review of the effects of climate on the distribution and growth of quaking aspen (Populus tremuloides Michx.) in the Western United States. Based on our review, we summarize models of historical climate determinants of contemporary aspen distribution. Most quantitative climate-based models linked aspen presence and growth...
Varma, Manthena V S; Lai, Yurong; Kimoto, Emi; Goosen, Theunis C; El-Kattan, Ayman F; Kumar, Vikas
2013-04-01
Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.
Dataset of quantitative spectral EEG of different stages of kindling acquisition in rats.
Jalilifar, Mostafa; Yadollahpour, Ali
2018-02-01
The data represented here are in relation with the manuscript "Quantitative assessments of extracellular EEG to classify specific features of main phases of seizure acquisition based on kindling model in Rat" (Jalilifar et al., 2017) [1] which quantitatively classified different main stages of the kindling process based on their electrophysiological characteristics using EEG signal processing. The data in the graphical form reported the contribution of different sub bands of EEG in different stages of kindling- induced epileptogenesis. Only EEG signals related to stages 1-2 (initial seizure stages (ISSs)), 3 (localized seizure stage (LSS)), and 4-5 (generalized seizure stages (GSSs) were transferred into frequency function by Fast Fourier Transform (FFT) and their power spectrum and power of each sub bands including delta (1-4 Hz), Theta (4-8 Hz), alpha (8-12 Hz), beta (12-28 Hz), gamma (28-40 Hz) were calculated with MATLAB 2013b. Accordingly, all results were obtained quantitatively which can contribute to reduce the errors in the behavioral assessments.
Estimation of hydrolysis rate constants for carbamates ...
Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp
Wotherspoon, Lisa M; Boyd, Kathleen Anne; Morris, Rachel K; Jackson, Lesley; Chandiramani, Manju; David, Anna L; Khalil, Asma; Shennan, Andrew; Hodgetts Morton, Victoria; Lavender, Tina; Khan, Khalid; Harper-Clarke, Susan; Mol, Ben; Riley, Richard D; Norrie, John; Norman, Jane
2018-01-01
Introduction The aim of the QUIDS study is to develop a decision support tool for the management of women with symptoms and signs of preterm labour, based on a validated prognostic model using quantitative fetal fibronectin (fFN) concentration, in combination with clinical risk factors. Methods and analysis The study will evaluate the Rapid fFN 10Q System (Hologic, Marlborough, Massachusetts, USA) which quantifies fFN in a vaginal swab. In QUIDS part 2, we will perform a prospective cohort study in at least eight UK consultant-led maternity units, in women with symptoms of preterm labour at 22+0 to 34+6 weeks gestation to externally validate a prognostic model developed in QUIDS part 1. The effects of quantitative fFN on anxiety will be assessed, and acceptability of the test and prognostic model will be evaluated in a subgroup of women and clinicians (n=30). The sample size is 1600 women (with estimated 96–192 events of preterm delivery within 7 days of testing). Clinicians will be informed of the qualitative fFN result (positive/negative) but be blinded to quantitative fFN result. Research midwives will collect outcome data from the maternal and neonatal clinical records. The final validated prognostic model will be presented as a mobile or web-based application. Ethics and dissemination The study is funded by the National Institute of Healthcare Research Health Technology Assessment (HTA 14/32/01). It has been approved by the West of Scotland Research Ethics Committee (16/WS/0068). Version Protocol V.2, Date 1 November 2016. Trial registration number ISRCTN41598423 and CPMS: 31277. PMID:29674373
NASA Astrophysics Data System (ADS)
Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey
2018-03-01
The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.
Quantitative Research: A Dispute Resolution Model for FTC Advertising Regulation.
ERIC Educational Resources Information Center
Richards, Jef I.; Preston, Ivan L.
Noting the lack of a dispute mechanism for determining whether an advertising practice is truly deceptive without generating the costs and negative publicity produced by traditional Federal Trade Commission (FTC) procedures, this paper proposes a model based upon early termination of the issues through jointly commissioned behavioral research. The…
The Academic Knowledge Management Model of Small Schools in Thailand
ERIC Educational Resources Information Center
Tumtuma, Chamnan; Chantarasombat, Chalard; Yeamsang, Theerawat
2015-01-01
The Academic Knowledge Management Model of Small Schools in Thailand was created by research and development. The quantitative and qualitative data were collected via the following steps: a participatory workshop meeting, the formation of a team according to knowledge base, field study, brainstorming, group discussion, activities carried out…
ERIC Educational Resources Information Center
LoPresto, Michael C.
2014-01-01
What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that…
Biologically-Based Dose Response (BBDR) modeling of environmental pollutants can be utilized to inform the mode of action (MOA) by which compounds elicit adverse health effects. Chemicals that produce tumors are typically described as either genotoxic or non-genotoxic. One common...
PREDICTING THE RISKS OF NEUROTOXIC VOLATILE ORGANIC COMPOUNDS BASED ON TARGET TISSUE DOSE.
Quantitative exposure-dose-response models relate the external exposure of a substance to the dose in the target tissue, and then relate the target tissue dose to production of adverse outcomes. We developed exposure-dose-response models to describe the affects of acute exposure...
Developing Public Education Policy through Policy-Impact Analysis.
ERIC Educational Resources Information Center
Hackett, E. Raymond; And Others
A model for analyzing policy impacts is presented that will assist state-level policy makers in education. The model comprises four stages: (1) monitoring, which includes the identification of relevant trends and issues and the development of a data base; (2) forecasting, which uses quantitative and qualitative techniques developed in futures…
A Methodological Review of Structural Equation Modelling in Higher Education Research
ERIC Educational Resources Information Center
Green, Teegan
2016-01-01
Despite increases in the number of articles published in higher education journals using structural equation modelling (SEM), research addressing their statistical sufficiency, methodological appropriateness and quantitative rigour is sparse. In response, this article provides a census of all covariance-based SEM articles published up until 2013…
Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season
NASA Technical Reports Server (NTRS)
Campbell, J. Elliott; Carmichael, Gregory R.; Chai, T.; Mena-Carrasco, M.; Tang, Y.; Blake, D. R.; Blake, N. J.; Vay, Stephanie A.; Collatz, G. James; Baker, I.;
2008-01-01
Climate models incorporate photosynthesis-climate feedbacks, yet we lack robust tools for large-scale assessments of these processes. Recent work suggests that carbonyl sulfide (COS), a trace gas consumed by plants, could provide a valuable constraint on photosynthesis. Here we analyze airborne observations of COS and carbon dioxide concentrations during the growing season over North America with a three-dimensional atmospheric transport model. We successfully modeled the persistent vertical drawdown of atmospheric COS using the quantitative relation between COS and photosynthesis that has been measured in plant chamber experiments. Furthermore, this drawdown is driven by plant uptake rather than other continental and oceanic fluxes in the model. These results provide quantitative evidence that COS gradients in the continental growing season may have broad use as a measurement-based photosynthesis tracer.
Advanced quantitative measurement methodology in physics education research
NASA Astrophysics Data System (ADS)
Wang, Jing
The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three parts. The first part involves the comparison between item response theory (IRT) and classical test theory (CTT). The two theories both provide test item statistics for educational inferences and decisions. The two theories are both applied to Force Concept Inventory data obtained from students enrolled in The Ohio State University. Effort was made to examine the similarity and difference between the two theories, and the possible explanation to the difference. The study suggests that item response theory is more sensitive to the context and conceptual features of the test items than classical test theory. The IRT parameters provide a better measure than CTT parameters for the educational audience to investigate item features. The second part of the dissertation is on the measure of association for binary data. In quantitative assessment, binary data is often encountered because of its simplicity. The current popular measures of association fail under some extremely unbalanced conditions. However, the occurrence of these conditions is not rare in educational data. Two popular association measures, the Pearson's correlation and the tetrachoric correlation are examined. A new method, model based association is introduced, and an educational testing constraint is discussed. The existing popular methods are compared with the model based association measure with and without the constraint. Connections between the value of association and the context and conceptual features of questions are discussed in detail. Results show that all the methods have their advantages and disadvantages. Special attention to the test and data conditions is necessary. The last part of the dissertation is focused on exploratory factor analysis (EFA). The theoretical advantages of EFA are discussed. Typical misunderstanding and misusage of EFA are explored. The EFA is performed on Lawson's Classroom Test of Scientific Reasoning (LCTSR), a widely used assessment on scientific reasoning skills. The reasoning ability structures for U.S. and Chinese students at different educational levels are given by the analysis. A final discussion on the advanced quantitative assessment methodology and the pure mathematical methodology is presented at the end.
Gunawardena, Harsha P; O'Brien, Jonathon; Wrobel, John A; Xie, Ling; Davies, Sherri R; Li, Shunqiang; Ellis, Matthew J; Qaqish, Bahjat F; Chen, Xian
2016-02-01
Single quantitative platforms such as label-based or label-free quantitation (LFQ) present compromises in accuracy, precision, protein sequence coverage, and speed of quantifiable proteomic measurements. To maximize the quantitative precision and the number of quantifiable proteins or the quantifiable coverage of tissue proteomes, we have developed a unified approach, termed QuantFusion, that combines the quantitative ratios of all peptides measured by both LFQ and label-based methodologies. Here, we demonstrate the use of QuantFusion in determining the proteins differentially expressed in a pair of patient-derived tumor xenografts (PDXs) representing two major breast cancer (BC) subtypes, basal and luminal. Label-based in-spectra quantitative peptides derived from amino acid-coded tagging (AACT, also known as SILAC) of a non-malignant mammary cell line were uniformly added to each xenograft with a constant predefined ratio, from which Ratio-of-Ratio estimates were obtained for the label-free peptides paired with AACT peptides in each PDX tumor. A mixed model statistical analysis was used to determine global differential protein expression by combining complementary quantifiable peptide ratios measured by LFQ and Ratio-of-Ratios, respectively. With minimum number of replicates required for obtaining the statistically significant ratios, QuantFusion uses the distinct mechanisms to "rescue" the missing data inherent to both LFQ and label-based quantitation. Combined quantifiable peptide data from both quantitative schemes increased the overall number of peptide level measurements and protein level estimates. In our analysis of the PDX tumor proteomes, QuantFusion increased the number of distinct peptide ratios by 65%, representing differentially expressed proteins between the BC subtypes. This quantifiable coverage improvement, in turn, not only increased the number of measurable protein fold-changes by 8% but also increased the average precision of quantitative estimates by 181% so that some BC subtypically expressed proteins were rescued by QuantFusion. Thus, incorporating data from multiple quantitative approaches while accounting for measurement variability at both the peptide and global protein levels make QuantFusion unique for obtaining increased coverage and quantitative precision for tissue proteomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*
Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.
2011-01-01
The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID:21048197
Caballero-Lima, David; Kaneva, Iliyana N.; Watton, Simon P.
2013-01-01
In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes. PMID:23666623
Model Mismatch Paradigm for Probe based Nanoscale Imaging
NASA Astrophysics Data System (ADS)
Agarwal, Pranav
Scanning Probe Microscopes (SPMs) are widely used for investigation of material properties and manipulation of matter at the nanoscale. These instruments are considered critical enablers of nanotechnology by providing the only technique for direct observation of dynamics at the nanoscale and affecting it with sub Angstrom resolution. Current SPMs are limited by low throughput and lack of quantitative measurements of material properties. Various applications like the high density data storage, sub-20 nm lithography, fault detection and functional probing of semiconductor circuits, direct observation of dynamical processes involved in biological samples viz. motor proteins and transport phenomena in various materials demand high throughput operation. Researchers involved in material characterization at nanoscale are interested in getting quantitative measurements of stiffness and dissipative properties of various materials in a least invasive manner. In this thesis, system theoretic concepts are used to address these limitations. The central tenet of the thesis is to model, the known information about the system and then focus on perturbations of these known dynamics or model, to sense the effects due to changes in the environment such as changes in material properties or surface topography. Thus a model mismatch paradigm for probe based nanoscale imaging is developed. The topic is developed by presenting physics based modeling of a particular mode of operation of SPMs called the dynamic mode operation. This mode is modeled as a forced Lure system where a linear time invariant system is in feedback with an unknown static memoryless nonlinearity. Tools from averaging theory are used to tame this complex nonlinear system by approximating it as a linear system with time varying parameters. Material properties are thus transformed from being parameters of unknown nonlinear functions to being unknown coefficients of a linear plant. The first contribution of this thesis deals with real time detection and reduction of spurious areas in the image which are also known as probe-loss areas. These areas become severely detrimental during high speed operations. The detection strategy is based on thresholding of a distance measure, which captures the difference between sensor models in absence and presence of probe-loss. A switching gain control strategy based on the output of a Kalman Filter is used to reduce probe-loss areas in real time. The efficacy of this technique is demonstrated through experimental results showing increased image fidelity at scan rates that are 10 times faster than conventional scan rates. The second contribution of this thesis deals with developing multi-frequency input excitation strategy and deriving a bias compensated adaptive parameter estimation strategy to determine the instantaneous equivalent cantilever model. This is used to address the challenge of quantitative imaging at high bandwidth operation by relating the estimated plant coefficients to conservative and dissipative components of tip-sample interaction. The efficacy of the technique is demonstrated for quantitative material characterization of a polymer sample, resulting in material information not previously obtainable during dynamic mode operation. This information is obtained at speeds which are two orders faster than existing techniques. Quantitative verification strategies for the accuracy of estimated parameters are presented. The third contribution of this thesis deals with developing real time tractable models and characterization methodology for an electrostatically actuated MEMS cantilever with an integrated solid state thermal sensor. Appropriate modeling assumptions are made to delineate various nonlinear forces on the cantilever viz. electrostatic force, tip-sample interaction force and capacitive coupling. Experimental strategy is presented to measure the thermal sensing transfer function from DC-100kHz. A quantitative match between experimental and simulated data is obtained for the large range nonlinearities and small signal dynamics.
