Sample records for quantitative molecular techniques

  1. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination.

    PubMed

    Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C

    2004-09-30

    Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.

  2. Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.

    PubMed

    Goodson-Gregg, Nathan; De Stasio, Elizabeth A

    2009-01-01

    While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.

  3. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  4. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  5. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    PubMed

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  6. Dealing with the Challenges of Teaching Molecular Biophysics to Biochemistry Majors through an Heuristics-Based Approach

    ERIC Educational Resources Information Center

    Castanho, Miguel A. R. B.

    2002-01-01

    The main distinction between the overlapping fields of molecular biophysics and biochemistry resides in their different approaches to the same problems. Molecular biophysics makes more use of physical techniques and focuses on quantitative data. This difference encounters two difficult pedagogical challenges when teaching molecular biophysics to…

  7. Introduction to digital PCR.

    PubMed

    Bizouarn, Francisco

    2014-01-01

    Digital PCR (dPCR) is a molecular biology technique going through a renaissance. With the arrival of new instrumentation dPCR can now be performed as a routine molecular biology assay. This exciting new technique provides quantitative and detection capabilities that by far surpass other methods currently used. This chapter is an overview of some of the applications currently being performed using dPCR as well as the fundamental concepts and techniques this technology is based on.

  8. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  9. INTERNALIZATION AND FATE OF INDIVIDUAL MANUFACTURED NANOMATERIAL WITHIN LIVING CELLS

    EPA Science Inventory

    Using quantitative fluorescence imaging with single molecule sensitivity, combined with molecular biology techniques, we have been investigating the cellular interactions and fate of one nanoparticle or nanoscale aggregate at a time, identifying molecular interactions and cellula...

  10. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  11. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  12. Diagnostic molecular microbiology: a 2013 snapshot.

    PubMed

    Fairfax, Marilynn Ransom; Salimnia, Hossein

    2013-12-01

    Molecular testing has a large and increasing role in the diagnosis of infectious diseases. It has evolved significantly since the first probe tests were FDA approved in the early 1990s. This article highlights the uses of molecular techniques in diagnostic microbiology, including "older," as well as innovative, probe techniques, qualitative and quantitative RT-PCR, highly multiplexed PCR panels, some of which use sealed microfluidic test cartridges, MALDI TOF, and nuclear magnetic resonance. Tests are grouped together by technique and target. Tests with similar roles for similar analytes are compared with respect to benefits, drawbacks, and possible problems. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Investigating Factors that Generate and Maintain Variation in Migratory Orientation: A Primer for Recent and Future Work.

    PubMed

    Delmore, Kira E; Liedvogel, Miriam

    2016-01-01

    The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation.

  14. Filling the knowledge gap: Integrating quantitative genetics and genomics in graduate education and outreach

    USDA-ARS?s Scientific Manuscript database

    The genomics revolution provides vital tools to address global food security. Yet to be incorporated into livestock breeding, molecular techniques need to be integrated into a quantitative genetics framework. Within the U.S., with shrinking faculty numbers with the requisite skills, the capacity to ...

  15. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or guidelines are developed for assignment of the SFG-VS spectrum. Using the selection rules, SFG-VS spectra of vapour/diol, and vapour/n-normal alcohol (n˜ 1-8) interfaces are assigned, and some of the ambiguity and confusion, as well as their implications in previous IR and Raman assignment, are duly discussed. The ability to assign a SFG-VS spectrum using the polarization selection rules makes SFG-VS not only an effective and useful vibrational spectroscopy technique for interface studies, but also a complementary vibrational spectroscopy method in general condensed phase studies. These developments will put quantitative orientational and spectral analysis in SFG-VS on a more solid foundation. The formulations, concepts and issues discussed in this review are expected to find broad applications for investigations on molecular interfaces in the future.

  16. Genetics and child psychiatry: I Advances in quantitative and molecular genetics.

    PubMed

    Rutter, M; Silberg, J; O'Connor, T; Simonoff, E

    1999-01-01

    Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.

  17. Development of quantitative structure-activity relationships and its application in rational drug design.

    PubMed

    Yang, Guang-Fu; Huang, Xiaoqin

    2006-01-01

    Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

  18. Molecular dispersion spectroscopy – new capabilities in laser chemical sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state-of-the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS) based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace-gases and enable new capabilities such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459

  19. Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling.

    PubMed

    van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D

    2014-07-21

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.

  20. Molecular biology of myopia.

    PubMed

    Schaeffel, Frank; Simon, Perikles; Feldkaemper, Marita; Ohngemach, Sibylle; Williams, Robert W

    2003-09-01

    Experiments in animal models of myopia have emphasised the importance of visual input in emmetropisation but it is also evident that the development of human myopia is influenced to some degree by genetic factors. Molecular genetic approaches can help to identify both the genes involved in the control of ocular development and the potential targets for pharmacological intervention. This review covers a variety of techniques that are being used to study the molecular biology of myopia. In the first part, we describe techniques used to analyse visually induced changes in gene expression: Northern Blot, polymerase chain reaction (PCR) and real-time PCR to obtain semi-quantitative and quantitative measures of changes in transcription level of a known gene, differential display reverse transcription PCR (DD-RT-PCR) to search for new genes that are controlled by visual input, rapid amplification of 5' cDNA (5'-RACE) to extend the 5' end of sequences that are regulated by visual input, in situ hybridisation to localise the expression of a given gene in a tissue and oligonucleotide microarray assays to simultaneously test visually induced changes in thousands of transcripts in single experiments. In the second part, we describe techniques that are used to localise regions in the genome that contain genes that are involved in the control of eye growth and refractive errors in mice and humans. These include quantitative trait loci (QTL) mapping, exploiting experimental test crosses of mice and transmission disequilibrium tests (TDT) in humans to find chromosomal intervals that harbour genes involved in myopia development. We review several successful applications of this battery of techniques in myopia research.

  1. DNA-based techniques for authentication of processed food and food supplements.

    PubMed

    Lo, Yat-Tung; Shaw, Pang-Chui

    2018-02-01

    Authentication of food or food supplements with medicinal values is important to avoid adverse toxic effects, provide consumer rights, as well as for certification purpose. Compared to morphological and spectrometric techniques, molecular authentication is found to be accurate, sensitive and reliable. However, DNA degradation and inclusion of inhibitors may lead to failure in PCR amplification. This paper reviews on the existing DNA extraction and PCR protocols, and the use of small size DNA markers with sufficient discriminative power for molecular authentication. Various emerging new molecular techniques such as isothermal amplification for on-site diagnosis, next-generation sequencing for high-throughput species identification, high resolution melting analysis for quick species differentiation, DNA array techniques for rapid detection and quantitative determination in food products are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  3. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to 13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  4. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    PubMed Central

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  5. Quantitative RHEED Studies of MBE Growth of 3-5 Compounds

    DTIC Science & Technology

    1991-06-03

    Vertical - Cavity Surface - Emitting Laser Using Molecular Beam Epitaxial ...Growth of Vertical Cavity Surface - emitting Lasers Our work under this ARO contract on the control of MBE growth has enhanced our ability to grow...pattern about the surface structure of nearly perfect crystals prepared by Molecular Beam Epitaxy ( MBE ) and to use these techniques

  6. Quantitative Imaging in Cancer Clinical Trials

    PubMed Central

    Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.

    2015-01-01

    As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162

  7. An accurate computational method for an order parameter with a Markov state model constructed using a manifold-learning technique

    NASA Astrophysics Data System (ADS)

    Ito, Reika; Yoshidome, Takashi

    2018-01-01

    Markov state models (MSMs) are a powerful approach for analyzing the long-time behaviors of protein motion using molecular dynamics simulation data. However, their quantitative performance with respect to the physical quantities is poor. We believe that this poor performance is caused by the failure to appropriately classify protein conformations into states when constructing MSMs. Herein, we show that the quantitative performance of an order parameter is improved when a manifold-learning technique is employed for the classification in the MSM. The MSM construction using the K-center method, which has been previously used for classification, has a poor quantitative performance.

  8. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites.

    PubMed

    Lietz, Christopher B; Gemperline, Erin; Li, Lingjun

    2013-07-01

    Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites

    PubMed Central

    Lietz, Christopher B.; Gemperline, Erin; Li, Lingjun

    2013-01-01

    Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. PMID:23603211

  10. Quantitative analysis of pyroglutamic acid in peptides.

    PubMed

    Suzuki, Y; Motoi, H; Sato, K

    1999-08-01

    A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.

  11. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  12. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  13. Statistical differences between relative quantitative molecular fingerprints from microbial communities.

    PubMed

    Portillo, M C; Gonzalez, J M

    2008-08-01

    Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.

  14. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  15. Molecular diagnosis of toxoplasmosis in immunocompromised patients.

    PubMed

    Robert-Gangneux, Florence; Belaz, Sorya

    2016-08-01

    Toxoplasmosis in immunocompromised patients is associated with a high mortality rate. Molecular techniques are important tools to diagnose acute disease in immunocompromised patients, but there are various methods with variable efficiency. Some of them have been validated for the diagnosis of congenital toxoplasmosis, but the impact of their use has not been evaluated in immunocompromised patients. Toxoplasmosis is of increasing importance in non-HIV immunocompromised patients. In addition, the picture of disease shows greater severity in South America, both in immunocompetent study participants and in congenitally infected infants. These epidemiological differences could influence the sensitivity of diagnostic methods. This review analyzes recent data on molecular diagnosis and compares them with older ones, in light of progress gained in molecular techniques and of recent epidemiological findings. Most recent studies were conducted in South America and used PCR targeting the B1 gene. PCR on blood could allow diagnosing a significant proportion of patients with ocular toxoplasmosis in Brazil. Quantitative PCR methods with specific probes should be used to improve sensitivity and warrant specificity. Performance of quantitative PCR targeting the repeated 529 bp sequence for the diagnosis of toxoplasmosis in immunocompromised patients needs evaluation in field studies in South America and in western countries.

  16. Comparison of gravimetric and a double-indicator dilution technique for assessment of extra-vascular lung water in endotoxaemia.

    PubMed

    Rossi, P; Oldner, A; Wanecek, M; Leksell, L G; Rudehill, A; Konrad, D; Weitzberg, E

    2003-03-01

    To compare a molecular double-indicator dilution technique with the gravimetrical reference method for measurement of extra-vascular lung water in porcine endotoxin shock. Open comparative experimental study. Animal research laboratory. In fourteen anaesthetised, mechanically ventilated landrace pigs, central and pulmonary haemodynamics as well as pulmonary gas exchange were measured. Extra-vascular lung water was quantitated gravimetrically as well as with a molecular double indicator dilution technique. Eight of these animals were subjected to endotoxaemia, the rest serving as sham controls. No difference in extra-vascular lung water was observed between the two methods in sham animals. Furthermore, extra-vascular lung water assessed with the molecular double-indicator dilution technique at the initiation of endotoxin infusion did not differ significantly from the corresponding values for sham animals. Endotoxaemia induced a hypodynamic shock with concurrent pulmonary hypertension and a pronounced deterioration in gas exchange. No increase in extra-vascular lung water was detected with the molecular double-indicator dilution technique in response to endotoxin, whereas this parameter was significantly higher when assessed with the gravimetric method. The molecular double-indicator dilution technique showed similar results as the gravimetrical method for assessment of extra-vascular lung water in non-endotoxaemic conditions. However, during endotoxin-induced lung injury the molecular double indicator dilution technique failed to detect the significant increase in extra-vascular lung water as measured by the gravimetric method. These data suggest that the molecular double indicator dilution technique may be of limited value during sepsis-induced lung injury.

  17. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  18. Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra

    2017-02-01

    Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.

  19. Molecular detection of pathogens in water--the pros and cons of molecular techniques.

    PubMed

    Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia

    2010-08-01

    Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Quantitative imaging of disease signatures through radioactive decay signal conversion

    PubMed Central

    Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-01-01

    In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701

  1. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. [Comparative cost analysis of molecular biology methods in the diagnosis of sarcomas].

    PubMed

    Baffert, Sandrine; Italiano, Antoine; Pierron, Gaëlle; Traoré, Marie-Angèle; Rapp, Jocelyn; Escande, Fabienne; Ghnassia, Jean-Pierre; Terrier, Philippe; Voegeli, Anne-Claire; Ranchere-Vince, Dominique; Coindre, Jean-Michel; Pedeutour, Florence

    2013-10-01

    Sarcomas represent a complex and heterogeneous group of rare malignant tumors and their correct diagnosis is often difficult. Recent molecular biological techniques have been of great diagnostic use and there is a need to assess the cost of these procedures in routine clinical practice. Using prospective and observational data from eight molecular biology laboratories in France, we used "microcosting" method to assess the cost of molecular biological techniques in the diagnosis of five types of sarcoma. The mean cost of fluorescence in situ hybridization (FISH) was 318 € (273-393) per sample; mean reverse transcription polymerase chain reaction (RT-PCR) cost ranged from 300 € (229-481) per formalin-fixed, paraffin-embedded specimen to 258 € (213-339) per frozen specimen; mean quantitative polymerase chain reaction (Q-PCR) cost was 184 € (112-229) and mean CGH-array cost was 332 € (329-335). The cost of these recently implemented techniques varied according to the type of sarcoma; the method of tissue collection and local organizational factors including the level of local expertise and investment. The cost of molecular diagnostic techniques needs to be balanced against their respective performance.

  3. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    PubMed Central

    Renault, Ilana Zalcberg; Scholl, Vanesa; Hassan, Rocio; Capelleti, Paola; de Lima, Marcos; Cortes, Jorge

    2011-01-01

    Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging. PMID:23049363

  4. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  5. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    PubMed Central

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  6. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  7. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  8. Molecular-level simulations of turbulence and its decay

    DOE PAGES

    Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; ...

    2017-02-08

    Here, we provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov –5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can bemore » used to investigate turbulent flows quantitatively.« less

  9. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    PubMed

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  10. Micro-machined calorimetric biosensors

    DOEpatents

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  11. Utilizing Pyrosequencing and Quantitative pCR to Characterize Fungal Populations among House Dust Samples

    EPA Science Inventory

    Molecular techniques are an alternative to culturing and counting methods in quantifying indoor fungal contamination. Pyrosequencing offers the possibility of identifying unexpected indoor fungi. In this study, 50 house dust samples were collected from homes in the Yakima Valley,...

  12. TOXICOGENOMICS AS A TOOL TO ASSESS EXPOSURE OF FISH TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Molecular biological techniques such as gene arrays and quantitative real-time PCR are becoming important tools to study alterations in normal gene expression in fish and other wildlife exposed to such pollutants as endocrine disrupting chemicals (EDCs). An important function fo...

  13. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  14. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. System-Wide Quantitative Proteomics of the Metabolic Syndrome in Mice: Genotypic and Dietary Effects.

    PubMed

    Terfve, Camille; Sabidó, Eduard; Wu, Yibo; Gonçalves, Emanuel; Choi, Meena; Vaga, Stefania; Vitek, Olga; Saez-Rodriguez, Julio; Aebersold, Ruedi

    2017-02-03

    Advances in mass spectrometry have made the quantitative measurement of proteins across multiple samples a reality, allowing for the study of complex biological systems such as the metabolic syndrome. Although the deregulation of lipid metabolism and increased hepatic storage of triacylglycerides are known to play a part in the onset of the metabolic syndrome, its molecular basis and dependency on dietary and genotypic factors are poorly characterized. Here, we used an experimental design with two different mouse strains and dietary and metabolic perturbations to generate a compendium of quantitative proteome data using three mass spectrometric techniques. The data reproduce known properties of the metabolic system and indicate differential molecular adaptation of the two mouse strains to perturbations, contributing to a better understanding of the metabolic syndrome. We show that high-quality, high-throughput proteomic data sets provide an unbiased broad overview of the behavior of complex systems after perturbation.

  16. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    PubMed Central

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  17. A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes.

    PubMed

    Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H

    2018-05-17

    A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.

  18. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Li, Haixing; Hu, Hui

    2015-08-01

    This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.

  19. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  20. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  1. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy

    PubMed Central

    Youker, Robert T.; Teng, Haibing

    2014-01-01

    Abstract. Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques. PMID:25260867

  2. Applications of molecular modeling in coal research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, G.A.; Faulon, J.L.

    Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-linkmore » density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.« less

  3. Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.

    2005-09-01

    We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.

  4. Molecular diagnostics in medical microbiology: yesterday, today and tomorrow.

    PubMed

    van Belkum, Alex

    2003-10-01

    Clinical microbiology is clearly on the move, and various new diagnostic technologies have been introduced into laboratory practice over the past few decades. However, Henri D Isenberg recently stated that molecular biology techniques promised to revolutionise the diagnosis of infectious disease, but that, to date, this promise is still in its infancy. Molecular diagnostics have now surpassed these early stages and have definitely reached puberty. Currently, a second generation of automated molecular approaches is already within the microbiologists' reach. Quantitative amplification tests in combination with genomics, transcriptomics, proteomics and related methodologies will pave the way to further enhancement of innovative microbial detection and identification.

  5. Developing sensor activity relationships for the JPL electronic nose sensors using molecular modeling and QSAR techniques

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Jewell, A. D.; Zhou, H.; Manatt, K.; Kisor, A. K.

    2005-01-01

    We report a Quantitative Structure-Activity Relationships (QSAR) study using Genetic Function Approximations (GFA) to describe the polymer-carbon composite sensor activities in the JPL Electronic Nose, when exposed to chemical vapors at parts-per-million concentration levels.

  6. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH).

    PubMed

    Ohmido, Nobuko; Fukui, Kiichi; Kinoshita, Toshiro

    2010-01-01

    Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.

  7. Molecular methods of measurement of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus infection: implications for occupational health practice

    PubMed Central

    Kao, J. H.; Heptonstall, J.; Chen, D. S.

    1999-01-01

    Over the past decade, several molecular techniques for the detection of human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) have been developed that have implications for occupational health practice. This review describes the techniques used for qualitative and quantitative detection of the viral genome, and briefly explains nucleic acid sequencing and analysis of phylogenetic trees. The review also discusses the current and potential uses of these techniques in investigations of transmission of bloodborne viruses by patient to worker and worker to patient, in the management of occupational exposure to blood, in research, and in the development of guidance and policy on infected healthcare workers who perform procedures prone to exposure.   PMID:10658557

  8. Critical methodological factors in diagnosing minimal residual disease in hematological malignancies using quantitative PCR.

    PubMed

    Nyvold, Charlotte Guldborg

    2015-05-01

    Hematological malignancies are a heterogeneous group of cancers with respect to both presentation and prognosis, and many subtypes are nowadays associated with aberrations that make up excellent molecular targets for the quantification of minimal residual disease. The quantitative PCR methodology is outstanding in terms of sensitivity, specificity and reproducibility and thus an excellent choice for minimal residual disease assessment. However, the methodology still has pitfalls that should be carefully considered when the technique is integrated in a clinical setting.

  9. Scientist | Center for Cancer Research

    Cancer.gov

    KEY ROLES/RESPONSIBILITIES The Scientist I will support research efforts to define the role of transcriptional regulators in myeloid cell development, and their potential role in leukemogenesis.  This work will be accomplished performing both molecular and stem cell biology techniques, cloning and construction of retroviral vectors, quantitative RT-PCR, cloning of conditional

  10. USING GENOMICS AND PROTEOMICS TO DIAGNOSE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biology allow the use of cutting-edge genomic and proteomic tools to assess the effects of environmental contaminants on aquatic organisms. Techniques are available to measure changes in expression of single genes (quantitative real-time PCR) or to measure g...

  11. Surface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.

    PubMed

    Kojima, Taisuke

    2018-01-01

    Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.

  12. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  13. qF-SSOP: real-time optical property corrected fluorescence imaging

    PubMed Central

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  14. Molecular quenching and relaxation in a plasmonic tunable system

    NASA Astrophysics Data System (ADS)

    Baffou, Guillaume; Girard, Christian; Dujardin, Erik; Colas Des Francs, Gérard; Martin, Olivier J. F.

    2008-03-01

    Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green’s dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.

  15. Non-invasive molecular imaging for preclinical cancer therapeutic development

    PubMed Central

    O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH

    2013-01-01

    Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622

  16. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  17. Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2018-01-01

    The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.

  18. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    PubMed

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  19. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    PubMed Central

    Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847

  20. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  1. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration

    PubMed Central

    Kiontke, Andreas; Oliveira-Birkmeier, Ariana; Opitz, Andreas

    2016-01-01

    Over the past decades, electrospray ionization for mass spectrometry (ESI-MS) has become one of the most commonly employed techniques in analytical chemistry, mainly due to its broad applicability to polar and semipolar compounds and the superior selectivity which is achieved in combination with high resolution separation techniques. However, responsiveness of an analytical method also determines its suitability for the quantitation of chemical compounds; and in electrospray ionization for mass spectrometry, it can vary significantly among different analytes with identical solution concentrations. Therefore, we investigated the ESI-response behavior of 56 nitrogen-containing compounds including aromatic amines and pyridines, two compound classes of high importance to both, synthetic organic chemistry as well as to pharmaceutical sciences. These compounds are increasingly analyzed employing ESI mass spectrometry detection due to their polar, basic character. Signal intensities of the peaks from the protonated molecular ion (MH+) were acquired under different conditions and related to compound properties such as basicity, polarity, volatility and molecular size exploring their quantitative impact on ionization efficiency. As a result, we found that though solution basicity of a compound is the main factor initially determining the ESI response of the protonated molecular ion, other factors such as polarity and vaporability become more important under acidic solvent conditions and may nearly outweigh the importance of basicity under these conditions. Moreover, we show that different molecular descriptors may become important when using different types of instruments for such investigations, a fact not detailed so far in the available literature. PMID:27907110

  2. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    PubMed

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-07

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  3. Detecting molecular forms of antithrombin by LC-MRM-MS: defining the measurands.

    PubMed

    Ruhaak, L Renee; Romijn, Fred P H T M; Smit, Nico P M; van der Laarse, Arnoud; Pieterse, Mervin M; de Maat, Moniek P M; Haas, Fred J L M; Kluft, Cornelis; Amiral, Jean; Meijer, Piet; Cobbaert, Christa M

    2018-05-01

    Antithrombin (AT) is a critical regulator of coagulation, and its overall activity is typically measured using functional tests. A large number of molecular forms of AT have been identified and each individual carries multiple molecular proteoforms representing variable activities. Conventional functional tests are completely blind for these proteoforms. A method that ensures properly defined measurands for AT is therefore needed. We here assess whether mass spectrometry technology, in particular multiple reaction monitoring (MRM), is suitable for the quantification of AT and the qualitative detection of its molecular proteoforms. Plasma proteins were denatured, reduced and alkylated prior to enzymatic digestion. MRM transitions were developed towards tryptic peptides and glycopeptides using AT purified from human plasma. For each peptide, three transitions were measured, and stable isotope-labeled peptides were used for quantitation. Completeness of digestion was assessed using digestion time curves. MRM transitions were developed for 19 tryptic peptides and 4 glycopeptides. Two peptides, FDTISEK and FATTFYQHLADSK, were used for quantitation, and using a calibration curve of isolated AT in 40 g/L human serum albumin, CVs below 3.5% were obtained for FDTISEK, whereas CVs below 8% were obtained for FATTFYQHLADSK. Of the 26 important AT mutations, 20 can be identified using this method, while altered glycosylation profiles can also be detected. We here show the feasibility of the liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) technique for the quantitation of AT and the qualitative analysis of most of its molecular proteoforms. Knowing the measurands will enable standardization of AT tests by providing in-depth information on the molecular proteoforms of AT.

  4. A novel approach for the removal of radiocesium from aqueous solution by ZSM-5 molecular sieve.

    PubMed

    Gao, Xiaoqing; Zhang, Peng; Yang, Junqiang; Sun, Xuejie; Fu, Yi; Shi, Keliang; Chai, Zhifang; Wu, Wangsuo

    2018-05-21

    Finding an approach for pretreatment of radionuclides from contaminated water are interesting topics of research. In present work, the ZSM-5 molecular sieve was characterized with different techniques such as zeta potential, SEM, FT-IR and XRD to clarify the surface properties of sample and applied as a sorbent to concentrate and recover Cs(I) from aqueous solution. The effect of environmental conditions such as contact time, ionic strength, content of sorbent and solution pH on Cs(I) uptake were optimized using batch techniques. Different kinetic and isotherm models were utilized to evaluate the experimental data and the correlation parameters were obtained. Based on the sorption/desorption experiment, it can be deduced that the ZSM-5 molecular sieve has potential application for the rapid and quantitative recovery of radiocesium from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Light and sound - emerging imaging techniques for inflammatory bowel disease

    PubMed Central

    Knieling, Ferdinand; Waldner, Maximilian J

    2016-01-01

    Patients with inflammatory bowel disease are known to have a high demand of recurrent evaluation for therapy and disease activity. Further, the risk of developing cancer during the disease progression is increasing from year to year. New, mostly non-radiant, quick to perform and quantitative methods are challenging, conventional endoscopy with biopsy as gold standard. Especially, new physical imaging approaches utilizing light and sound waves have facilitated the development of advanced functional and molecular modalities. Besides these advantages they hold the promise to predict personalized therapeutic responses and to spare frequent invasive procedures. Within this article we highlight their potential for initial diagnosis, assessment of disease activity and surveillance of cancer development in established techniques and recent advances such as wide-view full-spectrum endoscopy, chromoendoscopy, autofluorescence endoscopy, endocytoscopy, confocal laser endoscopy, multiphoton endoscopy, molecular imaging endoscopy, B-mode and Doppler ultrasound, contrast-enhanced ultrasound, ultrasound molecular imaging, and elastography. PMID:27433080

  6. Complex polarimetric and spectral techniques in diagnostics of blood plasma of patients with ovarian cancer as a preliminary stage molecular genetic screening

    NASA Astrophysics Data System (ADS)

    Grzegorzewski, B.; Peresunko, O. P.; Yermolenko, S. B.

    2018-01-01

    This work is devoted to the substantiation and selection of patients with ovarian cancer (OC) for the purpose of conducting expensive molecular genetic studies on genotyping. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues. Obtained results showed that the use of spectrophotometry in the range of 1000-3000 cm-1 allowed to establish quantitative parameters of the plasma absorption rate of blood of patients in the third group in different ranges, which would allow in the future to conduct an express analysis of the patient's condition (procedure screening) for further molecular-genetic typing on BRCA I and II.

  7. Assessment of the interlaboratory variability and robustness of JAK2V617F mutation assays: A study involving a consortium of 19 Italian laboratories

    PubMed Central

    Perricone, Margherita; Palandri, Francesca; Ottaviani, Emanuela; Angelini, Mario; Bagli, Laura; Bellesia, Enrica; Donati, Meris; Gemmati, Donato; Zucchini, Patrizia; Mancini, Stefania; Marchica, Valentina; Trubini, Serena; Matteis, Giovanna De; Zacomo, Silvia Di; Favarato, Mosè; Fioroni, Annamaria; Bolzonella, Caterina; Maccari, Giorgia; Navaglia, Filippo; Gatti, Daniela; Toffolatti, Luisa; Orlandi, Linda; Laloux, Vèronique; Manfrini, Marco; Galieni, Piero; Giannini, Barbara; Tieghi, Alessia; Barulli, Sara; Serino, Maria Luisa; Maccaferri, Monica; Scortechini, Anna Rita; Giuliani, Nicola; Vallisa, Daniele; Bonifacio, Massimiliano; Accorsi, Patrizia; Salbe, Cristina; Fazio, Vinicio; Gusella, Milena; Toffoletti, Eleonora; Salvucci, Marzia; Svaldi, Mirija; Gherlinzoni, Filippo; Cassavia, Francesca; Orsini, Francesco; Martinelli, Giovanni

    2017-01-01

    To date, a plenty of techniques for the detection of JAK2V617F is used over different laboratories, with substantial differences in specificity and sensitivity. Therefore, to provide reliable and comparable results, the standardization of molecular techniques is mandatory. A network of 19 centers was established to 1) evaluate the inter- and intra-laboratory variability in JAK2V617F quantification, 2) identify the most robust assay for the standardization of the molecular test and 3) allow consistent interpretation of individual patient analysis results. The study was conceived in 3 different rounds, in which all centers had to blindly test DNA samples with different JAK2V617F allele burden (AB) using both quantitative and qualitative assays. The positivity of samples with an AB < 1% was not detected by qualitative assays. Conversely, laboratories performing the quantitative approach were able to determine the expected JAK2V617F AB. Quantitative results were reliable across all mutation loads with moderate variability at low AB (0.1 and 1%; CV = 0.46 and 0.77, respectively). Remarkably, all laboratories clearly distinguished between the 0.1 and 1% mutated samples. In conclusion, a qualitative approach is not sensitive enough to detect the JAK2V617F mutation, especially at low AB. On the contrary, the ipsogen JAK2 MutaQuant CE-IVD kit resulted in a high, efficient and sensitive quantification detection of all mutation loads. This study sets the basis for the standardization of molecular techniques for JAK2V617F determination, which will require the employment of approved operating procedures and the use of certificated standards, such as the recent WHO 1st International Reference Panel for Genomic JAK2V617F. PMID:28427233

  8. Assessment of the interlaboratory variability and robustness of JAK2V617F mutation assays: A study involving a consortium of 19 Italian laboratories.

    PubMed

    Perricone, Margherita; Palandri, Francesca; Ottaviani, Emanuela; Angelini, Mario; Bagli, Laura; Bellesia, Enrica; Donati, Meris; Gemmati, Donato; Zucchini, Patrizia; Mancini, Stefania; Marchica, Valentina; Trubini, Serena; De Matteis, Giovanna; Di Zacomo, Silvia; Favarato, Mosè; Fioroni, Annamaria; Bolzonella, Caterina; Maccari, Giorgia; Navaglia, Filippo; Gatti, Daniela; Toffolatti, Luisa; Orlandi, Linda; Laloux, Vèronique; Manfrini, Marco; Galieni, Piero; Giannini, Barbara; Tieghi, Alessia; Barulli, Sara; Serino, Maria Luisa; Maccaferri, Monica; Scortechini, Anna Rita; Giuliani, Nicola; Vallisa, Daniele; Bonifacio, Massimiliano; Accorsi, Patrizia; Salbe, Cristina; Fazio, Vinicio; Gusella, Milena; Toffoletti, Eleonora; Salvucci, Marzia; Svaldi, Mirija; Gherlinzoni, Filippo; Cassavia, Francesca; Orsini, Francesco; Martinelli, Giovanni

    2017-05-16

    To date, a plenty of techniques for the detection of JAK2V617F is used over different laboratories, with substantial differences in specificity and sensitivity. Therefore, to provide reliable and comparable results, the standardization of molecular techniques is mandatory.A network of 19 centers was established to 1) evaluate the inter- and intra-laboratory variability in JAK2V617F quantification, 2) identify the most robust assay for the standardization of the molecular test and 3) allow consistent interpretation of individual patient analysis results. The study was conceived in 3 different rounds, in which all centers had to blindly test DNA samples with different JAK2V617F allele burden (AB) using both quantitative and qualitative assays.The positivity of samples with an AB < 1% was not detected by qualitative assays. Conversely, laboratories performing the quantitative approach were able to determine the expected JAK2V617F AB. Quantitative results were reliable across all mutation loads with moderate variability at low AB (0.1 and 1%; CV = 0.46 and 0.77, respectively). Remarkably, all laboratories clearly distinguished between the 0.1 and 1% mutated samples.In conclusion, a qualitative approach is not sensitive enough to detect the JAK2V617F mutation, especially at low AB. On the contrary, the ipsogen JAK2 MutaQuant CE-IVD kit resulted in a high, efficient and sensitive quantification detection of all mutation loads. This study sets the basis for the standardization of molecular techniques for JAK2V617F determination, which will require the employment of approved operating procedures and the use of certificated standards, such as the recent WHO 1st International Reference Panel for Genomic JAK2V617F.