Quantitative Analysis of the Efficiency of OLEDs.
Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo
2016-12-07
We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.
Larue, Ruben T H M; Defraene, Gilles; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter
2017-02-01
Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years, quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review, we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-source and commercial software packages to perform feature extraction are currently available, all with slightly different functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the integration of image-derived information to personalize treatment in the future.
de Gramatica, Martina; Massacci, Fabio; Shim, Woohyun; Turhan, Uğur; Williams, Julian
2017-02-01
We analyze the issue of agency costs in aviation security by combining results from a quantitative economic model with a qualitative study based on semi-structured interviews. Our model extends previous principal-agent models by combining the traditional fixed and varying monetary responses to physical and cognitive effort with nonmonetary welfare and potentially transferable value of employees' own human capital. To provide empirical evidence for the tradeoffs identified in the quantitative model, we have undertaken an extensive interview process with regulators, airport managers, security personnel, and those tasked with training security personnel from an airport operating in a relatively high-risk state, Turkey. Our results indicate that the effectiveness of additional training depends on the mix of "transferable skills" and "emotional" buy-in of the security agents. Principals need to identify on which side of a critical tipping point their agents are to ensure that additional training, with attached expectations of the burden of work, aligns the incentives of employees with the principals' own objectives. © 2016 Society for Risk Analysis.
Ma, Yukun; Liu, An; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha
2017-01-01
Among the numerous pollutants present in urban road dust, polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants and can pose cancer risk to humans. The primary aim of the study was to develop a quantitative model to assess the cancer risk from PAHs in urban road dust based on traffic and land use factors and thereby to characterise the risk posed by PAHs in fine (<150μm) and coarse (>150μm) particles. The risk posed by PAHs was quantified as incremental lifetime cancer risk (ILCR), which was modelled as a function of traffic volume and percentages of different urban land uses. The study outcomes highlighted the fact that cancer risk from PAHs in urban road dust is primarily influenced by PAHs associated with fine solids. Heavy PAHs with 5 to 6 benzene rings, especially dibenzo[a,h]anthracene (D[a]A) and benzo[a]pyrene (B[a]P) in the mixture contribute most to the risk. The quantitative model developed based on traffic and land use factors will contribute to informed decision making in relation to the management of risk posed by PAHs in urban road dust. Copyright © 2016 Elsevier B.V. All rights reserved.
Paillet, Frederick L.; Crowder, R.E.
1996-01-01
Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not possible with the given data set. Additional statistical criteria such as the statistical significance of regressions are used to guide the subsequent calibration of geophysical data in terms of hydraulic variables in those situations where quantitative data inversion is considered appropriate.
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.
2011-03-01
To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.
Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.
Fulcher, B D; Phillips, A J K; Robinson, P A
2010-05-21
A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Model Selection in Historical Research Using Approximate Bayesian Computation
Rubio-Campillo, Xavier
2016-01-01
Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953
The effects of a problem-based learning digital game on continuing motivation to learn science
NASA Astrophysics Data System (ADS)
Toprac, Paul K.
The purpose of this study was to determine whether playing a problem-based learning (PBL) computer game, Alien Rescue III, would promote continuing motivation (CM) to learn science, and to explore the possible sources of CM. Another goal was to determine whether CM and interest to learn science in the classroom were identical constructs. CM was defined as the pursuit of academic learning goals in noninstructional contexts that were initially encountered in the classroom. Alien Rescue was played for a total of 9 hours in the seventh grade of a private middle school with 44 students, total, participating. The study used a design-based research approach that attempted to triangulate quantitative and qualitative methods. A science knowledge test, and two self-report questionnaires---one measuring motivation and one measuring CM---were administered preintervention, postintervention, and follow-up. Qualitative data was also collected, including student interviews, classroom observations, written responses, and a science teacher interview. Repeated measures ANOVAs were used to determine any significant changes in scores. A multiple regression analysis was used to explore whether a model of CM could be determined using the Eccles' expectancy-value achievement motivation model. The constant comparative method was used to obtain relevant information from the qualitative data. Based on contradictory quantitative and qualitative findings, results were mixed as to whether students exhibited an increase in CM to learn space science. Students continued to freely engage Alien Rescue during the mid-class break, but this does not strictly adhere to the definition of CM. However, many students did find space science more interesting than anticipated and developed increased desire to learn more in class, if not outside of class. Results also suggest that CM and interest in learning more in class are separate but related constructs. Finally, no satisfactory model emerged from the multiple regression analysis but based on students' interviews, continuing interest to learn is influenced by all the components of Eccles' expectancy-value model. Response effects may have confounded quantitative results. Discussion includes challenges of researching in classrooms, CM, and Eccles' motivational model, and the tension between PBL and game based approaches. Future design recommendations and research directions are provided.
Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana
2013-10-30
In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.
Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska
Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.
2012-01-01
Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.
Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying
2014-12-01
A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.
Implementing Inquiry-Based Learning in Teaching Serial Dilutions
ERIC Educational Resources Information Center
Walker, Candace L.; McGill, Michael T.; Buikema, Arthur L., Jr.; Stevens, Ann M.
2008-01-01
The 5E model of inquiry-based learning was incorporated into a sophomore-level microbiology laboratory to increase student understanding of serial dilutions, a concept that is often difficult for most students to comprehend. Quantitative and qualitative assessments were conducted during the semester to determine the value of this approach for…
In addition to development and systematic qualitative/quantitative testing of indicator-based valuation for aquatic living resources, the proposed work will improve interdisciplinary mechanisms to model and communicate aquatic ecosystem change within SP valuation—an area...
Full 3-D OCT-based pseudophakic custom computer eye model
Sun, M.; Pérez-Merino, P.; Martinez-Enriquez, E.; Velasco-Ocana, M.; Marcos, S.
2016-01-01
We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; p<0.0001) and similarity (RMS for high order aberrations discrepancies within 23.58%). This study shows that full OCT-based pseudophakic custom computer eye models allow understanding the relative contribution of optical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608
Mayers, Michael D; Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W
2017-02-03
Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
NASA Astrophysics Data System (ADS)
Schwarz, W.; Schwub, S.; Quering, K.; Wiedmann, D.; Höppel, H. W.; Göken, M.
2011-09-01
During their operational life-time, actively cooled liners of cryogenic combustion chambers are known to exhibit a characteristic so-called doghouse deformation, pursued by formation of axial cracks. The present work aims at developing a model that quantitatively accounts for this failure mechanism. High-temperature material behaviour is characterised in a test programme and it is shown that stress relaxation, strain rate dependence, isotropic and kinematic hardening as well as material ageing have to be taken into account in the model formulation. From fracture surface analyses of a thrust chamber it is concluded that the failure mode of the hot wall ligament at the tip of the doghouse is related to ductile rupture. A material model is proposed that captures all stated effects. Basing on the concept of continuum damage mechanics, the model is further extended to incorporate softening effects due to material degradation. The model is assessed on experimental data and quantitative agreement is established for all tests available. A 3D finite element thermo-mechanical analysis is performed on a representative thrust chamber applying the developed material-damage model. The simulation successfully captures the observed accrued thinning of the hot wall and quantitatively reproduces the doghouse deformation.
Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
Omer, Travis; Intes, Xavier; Hahn, Juergen
2015-01-01
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Fu, Rongwei; Gartlehner, Gerald; Grant, Mark; Shamliyan, Tatyana; Sedrakyan, Art; Wilt, Timothy J; Griffith, Lauren; Oremus, Mark; Raina, Parminder; Ismaila, Afisi; Santaguida, Pasqualina; Lau, Joseph; Trikalinos, Thomas A
2011-11-01
This article is to establish recommendations for conducting quantitative synthesis, or meta-analysis, using study-level data in comparative effectiveness reviews (CERs) for the Evidence-based Practice Center (EPC) program of the Agency for Healthcare Research and Quality. We focused on recurrent issues in the EPC program and the recommendations were developed using group discussion and consensus based on current knowledge in the literature. We first discussed considerations for deciding whether to combine studies, followed by discussions on indirect comparison and incorporation of indirect evidence. Then, we described our recommendations on choosing effect measures and statistical models, giving special attention to combining studies with rare events; and on testing and exploring heterogeneity. Finally, we briefly presented recommendations on combining studies of mixed design and on sensitivity analysis. Quantitative synthesis should be conducted in a transparent and consistent way. Inclusion of multiple alternative interventions in CERs increases the complexity of quantitative synthesis, whereas the basic issues in quantitative synthesis remain crucial considerations in quantitative synthesis for a CER. We will cover more issues in future versions and update and improve recommendations with the accumulation of new research to advance the goal for transparency and consistency. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rothman, D. S.; Siraj, A.; Hughes, B.
2013-12-01
The international research community is currently in the process of developing new scenarios for climate change research. One component of these scenarios are the Shared Socio-economic Pathways (SSPs), which describe a set of possible future socioeconomic conditions. These are presented in narrative storylines with associated quantitative drivers. The core quantitative drivers include total population, average GDP per capita, educational attainment, and urbanization at the global, regional, and national levels. At the same time there have been calls, particularly by the IAV community, for the SSPs to include additional quantitative information on other key social factors, such as income inequality, governance, health, and access to key infrastructures, which are discussed in the narratives. The International Futures system (IFs), based at the Pardee Center at the University of Denver, is able to provide forecasts of many of these indicators. IFs cannot use the SSP drivers as exogenous inputs, but we are able to create development pathways that closely reproduce the core quantitative drivers defined by the different SSPs, as well as incorporating assumptions on other key driving factors described in the qualitative narratives. In this paper, we present forecasts for additional quantitative indicators based upon the implementation of the SSP development pathways in IFs. These results will be of value to many researchers.
Modeling of breath methane concentration profiles during exercise on an ergometer*
Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian
2016-01-01
We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421
ERIC Educational Resources Information Center
Duffy, Debra Lynne Foster
2012-01-01
Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…
Flow assignment model for quantitative analysis of diverting bulk freight from road to railway
Liu, Chang; Wang, Jiaxi; Xiao, Jie; Liu, Siqi; Wu, Jianping; Li, Jian
2017-01-01
Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway. PMID:28771536
A mathematical function for the description of nutrient-response curve
Ahmadi, Hamed
2017-01-01
Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271
NASA Astrophysics Data System (ADS)
Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-03-01
Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.
Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill
2015-01-01
Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.
Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K
2018-04-01
Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.
He, Gu; Qiu, Minghua; Li, Rui; Ouyang, Liang; Wu, Fengbo; Song, Xiangrong; Cheng, Li; Xiang, Mingli; Yu, Luoting
2012-06-01
Aurora-A has been known as one of the most important targets for cancer therapy, and some Aurora-A inhibitors have entered clinical trails. In this study, combination of the ligand-based and structure-based methods is used to clarify the essential quantitative structure-activity relationship of known Aurora-A inhibitors, and multicomplex-based pharmacophore-guided method has been suggested to generate a comprehensive pharmacophore of Aurora-A kinase based on a collection of crystal structures of Aurora-A-inhibitor complex. This model has been successfully used to identify the bioactive conformation and align 37 structurally diverse N-substituted 2'-(aminoaryl)benzothiazoles derivatives. The quantitative structure-activity relationship analyses have been performed on these Aurora-A inhibitors based on multicomplex-based pharmacophore-guided alignment. These results may provide important information for further design and virtual screening of novel Aurora-A inhibitors. © 2012 John Wiley & Sons A/S.
Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J
2017-01-01
Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.
Modelling Ebola virus dynamics: Implications for therapy.
Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo
2016-11-01
Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Label-free hyperspectral dark-field microscopy for quantitative scatter imaging
NASA Astrophysics Data System (ADS)
Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong
2017-03-01
A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.
NASA Astrophysics Data System (ADS)
Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan
2015-06-01
An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.
Garmann, D; McLeay, S; Shah, A; Vis, P; Maas Enriquez, M; Ploeger, B A
2017-07-01
The pharmacokinetics (PK), safety and efficacy of BAY 81-8973, a full-length, unmodified, recombinant human factor VIII (FVIII), were evaluated in the LEOPOLD trials. The aim of this study was to develop a population PK model based on pooled data from the LEOPOLD trials and to investigate the importance of including samples with FVIII levels below the limit of quantitation (BLQ) to estimate half-life. The analysis included 1535 PK observations (measured by the chromogenic assay) from 183 male patients with haemophilia A aged 1-61 years from the 3 LEOPOLD trials. The limit of quantitation was 1.5 IU dL -1 for the majority of samples. Population PK models that included or excluded BLQ samples were used for FVIII half-life estimations, and simulations were performed using both estimates to explore the influence on the time below a determined FVIII threshold. In the data set used, approximately 16.5% of samples were BLQ, which is not uncommon for FVIII PK data sets. The structural model to describe the PK of BAY 81-8973 was a two-compartment model similar to that seen for other FVIII products. If BLQ samples were excluded from the model, FVIII half-life estimations were longer compared with a model that included BLQ samples. It is essential to assess the importance of BLQ samples when performing population PK estimates of half-life for any FVIII product. Exclusion of BLQ data from half-life estimations based on population PK models may result in an overestimation of half-life and underestimation of time under a predetermined FVIII threshold, resulting in potential underdosing of patients. © 2017 Bayer AG. Haemophilia Published by John Wiley & Sons Ltd.
Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A
2014-12-01
Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.
NASA Astrophysics Data System (ADS)
Folch, A.; Costa, A.; Basart, S.
2012-03-01
During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instruments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14-23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly-averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.
Santos, Radleigh G; Appel, Jon R; Giulianotti, Marc A; Edwards, Bruce S; Sklar, Larry A; Houghten, Richard A; Pinilla, Clemencia
2013-05-30
In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.
An Evaluation of the Private High School Curriculum in Turkey
ERIC Educational Resources Information Center
Aslan, Dolgun
2016-01-01
This study aims at evaluating curricula of private high schools in line with opinions of teachers working at the related high schools, and identifying any related problems. Screening model is used as a quantitative research method in the study. The "element-based curriculum evaluation model" is taken as basis for evaluation of the…
Modernism in School Reform: Promoting Private over Public Good
ERIC Educational Resources Information Center
Nordgren, R. D.
2016-01-01
School reform in the past several decades has taken a "modernist" bent in that it has focused on quantitatively based accountability systems modeled after business (Ravitch, 2013; Tienken & Orlich, 2013). The author uses a model devised by a Finnish scholar to demonstrate that 1) these reforms are indeed modernist, and 2) the private…
An active monitoring method for flood events
NASA Astrophysics Data System (ADS)
Chen, Zeqiang; Chen, Nengcheng; Du, Wenying; Gong, Jianya
2018-07-01
Timely and active detecting and monitoring of a flood event are critical for a quick response, effective decision-making and disaster reduction. To achieve the purpose, this paper proposes an active service framework for flood monitoring based on Sensor Web services and an active model for the concrete implementation of the active service framework. The framework consists of two core components-active warning and active planning. The active warning component is based on a publish-subscribe mechanism implemented by the Sensor Event Service. The active planning component employs the Sensor Planning Service to control the execution of the schemes and models and plans the model input data. The active model, called SMDSA, defines the quantitative calculation method for five elements, scheme, model, data, sensor, and auxiliary information, as well as their associations. Experimental monitoring of the Liangzi Lake flood in the summer of 2010 is conducted to test the proposed framework and model. The results show that 1) the proposed active service framework is efficient for timely and automated flood monitoring. 2) The active model, SMDSA, is a quantitative calculation method used to monitor floods from manual intervention to automatic computation. 3) As much preliminary work as possible should be done to take full advantage of the active service framework and the active model.
Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D
2012-01-01
Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084
NASA Astrophysics Data System (ADS)
Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong
2018-06-01
Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.
Quantitative modeling of reservoir-triggered seismicity
NASA Astrophysics Data System (ADS)
Hainzl, S.; Catalli, F.; Dahm, T.; Heinicke, J.; Woith, H.
2017-12-01
Reservoir-triggered seismicity might occur as the response to the crustal stress caused by the poroelastic response to the weight of the water volume and fluid diffusion. Several cases of high correlations have been found in the past decades. However, crustal stresses might be altered by many other processes such as continuous tectonic stressing and coseismic stress changes. Because reservoir-triggered stresses decay quickly with distance, even tidal or rainfall-triggered stresses might be of similar size at depth. To account for simultaneous stress sources in a physically meaningful way, we apply a seismicity model based on calculated stress changes in the crust and laboratory-derived friction laws. Based on the observed seismicity, the model parameters can be determined by maximum likelihood method. The model leads to quantitative predictions of the variations of seismicity rate in space and time which can be used for hypothesis testing and forecasting. For case studies in Talala (India), Val d'Agri (Italy) and Novy Kostel (Czech Republic), we show the comparison of predicted and observed seismicity, demonstrating the potential and limitations of the approach.
Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection
NASA Astrophysics Data System (ADS)
Wang, Qian; Shi, Yujiao; Yang, Fen; Yang, Sihua
2018-05-01
Elasticity and viscosity assessments are essential for understanding and characterizing the physiological and pathological states of tissue. In this work, by establishing a photoacoustic (PA) shear wave model, an approach for quantitative PA elasticity imaging based on measurement of the rise time of the thermoelastic displacement was developed. Thus, using an existing PA viscoelasticity imaging method that features a phase delay measurement, quantitative PA elasticity imaging and viscosity imaging can be obtained in a simultaneous manner. The method was tested and validated by imaging viscoelastic agar phantoms prepared at different agar concentrations, and the imaging data were in good agreement with rheometry results. Ex vivo experiments on liver pathological models demonstrated the capability for cirrhosis detection, and the results were consistent with the corresponding histological results. This method expands the scope of conventional PA imaging and has potential to become an important alternative imaging modality.
Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R
2004-11-21
Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Lei; Shi, Zhenqing; Lu, Yang
Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all fourmore » metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.« less
COLLABORATION ON NHEERL EPIDEMIOLOGY STUDIES
This task will continue ORD's efforts to develop a biologically plausible, quantitative health risk model for particulate matter (PM) based on epidemiological, toxicological, and mechanistic studies using matched exposure assessments. The NERL, in collaboration with the NHEERL, ...
Barbosa, Jocelyn; Lee, Kyubum; Lee, Sunwon; Lodhi, Bilal; Cho, Jae-Gu; Seo, Woo-Keun; Kang, Jaewoo
2016-03-12
Facial palsy or paralysis (FP) is a symptom that loses voluntary muscles movement in one side of the human face, which could be very devastating in the part of the patients. Traditional methods are solely dependent to clinician's judgment and therefore time consuming and subjective in nature. Hence, a quantitative assessment system becomes apparently invaluable for physicians to begin the rehabilitation process; and to produce a reliable and robust method is challenging and still underway. We introduce a novel approach for a quantitative assessment of facial paralysis that tackles classification problem for FP type and degree of severity. Specifically, a novel method of quantitative assessment is presented: an algorithm that extracts the human iris and detects facial landmarks; and a hybrid approach combining the rule-based and machine learning algorithm to analyze and prognosticate facial paralysis using the captured images. A method combining the optimized Daugman's algorithm and Localized Active Contour (LAC) model is proposed to efficiently extract the iris and facial landmark or key points. To improve the performance of LAC, appropriate parameters of initial evolving curve for facial features' segmentation are automatically selected. The symmetry score is measured by the ratio between features extracted from the two sides of the face. Hybrid classifiers (i.e. rule-based with regularized logistic regression) were employed for discriminating healthy and unhealthy subjects, FP type classification, and for facial paralysis grading based on House-Brackmann (H-B) scale. Quantitative analysis was performed to evaluate the performance of the proposed approach. Experiments show that the proposed method demonstrates its efficiency. Facial movement feature extraction on facial images based on iris segmentation and LAC-based key point detection along with a hybrid classifier provides a more efficient way of addressing classification problem on facial palsy type and degree of severity. Combining iris segmentation and key point-based method has several merits that are essential for our real application. Aside from the facial key points, iris segmentation provides significant contribution as it describes the changes of the iris exposure while performing some facial expressions. It reveals the significant difference between the healthy side and the severe palsy side when raising eyebrows with both eyes directed upward, and can model the typical changes in the iris region.
Quantitative metal magnetic memory reliability modeling for welded joints
NASA Astrophysics Data System (ADS)
Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng
2016-03-01
Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.
NASA Astrophysics Data System (ADS)
Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum
2016-06-01
A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07243c
FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.
Kochan, K; Maslak, E; Chlopicki, S; Baranska, M
2015-08-07
In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.
Discrete-Slots Models of Visual Working-Memory Response Times
Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.
2014-01-01
Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956
Visual salience metrics for image inpainting
NASA Astrophysics Data System (ADS)
Ardis, Paul A.; Singhal, Amit
2009-01-01
Quantitative metrics for successful image inpainting currently do not exist, with researchers instead relying upon qualitative human comparisons to evaluate their methodologies and techniques. In an attempt to rectify this situation, we propose two new metrics to capture the notions of noticeability and visual intent in order to evaluate inpainting results. The proposed metrics use a quantitative measure of visual salience based upon a computational model of human visual attention. We demonstrate how these two metrics repeatably correlate with qualitative opinion in a human observer study, correctly identify the optimum uses for exemplar-based inpainting (as specified in the original publication), and match qualitative opinion in published examples.
Quantitative Agent Based Model of User Behavior in an Internet Discussion Forum
Sobkowicz, Pawel
2013-01-01
The paper presents an agent based simulation of opinion evolution, based on a nonlinear emotion/information/opinion (E/I/O) individual dynamics, to an actual Internet discussion forum. The goal is to reproduce the results of two-year long observations and analyses of the user communication behavior and of the expressed opinions and emotions, via simulations using an agent based model. The model allowed to derive various characteristics of the forum, including the distribution of user activity and popularity (outdegree and indegree), the distribution of length of dialogs between the participants, their political sympathies and the emotional content and purpose of the comments. The parameters used in the model have intuitive meanings, and can be translated into psychological observables. PMID:24324606
A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY
2010-01-01
Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined. Results We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field. Conclusions This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important. PMID:20167082
Quantitative systems toxicology
Bloomingdale, Peter; Housand, Conrad; Apgar, Joshua F.; Millard, Bjorn L.; Mager, Donald E.; Burke, John M.; Shah, Dhaval K.
2017-01-01
The overarching goal of modern drug development is to optimize therapeutic benefits while minimizing adverse effects. However, inadequate efficacy and safety concerns remain to be the major causes of drug attrition in clinical development. For the past 80 years, toxicity testing has consisted of evaluating the adverse effects of drugs in animals to predict human health risks. The U.S. Environmental Protection Agency recognized the need to develop innovative toxicity testing strategies and asked the National Research Council to develop a long-range vision and strategy for toxicity testing in the 21st century. The vision aims to reduce the use of animals and drug development costs through the integration of computational modeling and in vitro experimental methods that evaluates the perturbation of toxicity-related pathways. Towards this vision, collaborative quantitative systems pharmacology and toxicology modeling endeavors (QSP/QST) have been initiated amongst numerous organizations worldwide. In this article, we discuss how quantitative structure-activity relationship (QSAR), network-based, and pharmacokinetic/pharmacodynamic modeling approaches can be integrated into the framework of QST models. Additionally, we review the application of QST models to predict cardiotoxicity and hepatotoxicity of drugs throughout their development. Cell and organ specific QST models are likely to become an essential component of modern toxicity testing, and provides a solid foundation towards determining individualized therapeutic windows to improve patient safety. PMID:29308440
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
NASA Astrophysics Data System (ADS)
Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Uttam, Shikhar; Staton, Kevin; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang
2010-11-01
Definitive diagnosis of malignancy is often challenging due to limited availability of human cell or tissue samples and morphological similarity with certain benign conditions. Our recently developed novel technology-spatial-domain low-coherence quantitative phase microscopy (SL-QPM)-overcomes the technical difficulties and enables us to obtain quantitative information about cell nuclear architectural characteristics with nanoscale sensitivity. We explore its ability to improve the identification of malignancy, especially in cytopathologically non-cancerous-appearing cells. We perform proof-of-concept experiments with an animal model of colorectal carcinogenesis-APCMin mouse model and human cytology specimens of colorectal cancer. We show the ability of in situ nanoscale nuclear architectural characteristics in identifying cancerous cells, especially in those labeled as ``indeterminate or normal'' by expert cytopathologists. Our approach is based on the quantitative analysis of the cell nucleus on the original cytology slides without additional processing, which can be readily applied in a conventional clinical setting. Our simple and practical optical microscopy technique may lead to the development of novel methods for early detection of cancer.
Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
Kümmel, Anne; Panke, Sven; Heinemann, Matthias
2006-01-01
As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysis (NET analysis) is presented as a framework for mechanistic and model-based analysis of these data. By coupling the data to an operating metabolic network via the second law of thermodynamics and the metabolites' Gibbs energies of formation, NET analysis allows inferring functional principles from quantitative metabolite data; for example it identifies reactions that are subject to active allosteric or genetic regulation as exemplified with quantitative metabolite data from Escherichia coli and Saccharomyces cerevisiae. Moreover, the optimization framework of NET analysis was demonstrated to be a valuable tool to systematically investigate data sets for consistency, for the extension of sub-omic metabolome data sets and for resolving intracompartmental concentrations from cell-averaged metabolome data. Without requiring any kind of kinetic modeling, NET analysis represents a perfectly scalable and unbiased approach to uncover insights from quantitative metabolome data. PMID:16788595
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Tracking Expected Improvements of Decadal Prediction in Climate Services
NASA Astrophysics Data System (ADS)
Suckling, E.; Thompson, E.; Smith, L. A.
2013-12-01
Physics-based simulation models are ultimately expected to provide the best available (decision-relevant) probabilistic climate predictions, as they can capture the dynamics of the Earth System across a range of situations, situations for which observations for the construction of empirical models are scant if not nonexistent. This fact in itself provides neither evidence that predictions from today's Earth Systems Models will outperform today's empirical models, nor a guide to the space and time scales on which today's model predictions are adequate for a given purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales. The skill of these forecasts is contrasted with that of state-of-the-art climate models, and the challenges faced by each approach are discussed. The focus is on providing decision-relevant probability forecasts for decision support. An empirical model, known as Dynamic Climatology is shown to be competitive with CMIP5 climate models on decadal scale probability forecasts. Contrasting the skill of simulation models not only with each other but also with empirical models can reveal the space and time scales on which a generation of simulation models exploits their physical basis effectively. It can also quantify their ability to add information in the formation of operational forecasts. Difficulties (i) of information contamination (ii) of the interpretation of probabilistic skill and (iii) of artificial skill complicate each modelling approach, and are discussed. "Physics free" empirical models provide fixed, quantitative benchmarks for the evaluation of ever more complex climate models, that is not available from (inter)comparisons restricted to only complex models. At present, empirical models can also provide a background term for blending in the formation of probability forecasts from ensembles of simulation models. In weather forecasting this role is filled by the climatological distribution, and can significantly enhance the value of longer lead-time weather forecasts to those who use them. It is suggested that the direct comparison of simulation models with empirical models become a regular component of large model forecast intercomparison and evaluation. This would clarify the extent to which a given generation of state-of-the-art simulation models provide information beyond that available from simpler empirical models. It would also clarify current limitations in using simulation forecasting for decision support. No model-based probability forecast is complete without a quantitative estimate if its own irrelevance; this estimate is likely to increase as a function of lead time. A lack of decision-relevant quantitative skill would not bring the science-based foundation of anthropogenic warming into doubt. Similar levels of skill with empirical models does suggest a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to clearly state such weaknesses of a given generation of simulation models, while clearly stating their strength and their foundation, risks the credibility of science in support of policy in the long term.
Acoustics based assessment of respiratory diseases using GMM classification.
Mayorga, P; Druzgalski, C; Morelos, R L; Gonzalez, O H; Vidales, J
2010-01-01
The focus of this paper is to present a method utilizing lung sounds for a quantitative assessment of patient health as it relates to respiratory disorders. In order to accomplish this, applicable traditional techniques within the speech processing domain were utilized to evaluate lung sounds obtained with a digital stethoscope. Traditional methods utilized in the evaluation of asthma involve auscultation and spirometry, but utilization of more sensitive electronic stethoscopes, which are currently available, and application of quantitative signal analysis methods offer opportunities of improved diagnosis. In particular we propose an acoustic evaluation methodology based on the Gaussian Mixed Models (GMM) which should assist in broader analysis, identification, and diagnosis of asthma based on the frequency domain analysis of wheezing and crackles.
Gilbert, M E; McLanahan, E D; Hedge, J; Crofton, K M; Fisher, J W; Valentín-Blasini, L; Blount, B C
2011-04-28
Severe iodine deficiency (ID) results in adverse health outcomes and remains a benchmark for understanding the effects of developmental hypothyroidism. The implications of marginal ID, however, remain less well known. The current study examined the relationship between graded levels of ID in rats and serum thyroid hormones, thyroid iodine content, and urinary iodide excretion. The goals of this study were to provide parametric and dose-response information for development of a quantitative model of the thyroid axis. Female Long Evans rats were fed casein-based diets containing varying iodine (I) concentrations for 8 weeks. Diets were created by adding 975, 200, 125, 25, or 0 μg/kg I to the base diet (~25 μg I/kg chow) to produce 5 nominal I levels, ranging from excess (basal+added I, Treatment 1: 1000 μg I/kg chow) to deficient (Treatment 5: 25 μg I/kg chow). Food intake and body weight were monitored throughout and on 2 consecutive days each week over the 8-week exposure period, animals were placed in metabolism cages to capture urine. Food, water intake, and body weight gain did not differ among treatment groups. Serum T4 was dose-dependently reduced relative to Treatment 1 with significant declines (19 and 48%) at the two lowest I groups, and no significant changes in serum T3 or TSH were detected. Increases in thyroid weight and decreases in thyroidal and urinary iodide content were observed as a function of decreasing I in the diet. Data were compared with predictions from a recently published biologically based dose-response (BBDR) model for ID. Relative to model predictions, female Long Evans rats under the conditions of this study appeared more resilient to low I intake. These results challenge existing models and provide essential information for development of quantitative BBDR models for ID during pregnancy and lactation. Published by Elsevier Ireland Ltd.
Reliability based fatigue design and maintenance procedures
NASA Technical Reports Server (NTRS)
Hanagud, S.
1977-01-01
A stochastic model has been developed to describe a probability for fatigue process by assuming a varying hazard rate. This stochastic model can be used to obtain the desired probability of a crack of certain length at a given location after a certain number of cycles or time. Quantitative estimation of the developed model was also discussed. Application of the model to develop a procedure for reliability-based cost-effective fail-safe structural design is presented. This design procedure includes the reliability improvement due to inspection and repair. Methods of obtaining optimum inspection and maintenance schemes are treated.
NASA Astrophysics Data System (ADS)
Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.
2014-12-01
In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is essential for successful project implementation (Conroy and Peterson, 2013). Evaluating tradeoffs and examining alternatives to improve fish habitat through optimization modeling is not just a trend but rather the scientific strategy by which management needs embrace and apply in its decision framework.
FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.
Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang
2014-10-01
Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.
Industry Software Trustworthiness Criterion Research Based on Business Trustworthiness
NASA Astrophysics Data System (ADS)
Zhang, Jin; Liu, Jun-fei; Jiao, Hai-xing; Shen, Yi; Liu, Shu-yuan
To industry software Trustworthiness problem, an idea aiming to business to construct industry software trustworthiness criterion is proposed. Based on the triangle model of "trustworthy grade definition-trustworthy evidence model-trustworthy evaluating", the idea of business trustworthiness is incarnated from different aspects of trustworthy triangle model for special industry software, power producing management system (PPMS). Business trustworthiness is the center in the constructed industry trustworthy software criterion. Fusing the international standard and industry rules, the constructed trustworthy criterion strengthens the maneuverability and reliability. Quantitive evaluating method makes the evaluating results be intuitionistic and comparable.
Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S
2015-04-01
The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.
2011-01-01
Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212
The 14,582 km2 Neuse River Basin in North Carolina was characterized based on a user defined land-cover (LC) classification system developed specifically to support spatially explicit, non-point source nitrogen allocation modeling studies. Data processing incorporated both spect...
Teaching Single-Case Evaluation to Graduate Social Work Students: A Replication
ERIC Educational Resources Information Center
Wong, Stephen E.; O'Driscoll, Janice
2017-01-01
A course teaching graduate social work students to use an evidence-based model and to evaluate their own practice was replicated and evaluated. Students conducted a project in which they reviewed published research to achieve a clinical goal, applied quantitative measures for ongoing assessment, implemented evidence-based interventions, and…
Toth, Robert; Sperling, Dan; Madabhushi, Anant
2016-01-01
Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells) without the harmful side effects (due to its precise localization). MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a) laser-induced shape-based changes, and (b) changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1) patient alignment, (2) changes due to surrounding organs such as the bladder and rectum, and (3) changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1) and (2) are first modeled and removed using a finite element model (FEM). A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate volume, which appears to manifest predominantly at the site of ablation. After spatially aligning the images, changes to MRI intensity values are clearly visible at the site of ablation. Our results suggest that our new methodology is able to capture and quantify the degree of laser-induced changes to the prostate. The quantitative measurements reflecting of the deformation changes can be used to track treatment response over time. PMID:27088600
Quantitative structure-property relationship modeling of Grätzel solar cell dyes.
Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre
2014-01-30
With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials. Copyright © 2013 Wiley Periodicals, Inc.
Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J
2018-02-05
This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantitative prediction of oral cancer risk in patients with oral leukoplakia.
Liu, Yao; Li, Yicheng; Fu, Yue; Liu, Tong; Liu, Xiaoyong; Zhang, Xinyan; Fu, Jie; Guan, Xiaobing; Chen, Tong; Chen, Xiaoxin; Sun, Zheng
2017-07-11
Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma. We have developed an oral cancer risk index using DNA index value to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited success. In order to improve the performance of the risk index, we collected exfoliative cytology, histopathology, and clinical follow-up data from two independent cohorts of normal, leukoplakia and cancer subjects (training set and validation set). Peaks were defined on the basis of first derivatives with positives, and modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Random forest was found to be the best model with high sensitivity (100%) and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting oral squamous cell carcinoma during follow-up. In conclusion, we have developed an exfoliative cytology-based method for quantitative prediction of cancer risk in patients with oral leukoplakia.
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
Mosley, Garrett L; Nguyen, Phuong; Wu, Benjamin M; Kamei, Daniel T
2016-08-07
The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.
NASA Astrophysics Data System (ADS)
Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen
2018-01-01
A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.
Human group formation in online guilds and offline gangs driven by a common team dynamic.
Johnson, Neil F; Xu, Chen; Zhao, Zhenyuan; Ducheneaut, Nicolas; Yee, Nicholas; Tita, George; Hui, Pak Ming
2009-06-01
Quantifying human group dynamics represents a unique challenge. Unlike animals and other biological systems, humans form groups in both real (offline) and virtual (online) spaces-from potentially dangerous street gangs populated mostly by disaffected male youths to the massive global guilds in online role-playing games for which membership currently exceeds tens of millions of people from all possible backgrounds, age groups, and genders. We have compiled and analyzed data for these two seemingly unrelated offline and online human activities and have uncovered an unexpected quantitative link between them. Although their overall dynamics differ visibly, we find that a common team-based model can accurately reproduce the quantitative features of each simply by adjusting the average tolerance level and attribute range for each population. By contrast, we find no evidence to support a version of the model based on like-seeking-like (i.e., kinship or "homophily").
Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M
2017-03-01
The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.