  9. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  10. Improved sample preparation of glyphosate and methylphosphonic acid by EPA method 6800A and time-of-flight mass spectrometry using novel solid-phase extraction.

    PubMed

    Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip

    2012-02-01

    The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.

  11. [A new method of processing quantitative PCR data].

    PubMed

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  12. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  13. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

  14. Quantitative proteomics in cardiovascular research: global and targeted strategies

    PubMed Central

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  15. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    PubMed

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into cancer angiogenesis, and thus potentially improve cancer diagnosis and management.

  17. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  18. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  19. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  20. Morphological diagnostics of star formation in molecular clouds

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher Norris

    Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.

  1. The principle and application of new PCR Technologies

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Cao, Yue; Ji, Yubin

    2017-12-01

    Polymerase chain reaction (PCR) is essentially a selective DNA amplification technique commonlyapplied for genetic testing and molecular diagnosis because of its high specificity and sensitivity.PCR technologies as the key of molecular biology, has realized that the qualitative detection of absolute quantitative has been changed. It has produced a variety of new PCR technologies, such as extreme PCR, photonic PCR, o-amplification at lower denaturation temperature PCR, nanoparticle PCR and so on. In this paper, the principle and application of PCR technologies are reviewed, and its development is prospected too.

  2. Contrasting patterns of structural host specificity of two species of Heligmosomoides nematodes in sympatric rodents.

    PubMed

    Clough, Dagmar; Råberg, Lars

    2014-12-01

    Host specificity is a fundamental property of parasites. Whereas most studies focus on measures of specificity on host range, only few studies have considered quantitative aspects such as infection intensity or prevalence. The relative importance of these quantitative aspects is still unclear, mainly because of methodological constraints, yet central to a precise assessment of host specificity. Here, we assessed simultaneously two quantitative measures of host specificity of Heligmosomoides glareoli and Heligmosomoides polygyrus polygyrus infections in sympatric rodent hosts. We used standard morphological techniques as well as real-time quantitative PCR and sequencing of the rDNA ITS2 fragment to analyse parasite infection via faecal sample remains. Although both parasite species are thought to be strictly species-specific, we found morphologically and molecularly validated co- and cross-infections. We also detected contrasting patterns within and between host species with regard to specificity for prevalence and intensity of infection. H. glareoli intensities were twofold higher in bank voles than in yellow-necked mice, but prevalence did not differ significantly between species (33 vs. 18%). We found the opposite pattern in H. polygyrus infections with similar intensity levels between host species but significantly higher prevalence in mouse hosts (56 vs. 10%). Detection rates were higher with molecular tools than morphological methods. Our results emphasize the necessity to consider quantitative aspects of specificity for a full view of a parasites' capacity to replicate and transmit in hosts and present a worked example of how modern molecular tools help to advance our understanding of selective forces in host-parasite ecology and evolution.

  3. Attenuated total reflectance FT-IR imaging and quantitative energy dispersive-electron probe X-ray microanalysis techniques for single particle analysis of atmospheric aerosol particles.

    PubMed

    Ryu, JiYeon; Ro, Chul-Un

    2009-08-15

    This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.

  4. Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.

    PubMed

    Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J

    2009-05-01

    Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.

  5. Molecular diagnosis of Rickettsia infection in patients from Tunisia.

    PubMed

    Khrouf, Fatma; Sellami, Hanene; Elleuch, Emna; Hattab, Zouhour; Ammari, Lamia; Khalfaoui, Moncef; Souissi, Jihed; Harrabi, Hejer; M'ghirbi, Youmna; Tiouiri, Hanene; Ben Jemaa, Mounir; Hammami, Adnene; Letaief, Amel; Bouattour, Ali; Znazen, Abir

    2016-07-01

    Diagnosis of rickettsioses had largely benefited from the development of molecular techniques. Unfortunately, in Tunisia, despite the large number of rickettsial cases registered every year, the Rickettsia species remain unidentified. In this study, we aimed to detect the Rickettsia species in clinical samples using molecular tests. A study was established to analyze skin biopsies, cutaneous swabs, and cerebrospinal fluid samples taken from clinically suspected patients to have rickettsial infection. Two molecular techniques were used to detect Rickettsia DNA: quantitative real time PCR (qPCR) and reverse line blot test (RLB). An analysis of the RLB hybridization assay results revealed the presence of Rickettsia DNA in skin biopsies (40.6%) and swabs (46.7%). Rickettsia conorii was the most prevalent identified species among tested samples. Other species of interest include Rickettsia typhi and Rickettsia massiliae. Using qPCR positivity rates in skin biopsies was 63.7% against 80% in swabs. R. conorii was the most frequently detected species, followed by R. typhi. The agreement between the two techniques was 68.6% (kappa=0.33). Molecular tests, especially using specific probes qPCR, allow for a rapid, better and confident diagnosis in clinical practice. They improve the survey of Mediterranean spotted fever which is considered to be the most important rickettsial infection in humans in Tunisia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. [Progress in porky genes and transcriptome and discussion of relative issues].

    PubMed

    Zhu, Meng-Jin; Liu, Bang; Li, Kui

    2005-01-01

    To date, research on molecular base of porky molecular development was mainly involved in muscle growth and meat quality. Some functional genes including Hal gene and RN gene and some QTLs controlling or associated with porky growth and quality were detected through candidate gene approach and genome-wide scanning. Genic transcriptome pertinent to porcine muscle and adipose also came into study. At the same time, these researches have befallen some shortcomings to some extent. Research from molecular quantitative genetics showed shortcomings that single gene was devilishly emphasized and co-expression pattern of multi-genes was ignored. Research applying transcriptome analysis tool also met two of limitations, one was the singleness of type of molecular experimental techniques, and another was that genes of muscle and adipose were artificially divided into unattached two parts. Thus, porky genes were explored by parallel genetics based on systemic views and techniques to specially reveal the interactional mechanism of porky genes respectively controlling muscle and adipose, which would be important issues of genes and genome researches on porky development in the near future.

  7. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin.

    PubMed

    Li, Dong-Yan; He, Xi-Wen; Chen, Yang; Li, Wen-You; Zhang, Yu-Kui

    2013-12-11

    This work presented a novel strategy for the synthesis of the hybrid structure silica/CdTe/molecularly imprinted polymer (Si-NP/CdTe/MIP) to recognize and detect the template bovine hemoglobin (BHb). First, amino-functionalized silica nanoparticles (Si-NP) and carboxyl-terminated CdTe quantum dots (QDs) were assembled into composite nanoparticles (Si-NP/CdTe) using the EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) chemistry. Next, Si-NP/CdTe/MIP was synthesized by anchoring molecularly imprinted polymer (MIP) layer on the surface of Si-NP/CdTe through the sol-gel technique and surface imprinting technique. The hybrid structure possessed the selectivity of molecular imprinting technique and the sensitivity of CdTe QDs as well as well-defined morphology. The binding experiment and fluorescence method demonstrated its special recognition performance toward the template BHb. Under the optimized conditions, the fluorescence intensity of the Si-NP/CdTe/MIP decreased linearly with the increase of BHb in the concentration range 0.02-2.1 μM, and the detection limit was 9.4 nM. Moreover, the reusability and reproducibility and the successful applications in practical samples indicated the synthesis of Si-NP/CdTe/MIP provided an alternative solution for special recognition and determination of protein from real samples.

  8. Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format.

    PubMed

    Bisso, Paul W; Tai, Michelle; Katepalli, Hari; Bertrand, Nicolas; Blankschtein, Daniel; Langer, Robert

    2018-01-10

    Hydrophobic self-assembly pairs diverse chemical precursors and simple formulation processes to access a vast array of functional colloids. Exploration of this design space, however, is stymied by lack of broadly general, high-throughput colloid characterization tools. Here, we show that a narrow structural subset of fluorescent, zwitterionic molecular rotors, dialkylaminostilbazolium sulfonates [DASS] with intermediate-length alkyl tails, fills this major analytical void by quantitatively sensing hydrophobic interfaces in microplate format. DASS dyes supersede existing interfacial probes by avoiding off-target fluorogenic interactions and dye aggregation while preserving hydrophobic partitioning strength. To illustrate the generality of this approach, we demonstrate (i) a microplate-based technique for measuring mass concentration of small (20-200 nm), dilute (submicrogram sensitivity) drug delivery nanoparticles; (ii) elimination of particle size, surfactant chemistry, and throughput constraints on quantifying the complex surfactant/metal oxide adsorption isotherms critical for environmental remediation and enhanced oil recovery; and (iii) more reliable self-assembly onset quantitation for chemically and structurally distinct amphiphiles. These methods could streamline the development of nanotechnologies for a broad range of applications.

  9. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steenbergen, K. G., E-mail: kgsteen@gmail.com; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement formore » a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.« less

  10. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings.

    PubMed

    Jensen, Malene Ringkjøbing; Markwick, Phineus R L; Meier, Sebastian; Griesinger, Christian; Zweckstetter, Markus; Grzesiek, Stephan; Bernadó, Pau; Blackledge, Martin

    2009-09-09

    Intrinsically disordered proteins (IDPs) inhabit a conformational landscape that is too complex to be described by classical structural biology, posing an entirely new set of questions concerning the molecular understanding of functional biology. The characterization of the conformational properties of IDPs, and the elucidation of the role they play in molecular function, is therefore one of the major challenges remaining for modern structural biology. NMR is the technique of choice for studying this class of proteins, providing information about structure, flexibility, and interactions at atomic resolution even in completely disordered states. In particular, residual dipolar couplings (RDCs) have been shown to be uniquely sensitive and powerful tools for characterizing local and long-range structural behavior in disordered proteins. In this review we describe recent applications of RDCs to quantitatively describe the level of local structure and transient long-range order in IDPs involved in viral replication, neurodegenerative disease, and cancer.

  11. Two worlds collide: image analysis methods for quantifying structural variation in cluster molecular dynamics.

    PubMed

    Steenbergen, K G; Gaston, N

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  12. Electronic excitations in molecular solids: bridging theory and experiment.

    PubMed

    Skelton, Jonathan M; da Silva, E Lora; Crespo-Otero, Rachel; Hatcher, Lauren E; Raithby, Paul R; Parker, Stephen C; Walsh, Aron

    2015-01-01

    As the spatial and temporal resolution accessible to experiment and theory converge, computational chemistry is an increasingly powerful tool for modelling and interpreting spectroscopic data. However, the study of molecular processes, in particular those related to electronic excitations (e.g. photochemistry), frequently pushes quantum-chemical techniques to their limit. The disparity in the level of theory accessible to periodic and molecular calculations presents a significant challenge when modelling molecular crystals, since accurate calculations require a high level of theory to describe the molecular species, but must also take into account the influence of the crystalline environment on their properties. In this article, we briefly review the different classes of quantum-chemical techniques, and present an overview of methods that account for environmental influences with varying levels of approximation. Using a combination of solid-state and molecular calculations, we quantitatively evaluate the performance of implicit-solvent models for the [Ni(Et4dien)(η2-O,ON)(η1-NO2)] linkage-isomer system as a test case. We focus particularly on the accurate reproduction of the energetics of the isomerisation, and on predicting spectroscopic properties to compare with experimental results. This work illustrates how the synergy between periodic and molecular calculations can be exploited for the study of molecular crystals, and forms a basis for the investigation of more challenging phenomena, such as excited-state dynamics, and for further methodological developments.

  13. Ordinary differential equations with applications in molecular biology.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.

  14. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  15. Semiselective Optoelectronic Sensors for Monitoring Microbes

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Chuang, Han; Taylor,Laura; Russo, Jaime

    2003-01-01

    Sensor systems are under development for use in real-time detection and quantitation of microbes in water without need for sampling. These systems include arrays of optical sensors; miniature, portable electronic data-acquisition circuits; and optoelectronic interfaces between the sensor arrays and data-acquisition circuits. These systems are intended for original use in long-term, inline monitoring of waterborne micro-organisms in water-reclamation systems aboard future spacecraft. They could also be adapted to similar terrestrial uses with respect to municipal water supplies, stored drinking water, and swimming water; for detecting low-level biological contamination in biotechnological, semiconductor, and pharmaceutical process streams; and in verifying the safety of foods and beverages. In addition, they could be adapted to monitoring of airborne microbes and of surfaces (e.g., to detect and/or quantitate biofilms). The designs of the sensors in these systems are based partly on those of sensors developed previously for monitoring airborne biological materials. The designs exploit molecular- recognition and fluorescence-spectroscopy techniques, such that in the presence of micro-organisms of interest, fluorescence signals change and the changes can be measured. These systems are characterized as semiselective because they respond to classes of micro-organisms and can be used to discriminate among the classes. This semiselectivity is a major aspect of the design: It is important to distinguish between (1) the principle of detection and quantitation of classes of micro-organisms by use of these sensors and (2) the principle of detection and quantitation of individual microbiological species by means of prior immuno-diagnostic and/or molecular-biology techniques. Detection of classes (in contradistinction to species) is particularly valuable when the exact nature of a contaminant is unknown.

  16. Quantitative imaging as cancer biomarker

    NASA Astrophysics Data System (ADS)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine whether the drug reaches the target; (3) identify an early response to treatment; and (4) predict the impact of therapy on long-term outcomes such as survival. The manuscript reviews basic concepts important in the application of molecular imaging to cancer drug therapy, in general, and will discuss specific examples of studies in humans, and highlight future directions, including ongoing multi-center clinical trials using molecular imaging as a cancer biomarker.

  17. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.

  18. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  19. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    PubMed Central

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  1. Electron tomography and 3D molecular simulations of platinum nanocrystals

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu

    2012-07-01

    This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d

  2. Costs of genetic testing: Supporting Brazilian Public Policies for the incorporating of molecular diagnostic technologies

    PubMed Central

    Schlatter, Rosane Paixão; Matte, Ursula; Polanczyk, Carisi Anne; Koehler-Santos, Patrícia; Ashton-Prolla, Patricia

    2015-01-01

    This study identifies and describes the operating costs associated with the molecular diagnosis of diseases, such as hereditary cancer. To approximate the costs associated with these tests, data informed by Standard Operating Procedures for various techniques was collected from hospital software and a survey of market prices. Costs were established for four scenarios of capacity utilization to represent the possibility of suboptimal use in research laboratories. Cost description was based on a single site. The results show that only one technique was not impacted by rising costs due to underutilized capacity. Several common techniques were considerably more expensive at 30% capacity, including polymerase chain reaction (180%), microsatellite instability analysis (181%), gene rearrangement analysis by multiplex ligation probe amplification (412%), non-labeled sequencing (173%), and quantitation of nucleic acids (169%). These findings should be relevant for the definition of public policies and suggest that investment of public funds in the establishment of centralized diagnostic research centers would reduce costs to the Public Health System. PMID:26500437

  3. Inferring molecular interactions pathways from eQTL data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Imran; McDermott, Jason E.; Samudrala, Ram

    Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype, gene expression levels, and phenotype. However, standard statistical genetics can only attribute changes in expression levels to loci on the genome, not specific genes. Each locus can contain many genes, making it very difficult to discover which gene is controlling the expression levels of other genes. Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for controlling the expression levels. Here we describe a series of techniques for finding explanatory pathways by exploring graphs of molecular interactions. We show several simple methodsmore » can find complete pathways the explain the mechanism of differential expression in eQTL data.« less

  4. Diagnostic accuracy of semi-quantitative and quantitative culture techniques for the diagnosis of catheter-related infections in newborns and molecular typing of isolated microorganisms.

    PubMed

    Riboli, Danilo Flávio Moraes; Lyra, João César; Silva, Eliane Pessoa; Valadão, Luisa Leite; Bentlin, Maria Regina; Corrente, José Eduardo; Rugolo, Ligia Maria Suppo de Souza; da Cunha, Maria de Lourdes Ribeiro de Souza

    2014-05-22

    Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). Microbiological evidence implicating catheters as the source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs. Semi-quantitative culture is used to determine the presence of microorganisms on the external catheter surface, whereas quantitative culture also isolates microorganisms present inside the catheter. The main objective of this study was to determine the sensitivity and specificity of these two techniques for the diagnosis of CR-BSIs in newborns from a neonatal ICU. In addition, PFGE was used for similarity analysis of the microorganisms isolated from catheters and blood cultures. Semi-quantitative and quantitative methods were used for the culture of catheter tips obtained from newborns. Strains isolated from catheter tips and blood cultures which exhibited the same antimicrobial susceptibility profile were included in the study as positive cases of CR-BSI. PFGE of the microorganisms isolated from catheters and blood cultures was performed for similarity analysis and detection of clones in the ICU. A total of 584 catheter tips from 399 patients seen between November 2005 and June 2012 were analyzed. Twenty-nine cases of CR-BSI were confirmed. Coagulase-negative staphylococci (CoNS) were the most frequently isolated microorganisms, including S. epidermidis as the most prevalent species (65.5%), followed by S. haemolyticus (10.3%), yeasts (10.3%), K. pneumoniae (6.9%), S. aureus (3.4%), and E. coli (3.4%). The sensitivity of the semi-quantitative and quantitative techniques was 72.7% and 59.3%, respectively, and specificity was 95.7% and 94.4%. The diagnosis of CR-BSIs based on PFGE analysis of similarity between strains isolated from catheter tips and blood cultures showed 82.6% sensitivity and 100% specificity. The semi-quantitative culture method showed higher sensitivity and specificity for the diagnosis of CR-BSIs in newborns when compared to the quantitative technique. In addition, this method is easier to perform and shows better agreement with the gold standard, and should therefore be recommended for routine clinical laboratory use. PFGE may contribute to the control of CR-BSIs by identifying clusters of microorganisms in neonatal ICUs, providing a means of determining potential cross-infection between patients.

  5. Risk analysis for veterinary biologicals released into the environment.

    PubMed

    Silva, S V; Samagh, B S; Morley, R S

    1995-12-01

    All veterinary biologicals licensed in Canada must be shown to be pure, potent, safe and effective. A risk-based approach is used to evaluate the safety of all biologicals, whether produced by conventional methods or by molecular biological techniques. Traditionally, qualitative risk assessment methods have been used for this purpose. More recently, quantitative risk assessment has become available for complex issues. The quantitative risk assessment method uses "scenario tree analysis' to predict the likelihood of various outcomes and their respective impacts. The authors describe the quantitative risk assessment approach which is used within the broader context of risk analysis (i.e. risk assessment, risk management and risk communication) to develop recommendations for the field release of veterinary biologicals. The general regulatory framework for the licensing of veterinary biologicals in Canada is also presented.

  6. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novelmore » analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.« less

  7. Optical Ptychographic Microscope for Quantitative Bio-Mechanical Imaging

    NASA Astrophysics Data System (ADS)

    Anthony, Nicholas; Cadenazzi, Guido; Nugent, Keith; Abbey, Brian

    The role that mechanical forces play in biological processes such as cell movement and death is becoming of significant interest to further develop our understanding of the inner workings of cells. The most common method used to obtain stress information is photoelasticity which maps a samples birefringence, or its direction dependent refractive indices, using polarized light. However this method only provides qualitative data and for stress information to be useful quantitative data is required. Ptychography is a method for quantitatively determining the phase of a samples complex transmission function. The technique relies upon the collection of multiple overlapping coherent diffraction patterns from laterally displaced points on the sample. The overlap of measurement points provides complementary information that significantly aids in the reconstruction of the complex wavefield exiting the sample and allows for quantitative imaging of weakly interacting specimens. Here we describe recent advances at La Trobe University Melbourne on achieving quantitative birefringence mapping using polarized light ptychography with applications in cell mechanics. Australian Synchrotron, ARC Centre of Excellence for Advanced Molecular Imaging.

  8. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    PubMed

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  9. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  10. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  11. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  12. A Compact, Solid-State UV (266 nm) Laser System Capable of Burst-Mode Operation for Laser Ablation Desorption Processing

    NASA Technical Reports Server (NTRS)

    Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William

    2015-01-01

    Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).

  13. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  14. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms.

    PubMed

    Nathan, Lucas M; Simmons, Megan; Wegleitner, Benjamin J; Jerde, Christopher L; Mahon, Andrew R

    2014-11-04

    The use of molecular surveillance techniques has become popular among aquatic researchers and managers due to the improved sensitivity and efficiency compared to traditional sampling methods. Rapid expansion in the use of environmental DNA (eDNA), paired with the advancement of molecular technologies, has resulted in new detection platforms and techniques. In this study we present a comparison of three eDNA surveillance platforms: traditional polymerase chain reaction (PCR), quantitative PCR (qPCR), and digital droplet PCR (ddPCR) in which water samples were collected over a 24 h time period from mesocosm experiments containing a population gradient of invasive species densities. All platforms reliably detected the presence of DNA, even at low target organism densities within the first hour. The two quantitative platforms (qPCR and ddPCR) produced similar estimates of DNA concentrations. The analyses completed with ddPCR was faster from sample collection through analyses and cost approximately half the expenditure of qPCR. Although a new platform for eDNA surveillance of aquatic species, ddPCR was consistent with more commonly used qPCR and a cost-effective means of estimating DNA concentrations. Use of ddPCR by researchers and managers should be considered in future eDNA surveillance applications.

  15. Quantitative identification of chemical compounds by dual-soliton based coherent anti-Stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Wu, Tao; Li, Yan; Wei, Haoyun

    2017-12-01

    Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopy technique that is rapidly gaining recognition of different molecules. Unfortunately, molecular concentration information is generally not immediately accessible from the raw CARS signal due to the nonresonant background. In addition, mainstream biomedical applications of CARS are currently hampered by a complex and bulky excitation setup. Here, we establish a dual-soliton Stokes based CARS spectroscopy scheme capable of quantifying the sample molecular, using a single fiber laser. This dual-soliton CARS scheme takes advantage of a differential configuration to achieve efficient suppression of nonresonant background and therefore allows extraction of quantitative composition information. Besides, our all-fiber based excitation source can probe the most fingerprint region (1100-1800 cm-1) with a spectral resolution of 15 cm-1 under the spectral focusing mechanism, where is considerably more information contained throughout an entire spectrum than at just a single frequency within that spectrum. Systematic studies of the scope of application and several fundamental aspects are discussed. Quantitative capability is further experimentally demonstrated through the determination of oleic acid concentration based on the linear dependence of signal on different Raman vibration bands.

  16. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  18. Comparison of the detection of periodontal pathogens in bacteraemia after tooth brushing by culture and molecular techniques.

    PubMed

    Marín, M-J; Figuero, E; González, I; O'Connor, A; Diz, P; Álvarez, M; Herrera, D; Sanz, M

    2016-05-01

    The prevalence and amounts of periodontal pathogens detected in bacteraemia samples after tooth brushing-induced by means of four diagnostic technique, three based on culture and one in a molecular-based technique, have been compared in this study. Blood samples were collected from thirty-six subjects with different periodontal status (17 were healthy, 10 with gingivitis and 9 with periodontitis) at baseline and 2 minutes after tooth brushing. Each sample was analyzed by three culture-based methods [direct anaerobic culturing (DAC), hemo-culture (BACTEC), and lysis-centrifugation (LC)] and one molecular-based technique [quantitative polymerase chain reaction (qPCR)]. With culture any bacterial isolate was detected and quantified, while with qPCR only Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were detected and quantified. Descriptive analyses, ANOVA and Chi-squared tests, were performed. Neither BACTEC nor qPCR detected any type of bacteria in the blood samples. Only LC (2.7%) and DAC (8.3%) detected bacteraemia, although not in the same patients. Fusobacterium nucleatum was the most frequently detected bacterial species. The disparity in the results when the same samples were analyzed with four different microbiological detection methods highlights the need for a proper validation of the methodology to detect periodontal pathogens in bacteraemia samples, mainly when the presence of periodontal pathogens in blood samples after tooth brushing was very seldom.

  19. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine.

    PubMed

    Haruta, Mitsutaka; Yoshida, Kaname; Kurata, Hiroki; Isoda, Seiji

    2008-05-01

    Annular dark-field (ADF) scanning transmission electron microscopy (STEM) measurements are demonstrated for the first time to be applicable for acquiring Z-contrast images of organic molecules at atomic resolution. High-angle ADF imaging by STEM is a new technique that provides incoherent high-resolution Z-contrast images for organic molecules. In the present study, low-angle ADF-STEM is successfully employed to image the molecular crystal structure of hexadecachloro-Cu-phthalocyanine (Cl16-CuPc), an organic molecule. The structures of CuPc derivatives (polyhalogenated CuPc with Br and Cl) are determined quantitatively using the same technique to determine the occupancy of halogens at each chemical site. By comparing the image contrasts of atomic columns, the occupancy of Br is found to be ca. 56% at the inner position, slightly higher than that for random substitution and in good agreement with previous TEM results.

  20. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.

    PubMed

    Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko

    2013-02-19

    Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.

  1. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    NASA Astrophysics Data System (ADS)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  2. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish.

    PubMed

    Tong, JinGou; Sun, XiaoWen

    2015-02-01

    The traits of cultured fish must continually be genetically improved to supply high-quality animal protein for human consumption. Economically important fish traits are controlled by multiple gene quantitative trait loci (QTL), most of which have minor effects, but a few genes may have major effects useful for molecular breeding. In this review, we chose relevant studies on some of the most intensively cultured fish and concisely summarize progress on identifying and verifying QTLs for such traits as growth, disease and stress resistance and sex in recent decades. The potential applications of these major-effect genes and their associated markers in marker-assisted selection and molecular breeding, as well as future research directions are also discussed. These genetic and genomic analyses will be valuable for elucidating the mechanisms modulating economically important traits and to establish more effective molecular breeding techniques in fish.

  3. Recent Advances in Analytical Pyrolysis to Investigate Organic Materials in Heritage Science.

    PubMed

    Degano, Ilaria; Modugno, Francesca; Bonaduce, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2018-06-18

    The molecular characterization of organic materials in samples from artworks and historical objects traditionally entailed qualitative and quantitative analyses by HPLC and GC. Today innovative approaches based on analytical pyrolysis enable samples to be analysed without any chemical pre-treatment. Pyrolysis, which is often considered as a screening technique, shows previously unexplored potential thanks to recent instrumental developments. Organic materials that are macromolecular in nature, or undergo polymerization upon curing and ageing can now be better investigated. Most constituents of paint layers and archaeological organic substances contain major insoluble and chemically non-hydrolysable fractions that are inaccessible to GC or HPLC. To date, molecular scientific investigations of the organic constituents of artworks and historical objects have mostly focused on the minor constituents of the sample. This review presents recent advances in the qualitative and semi-quantitative analyses of organic materials in heritage objects based on analytical pyrolysis coupled with mass spectrometry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives

    DOE PAGES

    Jagiello, Karolina; Grzonkowska, Monika; Swirog, Marta; ...

    2016-08-29

    In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure–Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure–Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide themore » recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.« less

  5. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagiello, Karolina; Grzonkowska, Monika; Swirog, Marta

    In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure–Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure–Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide themore » recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.« less

  6. The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma.

    PubMed

    Knecht, Hans; Mai, Sabine

    2017-01-01

    The 3D nuclear architecture is closely related to cellular functions and chromosomes are organized in distinct territories. Quantitative 3D telomere FISH analysis (3D Q-FISH) and 3D super-resolution imaging (3D-SIM) at a resolution up to 80 nm as well as the recently developed combined quantitative 3D TRF2-telomere immune FISH technique (3D TRF2/Telo-Q-FISH) have substantially contributed to elucidate molecular pathogenic mechanisms of hematological diseases. Here we report the methods we applied to uncover major molecular steps involved in the pathogenesis of EBV-associated Hodgkin's lymphoma. These methods allowed us to identify the EBV-encoded oncoprotein LMP1 as a key element in the formation of Hodgkin (H-cell) and multinucleated Reed-Sternberg cells (RS-cell), the diagnostic tumor cell of classical Hodgkin's lymphoma (cHL). LMP1 mediates multinuclearity through downregulation of shelterin proteins, in particular telomere repeat binding factor 2 (TRF2).

  7. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles.

    PubMed

    Toropova, Alla P; Toropov, Andrey A; Benfenati, Emilio; Puzyn, Tomasz; Leszczynska, Danuta; Leszczynski, Jerzy

    2014-10-01

    The development of quantitative structure-activity relationships for nanomaterials needs representation of molecular structure of extremely complex molecular systems. Obviously, various characteristics of nanomaterial could impact associated biochemical endpoints. Following features of TiO2 and ZnO nanoparticles (n=42) are considered here: (i) engineered size (nm); (ii) size in water suspension (nm); (iii) size in phosphate buffered saline (PBS, nm); (iv) concentration (mg/L); and (v) zeta potential (mV). The damage to cellular membranes (units/L) is selected as an endpoint. Quantitative features-activity relationships (QFARs) are calculated by the Monte Carlo technique for three distributions of data representing values associated with membrane damage into the training and validation sets. The obtained models are characterized by the following average statistics: 0.78

  8. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    PubMed

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  9. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    PubMed

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds.

    PubMed

    Si, Hongzong; Lian, Ning; Yuan, Shuping; Fu, Aiping; Duan, Yun-Bo; Zhang, Kejun; Yao, Xiaojun

    2009-10-01

    Gene expression programming (GEP) is a novel machine learning technique. The GEP is used to build nonlinear quantitative structure-activity relationship model for the prediction of the IC(50) for the imidazopyridine anticoccidial compounds. This model is based on descriptors which are calculated from the molecular structure. Four descriptors are selected from the descriptors' pool by heuristic method (HM) to build multivariable linear model. The GEP method produced a nonlinear quantitative model with a correlation coefficient and a mean error of 0.96 and 0.24 for the training set, 0.91 and 0.52 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones.

  11. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  12. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations.

    PubMed

    Ashkani, S; Rafii, M Y; Shabanimofrad, M; Ghasemzadeh, A; Ravanfar, S A; Latif, M A

    2016-01-01

    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.

  13. Electron molecular ion recombination: product excitation and fragmentation.

    PubMed

    Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M

    2006-01-01

    Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.

  14. Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp.