Human group formation in online guilds and offline gangs driven by a common team dynamic
NASA Astrophysics Data System (ADS)
Johnson, Neil F.; Xu, Chen; Zhao, Zhenyuan; Ducheneaut, Nicolas; Yee, Nicholas; Tita, George; Hui, Pak Ming
2009-06-01
Quantifying human group dynamics represents a unique challenge. Unlike animals and other biological systems, humans form groups in both real (offline) and virtual (online) spaces—from potentially dangerous street gangs populated mostly by disaffected male youths to the massive global guilds in online role-playing games for which membership currently exceeds tens of millions of people from all possible backgrounds, age groups, and genders. We have compiled and analyzed data for these two seemingly unrelated offline and online human activities and have uncovered an unexpected quantitative link between them. Although their overall dynamics differ visibly, we find that a common team-based model can accurately reproduce the quantitative features of each simply by adjusting the average tolerance level and attribute range for each population. By contrast, we find no evidence to support a version of the model based on like-seeking-like (i.e., kinship or “homophily”).
NASA Astrophysics Data System (ADS)
Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki
2015-07-01
In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.
2009-06-01
simulation is the campaign-level Peace Support Operations Model (PSOM). This thesis provides a quantitative analysis of PSOM. The results are based ...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . 15. NUMBER OF PAGES 159...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . vi THIS PAGE
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.
Helmlinger, Gabriel; Al-Huniti, Nidal; Aksenov, Sergey; Peskov, Kirill; Hallow, Karen M; Chu, Lulu; Boulton, David; Eriksson, Ulf; Hamrén, Bengt; Lambert, Craig; Masson, Eric; Tomkinson, Helen; Stanski, Donald
2017-11-15
Modeling & simulation (M&S) methodologies are established quantitative tools, which have proven to be useful in supporting the research, development (R&D), regulatory approval, and marketing of novel therapeutics. Applications of M&S help design efficient studies and interpret their results in context of all available data and knowledge to enable effective decision-making during the R&D process. In this mini-review, we focus on two sets of modeling approaches: population-based models, which are well-established within the pharmaceutical industry today, and fall under the discipline of clinical pharmacometrics (PMX); and systems dynamics models, which encompass a range of models of (patho-)physiology amenable to pharmacological intervention, of signaling pathways in biology, and of substance distribution in the body (today known as physiologically-based pharmacokinetic models) - which today may be collectively referred to as quantitative systems pharmacology models (QSP). We next describe the convergence - or rather selected integration - of PMX and QSP approaches into 'middle-out' drug-disease models, which retain selected mechanistic aspects, while remaining parsimonious, fit-for-purpose, and able to address variability and the testing of covariates. We further propose development opportunities for drug-disease systems models, to increase their utility and applicability throughout the preclinical and clinical spectrum of pharmaceutical R&D. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing the risk posed by natural hazards to infrastructures
NASA Astrophysics Data System (ADS)
Eidsvig, Unni; Kristensen, Krister; Vidar Vangelsten, Bjørn
2015-04-01
The modern society is increasingly dependent on infrastructures to maintain its function, and disruption in one of the infrastructure systems may have severe consequences. The Norwegian municipalities have, according to legislation, a duty to carry out a risk and vulnerability analysis and plan and prepare for emergencies in a short- and long term perspective. Vulnerability analysis of the infrastructures and their interdependencies is an important part of this analysis. This paper proposes a model for assessing the risk posed by natural hazards to infrastructures. The model prescribes a three level analysis with increasing level of detail, moving from qualitative to quantitative analysis. This paper focuses on the second level, which consists of a semi-quantitative analysis. The purpose of this analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures identified in the level 1 analysis and investigate the need for further analyses, i.e. level 3 quantitative analyses. The proposed level 2 analysis considers the frequency of the natural hazard, different aspects of vulnerability including the physical vulnerability of the infrastructure itself and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale. The proposed indicators characterize the robustness of the infrastructure, the importance of the infrastructure as well as interdependencies between society and infrastructure affecting the potential for cascading effects. Each indicator is ranked on a 1-5 scale based on pre-defined ranking criteria. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard and the number of users of the infrastructure. Case studies for two Norwegian municipalities are presented, where risk to primary road, water supply and power network threatened by storm and landslide is assessed. The application examples show that the proposed model provides a useful tool for screening of undesirable events, with the ultimate goal to reduce the societal vulnerability.
2010-01-01
Background Quantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse. Ideally, the models stored in these repositories should be extensively tested and encoded in community-supported and standardised formats. In addition, the models and their components should be cross-referenced with other resources in order to allow their unambiguous identification. Description BioModels Database http://www.ebi.ac.uk/biomodels/ is aimed at addressing exactly these needs. It is a freely-accessible online resource for storing, viewing, retrieving, and analysing published, peer-reviewed quantitative models of biochemical and cellular systems. The structure and behaviour of each simulation model distributed by BioModels Database are thoroughly checked; in addition, model elements are annotated with terms from controlled vocabularies as well as linked to relevant data resources. Models can be examined online or downloaded in various formats. Reaction network diagrams generated from the models are also available in several formats. BioModels Database also provides features such as online simulation and the extraction of components from large scale models into smaller submodels. Finally, the system provides a range of web services that external software systems can use to access up-to-date data from the database. Conclusions BioModels Database has become a recognised reference resource for systems biology. It is being used by the community in a variety of ways; for example, it is used to benchmark different simulation systems, and to study the clustering of models based upon their annotations. Model deposition to the database today is advised by several publishers of scientific journals. The models in BioModels Database are freely distributed and reusable; the underlying software infrastructure is also available from SourceForge https://sourceforge.net/projects/biomodels/ under the GNU General Public License. PMID:20587024
Unraveling additive from nonadditive effects using genomic relationship matrices.
Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F
2014-12-01
The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.
Chiu, Grace S; Wu, Margaret A; Lu, Lin
2013-01-01
The ability to quantitatively assess ecological health is of great interest to those tasked with monitoring and conserving ecosystems. For decades, biomonitoring research and policies have relied on multimetric health indices of various forms. Although indices are numbers, many are constructed based on qualitative procedures, thus limiting the quantitative rigor of the practical interpretations of such indices. The statistical modeling approach to construct the latent health factor index (LHFI) was recently developed. With ecological data that otherwise are used to construct conventional multimetric indices, the LHFI framework expresses such data in a rigorous quantitative model, integrating qualitative features of ecosystem health and preconceived ecological relationships among such features. This hierarchical modeling approach allows unified statistical inference of health for observed sites (along with prediction of health for partially observed sites, if desired) and of the relevance of ecological drivers, all accompanied by formal uncertainty statements from a single, integrated analysis. Thus far, the LHFI approach has been demonstrated and validated in a freshwater context. We adapt this approach to modeling estuarine health, and illustrate it on the previously unassessed system in Richibucto in New Brunswick, Canada, where active oyster farming is a potential stressor through its effects on sediment properties. Field data correspond to health metrics that constitute the popular AZTI marine biotic index and the infaunal trophic index, as well as abiotic predictors preconceived to influence biota. Our paper is the first to construct a scientifically sensible model that rigorously identifies the collective explanatory capacity of salinity, distance downstream, channel depth, and silt-clay content-all regarded a priori as qualitatively important abiotic drivers-towards site health in the Richibucto ecosystem. This suggests the potential effectiveness of the LHFI approach for assessing not only freshwater systems but aquatic ecosystems in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luria, Paolo; Aspinall, Peter A
2003-08-01
The aim of this paper is to describe a new approach to major industrial hazard assessment, which has been recently studied by the authors in conjunction with the Italian Environmental Protection Agency ('ARPAV'). The real opportunity for developing a different approach arose from the need of the Italian EPA to provide the Venice Port Authority with an appropriate estimation of major industrial hazards in Porto Marghera, an industrial estate near Venice (Italy). However, the standard model, the quantitative risk analysis (QRA), only provided a list of individual quantitative risk values, related to single locations. The experimental model is based onmore » a multi-criteria approach--the Analytic Hierarchy Process--which introduces the use of expert opinions, complementary skills and expertise from different disciplines in conjunction with quantitative traditional analysis. This permitted the generation of quantitative data on risk assessment from a series of qualitative assessments, on the present situation and on three other future scenarios, and use of this information as indirect quantitative measures, which could be aggregated for obtaining the global risk rate. This approach is in line with the main concepts proposed by the last European directive on Major Hazard Accidents, which recommends increasing the participation of operators, taking the other players into account and, moreover, paying more attention to the concepts of 'urban control', 'subjective risk' (risk perception) and intangible factors (factors not directly quantifiable)« less
Pucher, Katharina K; Candel, Math J J M; Krumeich, Anja; Boot, Nicole M W M; De Vries, Nanne K
2015-07-05
We report on the longitudinal quantitative and qualitative data resulting from a two-year trajectory (2008-2011) based on the DIagnosis of Sustainable Collaboration (DISC) model. This trajectory aimed to support regional coordinators of comprehensive school health promotion (CSHP) in systematically developing change management and project management to establish intersectoral collaboration. Multilevel analyses of quantitative data on the determinants of collaborations according to the DISC model were done, with 90 respondents (response 57 %) at pretest and 69 respondents (52 %) at posttest. Nvivo analyses of the qualitative data collected during the trajectory included minutes of monthly/bimonthly personal/telephone interviews (N = 65) with regional coordinators, and documents they produced about their activities. Quantitative data showed major improvements in change management and project management. There were also improvements in consensus development, commitment formation, formalization of the CSHP, and alignment of policies, although organizational problems within the collaboration increased. Content analyses of qualitative data identified five main management styles, including (1) facilitating active involvement of relevant parties; (2) informing collaborating parties; (3) controlling and (4) supporting their task accomplishment; and (5) coordinating the collaborative processes. We have contributed to the fundamental understanding of the development of intersectoral collaboration by combining qualitative and quantitative data. Our results support a systematic approach to intersectoral collaboration using the DISC model. They also suggest five main management styles to improve intersectoral collaboration in the initial stage. The outcomes are useful for health professionals involved in similar ventures.
Peters, Susan; Vermeulen, Roel; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans
2011-11-01
We describe an empirical model for exposure to respirable crystalline silica (RCS) to create a quantitative job-exposure matrix (JEM) for community-based studies. Personal measurements of exposure to RCS from Europe and Canada were obtained for exposure modelling. A mixed-effects model was elaborated, with region/country and job titles as random effect terms. The fixed effect terms included year of measurement, measurement strategy (representative or worst-case), sampling duration (minutes) and a priori exposure intensity rating for each job from an independently developed JEM (none, low, high). 23,640 personal RCS exposure measurements, covering a time period from 1976 to 2009, were available for modelling. The model indicated an overall downward time trend in RCS exposure levels of -6% per year. Exposure levels were higher in the UK and Canada, and lower in Northern Europe and Germany. Worst-case sampling was associated with higher reported exposure levels and an increase in sampling duration was associated with lower reported exposure levels. Highest predicted RCS exposure levels in the reference year (1998) were for chimney bricklayers (geometric mean 0.11 mg m(-3)), monument carvers and other stone cutters and carvers (0.10 mg m(-3)). The resulting model enables us to predict time-, job-, and region/country-specific exposure levels of RCS. These predictions will be used in the SYNERGY study, an ongoing pooled multinational community-based case-control study on lung cancer.
Factors influencing protein tyrosine nitration – structure-based predictive models
Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.
2010-01-01
Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423
Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin
2018-03-05
The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.
Connor, Kevin; Magee, Brian
2014-10-01
This paper presents a risk assessment of exposure to metal residues in laundered shop towels by workers. The concentrations of 27 metals measured in a synthetic sweat leachate were used to estimate the releasable quantity of metals which could be transferred to workers' skin. Worker exposure was evaluated quantitatively with an exposure model that focused on towel-to-hand transfer and subsequent hand-to-food or -mouth transfers. The exposure model was based on conservative, but reasonable assumptions regarding towel use and default exposure factor values from the published literature or regulatory guidance. Transfer coefficients were derived from studies representative of the exposures to towel users. Contact frequencies were based on assumed high-end use of shop towels, but constrained by a theoretical maximum dermal loading. The risk estimates for workers developed for all metals were below applicable regulatory risk benchmarks. The risk assessment for lead utilized the Adult Lead Model and concluded that predicted lead intakes do not constitute a significant health hazard based on potential worker exposures. Uncertainties are discussed in relation to the overall confidence in the exposure estimates developed for each exposure pathway and the likelihood that the exposure model is under- or overestimating worker exposures and risk. Copyright © 2014 Elsevier Inc. All rights reserved.
Structure/activity relationships for biodegradability and their role in environmental assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boethling, R.S.