    PubMed

    Criado-Fornelio, A; Buling, A; Cunha-Filho, N A; Ruas, J L; Farias, N A R; Rey-Valeiron, C; Pingret, J L; Etievant, M; Barba-Carretero, J C

    2007-12-25

    With the aim to improve current molecular diagnostic techniques of Hepatozoon sp. in carnivore mammals, we developed a quantitative PCR (qPCR) assay with SYBR Green I((R)). The method, consisting of amplification of a 235bp fragment of the 18S rRNA gene, is able to detect at least 0.1fg of parasite DNA. Reproducible quantitative results were obtained over a range of 0.1ng-0.1fg of Hepatozoon sp. DNA. To assess the performance of the qPCR assay, DNA samples from dogs (140) and cats (50) were tested with either standard PCR or qPCR. Positive samples were always confirmed by partial sequencing of the 18S rRNA gene. Quantitative PCR was 15.8% more sensitive than standard PCR to detect H. canis in dogs. In cats, no infections were detected by standard PCR, compared to two positives by qPCR (which were infected by H. canis as shown by sequencing).

  15. Mesures spectroscopiques de constituants et de polluants atmosphériques par techniques in situ et à distance, au sol ou embarquéesSpectroscopic measurements of atmospheric constituents and pollutants by in situ and remote techniques from the ground and in flight

    NASA Astrophysics Data System (ADS)

    Camy-Peyret, Claude; Payan, Sébastien; Jeseck, Pascal; Té, Yao

    2001-09-01

    Infrared spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation bands in the mid- or near-infrared. Different methods based on quantitative spectroscopy permit tropospheric or stratospheric measurements: in situ long path absorption, atmospheric absorption/emission by Fourier transform spectroscopy with high spectral resolution instruments on the ground, airborne, balloon-borne or satellite-borne.

  16. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  17. Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples

    PubMed Central

    Hoogewerf, Martine; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2016-01-01

    Molecular detection methods, such as quantitative PCR (qPCR), have found their way into clinical microbiology laboratories for the detection of an array of pathogens. Most routinely used methods, however, are directed at specific species. Thus, anything that is not explicitly searched for will be missed. This greatly limits the flexibility and universal application of these techniques. We investigated the application of a rapid universal bacterial molecular identification method, IS-pro, to routine patient samples received in a clinical microbiology laboratory. IS-pro is a eubacterial technique based on the detection and categorization of 16S-23S rRNA gene interspace regions with lengths that are specific for each microbial species. As this is an open technique, clinicians do not need to decide in advance what to look for. We compared routine culture to IS-pro using 66 samples sent in for routine bacterial diagnostic testing. The samples were obtained from patients with infections in normally sterile sites (without a resident microbiota). The results were identical in 20 (30%) samples, IS-pro detected more bacterial species than culture in 31 (47%) samples, and five of the 10 culture-negative samples were positive with IS-pro. The case histories of the five patients from whom these culture-negative/IS-pro-positive samples were obtained suggest that the IS-pro findings are highly clinically relevant. Our findings indicate that an open molecular approach, such as IS-pro, may have a high added value for clinical practice. PMID:26763956

  18. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP)

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Zhang, Jianbin; He, Yingke; Lee, Yew Mun; Chen, Songbi; Lim, Teck Kwang; Ng, Shukie; Shen, Han-Ming; Lin, Qingsong

    2015-01-01

    Target-identification and understanding of mechanism-of-action (MOA) are challenging for development of small-molecule probes and their application in biology and drug discovery. For example, although aspirin has been widely used for more than 100 years, its molecular targets have not been fully characterized. To cope with this challenge, we developed a novel technique called quantitative acid-cleavable activity-based protein profiling (QA-ABPP) with combination of the following two parts: (i) activity-based protein profiling (ABPP) and iTRAQ™ quantitative proteomics for identification of target proteins and (ii) acid-cleavable linker-based ABPP for identification of peptides with specific binding sites. It is known that reaction of aspirin with its target proteins leads to acetylation. We thus applied the above technique using aspirin-based probes in human cancer HCT116 cells. We identified 1110 target proteins and 2775 peptides with exact acetylation sites. By correlating these two sets of data, 523 proteins were identified as targets of aspirin. We used various biological assays to validate the effects of aspirin on inhibition of protein synthesis and induction of autophagy which were elicited from the pathway analysis of Aspirin target profile. This technique is widely applicable for target identification in the field of drug discovery and biology, especially for the covalent drugs. PMID:25600173

  19. Applications of molecular physics 'biotechnology' to the rational design of an improved phenytoin analogue.

    PubMed

    Weaver, D F

    1992-12-01

    This study exploits molecular physics, in conjunction with a large scale computing environment, as a tool for understanding the clinical phenomenology of phenytoin (PHT) toxicology at a molecular level and for employing this understanding in an attempt to design improved drugs. The application of molecular physics techniques, such as quantum mechanics and molecular force field calculations, to the process of rational anticonvulsant drug design remains virtually unexplored. A 3-step strategy for applying these techniques to the design of an improved PHT molecule is presented. Step 1 employs quantitative structure-activity relationship calculations on 80 PHT analogues to ascertain the portion of the PHT molecule necessary for bioactivity (i.e. the 'bioactive face' of PHT); the N3-C4(O)-C5-R fragment of PHT was identified as the bioactive face. Step 2 employs molecular modelling studies to determine the portion of the PHT molecule necessary for the teratogenic, mutagenic and connective tissue toxicities of PHT (i.e. the 'biotoxic face'); the C2(O)-N3 fragment of PHT was identified as the biotoxic face. Step 3 experiments design an 'improved' PHT analogue, which maintains the bioactive face while eliminating the integrity of the biotoxic face; 2-deoxy-5,5-diphenylhydantoin was designed and synthesized as the improved PHT analogue. This compound had biological activity equivalent to PHT, but was unable to bind to nucleic acids or to chelate metals involved in connective tissue metabolism.

  20. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particlemore » tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)« less

  1. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  2. Surface areas of fractally rough particles studied by scattering

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven

    1989-05-01

    The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.

  3. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  4. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen; So, Peter T. C.; Yu, Hanry

    2014-07-01

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  5. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg; Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007; Yan, Jie

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlativemore » with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.« less

  6. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells

    PubMed Central

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484

  7. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics

    NASA Astrophysics Data System (ADS)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2015-03-01

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  8. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics.

    PubMed

    Mansbach, Rachael A; Ferguson, Andrew L

    2015-03-14

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  9. Simulation of FRET dyes allows quantitative comparison against experimental data

    NASA Astrophysics Data System (ADS)

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  10. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  11. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography.

    PubMed

    Kamei, Noriyasu; Morishita, Mariko; Kanayama, Yousuke; Hasegawa, Koki; Nishimura, Mie; Hayashinaka, Emi; Wada, Yasuhiro; Watanabe, Yasuyoshi; Takayama, Kozo

    2010-08-17

    Molecular imaging technique by use of positron emission tomography (PET) is a noninvasive tool that allows one to quantitatively analyze the function of endogenous molecules and the pharmacokinetics of therapeutic agents in vivo. This technique is expected to be useful for evaluating the effectiveness of diverse drug delivery systems. We demonstrated previously that intestinal insulin absorption is increased significantly by coadministration of cell-penetrating peptides (CPPs), which are taken up effectively by several cells. However, the distribution behavior of insulin whose absorption is increased by CPPs is not clear. We used PET imaging and quantitatively analyzed the intestinal absorption and subsequent distribution of insulin and the effect of CPPs on its absorption and distribution. An unlabeled insulin solution containing tracer insulin, (68)Ga-DOTA-insulin, was administered with or without CPPs into a rat ileal closed loop. PET imaging showed that the CPPs, particularly D-R8 and L-penetratin, significantly increased the (68)Ga-DOTA-insulin level in the liver, kidney, and circulation. After absorption from the intestine, the (68)Ga-DOTA-insulin passed rapidly through the liver and accumulated in the kidney. The increase in the hepatic and renal distribution of (68)Ga-DOTA-insulin by each CPP coadministration was similar manner as that in intestinal absorption, suggesting that the increased accumulation of insulin in the liver and kidney induced by coadministration of CPPs was associated with the increased intestinal absorption of insulin. This is the first study to show that PET imaging enables one to quantitatively analyze the distribution behavior of intestinally absorbed insulin in several organs. This imaging methodology is likely to be useful for developing effective drug delivery systems targeted to specific organs. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Development of a calibration protocol for quantitative imaging for molecular radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Wevrett, J.; Fenwick, A.; Scuffham, J.; Nisbet, A.

    2017-11-01

    Within the field of molecular radiotherapy, there is a significant need for standardisation in dosimetry, in both quantitative imaging and dosimetry calculations. Currently, there are a wide range of techniques used by different clinical centres and as a result there is no means to compare patient doses between centres. To help address this need, a 3 year project was funded by the European Metrology Research Programme, and a number of clinical centres were involved in the project. One of the required outcomes of the project was to develop a calibration protocol for three dimensional quantitative imaging of volumes of interest. Two radionuclides were selected as being of particular interest: iodine-131 (131I, used to treat thyroid disorders) and lutetium-177 (177Lu, used to treat neuroendocrine tumours). A small volume of activity within a scatter medium (water), representing a lesion within a patient body, was chosen as the calibration method. To ensure ease of use in clinical centres, an "off-the-shelf" solution was proposed - to avoid the need for in-house manufacturing. The BIODEX elliptical Jaszczak phantom and 16 ml fillable sphere were selected. The protocol was developed for use on SPECT/CT gamma cameras only, where the CT dataset would be used to correct the imaging data for attenuation of the emitted photons within the phantom. The protocol corrects for scatter of emitted photons using the triple energy window correction technique utilised by most clinical systems. A number of clinical systems were tested in the development of this protocol, covering the major manufacturers of gamma camera generally used in Europe. Initial imaging was performed with 131I and 177Lu at a number of clinical centres, but due to time constraints in the project, some acquisitions were performed with 177Lu only. The protocol is relatively simplistic, and does not account for the effects of dead-time in high activity patients, the presence of background activity surrounding volumes of interest or the partial volume effect of imaging lesions smaller than 16 ml. The development of this simple protocol demonstrates that it is possible to produce a standardised quantitative imaging protocol for molecular radiotherapy dosimetry. However, the protocol needs further development to expand it to incorporate other radionuclides, and to account for the effects that have been disregarded in this initial version.

  13. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  14. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    PubMed

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    PubMed Central

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  16. Liquid-State NMR Analysis of Nanocelluloses.

    PubMed

    King, Alistair W T; Mäkelä, Valtteri; Kedzior, Stephanie A; Laaksonen, Tiina; Partl, Gabriel J; Heikkinen, Sami; Koskela, Harri; Heikkinen, Harri A; Holding, Ashley J; Cranston, Emily D; Kilpeläinen, Ilkka

    2018-04-11

    Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1 H and 13 C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P 4444 ][OAc]):DMSO- d 6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P 4444 ][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1 H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13 C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.

  17. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics.

    PubMed

    Cecchini, Tiphaine; Yoon, Eun-Jeong; Charretier, Yannick; Bardet, Chloé; Beaulieu, Corinne; Lacoux, Xavier; Docquier, Jean-Denis; Lemoine, Jerome; Courvalin, Patrice; Grillot-Courvalin, Catherine; Charrier, Jean-Philippe

    2018-03-01

    Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases ( i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases ( i.e. ADC and OXA-51-like) and six components of the two major efflux systems ( i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Monitoring the Transcriptional Activity of Human Endogenous Retroviral HERV-W Family Using PNA Strand Invasion into Double-Stranded DNA.

    PubMed

    Machnik, Grzegorz; Skudrzyk, Estera; Bułdak, Łukasz; Ruczyński, Jarosław; Kozłowska, Agnieszka; Mucha, Piotr; Rekowski, Piotr; Szkróbka, Witold; Basiak, Marcin; Bołdys, Aleksandra; Sławska, Helena; Okopień, Bogusław

    2018-02-01

    In the presented assay, we elaborated a method for distinguishing sequences that are genetically closely related to each other. This is particularly important in a situation where a fine balance of the allele abundance is a point of research interest. We developed a peptide nucleic acid (PNA) strand invasion technique for the differentiation between multiple sclerosis-associated retrovirus (MSRV) and ERVWE1 sequences, both molecularly similar, belonging to the human endogenous retrovirus HERV-W family. We have found that this method may support the PCR technique in screening for minor alleles which, in certain conditions, may be undetected by the standard PCR technique. We performed the analysis of different ERVWE1 and MSRV template mixtures ranging from 0 to 100% of ERVWE1 in the studied samples, finding the linear correlation between template composition and signal intensity of final reaction products. Using the PNA strand invasion assay, we were able to estimate the relative ERVWE1 expression level in human specimens such as U-87 MG, normal human astrocytes cell lines and placental tissue. The results remained in concordance with those obtained by semi-quantitative or quantitative PCR.

  19. The persistence of bifidobacteria populations in a river measured by molecular and culture techniques.

    PubMed

    Bonjoch, X; Lucena, F; Blanch, A R

    2009-10-01

    To determine relative to faecal coliforms (FC) and sulfite-reducing clostridia (SRC), the environmental persistence of natural populations of Bifidobacterium spp. enumerated by culturing and quantitative polymerase chain reaction (q-PCR). Dialysis tubing containing river supplemented with overnight cultures of Bifidobacterium adolescentis (BA) and Bifidobacterium dentium (BD) or urban wastewater were suspended in a river for up to 10 days. At intervals, the contents of each dialysis tube were assayed using q-PCR assays for BA and BD, and selective culture media for FC, SRC, total bifidobacteria (TB), sorbitol-fermenting bifidobacteria (SFB) and cultivable BA. Mean summer T(90) values were 251 h for SRC, 92 h for FC, 48 h for BA and BD by q-PCR, and 9 h for TB. Bifidobacterium spp. was the population with the lowest persistence, showing seasonal differences in T(90) when measured by culture techniques or by q-PCR. This difference in relative persistence is because of a longer persistence of molecular targets than cultivable cells. The persistence of a viable bifidobacteria cells is shorter, but the longest persistence of molecular targets. This factor could be used for origin the faecal pollution in water for the development of microbial source tracking (MST).

  20. High-Throughput Assessment of Cellular Mechanical Properties.

    PubMed

    Darling, Eric M; Di Carlo, Dino

    2015-01-01

    Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.

  1. Applications of LC-MS in PET Radioligand Development and Metabolic Elucidation

    PubMed Central

    Ma, Ying; Kiesewetter, Dale O.; Lang, Lixin; Gu, Dongyu; Chen, Xiaoyuan

    2013-01-01

    Positron emission tomography (PET) is a very sensitive molecular imaging technique that when employed with an appropriate radioligand has the ability to quantititate physiological processes in a non-invasive manner. Since the imaging technique detects all radioactive emissions in the field of view, the presence and biological activity of radiolabeled metabolites must be determined for each radioligand in order to validate the utility of the radiotracer for measuring the desired physiological process. Thus, the identification of metabolic profiles of radiolabeled compounds is an important aspect of design, development, and validation of new radiopharmaceuticals and their applications in drug development and molecular imaging. Metabolite identification for different chemical classes of radiopharmaceuticals allows rational design to minimize the formation and accumulation of metabolites in the target tissue, either through enhanced excretion or minimized metabolism. This review will discuss methods for identifying and quantitating metabolites during the pre-clinical development of radiopharmaceuticals with special emphasis on the application of LC/MS. PMID:20540692

  2. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  3. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  4. Selection of molecular descriptors with artificial intelligence for the understanding of HIV-1 protease peptidomimetic inhibitors-activity.

    PubMed

    Sirois, S; Tsoukas, C M; Chou, Kuo-Chen; Wei, Dongqing; Boucher, C; Hatzakis, G E

    2005-03-01

    Quantitative Structure Activity Relationship (QSAR) techniques are used routinely by computational chemists in drug discovery and development to analyze datasets of compounds. Quantitative numerical methods like Partial Least Squares (PLS) and Artificial Neural Networks (ANN) have been used on QSAR to establish correlations between molecular properties and bioactivity. However, ANN may be advantageous over PLS because it considers the interrelations of the modeled variables. This study focused on the HIV-1 Protease (HIV-1 Pr) inhibitors belonging to the peptidomimetic class of compounds. The main objective was to select molecular descriptors with the best predictive value for antiviral potency (Ki). PLS and ANN were used to predict Ki activity of HIV-1 Pr inhibitors and the results were compared. To address the issue of dimensionality reduction, Genetic Algorithms (GA) were used for variable selection and their performance was compared against that of ANN. Finally, the structure of the optimum ANN achieving the highest Pearson's-R coefficient was determined. On the basis of Pearson's-R, PLS and ANN were compared to determine which exhibits maximum performance. Training and validation of models was performed on 15 random split sets of the master dataset consisted of 231 compounds. For each compound 192 molecular descriptors were considered. The molecular structure and constant of inhibition (Ki) were selected from the NIAID database. Study findings suggested that non-covalent interactions such as hydrophobicity, shape and hydrogen bonding describe well the antiviral activity of the HIV-1 Pr compounds. The significance of lipophilicity and relationship to HIV-1 associated hyperlipidemia and lipodystrophy syndrome warrant further investigation.

  5. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  6. Analysis of low molecular weight compounds by MALDI-FTICR-MS.

    PubMed

    Wang, Hao-Yang; Chu, Xu; Zhao, Zhi-Xiong; He, Xiao-Shuang; Guo, Yin-Long

    2011-05-15

    This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing

    2017-12-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.

  8. Atomistic modeling and HAADF investigations of misfit and threading dislocations in GaSb/GaAs hetero-structures for applications in high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruterana, Pierre, E-mail: pierre.ruterana@ensicaen.fr; Wang, Yi, E-mail: pierre.ruterana@ensicaen.fr; Chen, Jun, E-mail: pierre.ruterana@ensicaen.fr

    A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.

  9. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques

    DTIC Science & Technology

    2008-07-01

    PubMed) 2. Berlier J.E., Rothe A., Buller G., Bradford J., Gray D.R., Filanoski B.J., Telford W.G., Yue S., Liu J., Cheung C.Y., et al. Quantitative...3 3 cm3 voxel within the gray matter of the occipitoparietal lobe was established using anatomic landmarks. Pulse Sequences All experiments were...software (SAS Institute, Cary, NC, USA). RESULTS Figure 1 shows a PRESS spectrum recorded from the occipitoparietal gray matter region of a 25-year-old sub

  10. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles

    PubMed Central

    Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.

    2015-01-01

    The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788

  11. Quantitative kinetic theory of active matter

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas; Chou, Yen-Liang

    2014-03-01

    Models of self-driven agents similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226] are studied by means of kinetic theory. In these models, particles try to align their travel directions with the average direction of their neighbours. At strong alignment a globally ordered state of collective motion forms. An Enskog-like kinetic theory is derived from the exact Chapman-Kolmogorov equation in phase space using Boltzmann's mean-field approximation of molecular chaos. The kinetic equation is solved numerically by a nonlocal Lattice-Boltzmann-like algorithm. Steep soliton-like waves are observed that lead to an abrupt jump of the global order parameter if the noise level is changed. The shape of the wave is shown to follow a novel scaling law and to quantitatively agree within 3 % with agent-based simulations at large particle speeds. This provides a mean-field mechanism to change the second-order character of the flocking transition to first order. Diagrammatic techniques are used to investigate small particle speeds, where the mean-field assumption of Molecular Chaos is invalid and where correlation effects need to be included.

  12. Quantitative analysis of weak interactions by Lattice energy calculation, Hirshfeld surface and DFT studies of sulfamonomethoxine

    NASA Astrophysics Data System (ADS)

    Patel, Kinjal D.; Patel, Urmila H.

    2017-01-01

    Sulfamonomethoxine, 4-Amino-N-(6-methoxy-4-pyrimidinyl) benzenesulfonamide (C11H12N4O3S), is investigated by single crystal X-ray diffraction technique. Pair of N-H⋯N and C-H⋯O intermolecular interactions along with π···π interaction are responsible for the stability of the molecular packing of the structure. In order to understand the nature of the interactions and their quantitative contributions towards the crystal packing, the 3D Hirshfeld surface and 2D fingerprint plot analysis are carried out. PIXEL calculations are performed to determine the lattice energies correspond to intermolecular interactions in the crystal structure. Ab initio quantum chemical calculations of sulfamonomethoxine (SMM) have been performed by B3LYP method, using 6-31G** basis set with the help of Schrodinger software. The computed geometrical parameters are in good agreement with the experimental data. The Mulliken charge distribution, calculated using B3LYP method to confirm the presence of electron acceptor and electron donor atoms, responsible for intermolecular hydrogen bond interactions hence the molecular stability.

  13. Quantitation of heat-shock proteins in clinical samples using mass spectrometry.

    PubMed

    Kaur, Punit; Asea, Alexzander

    2011-01-01

    Mass spectrometry (MS) is a powerful analytical tool for proteomics research and drug and biomarker discovery. MS enables identification and quantification of known and unknown compounds by revealing their structural and chemical properties. Proper sample preparation for MS-based analysis is a critical step in the proteomics workflow because the quality and reproducibility of sample extraction and preparation for downstream analysis significantly impact the separation and identification capabilities of mass spectrometers. The highly expressed proteins represent potential biomarkers that could aid in diagnosis, therapy, or drug development. Because the proteome is so complex, there is no one standard method for preparing protein samples for MS analysis. Protocols differ depending on the type of sample, source, experiment, and method of analysis. Molecular chaperones play significant roles in almost all biological functions due to their capacity for detecting intracellular denatured/unfolded proteins, initiating refolding or denaturation of such malfolded protein sequences and more recently for their role in the extracellular milieu as chaperokines. In this chapter, we describe the latest techniques for quantitating the expression of molecular chaperones in human clinical samples.

  14. Engineering of Multifunctional Nanomaterials for Cancer Theranostics

    NASA Astrophysics Data System (ADS)

    Goel, Shreya

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. Silica, "generally recognized as safe" (GRAS) by the Food and Drug Administration (FDA) of the United States, has emerged as one of the leading nanomaterials employed for molecular imaging and therapy of a wide variety of diseases, including cancer. However in vivo biodistribution and active targeting of silica-based nanomaterials has remained a relatively under explored area, based mainly on semi-quantitative techniques such as fluorescence imaging. In this dissertation, I explore the concept of radiolabeled silica nanoparticles for vasculature-targeted imaging of different tumor types. Both chelator-based and chelator-free radiolabeling techniques were employed for accurate and quantitative analysis of the in vivo pharmacokinetics of radiolabeled silica nanomaterials. (Chapters 2 and 3) The large surface area, ease of tunability and facile silica chemistry were employed to create multifunctional silica-based materials to simultaneously seek-and-treat cancers, by incorporating multiple components into a single nanoplatform. Photodynamic agent, porphyrin was loaded into the central cavity of hollow mesoporous silica nanoparticles, and the shell was decorated with photothermal nanoparticles, CuS, yielding a multimodal theranostic nanoplatform which could synergistically annihilate the tumor without relapse. (Chapter 4). A major hurdle in the successful clinical translation of nanomaterials is their rapid sequestration by the organs of the reticuloendothelial system (RES), mainly liver and spleen, and prolonged retention in the body, raising long-term toxicity concerns. To combat this issue, two approaches were employed; (i) Synthesis of biodegradable mesoporous silica nanoparticles (Chapter 5), and (ii) development of ultrasmall nanoparticles including renal clearable Au nanoparticles and hepatically cleared ultrasmall mesoporous silica nanoparticles (Chapter 6); for prolonged blood circulation, enhanced tumor uptake and rapid clearance from the body, enabling unprecedented tumor-to-normal tissue contrast. Overall, the reported studies explore the synergism of molecular imaging and therapy, and nanotechnology. While the application of nanomaterials in the former imparts multifunctionality to the molecular agent, allowing multimodal imaging and synergistic therapeutic regimes to be carried out simultaneously; molecular imaging techniques such as PET, allow accurate measurement of the in vivo pharmacokinetics of the nanomaterials, playing a major role towards their successful clinical translation. Further work will be required to better understand the in vivo biodistribution of both biodegradable and ultrasmall nanomaterials, and further employ them for early and specific detection of cancer, effective treatment and monitoring.

  15. Novel CE-MS technique for detection of high explosives using perfluorooctanoic acid as a MEKC and mass spectrometric complexation reagent.

    PubMed

    Brensinger, Karen; Rollman, Christopher; Copper, Christine; Genzman, Ashton; Rine, Jacqueline; Lurie, Ira; Moini, Mehdi

    2016-01-01

    To address the need for the forensic analysis of high explosives, a novel capillary electrophoresis mass spectrometry (CE-MS) technique has been developed for high resolution, sensitivity, and mass accuracy detection of these compounds. The technique uses perfluorooctanoic acid (PFOA) as both a micellar electrokinetic chromatography (MEKC) reagent for separation of neutral explosives and as the complexation reagent for mass spectrometric detection of PFOA-explosive complexes in the negative ion mode. High explosives that formed complexes with PFOA included RDX, HMX, tetryl, and PETN. Some nitroaromatics were detected as molecular ions. Detection limits in the high parts per billion range and linear calibration responses over two orders of magnitude were obtained. For proof of concept, the technique was applied to the quantitative analysis of high explosives in sand samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Flow diagnostics in unseeded air

    NASA Technical Reports Server (NTRS)

    Miles, R.; Lempert, W.

    1990-01-01

    Several approaches are presented for the quantitative measurement of flowfield parameters in high-speed flows. The techniques are developed for the study of air flows in the Mach 2 to Mach 3 regime and can be extended to the hypersonic and subsonic regimes in a straightforward manner. Instantaneous two-dimensional cross-sectional images of the density using UV Rayleigh scattering and the measurement of velocity profiles using the RELIEF technique are shown. The RELIEF technique employs two high-powered lasers separated in frequency by the vibrational frequency of oxygen molecules to write lines across the flowfield by stimulated Raman scattering. The preliminary results indicate that the UV Rayleigh scattering may also be extended to the measurement of velocity and temperature fields by using an atomic or molecular absorption filter window, and that the RELIEF technique can be extended to marking shaped volumetric points or arrays of points in the flowfield for velocity and vorticity measurements.

  17. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    PubMed Central

    Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu

    2017-01-01

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088

  18. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    DOE PAGES

    Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less

  19. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less

  20. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

    PubMed

    Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.

  1. Consolidation of molecular testing in clinical virology.

    PubMed

    Scagnolari, Carolina; Turriziani, Ombretta; Monteleone, Katia; Pierangeli, Alessandra; Antonelli, Guido

    2017-04-01

    The development of quantitative methods for the detection of viral nucleic acids have significantly improved our ability to manage disease progression and to assess the efficacy of antiviral treatment. Moreover, major advances in molecular technologies during the last decade have allowed the identification of new host genetic markers associated with antiviral drug response but have also strongly revolutionized the way we see and perform virus diagnostics in the coming years. Areas covered: In this review, we describe the history and development of virology diagnostic methods, dedicating particular emphasis on the gradual evolution and recent advances toward the introduction of multiparametric platforms for the syndromic diagnosis. In parallel, we outline the consolidation of viral genome quantification practice in different clinical settings. Expert commentary: More rapid, accurate and affordable molecular technology can be predictable with particular emphasis on emerging techniques (next generation sequencing, digital PCR, point of care testing and syndromic diagnosis) to simplify viral diagnosis in the next future.

  2. Heuristic lipophilicity potential for computer-aided rational drug design

    NASA Astrophysics Data System (ADS)

    Du, Qishi; Arteca, Gustavo A.; Mezey, Paul G.

    1997-09-01

    In this contribution we suggest a heuristic molecular lipophilicitypotential (HMLP), which is a structure-based technique requiring noempirical indices of atomic lipophilicity. The input data used in thisapproach are molecular geometries and molecular surfaces. The HMLP is amodified electrostatic potential, combined with the averaged influences fromthe molecular environment. Quantum mechanics is used to calculate theelectron density function ρ(r) and the electrostatic potential V(r), andfrom this information a lipophilicity potential L(r) is generated. The HMLPis a unified lipophilicity and hydrophilicity potential. The interactions ofdipole and multipole moments, hydrogen bonds, and charged atoms in amolecule are included in the hydrophilic interactions in this model. TheHMLP is used to study hydrogen bonds and water-octanol partitioncoefficients in several examples. The calculated results show that the HMLPgives qualitatively and quantitatively correct, as well as chemicallyreasonable, results in cases where comparisons are available. Thesecomparisons indicate that the HMLP has advantages over the empiricallipophilicity potential in many aspects. The HMLP is a three-dimensional andeasily visualizable representation of molecular lipophilicity, suggested asa potential tool in computer-aided three-dimensional drug design.

  3. The postgenomic era: implications for the clinical laboratory.

    PubMed

    Kiechle, Frederick L; Zhang, Xinbo

    2002-03-01

    To review the advances in clinically useful molecular biological techniques and to identify their applications in clinical practice, as presented at the Tenth Annual William Beaumont Hospital DNA Symposium. The 11 manuscripts submitted were reviewed and their major findings were compared with literature on the same topic. Manuscripts address creative thinking techniques applied to DNA discovery, extraction of DNA from clotted blood, the relationship of mitochondrial dysfunction in neurodegenerative disorders, and molecular methods to identify human lymphocyte antigen class I and class II loci. Two other manuscripts review current issues in molecular microbiology, including detection of hepatitis C virus and biological warfare. The last 5 manuscripts describe current issues in molecular cardiovascular disease, including assessing thrombotic risk, genomic analysis, gene therapy, and a device for aiding in cardiac angiogenesis. Novel problem-solving techniques have been used in the past and will be required in the future in DNA discovery. The extraction of DNA from clotted blood demonstrates a potential cost-effective strategy. Cybrids created from mitochondrial DNA-depleted cells and mitochondrial DNA from a platelet donor have been useful in defining the role mitochondria play in neurodegeneration. Mitochondrial depletion has been reported as a genetically inherited disorder or after human immunodeficiency virus therapy. Hepatitis C viral detection by qualitative, quantitative, or genotyping techniques is useful clinically. Preparedness for potential biological warfare is a responsibility of all clinical laboratorians. Thrombotic risk in cardiovascular disorders may be assessed by coagulation screening assays and further defined by mutation analysis for specific genes for prothrombin and factor V Leiden. Gene therapy for reducing arteriosclerotic risk has been hindered primarily by complications introduced by the vectors used to introduce the therapeutic genes. Neovascularization in cardiac muscle with occluded vessels represents a promising method for recovery of viable tissue following ischemia. The sequence of the human genome was reported by 2 groups in February 2001. The postgenomic era will emphasize the use of microarrays and database software for genomic and proteomic screening in the search for useful clinical assays. The number of molecular pathologic techniques and assays will expand as additional disease-associated mutations are defined. Gene therapy and tissue engineering will represent successful therapeutic adjuncts.

  4. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    PubMed

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65-88%), compared to the sensitivity (91-100%) of the new molecular diagnostic workflow. Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited.

  5. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baoqiang; Berti, Romain; Abran, Maxime

    2014-05-15

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore,more » a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.« less

  6. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  7. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.

  8. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  9. Molecular Imaging: Current Status and Emerging Strategies

    PubMed Central

    Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.

    2011-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650

  10. Quantitative analysis of pork and chicken products by droplet digital PCR.

    PubMed

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.

  11. Quantitative measurement of adhesion of ink on plastic films with a Nano Indenter and a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Shen, Weidian

    2005-03-01

    Plastic film packaging is widely used these days, especially in the convenience food industry due to its flexibility, boilability, and microwavability. Almost every package is printed with ink. The adhesion of ink on plastic films merits increasing attention to ensure quality packaging. However, inks and plastic films are polymeric materials with complicated molecular structures. The thickness of the jelly-like ink is only 500nm or less, and the thickness of the soft and flexible film is no more than 50μm, which make the quantitative measurement of their adhesion very challenging. Up to now, no scientific quantitative measurement method for the adhesion of ink on plastic films has been documented. We have tried a technique, in which a Nano-Indenter and a Scanning Probe Microscope were used to evaluate the adhesion strength of ink deposited on plastic films, quantitatively, as well as examine the configurations of adhesion failure. It was helpful in better understanding the adhesion mechanism, thus giving direction as to how to improve the adhesion.

  12. The molecular dynamics of adsorption and dissociation of O{sub 2} on Pt(553)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobse, Leon, E-mail: l.jacobse@chem.leidenuniv.nl; Dunnen, Angela den; Juurlink, Ludo B. F.

    2015-07-07

    Molecular adsorption and dissociation of O{sub 2} on the stepped Pt(553) surface have been investigated using supersonic molecular beam techniques and temperature programmed desorption. The initial and coverage-dependent sticking probability was determined with the King and Wells technique for various combinations of incident kinetic energy, surface temperature, incident angle, and surface coverage. A comparison with similar data for Pt(533) and Pt(110)(1 × 2) shows quantitatively the same high step-induced sticking at low incident energies compared to Pt(111). The enhancement is therefore insensitive to the exact arrangement of atoms forming surface corrugation. We consider energy transfer and electronic effects to explainmore » the enhanced sticking. On the other hand, dissociation dynamics at higher incident kinetic energies are strongly dependent on step type. The Pt(553) and Pt(533) surfaces are more reactive than Pt(111), but the (100) step shows higher sticking than the (110) step. We relate this difference to a variation in the effective lowering of the barrier to dissociation from molecularly adsorbed states into atomic states. Our findings are in line with results from experimental desorption studies and theoretical studies of atomic binding energies. We discuss the influence of the different step types on sticking and dissociation dynamics with a one-dimensional potential energy surface.« less

  13. Molecular diagnostics for human leptospirosis.

    PubMed

    Waggoner, Jesse J; Pinsky, Benjamin A

    2016-10-01

    The definitive diagnosis of leptospirosis, which results from infection with spirochetes of the genus Leptospira, currently relies on the use of culture, serological testing (microscopic agglutination testing), and molecular detection. The purpose of this review is to describe new molecular diagnostics for Leptospira and discuss advancements in the use of available methods. Efforts have been focused on improving the clinical sensitivity of Leptospira detection using molecular methods. In this review, we describe a reoptimized pathogenic species-specific real-time PCR (targeting lipL32) that has demonstrated improved sensitivity, findings by two groups that real-time reverse-transcription PCR assays targeting the 16S rrs gene can improve detection, and two new loop-mediated amplification techniques. Quantitation of leptospiremia, detection in different specimen types, and the complementary roles played by molecular detection and microscopic agglutination testing will be discussed. Finally, a protocol for Leptospira strain subtyping using variable number tandem repeat targets and high-resolution melting will be described. Molecular diagnostics have an established role for the diagnosis of leptospirosis and provide an actionable diagnosis in the acute setting. The use of real-time reverse-transcription PCR for testing serum/plasma and cerebrospinal fluid, when available, may improve the detection of Leptospira without decreasing clinical specificity.

  14. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    PubMed

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  15. Quantitative fluorescence correlation spectroscopy on DNA in living cells

    NASA Astrophysics Data System (ADS)

    Hodges, Cameron; Kafle, Rudra P.; Meiners, Jens-Christian

    2017-02-01

    FCS is a fluorescence technique conventionally used to study the kinetics of fluorescent molecules in a dilute solution. Being a non-invasive technique, it is now drawing increasing interest for the study of more complex systems like the dynamics of DNA or proteins in living cells. Unlike an ordinary dye solution, the dynamics of macromolecules like proteins or entangled DNA in crowded environments is often slow and subdiffusive in nature. This in turn leads to longer residence times of the attached fluorophores in the excitation volume of the microscope and artifacts from photobleaching abound that can easily obscure the signature of the molecular dynamics of interest and make quantitative analysis challenging.We discuss methods and procedures to make FCS applicable to quantitative studies of the dynamics of DNA in live prokaryotic and eukaryotic cells. The intensity autocorrelation is computed function from weighted arrival times of the photons on the detector that maximizes the information content while simultaneously correcting for the effect of photobleaching to yield an autocorrelation function that reflects only the underlying dynamics of the sample. This autocorrelation function in turn is used to calculate the mean square displacement of the fluorophores attached to DNA. The displacement data is more amenable to further quantitative analysis than the raw correlation functions. By using a suitable integral transform of the mean square displacement, we can then determine the viscoelastic moduli of the DNA in its cellular environment. The entire analysis procedure is extensively calibrated and validated using model systems and computational simulations.

  16. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    NASA Astrophysics Data System (ADS)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  17. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  18. Chemical speciation of individual airborne particles by the combined use of quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    PubMed

    Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un

    2010-10-01

    In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.

  19. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy.

    PubMed

    Wagstaff, Jane L; Taylor, Samantha L; Howard, Mark J

    2013-04-05

    This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and (19)F STD methods that are becoming more amenable due to the latest NMR equipment technologies.

  20. p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Ramsteiner, Manfred; Corfdir, Pierre; Feix, Felix; Geelhaar, Lutz; Riechert, Henning

    2017-03-08

    GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy. Quantitative information about the Mg concentrations was deduced from Raman scattering by local vibrational modes related to Mg. In order to study the type and density of charge carriers present in the NWs, we employed two photoelectrochemical techniques, open-circuit potential and Mott-Schottky measurements. Both methods showed the expected transition from n-type to p-type conductivity with increasing Mg doping level, and the latter characterization technique allowed us to quantify the charge carrier concentration. Beyond the quantitative information obtained for Mg doping of GaN NWs, our systematic and comprehensive investigation demonstrates the benefit of photoelectrochemical methods for the analysis of doping in semiconductor NWs in general.

  1. Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes

    PubMed Central

    Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714

  2. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform.

    PubMed

    Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C

    2013-01-21

    Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.

  3. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems.

    PubMed

    Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman

    2016-10-28

    Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo Typically, the analysis is carried out in vitro, by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  4. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    PubMed Central

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  5. MDR-TB screening in a setting with molecular diagnostic techniques: who got tested, who didn't and why?

    PubMed Central

    Govindarajan, S.; Sharath, B. N.; Tripathy, J. P.; Chinnakali, P.; Kumar, A. M. V.; Muthaiah, M.; Vivekananda, K.; Paulraj, A. K.; Roy, G.

    2015-01-01

    Setting: The Revised National Tuberculosis Control Programme, Puducherry, India, which has facilities for molecular diagnostic technique. Objective: To determine pre-diagnostic and pre-treatment attrition among presumptive multidrug-resistant tuberculosis (MDR-TB) patients and reasons for attrition. Methods: In this mixed-methods study, the quantitative component consisted of retrospective cohort analysis through record review of all presumptive MDR-TB patients recorded between October 2012 and September 2013. The qualitative component included in-depth interviews with key informants involved in programmatic management of drug-resistant tuberculosis services. Results: Of 341 eligible presumptive MDR-TB patients, pre-diagnostic and pre-treatment attrition was respectively 45.5% (155/341) and 29% (2/7). Patients with extra-pulmonary TB (RR = 2.3), those with human immuno-deficiency and TB co-infection (RR = 1.7), those registered during October–December 2012 (RR = 1.3) and those identified from primary/secondary health centres (RR = 1.8) were less likely to be tested. Themes that emerged during the analysis of the qualitative data were ‘lack of a systematic mechanism to track referrals for culture and drug susceptibility testing’, ‘absence of courier service to transport sputum’, ‘lack of knowledge and ownership among staff of general health system’, ‘shortage of diagnostic kits’ and ‘patient non-adherence’. Conclusion: Despite the introduction of molecular diagnostic techniques, operational issues in MDR-TB screening remain a concern and require urgent attention. PMID:26400385

  6. Multi-scale modeling in cell biology

    PubMed Central

    Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick

    2009-01-01

    Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808

  7. EFSUMB guidelines 2011: comment on emergent indications and visions.

    PubMed

    Dietrich, C F; Cui, X W; Barreiros, A P; Hocke, M; Ignee, A

    2012-07-01

    The focus of this article is the emergent and potential indications of contrast-enhanced ultrasound (CEUS). Emergent applications of CEUS techniques include extravascular and intracavitary contrast-enhanced ultrasound, quantitative assessment of microvascular circulation for tumor response assessment, and tumor characterization using dynamic contrast-enhanced ultrasound (DCE-US). Potential indications for microbubble agents include novel molecular imaging and drug and gene delivery techniques, which have been successfully tested in animal models. "Comments and Illustrations of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Non-Liver Guidelines 2011" which focus more on established applications are published in the same supplement to Ultraschall in der Medizin (European Journal of Ultrasound). © Georg Thieme Verlag KG Stuttgart · New York.

  8. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  9. Shear thinning of the Lennard-Jones fluid by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1985-11-01

    Extensive Molecular Dynamics, MD, calculations of the Lennard-Jones, LJ, rheological equation of state have been made. Non-equilibrium MD permits evaluation of shear thinning of the dense LJ liquid which adheres in behaviour quite closely with that of more complex “real molecules”. However, quantitative correspondence with simple analytic formulae for non-Newtonian behaviour used in the treatment of experimental data is hindered by poor prediction of certain key parameters. For example, at low shear rates, the equilibrium Newtonian viscosity and, at high shear rates, a limiting shear stress are often required. Both are difficult to obtain by simulation in the portion of the LJ phase diagram which exhibits significant shear thinning and using present techniques. Suggestions for improving the Eyring model for shear thinning are made.

  10. Modeling crystal growth from solution with molecular dynamics simulations: approaches to transition rate constants.

    PubMed

    Reilly, Anthony M; Briesen, Heiko

    2012-01-21

    The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics

  11. Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.

    PubMed

    Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław

    2017-11-01

    Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).

  12. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    PubMed

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.

    PubMed

    Kennard, Raymond; DeSisto, William J; Giririjan, Thanu Praba; Mason, Michael D

    2008-04-07

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5 nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50 degrees C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.

  14. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Giririjan, Thanu Praba; Mason, Michael D.

    2008-04-01

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1,1-dioctadecyl-3,3,3,3-tetramethylindo-carbocyanine perchlorate, used to interrogate the available free volume in their vicinity, were loaded into the mesoporous silica membranes at subnanomolar concentrations. The mesoporous silica films were prepared using a nonionic ethylene oxide-propylene oxide-ethylene oxide triblock copolymer surfactant, Pluronic P123, on single crystal silicon substrates using dip coating of a silica sol. Membranes were prepared resulting in an average pore diameter of approximately 5nm as measured by helium, nitrogen permeance, and porosimetry. Fluorescent images and time transient experiments were recorded using a custom built single-molecule scanning confocal microscope at differing temperatures (10, 20, 30, 40, and 50°C). Time-dependent polarization anisotropy was used to obtain the enthalpy of adsorption and Henry's law constant of the probe molecule.

  15. Quantitative functional characterization of conserved molecular interactions in the active site of mannitol 2-dehydrogenase

    PubMed Central

    Lucas, James E; Siegel, Justin B

    2015-01-01

    Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240

  16. Magic Angle Spinning NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi Hu, Jian

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  17. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    PubMed Central

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  18. Remote measurements of the atmosphere using Raman scattering.

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.

    1972-01-01

    Raman optical radar measurements of the atmosphere demonstrate that the technique may be used to obtain quantitative measurements of the spatial distribution of individual atmospheric molecular trace constituents (in particular water vapor) and of the major constituents. It is shown that monitoring Raman signals from atmospheric nitrogen aids in interpreting elastic scattering measurements by eliminating attenuation effects. In general, the experimental results show good agreement with independent meteorological measurements. Finally, experimental data are utilized to estimate the Raman backscatter cross section for water vapor excited at 3471.5 A.

  19. Use of Laboratory Data to Model Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.

    2006-01-01

    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.

  20. Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine.

    PubMed

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-12-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnologybased materials and living cells in both in vitro and in vivo settings.

  1. Veterinary extension on sampling techniques related to heartwater research.

    PubMed

    Steyn, H C; McCrindle, C M E; Du Toit, D

    2010-09-01

    Heartwater, a tick-borne disease caused by Ehrlichia ruminantium, is considered to be a significant cause of mortality amongst domestic and wild ruminants in South Africa. The main vector is Amblyomma hebraeum and although previous epidemiological studies have outlined endemic areas based on mortalities, these have been limited by diagnostic methods which relied mainly on positive brain smears. The indirect fluorescent antibody test (IFA) has a low specificity for heartwater organisms as it cross-reacts with some other species. Since the advent of biotechnology and genomics, molecular epidemiology has evolved using the methodology of traditional epidemiology coupled with the new molecular techniques. A new quantitative real-time polymerase chain reaction (qPCR) test has been developed for rapid and accurate diagnosis of heartwater in the live animal. This method can also be used to survey populations of A. hebraeum ticks for heartwater. Sampling whole blood and ticks for this qPCR differs from routine serum sampling, which is used for many serological tests. Veterinary field staff, particularly animal health technicians, are involved in surveillance and monitoring of controlled and other diseases of animals in South Africa. However, it was found that the sampling of whole blood was not done correctly, probably because it is a new sampling technique specific for new technology, where the heartwater organism is much more labile than the serum antibodies required for other tests. This qPCR technique is highly sensitive and can diagnose heartwater in the living animal within 2 hours, in time to treat it. Poor sampling techniques that decrease the sensitivity of the test will, however, result in a false negative diagnosis. This paper describes the development of a skills training programme for para-veterinary field staff, to facilitate research into the molecular epidemiology of heartwater in ruminants and eliminate any sampling bias due to collection errors. Humane handling techniques were also included in the training, in line with the current focus on improved livestock welfare.

  2. Near-infrared Raman spectroscopy for estimating biochemical changes associated with different pathological conditions of cervix

    NASA Astrophysics Data System (ADS)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Ganesan, Singaravelu

    2018-02-01

    The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.

  3. High throughput gene expression profiling: a molecular approach to integrative physiology

    PubMed Central

    Liang, Mingyu; Cowley, Allen W; Greene, Andrew S

    2004-01-01

    Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487

  4. Excited-state dissociation dynamics of phenol studied by a new time-resolved technique

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Cheng; Lee, Chin; Lee, Shih-Huang; Lee, Yin-Yu; Lee, Yuan T.; Tseng, Chien-Ming; Ni, Chi-Kung

    2018-02-01

    Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.

  5. Design of Novel Chemotherapeutic Agents Targeting Checkpoint Kinase 1 Using 3D-QSAR Modeling and Molecular Docking Methods.

    PubMed

    Balupuri, Anand; Balasubramanian, Pavithra K; Cho, Seung J

    2016-01-01

    Checkpoint kinase 1 (Chk1) has emerged as a potential therapeutic target for design and development of novel anticancer drugs. Herein, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses on a series of diazacarbazoles to design potent Chk1 inhibitors. 3D-QSAR models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Docking studies were performed using AutoDock. The best CoMFA and CoMSIA models exhibited cross-validated correlation coefficient (q2) values of 0.631 and 0.585, and non-cross-validated correlation coefficient (r2) values of 0.933 and 0.900, respectively. CoMFA and CoMSIA models showed reasonable external predictabilities (r2 pred) of 0.672 and 0.513, respectively. A satisfactory performance in the various internal and external validation techniques indicated the reliability and robustness of the best model. Docking studies were performed to explore the binding mode of inhibitors inside the active site of Chk1. Molecular docking revealed that hydrogen bond interactions with Lys38, Glu85 and Cys87 are essential for Chk1 inhibitory activity. The binding interaction patterns observed during docking studies were complementary to 3D-QSAR results. Information obtained from the contour map analysis was utilized to design novel potent Chk1 inhibitors. Their activities and binding affinities were predicted using the derived model and docking studies. Designed inhibitors were proposed as potential candidates for experimental synthesis.

  6. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  7. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    PubMed

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides and proteins provided reliable design and validation of quantitative approaches using SRM on targeted proteins proposed involved in strawberry fruit. Our data revealed the identifying candidate proteins and their quantitative changes in relation to fruit ripening and flavonoids and anthocyanin biosynthesis and regulation. More importantly, this quantitative proteomic data is also compared with chemical analysis to reveal possible control levels of this important quality trait. Although, MRM approach is not new in plant biology research, the application has been very rare. This is the first systematic multi-targeted interrogation of the possible regulation of entire pathway of flavonoids and anthocyanin biosynthesis in strawberry fruit at different ripening stages using quantitative MRM technique on mass spectrometry. Our results demonstrate the power of targeted quantitative mass spectrometry data for analysis of proteins in biological regulation. These results indicate that distinct and diverse control of flavonoids and anthocyanin biosynthesis mechanisms at metabolism and proteins levels. This important and complementary knowledge will be useful for systematically characterizing the flavonoids and anthocyanin biosynthesis pathway of any fruit/plant species. Copyright © 2015. Published by Elsevier B.V.

  8. Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.

    PubMed

    O'Neill, Sharon; Mathis, Magalie; Kovačič, Lidija; Zhang, Suisheng; Reinhardt, Jürgen; Scholz, Dimitri; Schopfer, Ulrich; Bouhelal, Rochdi; Knaus, Ulla G

    2018-06-08

    Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    PubMed

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  11. Demonstration of Imaging Flow Diagnostics Using Rayleigh Scattering in Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Herring, G. C.; Barros, Toya

    1999-01-01

    The feasibility of using the Rayleigh scattering technique for molecular density imaging of the free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel has been experimentally demonstrated. The Rayleigh scattering was viewed with a near-backward geometry with a frequency-doubled output from a diode-pumped CW Nd:YAG laser and an intensified charge-coupled device camera. Measurements performed in the range of free-stream densities from 3 x 10(exp 25) to 24 x 10(exp 25) molecules/cu m indicate that the observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute signal levels agree (within approx. 30 percent) with the expected signal levels computed based on the well-known quantities of flow field density, Rayleigh scattering cross section for N2, solid angle of collection, transmission of the optics, and the independently calibrated camera sensitivity. These results show that the flow field in this facility is primarily molecular (i.e., not contaminated by clusters) and that Rayleigh scattering is a viable technique for quantitative nonintrusive diagnostics in this facility.

  12. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    PubMed Central

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65–88%), compared to the sensitivity (91–100%) of the new molecular diagnostic workflow. Conclusions/Significance Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited. PMID:28915255

  13. The use of comparative duplex PCR in monitoring of patients with non-Hodgkin's lymphoma and chronic lymphocytic leukaemia.

    PubMed

    Slavícková, A; Forsterová, K; Ivánek, R; Cerný, J; Klener, P

    2005-01-01

    Various quantitative PCR approaches have been utilized during the last years to provide information about the treatment efficacy and the risk of recurrent disease in haematological malignancies. Apart from the frequently used real-time PCR, cost-saving modified standard PCR methods may be applied as well. This report evaluates the utility of the end-point comparative duplex PCR. We have used this method for monitoring of 35 patients with either NHL or CLL and observed a good correlation between quantitative molecular results and clinical outcome. There was also an agreement between comparative duplex PCR and real-time PCR in patients who were monitored by both methods. We therefore believe that use of this technique should be strongly considered instead of simple qualitative detection in monitoring of therapeutic outcome in NHL or CLL patients.

  14. Three-dimensional quantitative structure-activity relationship studies on c-Src inhibitors based on different docking methods.

    PubMed

    Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni

    2009-04-01

    c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.

  15. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.

    PubMed

    Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias

    2014-02-18

    This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.

  16. Heuristic lipophilicity potential for computer-aided rational drug design.

    PubMed

    Du, Q; Arteca, G A; Mezey, P G

    1997-09-01

    In this contribution we suggest a heuristic molecular lipophilicity potential (HMLP), which is a structure-based technique requiring no empirical indices of atomic lipophilicity. The input data used in this approach are molecular geometries and molecular surfaces. The HMLP is a modified electrostatic potential, combined with the averaged influences from the molecular environment. Quantum mechanics is used to calculate the electron density function rho(r) and the electrostatic potential V(r), and from this information a lipophilicity potential L(r) is generated. The HMLP is a unified lipophilicity and hydrophilicity potential. The interactions of dipole and multipole moments, hydrogen bonds, and charged atoms in a molecule are included in the hydrophilic interactions in this model. The HMLP is used to study hydrogen bonds and water-octanol partition coefficients in several examples. The calculated results show that the HMLP gives qualitatively and quantitatively correct, as well as chemically reasonable, results in cases where comparisons are available. These comparisons indicate that the HMLP has advantages over the empirical lipophilicity potential in many aspects. The HMLP is a three-dimensional and easily visualizable representation of molecular lipophilicity, suggested as a potential tool in computer-aided three-dimensional drug design.

  17. Quantitative Resistance: More Than Just Perception of a Pathogen

    PubMed Central

    2017-01-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. PMID:28302676

  18. Liquid chromatography-mass spectrometry-based quantitative proteomics.

    PubMed

    Linscheid, Michael W; Ahrends, Robert; Pieper, Stefan; Kühn, Andreas

    2009-01-01

    During the last decades, molecular sciences revolutionized biomedical research and gave rise to the biotechnology industry. During the next decades, the application of the quantitative sciences--informatics, physics, chemistry, and engineering--to biomedical research brings about the next revolution that will improve human healthcare and certainly create new technologies, since there is no doubt that small changes can have great effects. It is not a question of "yes" or "no," but of "how much," to make best use of the medical options we will have. In this context, the development of accurate analytical methods must be considered a cornerstone, since the understanding of biological processes will be impossible without information about the minute changes induced in cells by interactions of cell constituents with all sorts of endogenous and exogenous influences and disturbances. The first quantitative techniques, which were developed, allowed monitoring relative changes only, but they clearly showed the significance of the information obtained. The recent advent of techniques claiming to quantify proteins and peptides not only relative to each other, but also in an absolute fashion, promised another quantum leap, since knowing the absolute amount will allow comparing even unrelated species and the definition of parameters will permit to model biological systems much more accurate than before. To bring these promises to life, several approaches are under development at this point in time and this review is focused on those developments.

  19. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald

    2012-12-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.

  20. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  1. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    PubMed

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  2. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren

    2011-10-01

    An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  3. Structural disorder within sendai virus nucleoprotein and phosphoprotein: insight into the structural basis of molecular recognition.

    PubMed

    Jensen, Malene Ringkjøbing; Bernadó, Pau; Houben, Klaartje; Blanchard, Laurence; Marion, Dominque; Ruigrok, Rob W H; Blackledge, Martin

    2010-08-01

    Intrinsically disordered regions of significant length are present throughout eukaryotic genomes, and are particularly prevalent in viral proteins. Due to their inherent flexibility, these proteins inhabit a conformational landscape that is too complex to be described by classical structural biology. The elucidation of the role that conformational flexibility plays in molecular function will redefine our understanding of the molecular basis of biological function, and the development of appropriate technology to achieve this aim remains one of the major challenges for the future of structural biology. NMR is the technique of choice for studying intrinsically disordered proteins, providing information about structure, flexibility and interactions at atomic resolution even in completely disordered proteins. In particular residual dipolar couplings (RDCs) are sensitive and powerful tools for determining local and long-range structural behaviour in flexible proteins. Here we describe recent applications of the use of RDCs to quantitatively describe the level of local structure in intrinsically disordered proteins involved in replication and transcription in Sendai virus.

  4. 3D-QSAR and molecular docking studies on HIV protease inhibitors

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei

    2017-02-01

    In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.

  5. Analysis of Mammalian Sphingolipids by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Tissue Imaging Mass Spectrometry (TIMS)

    PubMed Central

    Sullards, M. Cameron; Liu, Ying; Chen, Yanfeng; Merrill, Alfred H.

    2011-01-01

    Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or “sphingolipidomic” methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices. PMID:21749933

  6. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  7. A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix.

    PubMed

    Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro

    2016-01-01

    Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image analysis.

  8. Fundamentals of functional imaging I: current clinical techniques.

    PubMed

    Luna, A; Martín Noguerol, T; Mata, L Alcalá

    2018-05-01

    Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Modelling the effect of structural QSAR parameters on skin penetration using genetic programming

    NASA Astrophysics Data System (ADS)

    Chung, K. K.; Do, D. Q.

    2010-09-01

    In order to model relationships between chemical structures and biological effects in quantitative structure-activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data.

  10. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  11. Microscopy techniques in flavivirus research.

    PubMed

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various oligopeptides and polypeptides including 58 dipeptides and 31 pentapeptides with angiotensin converting enzyme (ACE) inhibition by multiple linear regression (MLR) method. In order to explain the ability to characterize molecular structure of polypeptides, a molecular modeling investigation on QSAR was performed for functional prediction of polypeptide sequences with antigenic activity and heptapeptide sequences with tachykinin activity through quantitative sequence-activity models (QSAMs) by the molecular electronegativity edge-distance vector (VMED). The results showed that VMED exhibited both excellent structural selectivity and good activity prediction. Moreover, the results showed that VMED behaved quite well for both QSAR and QSAM of poly-and oligopeptides, which exhibited both good estimation ability and prediction power, equal to or better than those reported in the previous references. Finally, a preliminary conclusion was drawn: both classical and modified MED vectors were very useful structural descriptors. Some suggestions were proposed for further studies on QSAR/QSAM of proteins in various fields.

  13. Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress*

    PubMed Central

    Kültz, Dietmar; Li, Johnathon; Gardell, Alison; Sacchi, Romina

    2013-01-01

    A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change. PMID:24065692

  14. An investigative graduate laboratory course for teaching modern DNA techniques.

    PubMed

    de Lencastre, Alexandre; Thomas Torello, A; Keller, Lani C

    2017-07-08

    This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the Drosophila ortholog of a human disease gene of their choosing using Gateway ® cloning. In the second part of the course, students examine the expression of their gene of interest in human cell lines by reverse transcription PCR and learn how to analyze data from quantitative reverse transcription PCR (qRT-PCR) experiments. The adaptability of the Gateway ® cloning system is ideally suited for students to design and create different types of expression constructs to achieve a particular experimental goal (e.g., protein purification, expression in cell culture, and/or subcellular localization), and the genes chosen can be aligned to the research interests of the instructor and/or ongoing research in a department. Student evaluations indicate that the course fostered a genuine excitement for research and in depth knowledge of both the techniques performed and the theory behind them. Our long-term goal is to incorporate this DNA methods laboratory as the foundation for an integrated laboratory sequence for the Master of Science degree program in Molecular and Cellular Biology at Quinnipiac University, where students use the reagents and concepts they developed in this course in subsequent laboratory courses, including a protein methods and cell culture laboratory. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):351-359, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  15. Quantitative Resistance: More Than Just Perception of a Pathogen.

    PubMed

    Corwin, Jason A; Kliebenstein, Daniel J

    2017-04-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  16. Quantitative phase imaging of platelets in patients with chronic renal failure treated with hemodialysis

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Kardasheva, Ziver

    2018-02-01

    The development of robust non-invasive laboratory screening methods for early diagnosis on the out-patient basis seems quite relevant for practical medicine. It is known, that platelet is an original biosensor, a detector of early changes in hemostasis condition. The aim of this study was to assess a potential of the quantitative phase imaging (QPI) technique for real time evaluation the influence of low-molecular weight and unfractionated heparin on platelets in patients with the end-stage of chronic renal failure, who were treated with program hemodialysis (PHD). The main group consisted of 21 patients who were administered a low-molecular weight heparin for hypocoagulation during the procedure of hemodialysis. The control group (15 patients) received unfractionated heparin. Morphodensitometric state of living platelets we evaluated by QPI using computer phase-interference microscope MIM (Moscow, Russia). We analyzed the optical-geometrical parameters and the morphological features of living platelets which reflected the degree of their activation at the beginning of PHD (before administration of heparin), in 15 minutes after it and at the end of the procedure. The results allow us to conclude that the use of low-molecular weight heparin provides better ratio of efficacy/safety and causes a reduction of the platelet activation during the hemodialysis procedure. Practical implementation of QPI for clinical monitoring of platelets makes it possible to obtain important information on hemostasis cell. It opens new opportunities to assess the efficacy of treatment, as well as for early diagnosis of complications for disease.

  17. International Standards and Reference Materials for Quantitative Molecular Infectious Disease Testing

    PubMed Central

    Madej, Roberta M.; Davis, Jack; Holden, Marcia J.; Kwang, Stan; Labourier, Emmanuel; Schneider, George J.

    2010-01-01

    The utility of quantitative molecular diagnostics for patient management depends on the ability to relate patient results to prior results or to absolute values in clinical practice guidelines. To do this, those results need to be comparable across time and methods, either by producing the same value across methods and test versions or by using reliable and stable conversions. Universally available standards and reference materials specific to quantitative molecular technologies are critical to this process but are few in number. This review describes recent history in the establishment of international standards for nucleic acid test development, organizations involved in current efforts, and future issues and initiatives. PMID:20075208

  18. A new molecular diagnostic tool for quantitatively detecting and genotyping “Candidatus Liberibacter species”

    USDA-ARS?s Scientific Manuscript database

    A new molecular diagnostic method was developed for quantitative detection of “Candidatus Liberibacter” species associated with citrus Huanglongbing (“Ca. Liberibacter asiaticus”, “Ca. Liberibacter africanus” and “Ca. Liberibacter americanus”) and potato zebra chip disorder (“Ca. Liberibacter solana...

  19. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use.

    PubMed

    Kiddle, Guy; Hardinge, Patrick; Buttigieg, Neil; Gandelman, Olga; Pereira, Clint; McElgunn, Cathal J; Rizzoli, Manuela; Jackson, Rebecca; Appleton, Nigel; Moore, Cathy; Tisi, Laurence C; Murray, James A H

    2012-04-30

    There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.

  20. Preparation and characterization of polyclonal antibodies against human chaperonin 10

    PubMed Central

    Somodevilla-Torres, Maria J.; Hillyard, Narelle C.; Morton, Halle; Alewood, Dianne; Halliday, Judy A.; Alewood, Paul F.; Vesey, David A.; Walsh, Michael D.; Cavanagh, Alice C.