1994-12-31
Assessment of biodegradability is an important part of the review process for both new and existing chemicals under the Toxic Substances Control Act. It is often necessary to estimate biodegradability because experimental data are unavailable. Structure/biodegradability relationships (SBR) are a means to this end. Quantitative SBR have been developed, but this approach has not been very useful because they apply only to a few narrowly defined classes of chemicals. In response to the need for more widely applicable methods, multivariate analysis has been used to develop biodegradability classification models. For example, recent efforts have produced four new models. Two calculatemore » the probability of rapid biodegradation and can be used for classification; the other two models allow semi-quantitative estimation of primary and ultimate biodegradation rates. All are based on multiple regressions against 36 preselected substructures plus molecular weight. Such efforts have been fairly successful by statistical criteria, but in general are hampered by a lack of large and consistent datasets. Knowledge-based expert systems may represent the next step in the evolution of SBR. In principle such systems need not be as severely limited by imperfect datasets. However, the codification of expert knowledge and reasoning is a critical prerequisite. Results of knowledge acquisition exercises and modeling based on them will also be described.« less
The physical and biological basis of quantitative parameters derived from diffusion MRI
2012-01-01
Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085
Banerjee, Imon; Malladi, Sadhika; Lee, Daniela; Depeursinge, Adrien; Telli, Melinda; Lipson, Jafi; Golden, Daniel; Rubin, Daniel L
2018-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is sensitive but not specific to determining treatment response in early stage triple-negative breast cancer (TNBC) patients. We propose an efficient computerized technique for assessing treatment response, specifically the residual tumor (RT) status and pathological complete response (pCR), in response to neoadjuvant chemotherapy. The proposed approach is based on Riesz wavelet analysis of pharmacokinetic maps derived from noninvasive DCE-MRI scans, obtained before and after treatment. We compared the performance of Riesz features with the traditional gray level co-occurrence matrices and a comprehensive characterization of the lesion that includes a wide range of quantitative features (e.g., shape and boundary). We investigated a set of predictive models ([Formula: see text]) incorporating distinct combinations of quantitative characterizations and statistical models at different time points of the treatment and some area under the receiver operating characteristic curve (AUC) values we reported are above 0.8. The most efficient models are based on first-order statistics and Riesz wavelets, which predicted RT with an AUC value of 0.85 and pCR with an AUC value of 0.83, improving results reported in a previous study by [Formula: see text]. Our findings suggest that Riesz texture analysis of TNBC lesions can be considered a potential framework for optimizing TNBC patient care.
Predicting plant biomass accumulation from image-derived parameters
Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian
2018-01-01
Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559
Predicting human blood viscosity in silico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedosov, Dmitry A.; Pan, Wenxiao; Caswell, Bruce
2011-07-05
Cellular suspensions such as blood are a part of living organisms and their rheological and flow characteristics determine and affect majority of vital functions. The rheological and flow properties of cell suspensions are determined by collective dynamics of cells, their structure or arrangement, cell properties and interactions. We study these relations for blood in silico using a mesoscopic particle-based method and two different models (multi-scale/low-dimensional) of red blood cells. The models yield accurate quantitative predictions of the dependence of blood viscosity on shear rate and hematocrit. We explicitly model cell aggregation interactions and demonstrate the formation of reversible rouleaux structuresmore » resulting in a tremendous increase of blood viscosity at low shear rates and yield stress, in agreement with experiments. The non-Newtonian behavior of such cell suspensions (e.g., shear thinning, yield stress) is analyzed and related to the suspension’s microstructure, deformation and dynamics of single cells. We provide the flrst quantitative estimates of normal stress differences and magnitude of aggregation forces in blood. Finally, the flexibility of the cell models allows them to be employed for quantitative analysis of a much wider class of complex fluids including cell, capsule, and vesicle suspensions.« less
A two-factor error model for quantitative steganalysis
NASA Astrophysics Data System (ADS)
Böhme, Rainer; Ker, Andrew D.
2006-02-01
Quantitative steganalysis refers to the exercise not only of detecting the presence of hidden stego messages in carrier objects, but also of estimating the secret message length. This problem is well studied, with many detectors proposed but only a sparse analysis of errors in the estimators. A deep understanding of the error model, however, is a fundamental requirement for the assessment and comparison of different detection methods. This paper presents a rationale for a two-factor model for sources of error in quantitative steganalysis, and shows evidence from a dedicated large-scale nested experimental set-up with a total of more than 200 million attacks. Apart from general findings about the distribution functions found in both classes of errors, their respective weight is determined, and implications for statistical hypothesis tests in benchmarking scenarios or regression analyses are demonstrated. The results are based on a rigorous comparison of five different detection methods under many different external conditions, such as size of the carrier, previous JPEG compression, and colour channel selection. We include analyses demonstrating the effects of local variance and cover saturation on the different sources of error, as well as presenting the case for a relative bias model for between-image error.
NASA Astrophysics Data System (ADS)
Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.
2007-08-01
In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.
Principal Components Analyses of the MMPI-2 PSY-5 Scales. Identification of Facet Subscales
ERIC Educational Resources Information Center
Arnau, Randolph C.; Handel, Richard W.; Archer, Robert P.
2005-01-01
The Personality Psychopathology Five (PSY-5) is a five-factor personality trait model designed for assessing personality pathology using quantitative dimensions. Harkness, McNulty, and Ben-Porath developed Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scales based on the PSY-5 model, and these scales were recently added to the standard…
Helping Students Assess the Relative Importance of Different Intermolecular Interactions
ERIC Educational Resources Information Center
Jasien, Paul G.
2008-01-01
A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipole-dipole interactions, and H-bonding on the normal boiling points ("T[subscript b]") for a subset of simple organic systems. The model is based upon a statistical analysis using multiple linear regression on a series of straight-chain organic…
Psychophysically based model of surface gloss perception
NASA Astrophysics Data System (ADS)
Ferwerda, James A.; Pellacini, Fabio; Greenberg, Donald P.
2001-06-01
In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We use image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions of glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a psychophysically-based model of surface gloss, with dimensions that are both physically and perceptually meaningful and scales that reflect our sensitivity to gloss variations. We demonstrate that the model can be used to describe and control the appearance of glossy surfaces in synthesis images, allowing prediction of gloss matches and quantification of gloss differences. This work represents some initial steps toward developing psychophyscial models of the goniometric aspects of surface appearance to complement widely-used colorimetric models.
A primer on thermodynamic-based models for deciphering transcriptional regulatory logic.
Dresch, Jacqueline M; Richards, Megan; Ay, Ahmet
2013-09-01
A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Feng, Taotao; Wang, Hai; Zhang, Xiaojin; Sun, Haopeng; You, Qidong
2014-06-01
Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. This suggests that small molecular inhibitors of G9a might be attractive antitumor agents. Herein we report our efforts on the design of novel G9a inhibitor based on the 3D quantitative structure-activity relationship (3D-QSAR) analysis of a series of 2,4-diamino-7-aminoalkoxyquinazolineas G9a inhibitors. The 3D-QSAR model was generated from 47 compounds using docking based molecular alignment. The best predictions were obtained with CoMFA standard model (q2 =0.700, r2 = 0.952) and CoMSIA model combined with steric, electrostatic, hydrophobic, hydrogen bond donor and acceptor fields (q2 = 0.724, r2 =0.960). The structural requirements for substituted 2,4-diamino-7-aminoalkoxyquinazoline for G9a inhibitory activity can be obtained by analysing the COMSIA plots. Based on the information, six novel follow-up analogs were designed.
NASA Astrophysics Data System (ADS)
Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.
2017-04-01
Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.
Nonlinear ultrasonics for material state awareness
NASA Astrophysics Data System (ADS)
Jacobs, L. J.
2014-02-01
Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.
EFFECTIVE REMOVAL METHOD OF ILLEGAL PARKING BICYCLES BASED ON THE QUANTITATIVE CHANGE AFTER REMOVAL
NASA Astrophysics Data System (ADS)
Toi, Satoshi; Kajita, Yoshitaka; Nishikawa, Shuichirou
This study aims to find an effective removal method of illegal parking bicycles based on the analysis on the numerical change of illegal bicycles. And then, we built the time and space quantitative distribution model of illegal parking bicycles after removal, considering the logistic increase of illegal parking bicycles, several behaviors concerning of direct return or indirect return to the original parking place and avoidance of the original parking place, based on the investigation of real condition of illegal bicycle parking at TENJIN area in FUKUOKA city. Moreover, we built the simulation model including above-mentioned model, and calculated the number of illegal parking bicycles when we change the removal frequency and the number of removal at one time. The next interesting four results were obtained. (1) Recovery speed from removal the illegal parking bicycles differs by each zone. (2) Thorough removal is effective to keep the number of illegal parking bicycles lower level. (3) Removal at one zone causes the increase of bicycles at other zones where the level of illegal parking is lower. (4) The relationship between effects and costs of removing the illegal parking bicycles was clarified.
Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina
2018-01-01
The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.
Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.
Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse
2017-01-01
Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.
Walker, Kim-Marie; Jenson, S.K.; Francica, J.R.; Hastings, D.A.; Trautwein, C.M.; Pratt, W.P.
1983-01-01
Th.is report consists of nineteen 35-mm color slides sh.owing digital synthesis and quantitative modeling of five geologic recognition criteria for assessment of Mississippi Valley-type resource potential in the Rolla 1° x 2° quadrangle, Missouri. The digital synthesis and quantitative modeling (Pratt and others, 1982) was done to supplement an earlier manual synthesis and evaluation (Pratt, 1981). The five criteria synthesized in this study, and the sources of data used, are that most known deposits are: In dolomite of the Bonneterre Formation, near the limestone-dolomite interface, which is defined as ls:dol = 1:16 (Thacker and Anderson, 1979; Kisvarsanyi, 1982);Near areas where insoluble residues of "barren" Bonneterre Formation contain anomalously high amounts of base metals (Erickson and others, 1978);Near areas of faults and fractures in the Bonneterre Formation or in underlying rocks (Pratt, 1982);In "brown rock" (finely crystalline brown dolomite) near the interface with "white rock" (coarsely recrystallized, white or very light gray, vuggy, illite-bearing dolomite) (Kisvarsanyi, 1982);Near or within favorably situated digitate reef-complex facies (Kisvarsanyi , 1982).
Indirect scaling methods for testing quantitative emotion theories.
Junge, Martin; Reisenzein, Rainer
2013-01-01
Two studies investigated the utility of indirect scaling methods, based on graded pair comparisons, for the testing of quantitative emotion theories. In Study 1, we measured the intensity of relief and disappointment caused by lottery outcomes, and in Study 2, the intensity of disgust evoked by pictures, using both direct intensity ratings and graded pair comparisons. The stimuli were systematically constructed to reflect variables expected to influence the intensity of the emotions according to theoretical models of relief/disappointment and disgust, respectively. Two probabilistic scaling methods were used to estimate scale values from the pair comparison judgements: Additive functional measurement (AFM) and maximum likelihood difference scaling (MLDS). The emotion models were fitted to the direct and indirect intensity measurements using nonlinear regression (Study 1) and analysis of variance (Study 2). Both studies found substantially improved fits of the emotion models for the indirectly determined emotion intensities, with their advantage being evident particularly at the level of individual participants. The results suggest that indirect scaling methods yield more precise measurements of emotion intensity than rating scales and thereby provide stronger tests of emotion theories in general and quantitative emotion theories in particular.
Pottecher, Pierre; Engelke, Klaus; Duchemin, Laure; Museyko, Oleg; Moser, Thomas; Mitton, David; Vicaut, Eric; Adams, Judith; Skalli, Wafa; Laredo, Jean Denis; Bousson, Valérie
2016-09-01
Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.
Zanzonico, Pat; Carrasquillo, Jorge A; Pandit-Taskar, Neeta; O'Donoghue, Joseph A; Humm, John L; Smith-Jones, Peter; Ruan, Shutian; Divgi, Chaitanya; Scott, Andrew M; Kemeny, Nancy E; Fong, Yuman; Wong, Douglas; Scheinberg, David; Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J; Larson, Steven M
2015-10-01
The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the "best-fit" parameters and model-derived quantities for optimizing biodistribution of intravenously injected (124)I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as "A33") were performed in 11 colorectal cancer patients. Serial whole-body PET scans of (124)I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, "off-target" uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting "best-fit" nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived.
Shinde, V; Burke, K E; Chakravarty, A; Fleming, M; McDonald, A A; Berger, A; Ecsedy, J; Blakemore, S J; Tirrell, S M; Bowman, D
2014-01-01
Immunohistochemistry-based biomarkers are commonly used to understand target inhibition in key cancer pathways in preclinical models and clinical studies. Automated slide-scanning and advanced high-throughput image analysis software technologies have evolved into a routine methodology for quantitative analysis of immunohistochemistry-based biomarkers. Alongside the traditional pathology H-score based on physical slides, the pathology world is welcoming digital pathology and advanced quantitative image analysis, which have enabled tissue- and cellular-level analysis. An automated workflow was implemented that includes automated staining, slide-scanning, and image analysis methodologies to explore biomarkers involved in 2 cancer targets: Aurora A and NEDD8-activating enzyme (NAE). The 2 workflows highlight the evolution of our immunohistochemistry laboratory and the different needs and requirements of each biological assay. Skin biopsies obtained from MLN8237 (Aurora A inhibitor) phase 1 clinical trials were evaluated for mitotic and apoptotic index, while mitotic index and defects in chromosome alignment and spindles were assessed in tumor biopsies to demonstrate Aurora A inhibition. Additionally, in both preclinical xenograft models and an acute myeloid leukemia phase 1 trial of the NAE inhibitor MLN4924, development of a novel image algorithm enabled measurement of downstream pathway modulation upon NAE inhibition. In the highlighted studies, developing a biomarker strategy based on automated image analysis solutions enabled project teams to confirm target and pathway inhibition and understand downstream outcomes of target inhibition with increased throughput and quantitative accuracy. These case studies demonstrate a strategy that combines a pathologist's expertise with automated image analysis to support oncology drug discovery and development programs.
Vesicular stomatitis forecasting based on Google Trends
Lu, Yi; Zhou, GuangYa; Chen, Qin
2018-01-01
Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198
A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.
Thon, Moritz P; Ford, Hugh Z; Gee, Michael W; Myerscough, Mary R
2018-01-01
There are a growing number of studies that model immunological processes in the artery wall that lead to the development of atherosclerotic plaques. However, few of these models use parameters that are obtained from experimental data even though data-driven models are vital if mathematical models are to become clinically relevant. We present the development and analysis of a quantitative mathematical model for the coupled inflammatory, lipid and macrophage dynamics in early atherosclerotic plaques. Our modeling approach is similar to the biologists' experimental approach where the bigger picture of atherosclerosis is put together from many smaller observations and findings from in vitro experiments. We first develop a series of three simpler submodels which are least-squares fitted to various in vitro experimental results from the literature. Subsequently, we use these three submodels to construct a quantitative model of the development of early atherosclerotic plaques. We perform a local sensitivity analysis of the model with respect to its parameters that identifies critical parameters and processes. Further, we present a systematic analysis of the long-term outcome of the model which produces a characterization of the stability of model plaques based on the rates of recruitment of low-density lipoproteins, high-density lipoproteins and macrophages. The analysis of the model suggests that further experimental work quantifying the different fates of macrophages as a function of cholesterol load and the balance between free cholesterol and cholesterol ester inside macrophages may give valuable insight into long-term atherosclerotic plaque outcomes. This model is an important step toward models applicable in a clinical setting.
Santos, Radleigh G.; Appel, Jon R.; Giulianotti, Marc A.; Edwards, Bruce S.; Sklar, Larry A.; Houghten, Richard A.; Pinilla, Clemencia
2014-01-01
In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays. PMID:23722730
Patient-specific coronary blood supply territories for quantitative perfusion analysis
Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.
2018-01-01
Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098
Peters, Susan; Kromhout, Hans; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Vermeulen, Roel
2013-01-01
We describe the elaboration and sensitivity analyses of a quantitative job-exposure matrix (SYN-JEM) for respirable crystalline silica (RCS). The aim was to gain insight into the robustness of the SYN-JEM RCS estimates based on critical decisions taken in the elaboration process. SYN-JEM for RCS exposure consists of three axes (job, region, and year) based on estimates derived from a previously developed statistical model. To elaborate SYN-JEM, several decisions were taken: i.e. the application of (i) a single time trend; (ii) region-specific adjustments in RCS exposure; and (iii) a prior job-specific exposure level (by the semi-quantitative DOM-JEM), with an override of 0 mg/m(3) for jobs a priori defined as non-exposed. Furthermore, we assumed that exposure levels reached a ceiling in 1960 and remained constant prior to this date. We applied SYN-JEM to the occupational histories of subjects from a large international pooled community-based case-control study. Cumulative exposure levels derived with SYN-JEM were compared with those from alternative models, described by Pearson correlation ((Rp)) and differences in unit of exposure (mg/m(3)-year). Alternative models concerned changes in application of job- and region-specific estimates and exposure ceiling, and omitting the a priori exposure ranking. Cumulative exposure levels for the study subjects ranged from 0.01 to 60 mg/m(3)-years, with a median of 1.76 mg/m(3)-years. Exposure levels derived from SYN-JEM and alternative models were overall highly correlated (R(p) > 0.90), although somewhat lower when omitting the region estimate ((Rp) = 0.80) or not taking into account the assigned semi-quantitative exposure level (R(p) = 0.65). Modification of the time trend (i.e. exposure ceiling at 1950 or 1970, or assuming a decline before 1960) caused the largest changes in absolute exposure levels (26-33% difference), but without changing the relative ranking ((Rp) = 0.99). Exposure estimates derived from SYN-JEM appeared to be plausible compared with (historical) levels described in the literature. Decisions taken in the development of SYN-JEM did not critically change the cumulative exposure levels. The influence of region-specific estimates needs to be explored in future risk analyses.
Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul
2012-06-01
Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.
Using concept maps to describe undergraduate students’ mental model in microbiology course
NASA Astrophysics Data System (ADS)
Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.
2018-05-01
The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.
Torres-Mejía, Gabriela; De Stavola, Bianca; Allen, Diane S; Pérez-Gavilán, Juan J; Ferreira, Jorge M; Fentiman, Ian S; Dos Santos Silva, Isabel
2005-05-01
Mammographic features are known to be associated with breast cancer but the magnitude of the effect differs markedly from study to study. Methods to assess mammographic features range from subjective qualitative classifications to computer-automated quantitative measures. We used data from the UK Guernsey prospective studies to examine the relative value of these methods in predicting breast cancer risk. In all, 3,211 women ages > or =35 years who had a mammogram taken in 1986 to 1989 were followed-up to the end of October 2003, with 111 developing breast cancer during this period. Mammograms were classified using the subjective qualitative Wolfe classification and several quantitative mammographic features measured using computer-based techniques. Breast cancer risk was positively associated with high-grade Wolfe classification, percent breast density and area of dense tissue, and negatively associated with area of lucent tissue, fractal dimension, and lacunarity. Inclusion of the quantitative measures in the same model identified area of dense tissue and lacunarity as the best predictors of breast cancer, with risk increasing by 59% [95% confidence interval (95% CI), 29-94%] per SD increase in total area of dense tissue but declining by 39% (95% CI, 53-22%) per SD increase in lacunarity, after adjusting for each other and for other confounders. Comparison of models that included both the qualitative Wolfe classification and these two quantitative measures to models that included either the qualitative or the two quantitative variables showed that they all made significant contributions to prediction of breast cancer risk. These findings indicate that breast cancer risk is affected not only by the amount of mammographic density but also by the degree of heterogeneity of the parenchymal pattern and, presumably, by other features captured by the Wolfe classification.
Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams
NASA Technical Reports Server (NTRS)
Davis, Brian A.
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.
Mechanochemical models of processive molecular motors
NASA Astrophysics Data System (ADS)
Lan, Ganhui; Sun, Sean X.
2012-05-01
Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule experiments can now observe motor protein movement with increasing precision. The emerging data must be combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a modelling framework where quantitative understanding of motor behaviour can be developed based on the protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of protein domains are important in regulating motor function. Simple models of protein domain elasticity are presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely-Simmons description of muscle movement in the mean-field limit.
Multi-scale Multi-mechanism Toughening of Hydrogels
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe
Hydrogels are widely used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical properties. Inspired by the mechanics and hierarchical structures of tough biological tissues, we propose that a general principle for the design of tough hydrogels is to implement two mechanisms for dissipating mechanical energy and maintaining high elasticity in hydrogels. A particularly promising strategy for the design is to integrate multiple pairs of mechanisms across multiple length scales into a hydrogel. We develop a multiscale theoretical framework to quantitatively guide the design of tough hydrogels. On the network level, we have developed micro-physical models to characterize the evolution of polymer networks under deformation. On the continuum level, we have implemented constitutive laws formulated from the network-level models into a coupled cohesive-zone and Mullins-effect model to quantitatively predict crack propagation and fracture toughness of hydrogels. Guided by the design principle and quantitative model, we will demonstrate a set of new hydrogels, based on diverse types of polymers, yet can achieve extremely high toughness superior to their natural counterparts such as cartilages. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).
Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao
2007-03-01
Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.
Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J
2016-04-01
Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.
Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.
Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W
2016-08-18
A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (<7 %) between estimation and ground truth. By applying the topic model-based purification to mass spectrometric data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed that incorporation of scan-level features have the potential to lead to more accurate purification results by alleviating the loss in information as a result of integrating peaks. We believe cancer biomarker discovery studies that use mass spectrometric analysis of human biospecimens can greatly benefit from topic model-based purification of the data prior to statistical and pathway analyses.
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H
2017-08-01
Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.
A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. John, Peter C.; Kairys, Paul; Das, Dhrubajyoti D.
Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less
Concepts and challenges in quantitative pharmacology and model-based drug development.
Zhang, Liping; Pfister, Marc; Meibohm, Bernd
2008-12-01
Model-based drug development (MBDD) has been recognized as a concept to improve the efficiency of drug development. The acceptance of MBDD from regulatory agencies, industry, and academia has been growing, yet today's drug development practice is still distinctly distant from MBDD. This manuscript is aimed at clarifying the concept of MBDD and proposing practical approaches for implementing MBDD in the pharmaceutical industry. The following concepts are defined and distinguished: PK-PD modeling, exposure-response modeling, pharmacometrics, quantitative pharmacology, and MBDD. MBDD is viewed as a paradigm and a mindset in which models constitute the instruments and aims of drug development efforts. MBDD covers the whole spectrum of the drug development process instead of being limited to a certain type of modeling technique or application area. The implementation of MBDD requires pharmaceutical companies to foster innovation and make changes at three levels: (1) to establish mindsets that are willing to get acquainted with MBDD, (2) to align processes that are adaptive to the requirements of MBDD, and (3) to create a closely collaborating organization in which all members play a role in MBDD. Pharmaceutical companies that are able to embrace the changes MBDD poses will likely be able to improve their success rate in drug development, and the beneficiaries will ultimately be the patients in need.
Quantitative model of the growth of floodplains by vertical accretion
Moody, J.A.; Troutman, B.M.
2000-01-01
A simple one-dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright (C) 2000 John Wiley and Sons, Ltd.
A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure
St. John, Peter C.; Kairys, Paul; Das, Dhrubajyoti D.; ...
2017-07-24
Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less
NASA Astrophysics Data System (ADS)
Li, Ruidi; Yuan, Tiechui; Qiu, Zili
2014-07-01
A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a pressure based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution and turbulence model are two primary factors that influence the accuracy of the base flowfield prediction.
SaaS Platform for Time Series Data Handling
NASA Astrophysics Data System (ADS)
Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail
2018-02-01
The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.
The Relationship between Agriculture Knowledge Bases for Teaching and Sources of Knowledge
ERIC Educational Resources Information Center
Rice, Amber H.; Kitchel, Tracy
2015-01-01
The purpose of this study was to describe the agriculture knowledge bases for teaching of agriculture teachers and to see if a relationship existed between years of teaching experience, sources of knowledge, and development of pedagogical content knowledge (PCK), using quantitative methods. A model of PCK from mathematics was utilized as a…
The effects of changing land cover on streamflow simulation in Puerto Rico
A.E. Van Beusekom; L.E. Hay; R.J. Viger; W.A. Gould; J.A. Collazo; A. Henareh Khalyani
2014-01-01
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from...