    2000-01-01

    Abstract Early pregnancy factor (EPF) has been identified as an extracellular homologue of chaperonin 10 (Cpn10), a heat shock protein that functions within the cell as a molecular chaperone. Here, we report the production of polyclonal antibodies directed against several different regions of the human Cpn10 molecule and their application to specific protein quantitation and localization techniques. These antibodies will be valuable tools in further studies to elucidate the mechanisms underlying the differential spatial and temporal localization of EPF and Cpn10 and in studies to elucidate structure and function. PMID:10701835

  1. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schloesser, M.; Pakari, O.; Rupp, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  2. Measurement requirements and techniques for degradation studies and lifetime prediction testing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Tests of weathering and aging behavior are being developed to characterize the degradation and predict the lifetimes of low-cost photovoltaic arrays. Environmental factors which affect array performance include UV radiation, thermal energy, water, oxygen (generally involved in synergistic effects with UV radiation or high temperatures), physical stress, pollutants (oxides of nitrogen, sulfur dioxide and ozone), abrasives and dirt. A survey of photovoltaic array testing has shown the need to establish quantitative correlations between certain measurable properties (carbonyl formation, glass transition temperature, and molecular weight change) and modes of degradation and failure.

  3. Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging.

    PubMed

    Ackerman, L K; Noonan, G O; Begley, T H

    2009-12-01

    The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement.

  4. Comparative and Quantitative Global Proteomics Approaches: An Overview

    PubMed Central

    Deracinois, Barbara; Flahaut, Christophe; Duban-Deweer, Sophie; Karamanos, Yannis

    2013-01-01

    Proteomics became a key tool for the study of biological systems. The comparison between two different physiological states allows unravelling the cellular and molecular mechanisms involved in a biological process. Proteomics can confirm the presence of proteins suggested by their mRNA content and provides a direct measure of the quantity present in a cell. Global and targeted proteomics strategies can be applied. Targeted proteomics strategies limit the number of features that will be monitored and then optimise the methods to obtain the highest sensitivity and throughput for a huge amount of samples. The advantage of global proteomics strategies is that no hypothesis is required, other than a measurable difference in one or more protein species between the samples. Global proteomics methods attempt to separate quantify and identify all the proteins from a given sample. This review highlights only the different techniques of separation and quantification of proteins and peptides, in view of a comparative and quantitative global proteomics analysis. The in-gel and off-gel quantification of proteins will be discussed as well as the corresponding mass spectrometry technology. The overview is focused on the widespread techniques while keeping in mind that each approach is modular and often recovers the other. PMID:28250403

  5. Gaussian Accelerated Molecular Dynamics in NAMD

    PubMed Central

    2016-01-01

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310

  6. Gaussian Accelerated Molecular Dynamics in NAMD.

    PubMed

    Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew

    2017-01-10

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.

  7. Let's push things forward: disruptive technologies and the mechanics of tissue assembly.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2013-09-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.

  8. Let's push things forward: disruptive technologies and the mechanics of tissue assembly

    PubMed Central

    Varner, Victor D.; Nelson, Celeste M.

    2013-01-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems – embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly. PMID:23907401

  9. Rapid internal contraction boosts DNA friction.

    PubMed

    Otto, Oliver; Sturm, Sebastian; Laohakunakorn, Nadanai; Keyser, Ulrich F; Kroy, Klaus

    2013-01-01

    Macroscopic objects are usually manipulated by force and observed with light. On the nanoscale, however, this is often done oppositely: individual macromolecules are manipulated by light and monitored with force. This procedure, which is the basis of single-molecule force spectroscopy, has led to much of our quantitative understanding of how DNA works, and is now routinely applied to explore molecular structure and interactions, DNA-protein reactions and protein folding. Here we develop the technique further by introducing a dynamic force spectroscopy set-up for a non-invasive inspection of the tension dynamics in a taut strand of DNA. The internal contraction after a sudden release of the molecule is shown to give rise to a drastically enhanced viscous friction, as revealed by the slow relaxation of an attached colloidal tracer. Our systematic theory explains the data quantitatively and provides a powerful tool for the rational design of new dynamic force spectroscopy assays.

  10. Quantitation of acrylamide in foods by high-resolution mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo

    2014-01-08

    Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS.

  11. [Sample preparation and bioanalysis in mass spectrometry].

    PubMed

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (<1000 Da) in biological fluids is currently in most cases performed by liquid chromatography-mass spectrometry (LC-MS). Analysis of these compounds in biological fluids (plasma, urine, saliva, hair...) is a difficult task requiring a sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  12. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  13. A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection

    NASA Technical Reports Server (NTRS)

    Gause, Raymond L.

    1989-01-01

    Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.

  14. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Yu, Dindi; Ruangchaithaweesuk, Songtham; Yao, Li; Xu, Shoujun

    2012-09-01

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/√Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 μm with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 μm, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  15. An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anna, Shelley L.; McKinley, Gareth H.; Nguyen, Duc A.

    2001-01-01

    Following development of a filament-stretching extensional rheometer at Monash University, similar rheometers have been designed and built in other laboratories. To help validate the basic technique, a collaborative program was undertaken to compare results from several instruments. First, three test fluids prepared at the University of California at Berkeley were characterized in steady and transient shear flows there and at the Massachusetts Institute of Technology (M.I.T.), and then tested in extensional rheometers at M.I.T., Monash and the University of Toronto. Each fluid is a constant-viscosity solution of narrow-molecular-weight-distribution polystyrene dissolved in oligomeric polystyrene. The solute molecular weights are 2.0, 6.5,more » and 20 million g/mol, and the polymer concentration in each fluid is 0.05 wt.%. From linear viscoelastic measurements, the Zimm relaxation times of the fluids are found to be 3.7, 31, and 150 s, respectively. The scaling of relaxation times with molecular weight indicates better-than-theta solvent quality, a finding consistent with independent intrinsic viscometry measurements of equilibrium coil size. Each fluid was tested in the three filament stretching rheometers at similar Deborah numbers. Despite variations in instrument design and the general difficulty of the technique, transient Trouton ratios measured in the three instruments are shown to agree quantitatively.« less

  16. High-Throughput Characterization of Vapor-Deposited Organic Glasses

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel S.

    Glasses are non-equilibrium materials which on short timescales behave like solids, and on long timescales betray their liquid-like structure. The most common way of preparing a glass is to cool the liquid faster than it can structurally rearrange. Until recently, most preparation schemes for a glass were considered to result in materials with undifferentiable structure and properties. This thesis utilizes a particular preparation method, physical vapor deposition, in order to prepare glasses of organic molecules with properties otherwise considered to be unobtainable. The glasses are characterized using spectroscopic ellipsometry, both as a dilatometric technique and as a reporter of molecular packing. The results reported here develop ellipsometry as a dilatometric technique on a pair of model glass formers, alpha,alpha,beta-trisnaphthylbenzene and indomethacin. It is found that the molecular orientation, as measured by birefringence, can be tuned by changing the substrate temperature during the deposition. In order to efficiently characterize the properties of vapor-deposited indomethacin as a function of substrate temperature, a high-throughput method is developed to capture the entire interesting range of substrate temperatures in just a few experiments. This high-throughput method is then leveraged to describe molecular mobility in vapor-deposited indomethacin. It is also used to demonstrate that the behavior of organic semiconducting molecules agrees with indomethacin quantitatively, and this agreement has implications for emerging technologies such as light-emitting diodes, photovoltaics and thin-film transistors made from organic molecules.

  17. Comparison of genetic diversity and population structure of Pacific Coast whitebark pine across multiple markers

    Treesearch

    Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry

    2011-01-01

    Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...

  18. Molecular imaging promotes progress in orthopedic research.

    PubMed

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.

  19. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. First and second energy derivative analyses for open-shell self-consistent field wavefunctions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III; Frenking, Gernot

    A study of first and second derivatives of the orbital, electronic, nuclear and total energies for the self-consistent field (SCF) wavefunction has been applied to general open-shell SCF systems. The diagonal elements of the Lagrangian matrix for the general open-shell SCF wavefunction are adapted as the 'oŕbital' energies. The first and second derivatives of the orbital energies in terms of the normal coordinates are determined via the finite difference method, while those of the electronic, nuclear and total energies are obtained by analytical techniques. Using three low lying states of the CH2 and H2CO molecules as examples, it is demonstrated that the derivatives of the SCF energetic quantities with respect to the normal coordinates provide useful chemical information concerning the respective molecular structures and reactivities. The conventional concept of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) has been extended to the molecular vibrational motion, and the terminology of vibrationally active MOs (va-MOs), va-HOMO and va-LUMO has been introduced for each normal coordinate. The energy derivative analysis method may be used as a powerful semi-quantitative modelin understanding and interpreting various chemical phenomena.

  1. Molecular modeling of the microstructure evolution during carbon fiber processing

    NASA Astrophysics Data System (ADS)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  2. Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics.

    PubMed

    Rodriquez, Daniel; Kim, Jae-Han; Root, Samuel E; Fei, Zhuping; Boufflet, Pierre; Heeney, Martin; Kim, Taek-Soo; Lipomi, Darren J

    2017-03-15

    This paper describes a comparison of two characterization techniques for determining the mechanical properties of thin-film organic semiconductors for applications in soft electronics. In the first method, the film is supported by water (film-on-water, FOW), and a stress-strain curve is obtained using a direct tensile test. In the second method, the film is supported by an elastomer (film-on-elastomer, FOE), and is subjected to three tests to reconstruct the key features of the stress-strain curve: the buckling test (tensile modulus), the onset of buckling (yield point), and the crack-onset strain (strain at fracture). The specimens used for the comparison are four poly(3-hexylthiophene) (P3HT) samples of increasing molecular weight (M n = 15, 40, 63, and 80 kDa). The methods produced qualitatively similar results for mechanical properties including the tensile modulus, the yield point, and the strain at fracture. The agreement was not quantitative because of differences in mode of loading (tension vs compression), strain rate, and processing between the two methods. Experimental results are corroborated by coarse-grained molecular dynamics simulations, which lead to the conclusion that in low molecular weight samples (M n = 15 kDa), fracture occurs by chain pullout. Conversely, in high molecular weight samples (M n > 25 kDa), entanglements concentrate the stress to few chains; this concentration is consistent with chain scission as the dominant mode of fracture. Our results provide a basis for comparing mechanical properties that have been measured by these two techniques, and provide mechanistic insight into fracture modes in this class of materials.

  3. Quantitative PCR and disaccharide profiling to characterize the animal origin of low-molecular-weight heparins.

    PubMed

    Houiste, Céline; Auguste, Cécile; Macrez, Céline; Dereux, Stéphanie; Derouet, Angélique; Anger, Pascal

    2009-02-01

    Low-molecular-weight heparins (LMWHs) are widely used in the management of thrombosis and acute coronary syndromes. They are obtained by the enzymatic or chemical depolymerization of porcine intestinal heparin. Enoxaparin sodium, a widely used LMWH, has a unique and reproducible oligosaccharide profile which is determined by the origin of the starting material and a tightly controlled manufacturing process. Although other enoxaparin-like LMWHs do exist, specific release criteria including the origin of the crude heparin utilized for their production, have not been established. A quantitative polymerase chain reaction method has been developed to ensure the purity of the porcine origin of crude heparin, with a DNA detection limit as low as 1 ppm for bovine, or 10 ppm for ovine contaminants. This method is routinely used as the release acceptance criterion during enoxaparin sodium manufacturing. Furthermore, when the process removes DNA, other analytical techniques can be used to assess any contamination. Disaccharide profiling after exhaustive depolymerization can determine the presence of at least 10% bovine or 20% ovine material; multivariate analysis is useful to perform the data analysis. Consistent with the availability of newer technology, these methods should be required as acceptance criteria for crude heparins used in the manufacture of LMWHs to ensure their safety, quality, and immunologic profile.

  4. The physical and biological basis of quantitative parameters derived from diffusion MRI

    PubMed Central

    2012-01-01

    Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

  5. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    PubMed

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Quasiparticle Level Alignment for Photocatalytic Interfaces.

    PubMed

    Migani, Annapaoala; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje; Rubio, Angel

    2014-05-13

    Electronic level alignment at the interface between an adsorbed molecular layer and a semiconducting substrate determines the activity and efficiency of many photocatalytic materials. Standard density functional theory (DFT)-based methods have proven unable to provide a quantitative description of this level alignment. This requires a proper treatment of the anisotropic screening, necessitating the use of quasiparticle (QP) techniques. However, the computational complexity of QP algorithms has meant a quantitative description of interfacial levels has remained elusive. We provide a systematic study of a prototypical interface, bare and methanol-covered rutile TiO2(110) surfaces, to determine the type of many-body theory required to obtain an accurate description of the level alignment. This is accomplished via a direct comparison with metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), and two-photon photoemission (2PP) spectroscopy. We consider GGA DFT, hybrid DFT, and G0W0, scQPGW1, scQPGW0, and scQPGW QP calculations. Our results demonstrate that G0W0, or our recently introduced scQPGW1 approach, are required to obtain the correct alignment of both the highest occupied and lowest unoccupied interfacial molecular levels (HOMO/LUMO). These calculations set a new standard in the interpretation of electronic structure probe experiments of complex organic molecule/semiconductor interfaces.

  7. Ion-Exclusion Chromatography for Analyzing Organics in Water

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.

    2006-01-01

    A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other peaks. Although the analysis takes more time in the improved technique, this disadvantage is offset by two important advantages: Sensitivity is increased. The minimum concentration of urea that can be measured is reduced (to between 1/5 and 1/3 of that of the prior technique) because it is not necessary to dilute the sample. The separation of peaks facilitates the identification and quantitation of the various compounds. The resolution of the compounds other than urea makes it possible to identify those compounds by use of mass spectrometry.

  8. Development of quantitative screen for 1550 chemicals with GC-MS.

    PubMed

    Bergmann, Alan J; Points, Gary L; Scott, Richard P; Wilson, Glenn; Anderson, Kim A

    2018-05-01

    With hundreds of thousands of chemicals in the environment, effective monitoring requires high-throughput analytical techniques. This paper presents a quantitative screening method for 1550 chemicals based on statistical modeling of responses with identification and integration performed using deconvolution reporting software. The method was evaluated with representative environmental samples. We tested biological extracts, low-density polyethylene, and silicone passive sampling devices spiked with known concentrations of 196 representative chemicals. A multiple linear regression (R 2  = 0.80) was developed with molecular weight, logP, polar surface area, and fractional ion abundance to predict chemical responses within a factor of 2.5. Linearity beyond the calibration had R 2  > 0.97 for three orders of magnitude. Median limits of quantitation were estimated to be 201 pg/μL (1.9× standard deviation). The number of detected chemicals and the accuracy of quantitation were similar for environmental samples and standard solutions. To our knowledge, this is the most precise method for the largest number of semi-volatile organic chemicals lacking authentic standards. Accessible instrumentation and software make this method cost effective in quantifying a large, customizable list of chemicals. When paired with silicone wristband passive samplers, this quantitative screen will be very useful for epidemiology where binning of concentrations is common. Graphical abstract A multiple linear regression of chemical responses measured with GC-MS allowed quantitation of 1550 chemicals in samples such as silicone wristbands.

  9. Drift mobility of photo-electrons in organic molecular crystals: Quantitative comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Reineker, P.; Kenkre, V. M.; Kühne, R.

    1981-08-01

    A quantitative comparison of a simple theoretical prediction for the drift mobility of photo-electrons in organic molecular crystals, calculated within the model of the coupled band-like and hopping motion, with experiments in napthalene of Schein et al. and Karl et al. is given.

  10. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  11. Properties of liquid Ti alloys from electrostatic levitation experiments and simulation

    NASA Astrophysics Data System (ADS)

    Novak, Brian; Raush, Jonathan; Zhang, Xiaoman; Moldovan, Dorel; Meng, Wenjin; Guo, Shengmin

    Accurate thermophysical property data for liquid metals and alloys are important for the development of realistic simulations of laser-based 3D printing processes. We are using the container-less electrostatic levitation (ESL) method, molecular simulation, and CALPHAD calculations to obtain such data for Ti alloys. We performed vacuum ESL measurements of viscosity and surface tension with an oscillating drop technique at NASA MSFC on molten elemental Ti, Ti-xAl binaries (x = 0-10 wt%), Ti-6Al-4V, and Ti-6Al-4V-10Mo which showed improved mechanical properties compared with traditional β Ti alloys. We also used classical molecular simulations to obtain viscosities and surface tensions for Ti-xAl. Pair distribution functions, diffusivities, and vapor pressures were also obtained from simulations. The simulated viscosities and surface tensions for pure Ti agree well with the ESL data while the Ti-xAl viscosities have the same trends as the ESL data, but not quantitative agreement. Chemical activity and Gibbs free energy of Ti-10Al were generated using the CALPHAD technique and compared to experimental values. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  12. In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Skrebova Eikje, Natalja

    2011-03-01

    Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.

  13. Analyses of air samples for ascospores of Leptosphaeria maculans and L.biglobosa by light microscopy and molecular techniques.

    PubMed

    Kaczmarek, J; Jedryczka, M; Fitt, B D L; Lucas, J A; Latunde-Dada, A O

    2009-01-01

    Spores of many fungal pathogens are dispersed by wind. Detection of these airborne inocula is important in forecasting both the onset and the risk of epiphytotics. Species-specific primers targeted at the internal transcribed spacer (ITS) region of Leptosphaeria maculans and L. biglobosa - the causal organisms of phoma stem canker and stem lesions of Brassica spp., including oilseed rape - were used to detect DNA extracted from particles deposited on tapes obtained from a spore trap operated in Rarwino (northwest Poland) from September to November in 2004 and 2006. The quantities of DNA assessed by traditional end-point PCR and quantitative real-time PCR were compared to microscopic counts of airborne ascospores. Results of this study showed that fluctuations in timing of ascospore release corresponded to the dynamics of combined concentrations of DNA from L. maculans and L. biglobosa, with significant positive correlations between ascospore number and DNA yield. Thus the utilization of PCR-based molecular diagnostic techniques enabled the detection, identification, and accurate quantification of airborne inoculum at the species level. Moreover, real-time PCR was more sensitive than traditional PCR, especially in years with low ascospore numbers.

  14. Rapid non-enzymatic extraction method for isolating PCR-quality camelpox virus DNA from skin.

    PubMed

    Yousif, A Ausama; Al-Naeem, A Abdelmohsen; Al-Ali, M Ahmad

    2010-10-01

    Molecular diagnostic investigations of orthopoxvirus (OPV) infections are performed using a variety of clinical samples including skin lesions, tissues from internal organs, blood and secretions. Skin samples are particularly convenient for rapid diagnosis and molecular epidemiological investigations of camelpox virus (CMLV). Classical extraction procedures and commercial spin-column-based kits are time consuming, relatively expensive, and require multiple extraction and purification steps in addition to proteinase K digestion. A rapid non-enzymatic procedure for extracting CMLV DNA from dried scabs or pox lesions was developed to overcome some of the limitations of the available DNA extraction techniques. The procedure requires as little as 10mg of tissue and produces highly purified DNA [OD(260)/OD(280) ratios between 1.47 and 1.79] with concentrations ranging from 6.5 to 16 microg/ml. The extracted CMLV DNA was proven suitable for virus-specific qualitative and, semi-quantitative PCR applications. Compared to spin-column and conventional viral DNA extraction techniques, the two-step extraction procedure saves money and time, and retains the potential for automation without compromising CMLV PCR sensitivity. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin.

    PubMed

    Soural, Miroslav; Hodon, Jiri; Dickinson, Niall J; Sidova, Veronika; Gurska, Sona; Dzubak, Petr; Hajduch, Marian; Sarek, Jan; Urban, Milan

    2015-12-16

    To better understand the mechanism of action of antitumor triterpenes, we are developing methods to identify their molecular targets. A promising method is based on combination of quantitative proteomics with SILAC and uses active compounds anchored to magnetic beads via biotin-streptavidin interaction. We developed a simple and fast solid-phase synthetic technique to connect terpenes to biotin through a linker. Betulinic acid was biotinylated from three different conjugation sites for use as a standard validation tool since many molecular targets of this triterpene are already known. Then, a set of four other cytotoxic triterpenoids was biotinylated. Biotinylated terpenes were similarly cytotoxic to their nonbiotinylated parents, which suggests that the target identification should not be influenced by linker or biotin. The developed solid-phase synthetic approach is the first attempt to use solid-phase synthesis to connect active triterpenes to biotin and is applicable as a general procedure for routine conjugation of triterpenes with other molecules of choice.

  17. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy).

    PubMed

    Hudson, Stephen D; Chumanov, George

    2009-06-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for analyzing biological samples as it can rapidly and nondestructively provide chemical and, in some cases, structural information about molecules in aqueous environments. In the Raman scattering process, both visible and near-infrared (NIR) wavelengths of light can be used to induce polarization of Raman-active molecules, leading to inelastic light scattering that yields specific molecular vibrational information. The development of surface enhancement has enabled Raman scattering to be an effective tool for qualitative as well as quantitative measurements with high sensitivity and specificity. Recent advances have led to many novel applications of SERS for biological analyses, resulting in new insights for biochemistry and molecular biology, the detection of biological warfare agents, and medical diagnostics for cancer, diabetes, and other diseases. This trend article highlights many of these recent investigations and provides a brief outlook in order to assess possible future directions of SERS as a bioanalytical tool.

  18. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    PubMed

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    PubMed

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  20. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations.

    PubMed

    Meral, Derya; Provasi, Davide; Prada-Gracia, Diego; Möller, Jan; Marino, Kristen; Lohse, Martin J; Filizola, Marta

    2018-05-16

    Various experimental and computational techniques have been employed over the past decade to provide structural and thermodynamic insights into G Protein-Coupled Receptor (GPCR) dimerization. Here, we use multiple microsecond-long, coarse-grained, biased and unbiased molecular dynamics simulations (a total of ~4 milliseconds) combined with multi-ensemble Markov state models to elucidate the kinetics of homodimerization of a prototypic GPCR, the µ-opioid receptor (MOR), embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol lipid bilayer. Analysis of these computations identifies kinetically distinct macrostates comprising several different short-lived dimeric configurations of either inactive or activated MOR. Calculated kinetic rates and fractions of dimers at different MOR concentrations suggest a negligible population of MOR homodimers at physiological concentrations, which is supported by acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments. This study provides a rigorous, quantitative explanation for some conflicting experimental data on GPCR oligomerization.

  1. Synthesis, fungicidal evaluation and 3D-QSAR studies of novel 1,3,4-thiadiazole xylofuranose derivatives

    PubMed Central

    Zong, Guanghui; Yan, Xiaojing; Bi, Jiawei; Jiang, Rui; Qin, Yinan; Yuan, Huizhu; Lu, Huizhe; Dong, Yanhong; Jin, Shuhui; Zhang, Jianjun

    2017-01-01

    1,3,4-Thiadiazole and sugar-derived molecules have proven to be promising agrochemicals with growth promoting, insecticidal and fungicidal activities. In the research field of agricultural fungicide, applying union of active group we synthesized a new set of 1,3,4-thiadiazole xylofuranose derivatives and all of the compounds were characterized by 1H NMR and HRMS. In precise toxicity measurement, some of compounds exhibited more potent fungicidal activities than the most widely used commercial fungicide Chlorothalonil, promoting further research and development. Based on our experimental data, 3D-QSAR (three-dimensional quantitative structure-activity relationship) was established and investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques, helping to better understand the structural requirements of lead compounds with high fungicidal activity and environmental compatibility. PMID:28746366

  2. A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research

    PubMed Central

    Lewis, Matthew A.; Richer, Edmond; Slavine, Nikolai V.; Kodibagkar, Vikram D.; Soesbe, Todd C.; Antich, Peter P.; Mason, Ralph P.

    2013-01-01

    Bioluminescent imaging (BLI) of cells expressing luciferase is a valuable noninvasive technique for investigating molecular events and tumor dynamics in the living animal. Current usage is often limited to planar imaging, but tomographic imaging can enhance the usefulness of this technique in quantitative biomedical studies by allowing accurate determination of tumor size and attribution of the emitted light to a specific organ or tissue. Bioluminescence tomography based on a single camera with source rotation or mirrors to provide additional views has previously been reported. We report here in vivo studies using a novel approach with multiple rotating cameras that, when combined with image reconstruction software, provides the desired representation of point source metastases and other small lesions. Comparison with MRI validated the ability to detect lung tumor colonization in mouse lung. PMID:26824926

  3. Postassembly chemical modification of a highly ordered organosilane multilayer: new insights into the structure, bonding, and dynamics of self-assembling silane monolayers.

    PubMed

    Wen, Ke; Maoz, Rivka; Cohen, Hagai; Sagiv, Jacob; Gibaud, Alain; Desert, Anne; Ocko, Benjamin M

    2008-03-01

    Experimental evidence derived from a comprehensive study of a self-assembled organosilane multilayer film system undergoing a process of postassembly chemical modification that affects interlayer-located polar groups of the constituent molecules while preserving its overall molecular architecture allows a quantitative evaluation of both the degree of intralayer polymerization and that of interlayer covalent bonding of the silane headgroups in a highly ordered layer assembly of this type. The investigated system consists of a layer-by-layer assembled multilayer of a bifunctional n-alkyl silane with terminal alcohol group that is in situ converted, via a wet chemical oxidation process conducted on the entire multilayer, to the corresponding carboxylic acid function. A combined chemical-structural analysis of data furnished by four different techniques, Fourier transform infrared spectroscopy (FTIR), synchrotron X-ray scattering, X-ray photoelectron spectroscopy (XPS), and contact angle measurements, demonstrates that the highly ordered 3D molecular arrangement of the initial alcohol-silane multilayer stack is well preserved upon virtually quantitative conversion of the alcohol to carboxylic acid and the concomitant irreversible cleavage of interlayer covalent bonds. Thus, the correlation of quantitative chemical and structural data obtained from such unreacted and fully reacted film samples offers an unprecedented experimental framework within which it becomes possible to differentiate between intralayer and interlayer covalent bonding. In addition, the use of a sufficiently thick multilayer effectively eliminates the interfering contributions of the underlying silicon oxide substrate to both the X-ray scattering and XPS data. The present findings contribute a firm experimental basis to the elucidation of the self-assembly mechanism, the molecular organization, and the modes and dynamics of intra- and interlayer bonding prevailing in highly ordered organosilane films; with further implications for the rational exploitation of some of the unique options such supramolecular surface entities can offer in the advancement of a chemical nanofabrication methodology.

  4. Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors

    NASA Astrophysics Data System (ADS)

    Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-07-01

    A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.

  5. Charge transport with single molecules--an electrochemical approach.

    PubMed

    Li, Chen; Mishchenko, Artem; Pobelov, Ilya; Wandlowski, Thomas

    2010-01-01

    After an introduction and brief review of charge transport in nanoscale molecular systems we report on experimental studies in gold / (single) molecule / gold junctions at solid / liquid interfaces employing a scanning tunneling microscopy (STM)-based 'break junction' technique. We demonstrate attempts in developing basic relationships between molecular structure, conductance properties and nanoscale electrochemical concepts based on four case studies from our own work. In experiments with alpha, omega-alkanedithiol and biphenyldithiol molecular junctions we address the role of sulfur-gold couplings and molecular conformation, such as gauche defects in the alkyl chains and the torsion angle between two phenyl rings. Combination with quantum chemistry calculations enabled a detailed molecular-level understanding of the electronic structure and transport characteristics of both systems. Employing the concept of 'electrolyte gating' with redox-active molecules, such as thiol-terminated derivatives of viologens (HS-6V6-SH or (HS-6V6)) we demonstrate the construction of symmetric and asymmetric active molecular junctions with transistor- or diode-like behavior upon polarization in an electrochemical environment. The experimental data could be represented quantitatively by the Kutznetsov/Ulstrup model assuming a two-step electron transfer with partial vibration relaxation. Finally, we show that surface-immobilized gold nanoparticles with a diameter of (2.4 +/- 0.5) nm exhibit features of locally addressable multi-state electronic switching upon electrolyte gating, which appears to be reminiscent of a sequential charging through several 'oxidation/reduction states'.

  6. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Puzyn, Tomasz; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy

    2013-06-01

    Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool to predict various endpoints for various substances. The "classic" QSPR/QSAR analysis is based on the representation of the molecular structure by the molecular graph. However, simplified molecular input-line entry system (SMILES) gradually becomes most popular representation of the molecular structure in the databases available on the Internet. Under such circumstances, the development of molecular descriptors calculated directly from SMILES becomes attractive alternative to "classic" descriptors. The CORAL software (http://www.insilico.eu/coral) is provider of SMILES-based optimal molecular descriptors which are aimed to correlate with various endpoints. We analyzed data set on nanoparticles uptake in PaCa2 pancreatic cancer cells. The data set includes 109 nanoparticles with the same core but different surface modifiers (small organic molecules). The concept of a QSAR as a random event is suggested in opposition to "classic" QSARs which are based on the only one distribution of available data into the training and the validation sets. In other words, five random splits into the "visible" training set and the "invisible" validation set were examined. The SMILES-based optimal descriptors (obtained by the Monte Carlo technique) for these splits are calculated with the CORAL software. The statistical quality of all these models is good. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  8. Behavioral and molecular studies of quantitative differences in hygienic behavior in honeybees.

    PubMed

    Gempe, Tanja; Stach, Silke; Bienefeld, Kaspar; Otte, Marianne; Beye, Martin

    2016-10-21

    Hygienic behavior (HB) enables honeybees to tolerate parasites, including infection with the parasitic mite Varroa destructor, and it is a well-known example of a quantitative genetic trait. The understanding of the molecular processes underpinning the quantitative differences in this behavior remains limited. We performed gene expression studies in worker bees that displayed quantitative genetic differences in HB. We established a high and low genetic source of HB performance and studied the engagements into HB of single worker bees under the same environmental conditions. We found that the percentage of worker bees that engaged in a hygienic behavioral task tripled in the high versus low HB sources, thus suggesting that genetic differences may mediate differences in stimulated states to perform HB. We found 501 differently expressed genes (DEGs) in the brains of hygienic and non-hygienic performing workers in the high HB source bees, and 342 DEGs in the brains of hygienic performing worker bees, relative to the gene expression in non-hygienic worker bees from the low HB source group. "Cell surface receptor ligand signal transduction" in the high and "negative regulation of cell communication" in the low HB source were overrepresented molecular processes, suggesting that these molecular processes in the brain may play a role in the regulation of quantitative differences in HB. Moreover, only 21 HB-associated DEGs were common between the high and low HB sources. The better HB colony performance is primarily achieved by a high number of bees engaging in the hygienic tasks that associate with distinct molecular processes in the brain. We propose that different gene products and pathways may mediate the quantitative genetic differences of HB.

  9. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can be much less sensitive than culture-based methods. d) More sensitive molecular techniques, such as quantitative polymerase chain reaction (QPCR), were able to identify viral DNA from ISS environments, suggesting potential transfer of the organism between crewmembers. In addition, the hardware selected for this experiment represented advances for next-generation sample collection. The advanced nature of this collection hardware was noted, when the Sartorius MD8 Air Port air sampler from the SWAB experiment remained on board ISS at the request of JAXA investigators, who intend to use it in completion of their microbial ecology experiment.

  10. Imaging of oxygen and hypoxia in cell and tissue samples.

    PubMed

    Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2018-05-14

    Molecular oxygen (O 2 ) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O 2 concentration, state of decreased O 2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O 2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O 2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.

  11. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  12. Photoacoustic characterization of human ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2010-02-01

    Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.

  13. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    NASA Astrophysics Data System (ADS)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  14. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    PubMed

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  15. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  16. Quantitative real-time analysis of collective cancer invasion and dissemination

    NASA Astrophysics Data System (ADS)

    Ewald, Andrew J.

    2015-05-01

    A grand challenge in biology is to understand the cellular and molecular basis of tissue and organ level function in mammals. The ultimate goals of such efforts are to explain how organs arise in development from the coordinated actions of their constituent cells and to determine how molecularly regulated changes in cell behavior alter the structure and function of organs during disease processes. Two major barriers stand in the way of achieving these goals: the relative inaccessibility of cellular processes in mammals and the daunting complexity of the signaling environment inside an intact organ in vivo. To overcome these barriers, we have developed a suite of tissue isolation, three dimensional (3D) culture, genetic manipulation, nanobiomaterials, imaging, and molecular analysis techniques to enable the real-time study of cell biology within intact tissues in physiologically relevant 3D environments. This manuscript introduces the rationale for 3D culture, reviews challenges to optical imaging in these cultures, and identifies current limitations in the analysis of complex experimental designs that could be overcome with improved imaging, imaging analysis, and automated classification of the results of experimental interventions.

  17. SERS Detection of Dopamine Using Label-Free Acridine Red as Molecular Probe in Reduced Graphene Oxide/Silver Nanotriangle Sol Substrate

    NASA Astrophysics Data System (ADS)

    Luo, Yanghe; Ma, Lu; Zhang, Xinghui; Liang, Aihui; Jiang, Zhiliang

    2015-05-01

    The reduced graphene oxide/silver nanotriangle (rGO/AgNT) composite sol was prepared by the reduction of silver ions with sodium borohydride in the presence of H2O2 and sodium citrate. In the nanosol substrate, the molecular probe of acridine red (AR) exhibited a weak surface-enhanced Raman scattering (SERS) peak at 1506 cm-1 due to its interaction with the rGO of rGO/AgNT. Upon addition of dopamine (DA), the competitive adsorption between DA and AR with the rGO took place, and the AR molecules were adsorbed on the AgNT aggregates with a strong SERS peak at 1506 cm-1 that caused the SERS peak increase. The increased SERS intensity is linear to the DA concentration in the range of 2.5-500 μmol/L. This new analytical system was investigated by SERS, fluorescence, absorption, transmission electron microscope (TEM), and scanning electron microscope (SEM) techniques, and a SERS quantitative analysis method for DA was established, using AR as a label-free molecular probe.

  18. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L. × Vitis amurensis Rupr.).

    PubMed

    Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu

    2015-01-01

    In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.

  19. Multicenter evaluation of molecular and culture-dependent diagnostics for Shigella species and Entero-invasive Escherichia coli in the Netherlands.

    PubMed

    van den Beld, Maaike J C; Friedrich, Alexander W; van Zanten, Evert; Reubsaet, Frans A G; Kooistra-Smid, Mirjam A M D; Rossen, John W A

    2016-12-01

    An inter-laboratory collaborative trial for the evaluation of diagnostics for detection and identification of Shigella species and Entero-invasive Escherichia coli (EIEC) was performed. Sixteen Medical Microbiological Laboratories (MMLs) participated. MMLs were interviewed about their diagnostic methods and a sample panel, consisting of DNA-extracts and spiked stool samples with different concentrations of Shigella flexneri, was provided to each MML. The results of the trial showed an enormous variety in culture-dependent and molecular diagnostic techniques currently used among MMLs. Despite the various molecular procedures, 15 out of 16 MMLs were able to detect Shigella species or EIEC in all the samples provided, showing that the diversity of methods has no effect on the qualitative detection of Shigella flexneri. In contrast to semi quantitative analysis, the minimum and maximum values per sample differed by approximately five threshold cycles (Ct-value) between the MMLs included in the study. This indicates that defining a uniform Ct-value cut-off for notification to health authorities is not advisable. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Double-labelling immunohistochemistry for MGMT and a “cocktail” of non-tumourous elements is a reliable, quick and easy technique for inferring methylation status in glioblastomas and other primary brain tumours

    PubMed Central

    2013-01-01

    Background Our aim was to develop a new protocol for MGMT immunohistochemistry with good agreement between observers and good correlation with molecular genetic tests of tumour methylation. We examined 40 primary brain tumours (30 glioblastomas and 10 oligodendroglial tumours) with our new technique, namely double-labelling immunohistochemistry for MGMT and a "cocktail" of non-tumour antigens (CD34, CD45 and CD68). We compared the results with single-labelling immunohistochemistry for MGMT and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA, a recognised molecular genetic technique which we applied as the gold-standard for the methylation status). Results Double-labelling immunohistochemistry for MGMT produced a visual separation of tumourous and non-tumourous elements on the same histological slide, making it quick and easy to determine whether tumour cell nuclei were MGMT-positive or MGMT-negative (and thereby infer the methylation status of the tumour). We found good agreement between observers (kappa 0.76) and within observer (kappa 0.84). Furthermore, double-labelling showed good specificity (80%), sensitivity (73.33%), positive predictive value (PPV, 83.33%) and negative predictive value (NPV, 68.75%) compared to MS-MLPA. Double-labelling was quicker and easier to assess than single-labelling and it outperformed quantitative computerised image analysis of MGMT single-labelling in terms of sensitivity, specificity, PPV and NPV. Conclusions Double-labelling immunohistochemistry for MGMT and a cocktail of non-tumourous elements provides a "one look" method for determining whether tumour cell nuclei are MGMT-positive or MGMT-negative. This can be used to infer the methylation status of the tumour. There is good observer agreement and good specificity, sensitivity, PPV and NPV compared to a molecular gold-standard. PMID:24252243

  1. Double-labelling immunohistochemistry for MGMT and a "cocktail" of non-tumourous elements is a reliable, quick and easy technique for inferring methylation status in glioblastomas and other primary brain tumours.

    PubMed

    Burke, Elinor; Grobler, Mariana; Elderfield, Kay; Bond, Frances; Crocker, Matthew; Taylor, Rohan; Bridges, Leslie R

    2013-06-10

    Our aim was to develop a new protocol for MGMT immunohistochemistry with good agreement between observers and good correlation with molecular genetic tests of tumour methylation. We examined 40 primary brain tumours (30 glioblastomas and 10 oligodendroglial tumours) with our new technique, namely double-labelling immunohistochemistry for MGMT and a "cocktail" of non-tumour antigens (CD34, CD45 and CD68). We compared the results with single-labelling immunohistochemistry for MGMT and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA, a recognised molecular genetic technique which we applied as the gold-standard for the methylation status). Double-labelling immunohistochemistry for MGMT produced a visual separation of tumourous and non-tumourous elements on the same histological slide, making it quick and easy to determine whether tumour cell nuclei were MGMT-positive or MGMT-negative (and thereby infer the methylation status of the tumour). We found good agreement between observers (kappa 0.76) and within observer (kappa 0.84). Furthermore, double-labelling showed good specificity (80%), sensitivity (73.33%), positive predictive value (PPV, 83.33%) and negative predictive value (NPV, 68.75%) compared to MS-MLPA. Double-labelling was quicker and easier to assess than single-labelling and it outperformed quantitative computerised image analysis of MGMT single-labelling in terms of sensitivity, specificity, PPV and NPV. Double-labelling immunohistochemistry for MGMT and a cocktail of non-tumourous elements provides a "one look" method for determining whether tumour cell nuclei are MGMT-positive or MGMT-negative. This can be used to infer the methylation status of the tumour. There is good observer agreement and good specificity, sensitivity, PPV and NPV compared to a molecular gold-standard.

  2. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng

    2014-06-01

    Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.

  3. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. © 2015 John Wiley & Sons A/S.

  4. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  5. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

    PubMed Central

    Stuker, Florian; Ripoll, Jorge; Rudin, Markus

    2011-01-01

    Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development. PMID:24310495

  6. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    PubMed

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  8. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  9. Mass spectrometry-based proteomics for translational research: a technical overview.

    PubMed

    Paulo, Joao A; Kadiyala, Vivek; Banks, Peter A; Steen, Hanno; Conwell, Darwin L

    2012-03-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.

  10. Remote measurements of the atmosphere using Raman scattering.

    PubMed

    Melfi, S H

    1972-07-01

    The Raman optical radar measurements of the atmosphere presented demonstrate that the technique may be used to obtain quantitative measurements of the spatial distribution of individual atmospheric molecular trace constituents, in particular water vapor, as well as those of the major constituents. In addition, it is shown that monitoring Raman signals from atmospheric nitrogen aids in interpreting elastic scattering measurements by eliminating attenuation effects. In general, the experimental results show good agreement with independent meteorological measurements. Finally, experimental data are utilized to estimate the Raman backscatter cross section for water vapor excited at 3471.5 A as sigmaH(2)O/sigmaN(2) = 3.8 +/- 25%.

  11. Experiment requirements: Vitamin D metabolites and bone demineralization, Spacelab 2, experiment no. 1

    NASA Technical Reports Server (NTRS)

    Schnoes, H. K.; Holton, E. M.; Thirolf, R. G.

    1978-01-01

    As a contribution toward an understanding of the molecular basis of bone loss, mineral imbalance, and increasing fecal calcium under conditions of prolonged space flight, the blood levels of biologically active vitamin D metabolites of flight crew members will be quantitatively measured. Prior to the mission, the refinement of existing and the development of new techniques for the assay of all vitamin D metabolites will provide an arsenal of methods suitable for a wide range of metabolite levels. In terms of practical application, the analysis of human and animal plasma samples, Spacelab crew plasma samples, and flight hardware are envisioned.

  12. Mass Spectrometry-Based Proteomics for Translational Research: A Technical Overview

    PubMed Central

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease. PMID:22461744

  13. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  14. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  15. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing

    PubMed Central

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-01-01

    Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393

  16. A quantitative image cytometry technique for time series or population analyses of signaling networks.

    PubMed

    Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya

    2010-04-01

    Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.

  17. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  18. Strain field determination in III-V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale

    NASA Astrophysics Data System (ADS)

    Florini, Nikoletta; Dimitrakopulos, George P.; Kioseoglou, Joseph; Pelekanos, Nikos T.; Kehagias, Thomas

    2017-04-01

    We are briefly reviewing the current status of elastic strain field determination in III-V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III-V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III-V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.

  19. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    NASA Astrophysics Data System (ADS)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  20. Somatic mutation detection in human biomonitoring.

    PubMed

    Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K

    1996-06-01

    Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.

  1. Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents

    PubMed Central

    Rella, Courtney E.; Ruel, Nancy; Eugenin, Eliseo A.

    2015-01-01

    Despite significant advances in microbiology and molecular biology over the last decades, several infectious diseases remain global concerns, resulting in the death of millions of people worldwide each year. According to the Center for Disease Control (CDC) in 2012, there were 34 million people infected with HIV, 8.7 million new cases of tuberculosis, 500 million cases of hepatitis, and 50–100 million people infected with dengue. Several of these pathogens, despite high incidence, do not have reliable clinical detection methods. New or improved protocols have been generated to enhance detection and quantitation of several pathogens using high-end microscopy (light, confocal, and STORM microscopy) and imaging software. In the current manuscript, we discuss these approaches and the theories behind these methodologies. Thus, advances in imaging techniques will open new possibilities to discover therapeutic interventions to reduce or eliminate the devastating consequences of infectious diseases. PMID:24990818

  2. Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer

    PubMed Central

    Greco, Adelaide; Orlandella, Francesca Maria; Iervolino, Paola Lucia Chiara; Klain, Michele; Salvatore, Giuliana

    2017-01-01

    Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology; other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types. Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer. PMID:29258188

  3. pyQms enables universal and accurate quantification of mass spectrometry data.

    PubMed

    Leufken, Johannes; Niehues, Anna; Sarin, L Peter; Wessel, Florian; Hippler, Michael; Leidel, Sebastian A; Fufezan, Christian

    2017-10-01

    Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review

    PubMed Central

    Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio

    2009-01-01

    Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310

  5. In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina

    NASA Astrophysics Data System (ADS)

    Gellermann, Werner; Ermakov, Igor V.; Ermakova, Maia R.; McClane, Robert W.; Zhao, Da-You; Bernstein, Paul S.

    2002-06-01

    We have used resonant Raman scattering spectroscopy as a novel, noninvasive, in vivo optical technique to measure the concentration of the macular carotenoid pigments lutein and zeaxanthin in the living human retina of young and elderly adults. Using a backscattering geometry and resonant molecular excitation in the visible wavelength range, we measure the Raman signals originating from the single- and double-bond stretch vibrations of the π-conjugated molecule's carbon backbone. The Raman signals scale linearly with carotenoid content, and the required laser excitation is well below safety limits for macular exposure. Furthermore, the signals decline significantly with increasing age in normal eyes. The Raman technique is objective and quantitative and may lead to a new method for rapid screening of carotenoid pigment levels in large populations at risk for vision loss from age-related macular degeneration, the leading cause of blindness in the elderly in the United States.

  6. Microbial quantification in activated sludge: the hits and misses.

    PubMed

    Hall, S J; Keller, J; Blackall, L L

    2003-01-01

    Since the implementation of the activated sludge process for treating wastewater, there has been a reliance on chemical and physical parameters to monitor the system. However, in biological nutrient removal (BNR) processes, the microorganisms responsible for some of the transformations should be used to monitor the processes with the overall goal to achieve better treatment performance. The development of in situ identification and rapid quantification techniques for key microorganisms involved in BNR are required to achieve this goal. This study explored the quantification of Nitrospira, a key organism in the oxidation of nitrite to nitrate in BNR. Two molecular genetic microbial quantification techniques were evaluated: real-time polymerase chain reaction (PCR) and fluorescence in situ hybridisation (FISH) followed by digital image analysis. A correlation between the Nitrospira quantitative data and the nitrate production rate, determined in batch tests, was attempted. The disadvantages and advantages of both methods will be discussed.

  7. Overview of Brain Microdialysis

    PubMed Central

    Chefer, Vladimir I.; Thompson, Alexis C.; Zapata, Agustin; Shippenberg, Toni S.

    2010-01-01

    The technique of microdialysis enables sampling and collecting of small-molecular-weight substances from the interstitial space. It is a widely used method in neuroscience and is one of the few techniques available that permits quantification of neurotransmitters, peptides, and hormones in the behaving animal. More recently, it has been used in tissue preparations for quantification of neurotransmitter release. This unit provides a brief review of the history of microdialysis and its general application in the neurosciences. The authors review the theoretical principles underlying the microdialysis process, methods available for estimating extracellular concentration from dialysis samples (i.e., relative recovery), the various factors that affect the estimate of in vivo relative recovery, and the importance of determining in vivo relative recovery to data interpretation. Several areas of special note, including impact of tissue trauma on the interpretation of microdialysis results, are discussed. Step-by-step instructions for the planning and execution of conventional and quantitative microdialysis experiments are provided. PMID:19340812

  8. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques.

    PubMed

    Kilic, Tugba; Erdem, Arzum; Ozsoz, Mehmet; Carrara, Sandro

    2018-01-15

    As being the most extensively studied, non-coding, evolutionary conserved, post-transcriptional gene regulators of genome, microRNAs (miRNAs) have taken great attention among various disciplines due to their important roles in biological processes and link with cancer. Due to their diagnostic value, there have been many conventional methods used in detection of miRNAs including northern blotting, quantitative real time PCR (qRT-PCR) and microarray technology besides novel techniques based on various nanotechnology approaches and molecular biology tools including miRNA biosensors. The aim of this review is to explain the importance of miRNAs in biomedical field with an emphasis on early cancer diagnosis by overviewing both research based and commercially available miRNA detection methods in the last decade considering their strengths and weakness with an emphasis on miRNA biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Methods to study Drosophila immunity.

    PubMed

    Neyen, Claudine; Bretscher, Andrew J; Binggeli, Olivier; Lemaitre, Bruno

    2014-06-15

    Innate immune mechanisms are well conserved throughout evolution, and many theoretical concepts, molecular pathways and gene networks are applicable to invertebrate model organisms as much as vertebrate ones. Drosophila immunity research benefits from an easily manipulated genome, a fantastic international resource of transgenic tools and over a quarter century of accumulated techniques and approaches to study innate immunity. Here we present a short collection of ways to challenge the fruit fly immune system with various pathogens and parasites, as well as read-outs to assess its functions, including cellular and humoral immune responses. Our review covers techniques for assessing the kinetics and efficiency of immune responses quantitatively and qualitatively, such as survival analysis, bacterial persistence, antimicrobial peptide gene expression, phagocytosis and melanisation assays. Finally, we offer a toolkit of Drosophila strains available to the research community for current and future research. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Study of quantitative changes of cereal allergenic proteins after food processing.

    PubMed

    Flodrová, Dana; Benkovská, Dagmar; Laštovičková, Markéta

    2015-03-30

    Within last few years, the occurrence of food allergens and corresponding food allergies has been increasing, therefore research into the individual allergens is required. In the present work, the effect of cereal processing on the amounts of allergenic proteins is studied by modern proteomic-based approaches. The most important wheat and barley allergens are low-molecular-weight (LMW) proteins. Therefore we investigated the relative quantitative changes of these proteins after food technological processing, namely wheat couscous production and barley malting. A comparative study using mass spectrometry in connection with the technique of isobaric tag for relative and absolute quantification (iTRAQ) revealed that the amount of wheat allergenic LMW proteins decreased significantly during couscous production (approximately to 5-26% of their initial content in wheat flour). After barley malting, the amounts of the majority of LMW proteins decreased as well, although to a lesser extent than in the case of wheat/couscous. The level of two allergens even slightly increased. Suggested proteomic strategy proved as universal and sensitive method for fast and reliable identification of various cereal allergens and monitoring of their quantitative changes during food processing. Such information is important for consumers who suffer from allergies. © 2014 Society of Chemical Industry.

  11. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  12. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    PubMed

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  13. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features. PMID:26579116

  14. Novel Chromosomal Rearrangements and breakpoints at the t(6;9) in Salivary Adenoid Cystic Carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome

    PubMed Central

    Mitani, Yoshitsugu; Rao, Pulivarthi H.; Futreal, P. Andrew; Roberts, Dianna B.; Stephens, Philip J.; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S.; Lippman, Scott M.; Caulin, Carlos; El-Naggar, Adel K.

    2011-01-01

    Objective To investigate the molecular-genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Experimental Design Multi-molecular and genetic techniques complemented with massive pair-ended sequencing and SNP array analyses were used on tumor specimens from 30 new and 52 previously RT-PCR analyzed fusion transcript negative ACCs. MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients’ survival. Results The FISH analysis showed 34/82 (41.5%) fusion positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% while fusion transcript forming incidence was 38.2%. Significant statistical association between the 5′ MYB transcript expression and patient survival was found. Conclusions We conclude that: 1) t(6;9) results in a complex genetic and molecular alterations in ACC, 2) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, 3) non-canonical MYB, NFIB gene fusions occur in a subset of tumors, 4) high MYB expression correlates with worse patient survival. PMID:21976542

  15. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food.

    PubMed

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features.

  16. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  17. Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract: comparison of HPLC-ELSD, LC-ESI-MS/MS and GC-MS.

    PubMed

    Sun, Shihao; Wang, Hui; Xie, Jianping; Su, Yue

    2016-01-01

    Jujube extract is commonly used as a food additive and flavoring. The sensory properties of the extract, especially sweetness, are a critical factor determining the product quality and therefore affecting consumer acceptability. Small molecular carbohydrates make major contribution to the sweetness of the jujube extract, and their types and contents in the extract have direct influence on quality of the product. So, an appropriate qualitative and quantitative method for determination of the carbohydrates is vitally important for quality control of the product. High performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD), liquid chromatography-electronic spay ionization tandem mass spectrometry (LC-ESI-MS/MS), and gas chromatography-mass spectrometry (GC-MS) methods have been developed and applied to determining small molecular carbohydrates in jujube extract, respectively. Eight sugars and alditols were identified from the extract, including rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, and maltose. Comparisons were carried out to investigate the performance of the methods. Although the methods have been found to perform satisfactorily, only three sugars (fructose, glucose and inositol) could be detected by all these methods. Meanwhile, a similar quantitative result for the three sugars can be obtained by the methods. Eight sugars and alditols in the jujube extract were determined by HPLC-ELSD, LC-ESI-MS/MS and GC-MS, respectively. The LC-ELSD method and the LC-ESI-MS/MS method with good precision and accuracy were suitable for quantitative analysis of carbohydrates in jujube extract; although the performance of the GC-MS method for quantitative analysis was inferior to the other methods, it has a wider scope in qualitative analysis. A multi-analysis technique should be adopted in order to obtain complete constituents of about the carbohydrates in jujube extract, and the methods should be employed according to the purpose of analysis.

  18. A Novel In Vivo Protocol for Molecular Study of Radiation-Induced Fibrosis in Head and Neck Cancer Patients.

    PubMed

    Krisciunas, Gintas P; Platt, Michael; Trojanowska, Maria; Grillone, Gregory A; Haines, Paul C; Langmore, Susan E

    2016-03-01

    Radiation-induced fibrosis is a common complication for patients following head and neck cancer treatment. This study presents a novel minimally invasive protocol for molecular study of fibrosis in the stromal tissues. Subjects with radiation-induced fibrosis in the head and neck who were at least 6 months post treatment received submental core needle biopsies, followed by molecular processing and quantification of gene expression for 14 select pro-inflammatory and pro-fibrotic genes. Control biopsies from the upper arm were obtained from the same subjects. Patients were followed up at 1 and 2 weeks to monitor for safety and adverse outcomes. Six subjects were enrolled and completed the study. No subjects experienced adverse outcomes or complication. An 18 gauge core biopsy needle with a 10 mm notch inserted for up to 60 seconds was needed. Subcutaneous tissue yielded 3 ng of RNA, amplified to 6 µg of cDNA, allowing for adequately sensitive quantitative polymerase chain reaction (qPCR) analysis of approximately 28 genes. This study demonstrates the safety and utility of a novel technique for the molecular study of fibrosis in head and neck cancer patients. Longitudinal studies of patients undergoing radiation therapy will allow for identification of molecular targets that contribute to the process of fibrosis in the head and neck. © The Author(s) 2015.

  19. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in detail with numerical examples.

  20. Segmentation and detection of fluorescent 3D spots.

    PubMed

    Ram, Sundaresh; Rodríguez, Jeffrey J; Bosco, Giovanni

    2012-03-01

    The 3D spatial organization of genes and other genetic elements within the nucleus is important for regulating gene expression. Understanding how this spatial organization is established and maintained throughout the life of a cell is key to elucidating the many layers of gene regulation. Quantitative methods for studying nuclear organization will lead to insights into the molecular mechanisms that maintain gene organization as well as serve as diagnostic tools for pathologies caused by loss of nuclear structure. However, biologists currently lack automated and high throughput methods for quantitative and qualitative global analysis of 3D gene organization. In this study, we use confocal microscopy and fluorescence in-situ hybridization (FISH) as a cytogenetic technique to detect and localize the presence of specific DNA sequences in 3D. FISH uses probes that bind to specific targeted locations on the chromosomes, appearing as fluorescent spots in 3D images obtained using fluorescence microscopy. In this article, we propose an automated algorithm for segmentation and detection of 3D FISH spots. The algorithm is divided into two stages: spot segmentation and spot detection. Spot segmentation consists of 3D anisotropic smoothing to reduce the effect of noise, top-hat filtering, and intensity thresholding, followed by 3D region-growing. Spot detection uses a Bayesian classifier with spot features such as volume, average intensity, texture, and contrast to detect and classify the segmented spots as either true or false spots. Quantitative assessment of the proposed algorithm demonstrates improved segmentation and detection accuracy compared to other techniques. Copyright © 2012 International Society for Advancement of Cytometry.

  1. Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T.

    PubMed

    Lee, Hedok; Mortensen, Kristian; Sanggaard, Simon; Koch, Palle; Brunner, Hans; Quistorff, Bjørn; Nedergaard, Maiken; Benveniste, Helene

    2018-03-01

    We propose a quantitative technique to assess solute uptake into the brain parenchyma based on dynamic contrast-enhanced MRI (DCE-MRI). With this approach, a small molecular weight paramagnetic contrast agent (Gd-DOTA) is infused in the cerebral spinal fluid (CSF) and whole brain gadolinium concentration maps are derived. We implemented a 3D variable flip angle spoiled gradient echo (VFA-SPGR) longitudinal relaxation time (T1) technique, the accuracy of which was cross-validated by way of inversion recovery rapid acquisition with relaxation enhancement (IR-RARE) using phantoms. Normal Wistar rats underwent Gd-DOTA infusion into CSF via the cisterna magna and continuous MRI for approximately 130 min using T1-weighted imaging. Dynamic Gd-DOTA concentration maps were calculated and parenchymal uptake was estimated. In the phantom study, T1 discrepancies between the VFA-SPGR and IR-RARE sequences were approximately 6% with a transmit coil inhomogeneity correction. In the in vivo study, contrast transport profiles indicated maximal parenchymal retention of approximately 19% relative to the total amount delivered into the cisterna magna. Imaging strategies for accurate 3D contrast concentration mapping at 9.4T were developed and whole brain dynamic concentration maps were derived to study solute transport via the glymphatic system. The newly developed approach will enable future quantitative studies of the glymphatic system in health and disease states. Magn Reson Med 79:1568-1578, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. An Insilico Design of Nanoclay Based Nanocomposites and Scaffolds in Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Sharma, Anurag

    A multiscale in silico approach to design polymer nanocomposites and scaffolds for bone tissue engineering applications is described in this study. This study focuses on the role of biomaterials design and selection, structural integrity and mechanical properties evolution during degradation and tissue regeneration in the successful design of polymer nanocomposite scaffolds. Polymer nanocomposite scaffolds are synthesized using aminoacid modified montmorillonite nanoclay with biomineralized hydroxyapatite and polycaprolactone (PCL/in situ HAPclay). Representative molecular models of polymer nanocomposite system are systematically developed using molecular dynamics (MD) technique and successfully validated using material characterization techniques. The constant force steered molecular dynamics (fSMD) simulation results indicate a two-phase nanomechanical behavior of the polymer nanocomposite. The MD and fSMD simulations results provide quantitative contributions of molecular interactions between different constituents of representative models and their effect on nanomechanical responses of nanoclay based polymer nanocomposite system. A finite element (FE) model of PCL/in situ HAPclay scaffold is built using micro-computed tomography images and bridging the nanomechanical properties obtained from fSMD simulations into the FE model. A new reduction factor, K is introduced into modeling results to consider the effect of wall porosity of the polymer scaffold. The effect of accelerated degradation under alkaline conditions and human osteoblast cells culture on the evolution of mechanical properties of scaffolds are studied and the damage mechanics based analytical models are developed. Finally, the novel multiscale models are developed that incorporate the complex molecular and microstructural properties, mechanical properties at nanoscale and structural levels and mechanical properties evolution during degradation and tissue formation in the polymer nanocomposite scaffold. Overall, this study provides a leap into methodologies for in silico design of biomaterials for bone tissue engineering applications. Furthermore, as a part of this work, a molecular dynamics study of rice DNA in the presence of single walled carbon nanotube is carried out to understand the role played by molecular interactions in the conformation changes of rice DNA. The simulations results showed wrapping of DNA onto SWCNT, breaking and forming of hydrogen bonds due to unzipping of Watson-Crick (WC) nucleobase pairs and forming of new non-WC nucleobase pairs in DNA.

  3. Intermolecular and interfacial forces: Elucidating molecular mechanisms using chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Ashby, Paul David

    Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.

  4. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  5. Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Zhou, Bo

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.

  6. Quantitative insights for the design of substrate-based SIRT1 inhibitors.

    PubMed

    Kokkonen, Piia; Mellini, Paolo; Nyrhilä, Olli; Rahnasto-Rilla, Minna; Suuronen, Tiina; Kiviranta, Päivi; Huhtiniemi, Tero; Poso, Antti; Jarho, Elina; Lahtela-Kakkonen, Maija

    2014-08-01

    Sirtuin 1 (SIRT1) is the most studied human sirtuin and it catalyzes the deacetylation reaction of acetylated lysine residues of its target proteins, for example histones. It is a promising drug target in the treatment of age-related diseases, such as neurodegenerative diseases and cancer. In this study, a series of known substrate-based sirtuin inhibitors was analyzed with comparative molecular field analysis (CoMFA), which is a three-dimensional quantitative structure-activity relationships (3D-QSAR) technique. The CoMFA model was validated both internally and externally, producing the statistical values concordance correlation coefficient (CCC) of 0.88, the mean value r(2)m of 0.66 and Q(2)F3 of 0.89. Based on the CoMFA interaction contours, 13 new potential inhibitors with high predicted activity were designed, and the activities were verified by in vitro measurements. This work proposes an effective approach for the design and activity prediction of new potential substrate-based SIRT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Astrophysics Data System (ADS)

    Haering, Edward A.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2006-05-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  8. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine

    PubMed Central

    Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Lourido, Lucía; Rocha, Beatriz; Fernández-Costa, Carolina; Montell, Eulalia; Vergés, Josep; Ruiz-Romero, Cristina; Blanco, Francisco J.

    2014-01-01

    Osteoarthritis (OA) is the most common age-related rheumatic disease. Chondrocytes play a primary role in mediating cartilage destruction and extracellular matrix (ECM) breakdown, which are main features of the OA joint. Quantitative proteomics technologies are demonstrating a very interesting power for studying the molecular effects of some drugs currently used to treat OA patients, such as chondroitin sulfate (CS) and glucosamine (GlcN). In this work, we employed the iTRAQ (isobaric tags for relative and absolute quantitation) technique to assess the effect of CS and GlcN, both alone and in combination, in modifying cartilage ECM metabolism by the analysis of OA chondrocytes secretome. 186 different proteins secreted by the treated OA chondrocytes were identified. 36 of them presented statistically significant differences (p ≤ 0.05) between untreated and treated samples: 32 were increased and 4 decreased. The synergistic chondroprotective effect of CS and GlcN, firstly reported by our group at the intracellular level, is now demonstrated also at the extracellular level. PMID:24912619

  9. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2005-01-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  10. Quantitative Analysis of Protein Translocations by Microfluidic Total Internal Reflection Fluorescence Flow Cytometry

    PubMed Central

    Wang, Jun; Fei, Bei; Geahlen, Robert L.

    2010-01-01

    Protein translocation, or the change in a protein’s location between different subcellular compartments, is a critical process by which intracellular proteins carry out their cellular functions. Aberrant translocation events contribute to various diseases ranging from metabolic disorders to cancer. In this study, we demonstrate the use of a newly developed single-cell tool, microfluidic total internal reflection fluorescence flow cytometry (TIRF-FC), for detecting both cytosol to plasma membrane and cytosol to nucleus translocations using the tyrosine kinase Syk and the transcription factor NF-κB as models. This technique detects fluorescent molecules at the plasma membrane and in the membrane-proximal cytosol in single cells. We were able to record quantitatively changes in the fluorescence density in the evanescent field associated with these translocation processes for large cell populations with single cell resolution. We envision that TIRF-FC will provide a new approach to explore the molecular biology and clinical relevance of protein translocations. PMID:20820633

  11. Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development

    PubMed Central

    Murray, Jessica R.; Stanciauskas, Monika E.; Aralere, Tejas S.; Saha, Margaret S.