ERIC Educational Resources Information Center
Rubenson, Kjell; Desjardins, Richard
2009-01-01
Quantitative and qualitative findings on barriers to participation in adult education are reviewed and some of the defining parameters that may explain observed national differences are considered. A theoretical perspective based on bounded agency is put forth to take account of the interaction between structurally and individually based barriers…
Examination of Test and Item Statistics from Visual and Verbal Mathematics Questions
ERIC Educational Resources Information Center
Alpayar, Cagla; Gulleroglu, H. Deniz
2017-01-01
The aim of this research is to determine whether students' test performance and approaches to test questions change based on the type of mathematics questions (visual or verbal) administered to them. This research is based on a mixed-design model. The quantitative data are gathered from 297 seventh grade students, attending seven different middle…
Physics-based simulations of the impacts forest management practices have on hydrologic response
Adrianne Carr; Keith Loague
2012-01-01
The impacts of logging on near-surface hydrologic response at the catchment and watershed scales were examined quantitatively using numerical simulation. The simulations were conducted with the Integrated Hydrology Model (InHM) for the North Fork of Caspar Creek Experimental Watershed, located near Fort Bragg, California. InHM is a comprehensive physics-based...
Zhao, Xinyan; Dong, Tao
2012-10-16
This study reports a quantitative nucleic acid sequence-based amplification (Q-NASBA) microfluidic platform composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip for environmental investigations on aquatic microorganisms. This low-cost and highly efficient sampling module, having seamless connection with the subsequent steps of sample preparation and quantitative detection, is designed for the collection of microbial communities from aquatic environments. Eight kinds of commercial membrane filters are relevantly analyzed using Saccharomyces cerevisiae, Escherichia coli, and Staphylococcus aureus as model microorganisms. After the microorganisms are concentrated on the membrane filters, the retentate can be easily conserved in a transport medium (TM) buffer and sent to a remote laboratory. A Q-NASBA-oriented sample preparation cassette is originally designed to extract DNA/RNA molecules directly from the captured cells on the membranes. Sequentially, the extract is analyzed within Q-NASBA chips that are compatible with common microplate readers in laboratories. Particularly, a novel analytical algorithmic method is developed for simple but robust on-chip Q-NASBA assays. The reported multifunctional microfluidic system could detect a few microorganisms quantitatively and simultaneously. Further research should be conducted to simplify and standardize ecological investigations on aquatic environments.
Image-Based Quantification of Plant Immunity and Disease.
Laflamme, Bradley; Middleton, Maggie; Lo, Timothy; Desveaux, Darrell; Guttman, David S
2016-12-01
Measuring the extent and severity of disease is a critical component of plant pathology research and crop breeding. Unfortunately, existing visual scoring systems are qualitative, subjective, and the results are difficult to transfer between research groups, while existing quantitative methods can be quite laborious. Here, we present plant immunity and disease image-based quantification (PIDIQ), a quantitative, semi-automated system to rapidly and objectively measure disease symptoms in a biologically relevant context. PIDIQ applies an ImageJ-based macro to plant photos in order to distinguish healthy tissue from tissue that has yellowed due to disease. It can process a directory of images in an automated manner and report the relative ratios of healthy to diseased leaf area, thereby providing a quantitative measure of plant health that can be statistically compared with appropriate controls. We used the Arabidopsis thaliana-Pseudomonas syringae model system to show that PIDIQ is able to identify both enhanced plant health associated with effector-triggered immunity as well as elevated disease symptoms associated with effector-triggered susceptibility. Finally, we show that the quantitative results provided by PIDIQ correspond to those obtained via traditional in planta pathogen growth assays. PIDIQ provides a simple and effective means to nondestructively quantify disease from whole plants and we believe it will be equally effective for monitoring disease on excised leaves and stems.
Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia
2016-01-01
Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083
Jin, Cheng; Feng, Jianjiang; Wang, Lei; Yu, Heng; Liu, Jiang; Lu, Jiwen; Zhou, Jie
2018-05-01
In this paper, we present an approach for left atrial appendage (LAA) multi-phase fast segmentation and quantitative assisted diagnosis of atrial fibrillation (AF) based on 4D-CT data. We take full advantage of the temporal dimension information to segment the living, flailed LAA based on a parametric max-flow method and graph-cut approach to build 3-D model of each phase. To assist the diagnosis of AF, we calculate the volumes of 3-D models, and then generate a "volume-phase" curve to calculate the important dynamic metrics: ejection fraction, filling flux, and emptying flux of the LAA's blood by volume. This approach demonstrates more precise results than the conventional approaches that calculate metrics by area, and allows for the quick analysis of LAA-volume pattern changes of in a cardiac cycle. It may also provide insight into the individual differences in the lesions of the LAA. Furthermore, we apply support vector machines (SVMs) to achieve a quantitative auto-diagnosis of the AF by exploiting seven features from volume change ratios of the LAA, and perform multivariate logistic regression analysis for the risk of LAA thrombosis. The 100 cases utilized in this research were taken from the Philips 256-iCT. The experimental results demonstrate that our approach can construct the 3-D LAA geometries robustly compared to manual annotations, and reasonably infer that the LAA undergoes filling, emptying and re-filling, re-emptying in a cardiac cycle. This research provides a potential for exploring various physiological functions of the LAA and quantitatively estimating the risk of stroke in patients with AF. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hierarchical and coupling model of factors influencing vessel traffic flow.
Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi
2017-01-01
Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.
Hierarchical and coupling model of factors influencing vessel traffic flow
Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi
2017-01-01
Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system. PMID:28414747
Nonlinearity analysis of measurement model for vision-based optical navigation system
NASA Astrophysics Data System (ADS)
Li, Jianguo; Cui, Hutao; Tian, Yang
2015-02-01
In the autonomous optical navigation system based on line-of-sight vector observation, nonlinearity of measurement model is highly correlated with the navigation performance. By quantitatively calculating the degree of nonlinearity of the focal plane model and the unit vector model, this paper focuses on determining which optical measurement model performs better. Firstly, measurement equations and measurement noise statistics of these two line-of-sight measurement models are established based on perspective projection co-linearity equation. Then the nonlinear effects of measurement model on the filter performance are analyzed within the framework of the Extended Kalman filter, also the degrees of nonlinearity of two measurement models are compared using the curvature measure theory from differential geometry. Finally, a simulation of star-tracker-based attitude determination is presented to confirm the superiority of the unit vector measurement model. Simulation results show that the magnitude of curvature nonlinearity measurement is consistent with the filter performance, and the unit vector measurement model yields higher estimation precision and faster convergence properties.
The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method
NASA Astrophysics Data System (ADS)
Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad
2018-04-01
Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.
The neural optimal control hierarchy for motor control
NASA Astrophysics Data System (ADS)
DeWolf, T.; Eliasmith, C.
2011-10-01
Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining
2017-10-01
The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.
Modeling aeolian dune and dune field evolution
NASA Astrophysics Data System (ADS)
Diniega, Serina
Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and quantitative connections between environmental conditions, physical processes, and resultant dune and dune field morphologies, this research furthers our ability to interpret spacecraft images of dune fields, and to use present-day observations to improve our understanding of past terrestrial and martian environments.
Model based defect characterization in composites
NASA Astrophysics Data System (ADS)
Roberts, R.; Holland, S.
2017-02-01
Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.
Toward a model-based cognitive neuroscience of mind wandering.
Hawkins, G E; Mittner, M; Boekel, W; Heathcote, A; Forstmann, B U
2015-12-03
People often "mind wander" during everyday tasks, temporarily losing track of time, place, or current task goals. In laboratory-based tasks, mind wandering is often associated with performance decrements in behavioral variables and changes in neural recordings. Such empirical associations provide descriptive accounts of mind wandering - how it affects ongoing task performance - but fail to provide true explanatory accounts - why it affects task performance. In this perspectives paper, we consider mind wandering as a neural state or process that affects the parameters of quantitative cognitive process models, which in turn affect observed behavioral performance. Our approach thus uses cognitive process models to bridge the explanatory divide between neural and behavioral data. We provide an overview of two general frameworks for developing a model-based cognitive neuroscience of mind wandering. The first approach uses neural data to segment observed performance into a discrete mixture of latent task-related and task-unrelated states, and the second regresses single-trial measures of neural activity onto structured trial-by-trial variation in the parameters of cognitive process models. We discuss the relative merits of the two approaches, and the research questions they can answer, and highlight that both approaches allow neural data to provide additional constraint on the parameters of cognitive models, which will lead to a more precise account of the effect of mind wandering on brain and behavior. We conclude by summarizing prospects for mind wandering as conceived within a model-based cognitive neuroscience framework, highlighting the opportunities for its continued study and the benefits that arise from using well-developed quantitative techniques to study abstract theoretical constructs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Benchmark dose analysis via nonparametric regression modeling
Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen
2013-01-01
Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits’ small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty. PMID:23683057
Search PNNL Home About Research Publications Jobs News Contacts Computational Biology and Bioinformatics , and engineering to transform the data into knowledge. This new quantitative, predictive biology is to empirical modeling and physics-based simulations. CBB research seeks to: Understand. Understanding
ERIC Educational Resources Information Center
Carson, S. R.
1998-01-01
Presents a method for using spreadsheets to model special relativistic phenomena based on the connection between electric and magnetic fields in special relativity. Uses the time dilation equation to carry out transformations between reference frames that show the connection between the fields quantitatively. (DDR)
While relationships between chemical structure and observed properties or activities (QSAR - quantitative structure activity relationship) can be used to predict the behavior of unknown chemicals, this method is semiempirical in nature relying on high quality experimental data to...
Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua
2016-05-01
A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. © 2015 John Wiley & Sons A/S.
Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment.
Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Cook, Joanne L; Stott, Ian P; Pelan, Eddie G
2018-06-01
Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, C i E j . Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y
2018-04-01
Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.
Zhao, Cheng; Trudeau, Beth; Xie, Helen; Prostko, John; Fishpaugh, Jeffrey; Ramsay, Carol
2014-06-01
The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM-based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti-TnI mAb-coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.
Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth
2017-03-01
Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Analysis of airborne MAIS imaging spectrometric data for mineral exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinnian; Zheng Lanfen; Tong Qingxi
1996-11-01
The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less
Quantitation without Calibration: Response Profile as an Indicator of Target Amount.
Debnath, Mrittika; Farace, Jessica M; Johnson, Kristopher D; Nesterova, Irina V
2018-06-21
Quantitative assessment of biomarkers is essential in numerous contexts from decision-making in clinical situations to food quality monitoring to interpretation of life-science research findings. However, appropriate quantitation techniques are not as widely addressed as detection methods. One of the major challenges in biomarker's quantitation is the need to have a calibration for correlating a measured signal to a target amount. The step complicates the methodologies and makes them less sustainable. In this work we address the issue via a new strategy: relying on position of response profile rather than on an absolute signal value for assessment of a target's amount. In order to enable the capability we develop a target-probe binding mechanism based on a negative cooperativity effect. A proof-of-concept example demonstrates that the model is suitable for quantitative analysis of nucleic acids over a wide concentration range. The general principles of the platform will be applicable toward a variety of biomarkers such as nucleic acids, proteins, peptides, and others.
QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals.
Gramatica, Paola; Papa, Ester; Sangion, Alessandro
2018-01-24
The hazard of chemicals in the environment is inherently related to the molecular structure and derives simultaneously from various chemical properties/activities/reactivities. Models based on Quantitative Structure Activity Relationships (QSARs) are useful to screen, rank and prioritize chemicals that may have an adverse impact on humans and the environment. This paper reviews a selection of QSAR models (based on theoretical molecular descriptors) developed for cumulative multivariate endpoints, which were derived by mathematical combination of multiple effects and properties. The cumulative end-points provide an integrated holistic point of view to address environmentally relevant properties of chemicals.
ERIC Educational Resources Information Center
Newman, Lisa D.
2017-01-01
Since the 1990's, schools across the United States have been held accountable for increased student learning. Increased use of growth-based accountability models and a lack of clarity on what each model measures have resulted in a need for additional research focused on the real-world implications for teacher agency and school accountability. The…
NASA Astrophysics Data System (ADS)
Golovanova, O. A.; Chikanova, E. S.; Fedoseev, V. B.
2018-05-01
The processes occurring in aqueous salt solutions have been investigated based on thermodynamic and experimental modeling. The self-organization in a drying drop of dehydrated liquids is analyzed using the fractal theory, due to which the quantitative characteristics of the crystallization processes in a small volume are obtained.
Using Image Modelling to Teach Newton's Laws with the Ollie Trick
ERIC Educational Resources Information Center
Dias, Marco Adriano; Carvalho, Paulo Simeão; Vianna, Deise Miranda
2016-01-01
Image modelling is a video-based teaching tool that is a combination of strobe images and video analysis. This tool can enable a qualitative and a quantitative approach to the teaching of physics, in a much more engaging and appealling way than the traditional expositive practice. In a specific scenario shown in this paper, the Ollie trick, we…