    2014-01-01

    The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access. PMID:24999108

  12. Formalizing the definition of meta-analysis in Molecular Ecology.

    PubMed

    ArchMiller, Althea A; Bauer, Eric F; Koch, Rebecca E; Wijayawardena, Bhagya K; Anil, Ammu; Kottwitz, Jack J; Munsterman, Amelia S; Wilson, Alan E

    2015-08-01

    Meta-analysis, the statistical synthesis of pertinent literature to develop evidence-based conclusions, is relatively new to the field of molecular ecology, with the first meta-analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta-analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta-analyses previously published in this journal. We also provide a brief overview of the many components required for meta-analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta-analysis. We performed a literature review to identify articles published as 'meta-analyses' in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta-analyses published in Molecular Ecology have the potential to set the standard for meta-analyses in other journals. We found that while many of these reviewed articles were strong meta-analyses, others failed to follow standard meta-analytical techniques. One of these unsatisfactory meta-analyses was in fact a secondary analysis. Other studies attempted meta-analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta-analysis. By drawing attention to the inconsistency of studies labelled as meta-analyses, we emphasize the importance of understanding the components of traditional meta-analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. © 2015 John Wiley & Sons Ltd.

  13. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  14. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with Multi-Fractality and Visibility Graph

    PubMed Central

    Bhaduri, Anirban; Ghosh, Dipak

    2016-01-01

    The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation. PMID:26909045

  15. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with Multi-Fractality and Visibility Graph.

    PubMed

    Bhaduri, Anirban; Ghosh, Dipak

    2016-01-01

    The cardiac dynamics during meditation is explored quantitatively with two chaos-based non-linear techniques viz. multi-fractal detrended fluctuation analysis and visibility network analysis techniques. The data used are the instantaneous heart rate (in beats/minute) of subjects performing Kundalini Yoga and Chi meditation from PhysioNet. The results show consistent differences between the quantitative parameters obtained by both the analysis techniques. This indicates an interesting phenomenon of change in the complexity of the cardiac dynamics during meditation supported with quantitative parameters. The results also produce a preliminary evidence that these techniques can be used as a measure of physiological impact on subjects performing meditation.

  16. The confined [Bmim][BF4] ionic liquid flow through graphene oxide nanochannels: a molecular dynamics study.

    PubMed

    Wang, Yanlei; Huo, Feng; He, Hongyan; Zhang, Suojiang

    2018-06-20

    Ionic liquid (IL) flow in graphene oxide (GO) nanochannels plays a key role in the performance of IL- and GO-based fluidics devices and other chemical separator techniques. Here, we investigate the flow behavior of ILs in GO nanochannels via molecular dynamics simulations. The quantitative relation between slip velocity and shear stress has been identified, showing that the interfacial friction coefficient can be enhanced by almost sixty times, while the slip length is reduced by about three orders of magnitude, with the fraction of hydroxylation in graphene ranging from 0% to 15%. The great change in interfacial properties can be attributed to the structural changes of IL layers near GO, which is proved by the detailed analysis of density distribution, charge distribution and radial distribution function. Besides, the viscosity will increase as a fraction of hydroxylation because of the partial breaking of coulombic ordering of confined ILs. Meanwhile, the hydroxyls have more significant effects on IL flow than water flow in GO nanochannels due to the stronger interaction networks in IL/GO interfaces. In summary, hydroxylation can be a convincing method to regulate the IL flow in nanochannels. The quantitative properties of confined ILs in GO nanochannels and their relation to the fraction of hydroxylation could deepen the understanding of ILs and benefit the applications of ILs and GO in the fields of chemical engineering and various other nanofluidic devices.

  17. A molecular investigation of soil organic carbon composition across a subalpine catchment

    USGS Publications Warehouse

    Hsu, Hsiao-Tieh; Lawrence, Corey R.; Winnick, Matthew J.; Bargar, John R.; Maher, Katharine

    2018-01-01

    The dynamics of soil organic carbon (SOC) storage and turnover are a critical component of the global carbon cycle. Mechanistic models seeking to represent these complex dynamics require detailed SOC compositions, which are currently difficult to characterize quantitatively. Here, we address this challenge by using a novel approach that combines Fourier transform infrared spectroscopy (FT-IR) and bulk carbon X-ray absorption spectroscopy (XAS) to determine the abundance of SOC functional groups, using elemental analysis (EA) to constrain the total amount of SOC. We used this SOC functional group abundance (SOC-fga) method to compare variability in SOC compositions as a function of depth across a subalpine watershed (East River, Colorado, USA) and found a large degree of variability in SOC functional group abundances between sites at different elevations. Soils at a lower elevation are predominantly composed of polysaccharides, while soils at a higher elevation have more substantial portions of carbonyl, phenolic, or aromatic carbon. We discuss the potential drivers of differences in SOC composition between these sites, including vegetation inputs, internal processing and losses, and elevation-driven environmental factors. Although numerical models would facilitate the understanding and evaluation of the observed SOC distributions, quantitative and meaningful measurements of SOC molecular compositions are required to guide such models. Comparison among commonly used characterization techniques on shared reference materials is a critical next step for advancing our understanding of the complex processes controlling SOC compositions.

  18. Label-Free Imaging of Female Genital Tract Melanocytic Lesions With Pump-Probe Microscopy: A Promising Diagnostic Tool.

    PubMed

    Robles, Francisco E; Deb, Sanghamitra; Fischer, Martin C; Warren, Warren S; Selim, Maria Angelica

    2017-04-01

    Melanomas of the female genital tract present a unique clinical challenge. Not only are these lesions in an anatomically sensitive area, but also they tend to be multifocal and have high recurrence rates. Furthermore, several benign melanocytic proliferations resemble early-stage melanoma clinically and/or histopathologically. Thus, there is a significant need for additional tools that can help correctly diagnose and stage these lesions. Here, we quantitatively and nondestructively analyze the chemical composition of melanin in excised pigmented lesions of the female genital tract using pump-probe microscopy, a high-resolution optical imaging technique that is sensitive to many biochemical properties of melanin. Thirty-one thin (~5 μm) tissue sections previously excised from female genital tract melanocytic lesions were imaged with pump-probe microscopy and analyzed. We find significant quantitative differences in melanin type and structure between melanoma and nonmalignant melanocytic proliferations. Our analysis also suggests a link between the molecular signatures of melanins and lesion-specific genetic mutations. Finally, significant differences are found between metastatic and nonmetastatic melanomas. The limitations of this work include the fact that molecular information is restricted to melanin pigment and the sample size is relatively small. Pump-probe microscopy provides unique information regarding the biochemical composition of genital tract melanocytic lesions, which can be used to improve the diagnosis and staging of vulvar melanomas.

  19. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  20. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    PubMed

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Quantitative proteomic and transcriptomic analyses of molecular mechanisms associated with low silk production in silkworm Bombyx mori.

    PubMed

    Wang, Shao-Hua; You, Zheng-Ying; Ye, Lu-Peng; Che, Jiaqian; Qian, Qiujie; Nanjo, Yohei; Komatsu, Setsuko; Zhong, Bo-Xiong

    2014-02-07

    To investigate the molecular mechanisms underlying the low fibroin production of the ZB silkworm strain, we used both SDS-PAGE-based and gel-free-based proteomic techniques and transcriptomic sequencing technique. Combining the data from two different proteomic techniques was preferable in the characterization of the differences between the ZB silkworm strain and the original Lan10 silkworm strain. The correlation analysis showed that the individual protein and transcript were not corresponded well, however, the differentially changed proteins and transcripts showed similar regulated direction in function at the pathway level. In the ZB strain, numerous ribosomal proteins and transcripts were down-regulated, along with the transcripts of translational related elongation factors and genes of important components of fibroin. The proteasome pathway was significantly enhanced in the ZB strain, indicating that protein degradation began on the third day of fifth instar when fibroin would have been produced in the Lan10 strain normally and plentifully. From proteome and transcriptome levels of the ZB strain, the energy-metabolism-related pathways, oxidative phosphorylation, glycolysis/gluconeogenesis, and citrate cycle were enhanced, suggesting that the energy metabolism was vigorous in the ZB strain, while the silk production was low. This may due to the inefficient energy employment in fibroin synthesis in the ZB strain. These results suggest that the reason for the decreasing of the silk production might be related to the decreased ability of fibroin synthesis, the degradation of proteins, and the inefficiency of the energy exploiting.

  2. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

    PubMed

    Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

    2013-12-15

    Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses. © 2013 Elsevier B.V. All rights reserved.

  3. Structural and chemical ordering of Heusler C o x M n y G e z epitaxial films on Ge (111): Quantitative study using traditional and anomalous x-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B. A.; Chu, Y. S.; He, L.

    2015-12-01

    Epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections across each constituent absorptionmore » edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (< 0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co0.5Mn0.25Ge0.25) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less

  4. Divergent selection along climatic gradients in a rare central European endemic species, Saxifraga sponhemica

    PubMed Central

    Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart

    2015-01-01

    Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats. PMID:25862244

  5. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    PubMed Central

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-01-01

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137

  6. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-12-15

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less

  7. Exploring the Spatial and Temporal Organization of a Cell’s Proteome

    PubMed Central

    Beck, Martin; Topf, Maya; Frazier, Zachary; Tjong, Harianto; Xu, Min; Zhang, Shihua; Alber, Frank

    2013-01-01

    To increase our current understanding of cellular processes, such as cell signaling and division, knowledge is needed about the spatial and temporal organization of the proteome at different organizational levels. These levels cover a wide range of length and time scales: from the atomic structures of macromolecules for inferring their molecular function, to the quantitative description of their abundance, and distribution in the cell. Emerging new experimental technologies are greatly increasing the availability of such spatial information on the molecular organization in living cells. This review addresses three fields that have significantly contributed to our understanding of the proteome’s spatial and temporal organization: first, methods for the structure determination of individual macromolecular assemblies, specifically the fitting of atomic structures into density maps generated from electron microscopy techniques; second, research that visualizes the spatial distributions of these complexes within the cellular context using cryo electron tomography techniques combined with computational image processing; and third, methods for the spatial modeling of the dynamic organization of the proteome, specifically those methods for simulating reaction and diffusion of proteins and complexes in crowded intracellular fluids. The long-term goal is to integrate the varied data about a proteome’s organization into a spatially explicit, predictive model of cellular processes. PMID:21094684

  8. Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1986-01-01

    Dynamic Dielectric measurements made over a wide range of frequency provide a sensitive and convenient means for monitoring the cure process in thermosets and thermoplastics. The measurement of dielectric relaxation is one of only a few instrumental techniques available for studying molecular properties in both the liquid and solid states. Furthermore, it is probably the only convenient experimental technique for studying the polymerization process of going from a monomeric liquid of varying viscosity to a crosslinked, insoluble, high temperature solid. The objective of the research is to develop on-line dielectric instrumentation for quantitative nondestructive material evaluation and closed loop smart cure cycle control. The key is to relate the chemistry of the cure cycle process to the dielectric properties of the polymer system by correlating the time, temperature, and frequency dependent dielectric measurements with chemical characterization measurements. Measurement of the wide variation in magnitude of the complex permittivity with both frequency and state of cure, coupled with chemical characterization work, have been shown in the laboratory to have the potential to determine: resin quality, composition and age; cure cycle window boundaries; onset of flow and point of maximum flow; extent of and completion of reaction; evolution of volatiles; T sub g; and, crosslinking and molecular weight buildup.

  9. Molecular and supramolecular control of the work function of an inorganic electrode with self-assembled monolayer of umbrella-shaped fullerene derivatives.

    PubMed

    Lacher, Sebastian; Matsuo, Yutaka; Nakamura, Eiichi

    2011-10-26

    The surface properties of inorganic substrates can be altered by coating with organic molecules, which may result in the improvement of the properties suitable for electronic or biological applications. This article reports a systematic experimental study on the influence of the molecular and supramolecular properties of umbrella-shaped penta(organo)[60]fullerene derivatives, and on the work function and the water contact angle of indium-tin oxide (ITO) and gold surfaces. We could relate these macroscopic characteristics to single-molecular level properties, such as ionization potential and molecular dipole. The results led us to conclude that the formation of a SAM of a polar compound generates an electronic field through intermolecular interaction of the molecular charges, and this field makes the overall dipole of the SAM much smaller than the one expected from the simple sum of the dipoles of all molecules in the SAM. This effect, which was called depolarization and previously discussed theoretically, is now quantitatively probed by experiments. The important physical properties in surface science such as work function, ionization potential, and water contact angles have been mutually correlated at the level of molecular structures and molecular orientations on the substrate surface. We also found that the SAMs on ITO and gold operate under the same principle except that the "push-back" effect operates specifically for gold. The study also illustrates the ability of the photoelectron yield spectroscopy technique to rapidly measure the work function of a SAM-covered substrate and the ionization potential value of a molecule on the surface.

  10. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  11. Quantitative estimation of pesticide-likeness for agrochemical discovery.

    PubMed

    Avram, Sorin; Funar-Timofei, Simona; Borota, Ana; Chennamaneni, Sridhar Rao; Manchala, Anil Kumar; Muresan, Sorel

    2014-12-01

    The design of chemical libraries, an early step in agrochemical discovery programs, is frequently addressed by means of qualitative physicochemical and/or topological rule-based methods. The aim of this study is to develop quantitative estimates of herbicide- (QEH), insecticide- (QEI), fungicide- (QEF), and, finally, pesticide-likeness (QEP). In the assessment of these definitions, we relied on the concept of desirability functions. We found a simple function, shared by the three classes of pesticides, parameterized particularly, for six, easy to compute, independent and interpretable, molecular properties: molecular weight, logP, number of hydrogen bond acceptors, number of hydrogen bond donors, number of rotatable bounds and number of aromatic rings. Subsequently, we describe the scoring of each pesticide class by the corresponding quantitative estimate. In a comparative study, we assessed the performance of the scoring functions using extensive datasets of patented pesticides. The hereby-established quantitative assessment has the ability to rank compounds whether they fail well-established pesticide-likeness rules or not, and offer an efficient way to prioritize (class-specific) pesticides. These findings are valuable for the efficient estimation of pesticide-likeness of vast chemical libraries in the field of agrochemical discovery. Graphical AbstractQuantitative models for pesticide-likeness were derived using the concept of desirability functions parameterized for six, easy to compute, independent and interpretable, molecular properties: molecular weight, logP, number of hydrogen bond acceptors, number of hydrogen bond donors, number of rotatable bounds and number of aromatic rings.

  12. The application of quantitative cytochemistry to the study of diseases of the connective tissues.

    PubMed

    Henderson, B

    1983-01-01

    The connective tissues are a complex organisation of tissues, cells and intercellular materials spread throughout the body and are subject to a large number of diseases. Such complexity makes the study of the metabolism of the connective tissues in health and more particularly in disease states difficult if one uses conventional biochemical methodology. Fortunately the techniques of quantitative cytochemistry, as developed in recent years, have made it possible to study the metabolism of even such complex and refractory connective tissues as bone. Using properly validated assays of enzyme activity in unfixed sections from various tissues a number of the diseases of the connective tissues have been studied. For example the synovia from patients with rheumatoid arthritis and related conditions have been studied using these techniques and marked alterations in the metabolism of the synovial lining cell population of this tissue have been demonstrated. These alterations in metabolism are believed to be related to the destruction of cartilage and bone found in such diseases. Investigations of the metabolism of the chondrocytes of articular cartilage in a strain of mice which spontaneously develops osteoarthritis has revealed a lack of certain key enzymes of carbohydrate metabolism in precisely those areas where degradation of the matrix of articular cartilage begins suggesting a causal relationship between these events. These same techniques have been used to study the cellular kinetics and metabolism of the dermis and epidermis in the disfiguring disease, psoriasis. The metabolism of healing bone fractures, the diagnosis and treatment of the mucopolysaccharidoses and the metabolic effects of currently used anti-inflammatory and anti-rheumatic drugs have also been examined. Perhaps the most exciting aspect of these studies has been the development and use of the technique of the cytochemical bioassay (CBA) to study hormonally mediated diseases of the connective tissues. Such studies have recently shed new light on the molecular lesion in pseudohypoparathyroidism. Though still in their relative infancy the studies described in this review show the potential inherent in the use of quantitative cytochemistry for the study of diseases of the connective tissues.

  13. Identification and Quantification of Oxidoselina-1,3,7(11)-Trien-8-One and Cyanidin-3-Glucoside as One of the Major Volatile and Non-Volatile Low-Molecular-Weight Constituents in Pitanga Pulp.

    PubMed

    Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika

    2015-01-01

    The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp.

  14. State of the art molecular markers for fecal pollution source tracking in water.

    PubMed

    Roslev, Peter; Bukh, Annette S

    2011-03-01

    Most environmental waters are susceptible to fecal contamination from animal and/or human pollution sources. To attenuate or eliminate such contamination, it is often critical that the pollution sources are rapidly and correctly identified. Fecal pollution source tracking (FST) is a promising research area that aims to identify the origin(s) of fecal pollution in water. This mini-review focuses on the potentials and limitations of library independent molecular markers that are exclusively or strongly associated with fecal pollution from humans and different animals. Fecal-source-associated molecular markers include nucleic acid sequences from prokaryotes and viruses associated with specific biological hosts, but also sequences such as mitochondrial DNA retrieved directly from humans and animals. However, some fecal-source-associated markers may not be absolutely specific for a given source type, and apparent specificity and frequency established in early studies are sometimes compromised by new studies suggesting variation in specificity and abundance on a regional, global and/or temporal scale. It is therefore recommended that FST studies are based on carefully selected arrays of markers, and that identification of human and animal contributions are based on a multi-marker toolkit with several markers for each source category. Furthermore, future FST studies should benefit from increased knowledge regarding sampling strategies and temporal and spatial variability of marker ratios. It will also be important to obtain a better understanding of marker persistence and the quantitative relationship between marker abundance and the relative contribution from individual fecal pollution source types. A combination of enhanced pathogen screening methods, and validated quantitative source tracking techniques could then contribute significantly to future management of environmental water quality including improved microbial risk assessment.

  15. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  16. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis

    PubMed Central

    Liu, Xuan

    2017-01-01

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis. PMID:29207528

  17. Trace-fiber color discrimination by electrospray ionization mass spectrometry: a tool for the analysis of dyes extracted from submillimeter nylon fibers.

    PubMed

    Tuinman, Albert A; Lewis, Linda A; Lewis, Samuel A

    2003-06-01

    The application of electrospray ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color identity of different samples (i.e., comparative trace-fiber analysis) are shown to be submillimeter. Absolute verification of dye mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound-information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace-fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  18. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.

    PubMed

    Liu, Xuan; Jiang, Hui

    2017-12-04

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.

  19. Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors.

    PubMed

    Ivanciuc, O; Ivanciuc, T; Klein, D J; Seitz, W A; Balaban, A T

    2001-02-01

    Quantitative structure-retention relationships (QSRR) represent statistical models that quantify the connection between the molecular structure and the chromatographic retention indices of organic compounds, allowing the prediction of retention indices of novel, not yet synthesized compounds, solely from their structural descriptors. Using multiple linear regression, QSRR models for the gas chromatographic Kováts retention indices of 129 alkylbenzenes are generated using molecular graph descriptors. The correlational ability of structural descriptors computed from 10 molecular matrices is investigated, showing that the novel reciprocal matrices give numerical indices with improved correlational ability. A QSRR equation with 5 graph descriptors gives the best calibration and prediction results, demonstrating the usefulness of the molecular graph descriptors in modeling chromatographic retention parameters. The sequential orthogonalization of descriptors suggests simpler QSRR models by eliminating redundant structural information.

  20. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  1. Assorted interactions of amino acids prevailing in aqueous vitamin C solutions probed by physicochemical and ab-initio contrivances

    NASA Astrophysics Data System (ADS)

    Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath

    2017-11-01

    Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.

  2. Probing the non-equilibrium force fluctuation spectrum of actomyosin cortices in vivo

    NASA Astrophysics Data System (ADS)

    Tan, Tzer Han; Swartz, Zachary; Keren, Kinneret; Fakhri, Nikta

    Mechanics of the cortex govern the shape of animal cells, and its dynamics underlie cell migration, cytokinesis and embryogenesis. The molecular players involved are largely known, yet it is unclear how their collective dynamics give rise to large scale behavior. This is mostly due to the lack of experimental tools to probe the spatially varying active mechanical properties of the cortex. Here, we introduce a novel technique based on fluorescent single walled carbon nanotubes to generate non-equilibrium force fluctuation spectrum of actomysion cortices in starfish oocytes. The quantitative measurements combined with a theoretical model reveal the role of stress organization in active mechanics and dynamics of the cortex.

  3. Steady-state configurations and dynamics of the MreB helix within bacteria

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Allard, Jun

    2007-03-01

    We present a quantitative model of the actin-like MreB cytoskeleton that is present in many prokaryotes. Individual MreB polymers are bundled into a supra-molecular array to make up helical cables. The cell wall imposes constraint forces through a global elasticity model. With variational techniques and stochastic simulations we obtain relationships between observable quantities such as the pitch of the helix, the total abundance of MreB molecules, and the thickness of the MreB cables. We address changes expected with slow cell growth, as well as turnover dynamics that are relevant to FRAP studies. We also address polarized macromolecular trafficking along the MreB cables without motor proteins.

  4. Light and Life in Baltimore—and Beyond

    PubMed Central

    Edidin, Michael

    2015-01-01

    Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores. PMID:25650914

  5. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    PubMed

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  7. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    PubMed

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. QSAR Analysis of 2-Amino or 2-Methyl-1-Substituted Benzimidazoles Against Pseudomonas aeruginosa

    PubMed Central

    Podunavac-Kuzmanović, Sanja O.; Cvetković, Dragoljub D.; Barna, Dijana J.

    2009-01-01

    A set of benzimidazole derivatives were tested for their inhibitory activities against the Gram-negative bacterium Pseudomonas aeruginosa and minimum inhibitory concentrations were determined for all the compounds. Quantitative structure activity relationship (QSAR) analysis was applied to fourteen of the abovementioned derivatives using a combination of various physicochemical, steric, electronic, and structural molecular descriptors. A multiple linear regression (MLR) procedure was used to model the relationships between molecular descriptors and the antibacterial activity of the benzimidazole derivatives. The stepwise regression method was used to derive the most significant models as a calibration model for predicting the inhibitory activity of this class of molecules. The best QSAR models were further validated by a leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. To confirm the predictive power of the models, an external set of molecules was used. High agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the derived QSAR models. PMID:19468332

  9. Molecular profiles of Venezuelan isolates of Trypanosoma sp. by random amplified polymorphic DNA method.

    PubMed

    Perrone, T M; Gonzatti, M I; Villamizar, G; Escalante, A; Aso, P M

    2009-05-12

    Nine Trypanosoma sp. Venezuelan isolates, initially presumed to be T. evansi, were collected from three different hosts, capybara (Apure state), horse (Apure state) and donkey (Guarico state) and compared by the random amplification polymorphic DNA technique (RAPD). Thirty-one to 46 reproducible fragments were obtained with 12 of the 40 primers that were used. Most of the primers detected molecular profiles with few polymorphisms between the seven horse, capybara and donkey isolates. Quantitative analyses of the RAPD profiles of these isolates revealed a high degree of genetic conservation with similarity coefficients between 85.7% and 98.5%. Ten of the primers generated polymorphic RAPD profiles with two of the three Trypanosoma sp. horse isolates, namely TeAp-N/D1 and TeGu-N/D1. The similarity coefficient between these two isolates and the rest, ranged from 57.9% to 68.4% and the corresponding dendrogram clustered TeAp-N/D1 and Te Gu-N/D1 in a genetically distinct group.

  10. Magnetic Resonance Spectroscopy: An In Vivo Molecular Imaging Biomarker for Parkinson's Disease?

    PubMed Central

    Ciurleo, Rosella; Di Lorenzo, Giuseppe; Marino, Silvia

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder caused by selective loss of dopaminergic neurons in the substantia nigra pars compacta which leads to dysfunction of cerebral pathways critical for the control of movements. The diagnosis of PD is based on motor symptoms, such as bradykinesia, akinesia, muscular rigidity, postural instability, and resting tremor, which are evident only after the degeneration of a significant number of dopaminergic neurons. Currently, a marker for early diagnosis of PD is still not available. Consequently, also the development of disease-modifying therapies is a challenge. Magnetic resonance spectroscopy is a quantitative imaging technique that allows in vivo measurement of certain neurometabolites and may produce biomarkers that reflect metabolic dysfunctions and irreversible neuronal damage. This review summarizes the abnormalities of cerebral metabolites found in MRS studies performed in patients with PD and other forms of parkinsonism. In addition, we discuss the potential role of MRS as in vivo molecular imaging biomarker for early diagnosis of PD and for monitoring the efficacy of therapeutic interventions. PMID:25302300

  11. Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production.

    PubMed

    Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro

    2017-06-01

    Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Entropy of Leukemia on Multidimensional Morphological and Molecular Landscapes

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.

    2014-04-01

    Leukemia epitomizes the class of highly complex diseases that new technologies aim to tackle by using large sets of single-cell-level information. Achieving such a goal depends critically not only on experimental techniques but also on approaches to interpret the data. A most pressing issue is to identify the salient quantitative features of the disease from the resulting massive amounts of information. Here, I show that the entropies of cell-population distributions on specific multidimensional molecular and morphological landscapes provide a set of measures for the precise characterization of normal and pathological states, such as those corresponding to healthy individuals and acute myeloid leukemia (AML) patients. I provide a systematic procedure to identify the specific landscapes and illustrate how, applied to cell samples from peripheral blood and bone marrow aspirates, this characterization accurately diagnoses AML from just flow cytometry data. The methodology can generally be applied to other types of cell populations and establishes a straightforward link between the traditional statistical thermodynamics methodology and biomedical applications.

  13. Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase

    PubMed Central

    Ma, Wen; Whitley, Kevin D; Schulten, Klaus

    2018-01-01

    Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. PMID:29664402

  14. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

  15. Shear rheology and 1H TD-NMR combined to low-field RheoNMR: Set-up and application to quiescent and flow-induced crystallization of polymers

    NASA Astrophysics Data System (ADS)

    Räntzsch, Volker; Özen, Mürüvvet Begüm; Ratzsch, Karl-Friedrich; Guthausen, Gisela; Wilhelm, Manfred

    2017-05-01

    Rheology provides access to the flow properties of soft matter, while 1H TD-NMR is a useful technique for the characterization of molecular dynamics. To achieve greater insight into the interplay of these domains, especially under flow, it is desirable to combine these two methods in one set-up. We present a low-field RheoNMR set-up based on a portable 30 MHz 1H NMR unit that was integrated into a commercial strain-controlled shear rheometer. This unique combination can simultaneously conduct a full rheological characterization (G', G", |η*|, FT-Rheology: I3/1, Q0) while monitoring molecular dynamics in-situ via 1H TD-NMR for temperatures from -15 to +210 °C. Possible applications include the quantitative measurement of the composition in multiphase systems (fats, polymers, etc.) and soft matter during the application of flow, e.g. measurements on the flow-induced crystallization of polymers.

  16. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P. K.

    1996-01-01

    Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

  17. Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase.

    PubMed

    Ma, Wen; Whitley, Kevin D; Chemla, Yann R; Luthey-Schulten, Zaida; Schulten, Klaus

    2018-04-17

    Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. © 2018, Ma et al.

  18. Customized Molecular Phenotyping by Quantitative Gene Expression and Pattern Recognition Analysis

    PubMed Central

    Akilesh, Shreeram; Shaffer, Daniel J.; Roopenian, Derry

    2003-01-01

    Description of the molecular phenotypes of pathobiological processes in vivo is a pressing need in genomic biology. We have implemented a high-throughput real-time PCR strategy to establish quantitative expression profiles of a customized set of target genes. It enables rapid, reproducible data acquisition from limited quantities of RNA, permitting serial sampling of mouse blood during disease progression. We developed an easy to use statistical algorithm—Global Pattern Recognition—to readily identify genes whose expression has changed significantly from healthy baseline profiles. This approach provides unique molecular signatures for rheumatoid arthritis, systemic lupus erythematosus, and graft versus host disease, and can also be applied to defining the molecular phenotype of a variety of other normal and pathological processes. PMID:12840047

  19. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy.

    PubMed

    Haustein, Elke; Schwille, Petra

    2003-02-01

    Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.

  20. Automated Illustration of Molecular Flexibility.

    PubMed

    Bryden, A; Phillips, George N; Gleicher, M

    2012-01-01

    In this paper, we present an approach to creating illustrations of molecular flexibility using normal mode analysis (NMA). The output of NMA is a collection of points corresponding to the locations of atoms and associated motion vectors, where a vector for each point is known. Our approach abstracts the complex object and its motion by grouping the points, models the motion of each group as an affine velocity, and depicts the motion of each group by automatically choosing glyphs such as arrows. Affine exponentials allow the extrapolation of nonlinear effects such as near rotations and spirals from the linear velocities. Our approach automatically groups points by finding sets of neighboring points whose motions fit the motion model. The geometry and motion models for each group are used to determine glyphs that depict the motion, with various aspects of the motion mapped to each glyph. We evaluated the utility of our system in real work done by structural biologists both by utilizing it in our own structural biology work and quantitatively measuring its usefulness on a set of known protein conformation changes. Additionally, in order to allow ourselves and our collaborators to effectively use our techniques we integrated our system with commonly used tools for molecular visualization.

  1. Lens protein composition, glycation and high molecular weight aggregation in aging rats.

    PubMed

    Swamy, M S; Abraham, E C

    1987-10-01

    Because of minimal or no turnover, lens proteins are subjected to substantial post-translational modifications which in turn disrupt lens architecture and change the optical properties leading to senile cataract formation. Progressive glycation is believed to have the potential to initiate the changes that are conducive to lens opacification. Fisher 344 rats were systematically followed from juvenile to older and aged phases of their life to study the relationship between lens glycation and high molecular weight (HMW) aggregate formation as well as quantitative and qualitative changes in lens crystallins. Levels of glycated proteins were quantified by affinity chromatography. Changes in lens crystallin composition and HMW aggregate formation were monitored by molecular sieve HPLC, further confirmed by SDS-PAGE and IEF techniques. As the age advances HMW and insoluble proteins increase with a concomitant disappearance of gamma-crystallins from soluble fraction. This disappearance of gamma-crystallins coincided with increased glycation (approximately 2-fold higher in insoluble fraction) and decreased sulfhydryl groups from soluble fraction. It appears that lens protein glycation, disappearance of gamma-crystallins and sulfhydryls from soluble fraction and increase of insoluble fraction and HMW aggregate are interrelated.

  2. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L. × Vitis amurensis Rupr.)

    PubMed Central

    Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu

    2015-01-01

    In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L.) and ‘Shuangyou’ (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape. PMID:26089826

  3. Simplified molecular input line entry system-based: QSAR modelling for MAP kinase-interacting protein kinase (MNK1).

    PubMed

    Begum, S; Achary, P Ganga Raju

    2015-01-01

    Quantitative structure-activity relationship (QSAR) models were built for the prediction of inhibition (pIC50, i.e. negative logarithm of the 50% effective concentration) of MAP kinase-interacting protein kinase (MNK1) by 43 potent inhibitors. The pIC50 values were modelled with five random splits, with the representations of the molecular structures by simplified molecular input line entry system (SMILES). QSAR model building was performed by the Monte Carlo optimisation using three methods: classic scheme; balance of correlations; and balance correlation with ideal slopes. The robustness of these models were checked by parameters as rm(2), r(*)m(2), [Formula: see text] and randomisation technique. The best QSAR model based on single optimal descriptors was applied to study in vitro structure-activity relationships of 6-(4-(2-(piperidin-1-yl) ethoxy) phenyl)-3-(pyridin-4-yl) pyrazolo [1,5-a] pyrimidine derivatives as a screening tool for the development of novel potent MNK1 inhibitors. The effects of alkyl group, -OH, -NO2, F, Cl, Br, I, etc. on the IC50 values towards the inhibition of MNK1 were also reported.

  4. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    PubMed

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  5. Diffusion magnetic resonance imaging: A molecular imaging tool caught between hope, hype and the real world of “personalized oncology”

    PubMed Central

    Mahajan, Abhishek; Deshpande, Sneha S; Thakur, Meenakshi H

    2017-01-01

    “Personalized oncology” is a multi-disciplinary science, which requires inputs from various streams for optimal patient management. Humongous progress in the treatment modalities available and the increasing need to provide functional information in addition to the morphological data; has led to leaping progress in the field of imaging. Magnetic resonance imaging has undergone tremendous progress with various newer MR techniques providing vital functional information and is becoming the cornerstone of “radiomics/radiogenomics”. Diffusion-weighted imaging is one such technique which capitalizes on the tendency of water protons to diffuse randomly in a given system. This technique has revolutionized oncological imaging, by giving vital qualitative and quantitative information regarding tumor biology which helps in detection, characterization and post treatment surveillance of the lesions and challenging the notion that “one size fits all”. It has been applied at various sites with different clinical experience. We hereby present a brief review of this novel functional imaging tool, with its application in “personalized oncology”. PMID:28717412

  6. High-resolution and high sensitivity mesoscopic fluorescence tomography based on de-scanning EMCCD: System design and thick tissue imaging applications

    NASA Astrophysics Data System (ADS)

    Ozturk, Mehmet Saadeddin

    Optical microscopy has been one of the essential tools for biological studies for decades, however, its application areas was limited to superficial investigation due to strong scattering in live tissues. Even though advanced techniques such as confocal or multiphoton methods have been recently developed to penetrate beyond a few hundreds of microns deep in tissues, they still cannot perform in the mesoscopic regime (millimeter scale) without using destructive sample preparation protocols such as clearing techniques. They provide rich cellular information; however, they cannot be readily employed to investigate the biological processes at larger scales. Herein, we will present our effort to establish a novel imaging approach that can quantify molecular expression in intact tissues, well beyond the current microscopy depth limits. Mesoscopic Fluorescence Molecular Tomography (MFMT) is an emerging imaging modality that offers unique potential for the non-invasive molecular assessment of thick in-vitro and in-vivo live tissues. This novel imaging modality is based on an optical inverse problem that allows for retrieval of the quantitative spatial distribution of fluorescent tagged bio-markers at millimeter depth. MFMT is well-suited for in-vivo subsurface tissue imaging and thick bio-printed specimens due to its high sensitivity and fast acquisition times, as well as relatively large fields of view. Herein, we will first demonstrate the potential of this technique using our first generation MFMT system applied to multiplexed reporter gene imaging (in-vitro) and determination of Photodynamic Therapy (PDT) agent bio-distribution in a mouse model (in-vivo). Second, we will present the design rationale, in silico benchmarking, and experimental validation of a second generation MFMT (2GMFMT) system. We will demonstrate the gain in resolution and sensitivity achieved due to the de-scanned dense detector configuration implemented. The potential of this novel platform will be showcased by applying it to the longitudinal assessment of Ink-Jet Bio-Printed tumor models. This preliminary investigation focuses on monitoring four patient-derived glioblastoma multiforme (GBM) spheroids within their bioreactor for up to 70 days and following their volume change prior to and after exposure to a cytotoxic drug. Overall, our studies indicate that 2GMFMT is a powerful technique for in-vitro and in-vivo thick tissue molecular imaging applications due to its high resolution, fast tomographic imaging capability, and high sensitivity.

  7. Comparison of detection methods to estimate asexual Plasmodium falciparum parasite prevalence and gametocyte carriage in a community survey in Tanzania.

    PubMed

    Mwingira, Felista; Genton, Blaise; Kabanywanyi, Abdu-Noor M; Felger, Ingrid

    2014-11-18

    The use of molecular techniques to detect malaria parasites has been advocated to improve the accuracy of parasite prevalence estimates, especially in moderate to low endemic settings. Molecular work is time-consuming and costly, thus the effective gains of this technique need to be carefully evaluated. Light microscopy (LM) and rapid diagnostic tests (RDT) are commonly used to detect malaria infection in resource constrained areas, but their limited sensitivity results in underestimation of the proportion of people infected with Plasmodium falciparum. This study aimed to evaluate the extent of missed infections via a community survey in Tanzania, using polymerase chain reaction (PCR) to detect P. falciparum parasites and gametocytes. Three hundred and thirty individuals of all ages from the Kilombero and Ulanga districts (Tanzania) were enrolled in a cross-sectional survey. Finger prick blood samples were collected for parasite detection by RDT, LM and molecular diagnosis using quantitative 18S rRNA PCR and msp2 nPCR. Gametocytes were detected by LM and by amplifying transcripts of the gametocyte-specific marker pfs25. Results from all three diagnostic methods were available for a subset of 226 individuals. Prevalence of P. falciparum was 38% (86/226; 95% CI 31.9-44.4%) by qPCR, 15.9% (36/226; 95% CI 11.1-20.7%) by RDT and 5.8% (13/226; 95% CI 2.69- 8.81%) by LM. qPCR was positive for 72% (26/36) of the RDT-positive samples. Gametocyte prevalence was 10.6% (24/226) by pfs25-qRT-PCR and 1.2% by LM. LM showed the poorest performance, detecting only 15% of P. falciparum parasite carriers identified by PCR. Thus, LM is not a sufficiently accurate technique from which to inform policies and malaria control or elimination efforts. The diagnostic performance of RDT was superior to that of LM. However, it is also insufficient when precise prevalence data are needed for monitoring intervention success or for determining point prevalence rates in countrywide surveillance. Detection of gametocytes by PCR was 10-times more sensitive than by LM. These findings support the need for molecular techniques to accurately estimate the human infectious reservoir and hence the transmission potential in a population.

  8. Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics.

    PubMed

    Bahrami, Naeim; Hartman, Stephen J; Chang, Yu-Hsuan; Delfanti, Rachel; White, Nathan S; Karunamuni, Roshan; Seibert, Tyler M; Dale, Anders M; Hattangadi-Gluth, Jona A; Piccioni, David; Farid, Nikdokht; McDonald, Carrie R

    2018-06-02

    Molecular markers of WHO grade II/III glioma are known to have important prognostic and predictive implications and may be associated with unique imaging phenotypes. The purpose of this study is to determine whether three clinically relevant molecular markers identified in gliomas-IDH, 1p/19q, and MGMT status-show distinct quantitative MRI characteristics on FLAIR imaging. Sixty-one patients with grade II/III gliomas who had molecular data and MRI available prior to radiation were included. Quantitative MRI features were extracted that measured tissue heterogeneity (homogeneity and pixel correlation) and FLAIR border distinctiveness (edge contrast; EC). T-tests were conducted to determine whether patients with different genotypes differ across the features. Logistic regression with LASSO regularization was used to determine the optimal combination of MRI and clinical features for predicting molecular subtypes. Patients with IDH wildtype tumors showed greater signal heterogeneity (p = 0.001) and lower EC (p = 0.008) within the FLAIR region compared to IDH mutant tumors. Among patients with IDH mutant tumors, 1p/19q co-deleted tumors had greater signal heterogeneity (p = 0.002) and lower EC (p = 0.005) compared to 1p/19q intact tumors. MGMT methylated tumors showed lower EC (p = 0.03) compared to the unmethylated group. The combination of FLAIR border distinctness, heterogeneity, and pixel correlation optimally classified tumors by IDH status. Quantitative imaging characteristics of FLAIR heterogeneity and border pattern in grade II/III gliomas may provide unique information for determining molecular status at time of initial diagnostic imaging, which may then guide subsequent surgical and medical management.

  9. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  10. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  11. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  12. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers.

    PubMed

    Egorov, Evgeny S; Merzlyak, Ekaterina M; Shelenkov, Andrew A; Britanova, Olga V; Sharonov, George V; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Davydov, Alexey N; Barsova, Ekaterina; Lebedev, Yuriy B; Shugay, Mikhail; Chudakov, Dmitriy M

    2015-06-15

    Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma

    PubMed Central

    Marote, Georgina; Abramo, Francesca; McKay, Jenny; Thomson, Calum; Beltran, Mariana; Millar, Michael; Priestnall, Simon; Dobson, Jane; Costantino-Casas, Fernando; Petrou, Terry; McGonnell, Imelda M.; Davies, Anthony J.; Weetman, Malcolm; Garden, Oliver A.; Masters, John R.; Thrasivoulou, Christopher; Ahmed, Aamir

    2016-01-01

    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease. PMID:27559731

  14. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition

    PubMed Central

    Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.

    2017-01-01

    Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642

  15. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition.

    PubMed

    Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank

    2017-01-01

    Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.

  16. Next-gen tissue: preservation of molecular and morphological fidelity in prostate tissue.

    PubMed

    Gillard, Marc; Tom, Westin R; Antic, Tatjana; Paner, Gladell P; Lingen, Mark W; VanderWeele, David J

    2015-01-01

    Personalization of cancer therapy requires molecular evaluation of tumor tissue. Traditional tissue preservation involves formalin fixation, which degrades the quality of nucleic acids. Strategies to bank frozen prostate tissue can interfere with diagnostic studies. PAXgene is an alternative fixative that preserves protein and nucleic acid quality. Portions of prostates obtained from autopsy specimens were fixed in either 10% buffered formalin or PAXgene, and processed and embedded in paraffin. Additional sections were immediately embedded in OCT and frozen. DNA and RNA were extracted from the formalin-fixed, PAXgene-fixed, or frozen tissue. Quantitative PCR was used to compare the quality of DNA and RNA obtained from all three tissue types. In addition, 5 μm sections were cut from specimens devoid of cancer and from prostate cancer specimens obtained at prostatectomy and fixed in PAXgene. They were either stained with hematoxylin and eosin or interrogated with antibodies for p63, PSA and p504. Comparable tissue morphology was observed in both the formalin and PAXgene-fixed specimens. Similarly, immunohistochemical expression of the P63, PSA and P504 proteins was comparable between formalin and PAXgene fixation techniques. DNA from the PAXgene-fixed tissue was of similar quality to that from frozen tissue. RNA was also amplified with up to 8-fold greater efficiency in the PAXgene fixed tissue compared to the formalin-fixed tissue. Prostate specimens fixed with PAXgene have preserved histologic morphology, stain appropriately, and have preserved quality of nucleic acids. PAXgene fixation facilitates the use of prostatectomy tissue for molecular biology techniques such as next-generation sequencing.

  17. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling.

    PubMed

    Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian

    2012-10-24

    Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.

  18. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  19. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  20. Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

    PubMed Central

    ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.

    2010-01-01

    Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308

  1. Quantitative estimation of film forming polymer-plasticizer interactions by the Lorentz-Lorenz Law.

    PubMed

    Dredán, J; Zelkó, R; Dávid, A Z; Antal, I

    2006-03-09

    Molar refraction as well as refractive index has many uses. Beyond confirming the identity and purity of a compound, determination of molecular structure and molecular weight, molar refraction is also used in other estimation schemes, such as in critical properties, surface tension, solubility parameter, molecular polarizability, dipole moment, etc. In the present study molar refraction values of polymer dispersions were determined for the quantitative estimation of film forming polymer-plasticizer interactions. Information can be obtained concerning the extent of interaction between the polymer and the plasticizer from the calculation of molar refraction values of film forming polymer dispersions containing plasticizer.

  2. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring.

    PubMed

    Luu, Martin H; Press, Richard D

    2013-09-01

    The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.

  3. Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.

    PubMed

    Gallais, Laurent; Monneret, Serge

    2016-07-15

    We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.

  4. Selecting a software development methodology. [of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1981-01-01

    The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.

  5. Neural electrical activity and neural network growth.

    PubMed

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  7. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism.

    PubMed

    Blatherwick, Eleanor Q; Van Berkel, Gary J; Pickup, Kathryn; Johansson, Maria K; Beaudoin, Marie-Eve; Cole, Roderic O; Day, Jennifer M; Iverson, Suzanne; Wilson, Ian D; Scrivens, James H; Weston, Daniel J

    2011-08-01

    Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as "fit-for-purpose" for MSI in a drug metabolism and disposition arena. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)-based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.

  8. Quantitative phosphoproteomics using acetone-based peptide labeling: Method evaluation and application to a cardiac ischemia/reperfusion model

    PubMed Central

    Wijeratne, Aruna B.; Manning, Janet R.; Schultz, Jo El J.; Greis, Kenneth D.

    2013-01-01

    Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. In this report, an MS-based strategy utilizing an inexpensive acetone-based peptide labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Since the chemistry for RABA-labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 vs. hearts expressing low molecular weight fibroblast growth factor-2 (LMW FGF2) to relate low molecular weight fibroblast growth factor-2 (LMW FGF2) mediated cardioprotective phenomena induced by ischemia/reperfusion (I/R) injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g. connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g. cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification phosphoproteomic studies to identify and verify biologically-relevant phosphorylation changes in whole tissues. PMID:24016359

  9. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    PubMed

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and quantified for almost all chemical species in the reactive process, including radical species.

  10. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance. PMID:22339582

  11. MR Imaging in Spinocerebellar Ataxias: A Systematic Review.

    PubMed

    Klaes, A; Reckziegel, E; Franca, M C; Rezende, T J R; Vedolin, L M; Jardim, L B; Saute, J A

    2016-08-01

    Polyglutamine expansion spinocerebellar ataxias are autosomal dominant slowly progressive neurodegenerative diseases with no current treatment. MR imaging is the best-studied surrogate biomarker candidate for polyglutamine expansion spinocerebellar ataxias, though with conflicting results. We aimed to review quantitative central nervous system MR imaging technique findings in patients with polyglutamine expansion spinocerebellar ataxias and correlations with well-established clinical and molecular disease markers. We searched MEDLINE, LILACS, and Cochrane data bases of clinical trials between January 1995 and January 2016, for quantitative MR imaging volumetric approaches, MR spectroscopy, diffusion tensor imaging, or other quantitative techniques, comparing patients with polyglutamine expansion spinocerebellar ataxias (SCAs) with controls. Pertinent details for each study regarding participants, imaging methods, and results were extracted. After reviewing the 706 results, 18 studies were suitable for inclusion: 2 studies in SCA1, 1 in SCA2, 15 in SCA3, 1 in SCA7, 1 in SCA1 and SCA6 presymptomatic carriers, and none in SCA17 and dentatorubropallidoluysian atrophy. Cerebellar hemispheres and vermis, whole brain stem, midbrain, pons, medulla oblongata, cervical spine, striatum, and thalamus presented significant atrophy in SCA3. The caudate, putamen and whole brain stem presented similar sensitivity to change compared with ataxia scales after 2 years of follow-up in a single prospective study in SCA3. MR spectroscopy and DTI showed abnormalities only in cross-sectional studies in SCA3. Results from single studies in other polyglutamine expansion spinocerebellar ataxias should be replicated in different cohorts. Additional cross-sectional and prospective volumetric analysis, MR spectroscopy, and DTI studies are necessary in polyglutamine expansion spinocerebellar ataxias. The properties of preclinical disease biomarkers (presymptomatic) of MR imaging should be targeted in future studies. © 2016 by American Journal of Neuroradiology.

  12. Development and Application of an MSALL-Based Approach for the Quantitative Analysis of Linear Polyethylene Glycols in Rat Plasma by Liquid Chromatography Triple-Quadrupole/Time-of-Flight Mass Spectrometry.

    PubMed

    Zhou, Xiaotong; Meng, Xiangjun; Cheng, Longmei; Su, Chong; Sun, Yantong; Sun, Lingxia; Tang, Zhaohui; Fawcett, John Paul; Yang, Yan; Gu, Jingkai

    2017-05-16

    Polyethylene glycols (PEGs) are synthetic polymers composed of repeating ethylene oxide subunits. They display excellent biocompatibility and are widely used as pharmaceutical excipients. To fully understand the biological fate of PEGs requires accurate and sensitive analytical methods for their quantitation. Application of conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) is difficult because PEGs have polydisperse molecular weights (MWs) and tend to produce multicharged ions in-source resulting in innumerable precursor ions. As a result, multiple reaction monitoring (MRM) fails to scan all ion pairs so that information on the fate of unselected ions is missed. This Article addresses this problem by application of liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF MS) based on the MS ALL technique. This technique performs information-independent acquisition by allowing all PEG precursor ions to enter the collision cell (Q2). In-quadrupole collision-induced dissociation (CID) in Q2 then effectively generates several fragments from all PEGs due to the high collision energy (CE). A particular PEG product ion (m/z 133.08592) was found to be common to all linear PEGs and allowed their total quantitation in rat plasma with high sensitivity, excellent linearity and reproducibility. Assay validation showed the method was linear for all linear PEGs over the concentration range 0.05-5.0 μg/mL. The assay was successfully applied to the pharmacokinetic study in rat involving intravenous administration of linear PEG 600, PEG 4000, and PEG 20000. It is anticipated the method will have wide ranging applications and stimulate the development of assays for other pharmaceutical polymers in the future.

  13. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  14. Quantitative proteomics in the field of microbiology.

    PubMed

    Otto, Andreas; Becher, Dörte; Schmidt, Frank

    2014-03-01

    Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    PubMed

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  17. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging.

    PubMed

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-03-30

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research.

  18. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging

    PubMed Central

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-01-01

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization–MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287

  19. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    PubMed

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.

  20. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes.

    PubMed

    Russo, Silvia; Calzari, Luciano; Mussa, Alessandro; Mainini, Ester; Cassina, Matteo; Di Candia, Stefania; Clementi, Maurizio; Guzzetti, Sara; Tabano, Silvia; Miozzo, Monica; Sirchia, Silvia; Finelli, Palma; Prontera, Paolo; Maitz, Silvia; Sorge, Giovanni; Calcagno, Annalisa; Maghnie, Mohamad; Divizia, Maria Teresa; Melis, Daniela; Manfredini, Emanuela; Ferrero, Giovanni Battista; Pecile, Vanna; Larizza, Lidia

    2016-01-01

    Multiple (epi)genetic defects affecting the expression of the imprinted genes within the 11p15.5 chromosomal region underlie Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes. The molecular diagnosis of these opposite growth disorders requires a multi-approach flowchart to disclose known primary and secondary (epi)genetic alterations; however, up to 20 and 30 % of clinically diagnosed BWS and SRS cases remain without molecular diagnosis. The complex structure of the 11p15 region with variable CpG methylation and low-rate mosaicism may account for missed diagnoses. Here, we demonstrate the relevance of complementary techniques for the assessment of different CpGs and the importance of testing multiple tissues to increase the SRS and BWS detection rate. Molecular testing of 147 and 450 clinically diagnosed SRS and BWS cases provided diagnosis in 34 SRS and 185 BWS patients, with 9 SRS and 21 BWS cases remaining undiagnosed and herein referred to as "borderline." A flowchart including complementary techniques and, when applicable, the analysis of buccal swabs, allowed confirmation of the molecular diagnosis in all borderline cases. Comparison of methylation levels by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in borderline and control cases defined an interval of H19/IGF2:IG-DMR loss of methylation that was distinct between "easy to diagnose" and "borderline" cases, which were characterized by values ≤mean -3 standard deviations (SDs) compared to controls. Values ≥mean +1 SD at H19/IGF2: IG-DMR were assigned to borderline hypermethylated BWS cases and those ≤mean -2 SD at KCNQ1OT1: TSS-DMR to hypomethylated BWS cases; these were supported by quantitative pyrosequencing or Southern blot analysis. Six BWS cases suspected to carry mosaic paternal uniparental disomy of chromosome 11 were confirmed by SNP array, which detected mosaicism till 10 %. Regarding the clinical presentation, borderline SRS were representative of the syndromic phenotype, with exception of one patient, whereas BWS cases showed low frequency of the most common features except hemihyperplasia. A conclusive molecular diagnosis was reached in borderline methylation cases, increasing the detection rate by 6 % for SRS and 5 % for BWS cases. The introduction of complementary techniques and additional tissue analyses into routine diagnostic work-up should facilitate the identification of cases undiagnosed because of mosaicism, a distinctive feature of epigenetic disorders.

  1. Quantitative fluorescence microscopy and image deconvolution.

    PubMed

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used to remove blurred signal from an image. There are two major types of deconvolution approaches, deblurring and restoration algorithms. Deblurring algorithms remove blur, but treat a series of optical sections as individual two-dimensional entities, and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed. Copyright © 1998 Elsevier Inc. All rights reserved.

  2. Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase.

    PubMed

    Dolezal, Rafael; Korabecny, Jan; Malinak, David; Honegr, Jan; Musilek, Kamil; Kuca, Kamil

    2015-03-01

    To predict unknown reactivation potencies of 12 mono- and bis-pyridinium aldoximes for VX-inhibited rat acetylcholinesterase (rAChE), three-dimensional quantitative structure-activity relationship (3D QSAR) analysis has been carried out. Utilizing molecular interaction fields (MIFs) calculated by molecular mechanical (MMFF94) and quantum chemical (B3LYP/6-31G*) methods, two satisfactory ligand-based CoMFA models have been developed: 1. R(2)=0.9989, Q(LOO)(2)=0.9090, Q(LTO)(2)=0.8921, Q(LMO(20%))(2)=0.8853, R(ext)(2)=0.9259, SDEP(ext)=6.8938; 2. R(2)=0.9962, Q(LOO)(2)=0.9368, Q(LTO)(2)=0.9298, Q(LMO(20%))(2)=0.9248, R(ext)(2)=0.8905, SDEP(ext)=6.6756. High statistical significance of the 3D QSAR models has been achieved through the application of several data noise reduction techniques (i.e. smart region definition SRD, fractional factor design FFD, uninformative/iterative variable elimination UVE/IVE) on the original MIFs. Besides the ligand-based CoMFA models, an alignment molecular set constructed by flexible molecular docking has been also studied. The contour maps as well as the predicted reactivation potencies resulting from 3D QSAR analyses help better understand which structural features are associated with increased reactivation potency of studied compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. [Research progress and development trend of quantitative assessment techniques for urban thermal environment.

    PubMed

    Sun, Tie Gang; Xiao, Rong Bo; Cai, Yun Nan; Wang, Yao Wu; Wu, Chang Guang

    2016-08-01

    Quantitative assessment of urban thermal environment has become a focus for urban climate and environmental science since the concept of urban heat island has been proposed. With the continual development of space information and computer simulation technology, substantial progresses have been made on quantitative assessment techniques and methods of urban thermal environment. The quantitative assessment techniques have been developed to dynamics simulation and forecast of thermal environment at various scales based on statistical analysis of thermal environment on urban-scale using the historical data of weather stations. This study reviewed the development progress of ground meteorological observation, thermal infrared remote sensing and numerical simulation. Moreover, the potential advantages and disadvantages, applicability and the development trends of these techniques were also summarized, aiming to add fundamental knowledge of understanding the urban thermal environment assessment and optimization.

  4. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students' Mathematical Reasoning in Biological Contexts

    ERIC Educational Resources Information Center

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course…

  5. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Vickie E.; Borreguero, Jose M.; Bhowmik, Debsindhu

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parametersmore » which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.« less

  6. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations

    PubMed Central

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E.; Schuler, Benjamin

    2017-01-01

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques. PMID:28223518

  7. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations.

    PubMed

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E; Schuler, Benjamin

    2017-03-07

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.

  8. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, J.R.; Kriegstein, A.R.

    1987-11-22

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM /sup 3/H-flunitrazepam (/sup 3/H-FLU). Autoradiograms generated on /sup 3/H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure withmore » no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; /sup 3/H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas /sup 3/H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites.« less

  9. Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouelnasr, MKF; Smit, B

    2012-01-01

    The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) Amore » new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective-diffusion behavior that was reproduced with kMC simulations.« less

  10. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  11. Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases.

    PubMed

    Abouelnasr, Mahmoud K F; Smit, Berend

    2012-09-07

    The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) A new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective- diffusion behavior that was reproduced with kMC simulations.

  12. Alchemy: A Web 2.0 Real-time Quality Assurance Platform for Human Immunodeficiency Virus, Hepatitis C Virus, and BK Virus Quantitation Assays.

    PubMed

    Agosto-Arroyo, Emmanuel; Coshatt, Gina M; Winokur, Thomas S; Harada, Shuko; Park, Seung L

    2017-01-01

    The molecular diagnostics laboratory faces the challenge of improving test turnaround time (TAT). Low and consistent TATs are of great clinical and regulatory importance, especially for molecular virology tests. Laboratory information systems (LISs) contain all the data elements necessary to do accurate quality assurance (QA) reporting of TAT and other measures, but these reports are in most cases still performed manually: a time-consuming and error-prone task. The aim of this study was to develop a web-based real-time QA platform that would automate QA reporting in the molecular diagnostics laboratory at our institution, and minimize the time expended in preparing these reports. Using a standard Linux, Nginx, MariaDB, PHP stack virtual machine running atop a Dell Precision 5810, we designed and built a web-based QA platform, code-named Alchemy. Data files pulled periodically from the LIS in comma-separated value format were used to autogenerate QA reports for the human immunodeficiency virus (HIV) quantitation, hepatitis C virus (HCV) quantitation, and BK virus (BKV) quantitation. Alchemy allowed the user to select a specific timeframe to be analyzed and calculated key QA statistics in real-time, including the average TAT in days, tests falling outside the expected TAT ranges, and test result ranges. Before implementing Alchemy, reporting QA for the HIV, HCV, and BKV quantitation assays took 45-60 min of personnel time per test every month. With Alchemy, that time has decreased to 15 min total per month. Alchemy allowed the user to select specific periods of time and analyzed the TAT data in-depth without the need of extensive manual calculations. Alchemy has significantly decreased the time and the human error associated with QA report generation in our molecular diagnostics laboratory. Other tests will be added to this web-based platform in future updates. This effort shows the utility of informatician-supervised resident/fellow programming projects as learning opportunities and workflow improvements in the molecular laboratory.

  13. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    PubMed Central

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-01-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation. PMID:26982626

  14. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation.

  15. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  16. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    PubMed Central

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR) and three-dimensional quantitative structure–selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2′-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure–property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature. PMID:25848211

  17. A Quantitative Technique for Beginning Microscopists.

    ERIC Educational Resources Information Center

    Sundberg, Marshall D.

    1984-01-01

    Stereology is the study of three-dimensional objects through the interpretation of two-dimensional images. Stereological techniques used in introductory botany to quantitatively examine changes in leaf anatomy in response to different environments are discussed. (JN)

  18. Development of an in Silico Model of DPPH• Free Radical Scavenging Capacity: Prediction of Antioxidant Activity of Coumarin Type Compounds.

    PubMed

    Goya Jorge, Elizabeth; Rayar, Anita Maria; Barigye, Stephen J; Jorge Rodríguez, María Elisa; Sylla-Iyarreta Veitía, Maité

    2016-06-07

    A quantitative structure-activity relationship (QSAR) study of the 2,2-diphenyl-l-picrylhydrazyl (DPPH•) radical scavenging ability of 1373 chemical compounds, using DRAGON molecular descriptors (MD) and the neural network technique, a technique based on the multilayer multilayer perceptron (MLP), was developed. The built model demonstrated a satisfactory performance for the training ( R 2 = 0.713 ) and test set ( Q ext 2 = 0.654 ) , respectively. To gain greater insight on the relevance of the MD contained in the MLP model, sensitivity and principal component analyses were performed. Moreover, structural and mechanistic interpretation was carried out to comprehend the relationship of the variables in the model with the modeled property. The constructed MLP model was employed to predict the radical scavenging ability for a group of coumarin-type compounds. Finally, in order to validate the model's predictions, an in vitro assay for one of the compounds (4-hydroxycoumarin) was performed, showing a satisfactory proximity between the experimental and predicted pIC50 values.

  19. Jumping, Rotating, and Flapping: The Atomic-Scale Motion of Thiophene on Cu(111).

    PubMed

    Lechner, Barbara A J; Sacchi, Marco; Jardine, Andrew P; Hedgeland, Holly; Allison, William; Ellis, John; Jenkins, Stephen J; Dastoor, Paul C; Hinch, B J

    2013-06-06

    Self-assembled monolayers of sulfur-containing heterocycles and linear oligomers containing thiophene groups have been widely employed in organic electronic applications. Here, we investigate the dynamics of isolated thiophene molecules on Cu(111) by combining helium spin-echo (HeSE) spectroscopy with density functional theory calculations. We show that the thiophene/Cu(111) system displays a rich array of aperiodic dynamical phenomena that include jump diffusion between adjacent atop sites over a 59-62 meV barrier and activated rotation around a sulfur-copper anchor, two processes that have been observed previously for related systems. In addition, we present experimental evidence for a new, weakly activated process, the flapping of the molecular ring. Repulsive inter-adsorbate interactions and an exceptionally high friction coefficient of 5 ± 2 ps(-1) are also observed. These experiments demonstrate the versatility of the HeSE technique, and the quantitative information extracted in a detailed analysis provides an ideal benchmark for state-of-the-art theoretical techniques including nonlocal adsorbate-substrate interactions.

  20. ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis

    PubMed Central

    Kuster, Diederik W D; Merkus, Daphne; van der Velden, Jolanda; Verhoeven, Adrie J M; Duncker, Dirk J

    2011-01-01

    Since the completion of the Human Genome Project and the advent of the large scaled unbiased ‘-omics’ techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of single genes or proteins, towards a more holistic approach by studying networks and interactions between individual components of networks. From a conceptual standpoint, systems biology elicits a ‘back to the future’ experience for any integrative physiologist. However, many of the new techniques and modalities employed by systems biologists yield tremendous potential for integrative physiologists to expand their tool arsenal to (quantitatively) study complex biological processes, such as cardiac remodelling and heart failure, in a truly holistic fashion. We therefore advocate that systems biology should not become/stay a separate discipline with ‘-omics’ as its playing field, but should be integrated into physiology to create ‘Integrative Physiology 2.0’. PMID:21224228

Top