Sample records for quantitative molecular thermochemistry

  1. Can the Study of Thermochemistry Facilitate Students' Differentiation between Heat Energy and Temperature?

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2006-01-01

    The objectives of this study are: (a) Evaluate science major freshman students' ability to differentiate between heat energy and temperature, after having studied the topic of thermochemistry; (b) ascertain the degree to which students resist change from the caloric to the kinetic-molecular theory; (c) study the ability to differentiate between…

  2. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    PubMed

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  3. Learning Thermochemistry: Understanding the Challenges and Promoting Its Success

    ERIC Educational Resources Information Center

    Chang, Karen

    2009-01-01

    This study was conducted to investigate how students approach the learning of thermochemistry, what the challenges are and how instruction can make learning of thermochemistry more accessible. Specifically, this study seeks to understand: 1) which topics in thermochemistry are more difficult to learn and which topics are easier; 2) why the…

  4. Thermochemistry of Gaseous Compounds of Metals.

    DTIC Science & Technology

    1981-03-01

    22.6 -11.7 signal to displacement of the molecular beam defining 2018 22.7 -11.8 slit was checked to ascertain the effusion cell origin. 2024 19.6...neligile. pilation by llultgren et al. 38 Only the electronic Fround states of the Lanthanide monoxides were considered, and the statistical weights

  5. Psychometric Analysis of the Thermochemistry Concept Inventory

    ERIC Educational Resources Information Center

    Wren, David; Barbera, Jack

    2014-01-01

    Assessing conceptual understanding of foundational topics before instruction on higher-order concepts can provide chemical educators with information to aid instructional design. This study provides an instrument that can be used to identify students' alternative conceptions regarding thermochemistry concepts. The Thermochemistry Concept Inventory…

  6. Shock-tube thermochemistry tables for high-temperature gases. Volume 5: Carbon dioxide

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Horton, T. E.

    1971-01-01

    Equilibrium thermodynamic properties and species concentrations for carbon dioxide are tabulated for moving, standing, and reflected shock waves. Initial pressures range from 6.665 to 6665 N/sq m (0.05 to 50.0 torr), and temperatures from 2,000 to over 80,000K. In this study, 20 molecular and atomic species were considered.

  7. Development and evaluation of a thermochemistry concept inventory for college-level general chemistry

    NASA Astrophysics Data System (ADS)

    Wren, David A.

    The research presented in this dissertation culminated in a 10-item Thermochemistry Concept Inventory (TCI). The development of the TCI can be divided into two main phases: qualitative studies and quantitative studies. Both phases focused on the primary stakeholders of the TCI, college-level general chemistry instructors and students. Each phase was designed to collect evidence for the validity of the interpretations and uses of TCI testing data. A central use of TCI testing data is to identify student conceptual misunderstandings, which are represented as incorrect options of multiple-choice TCI items. Therefore, quantitative and qualitative studies focused heavily on collecting evidence at the item-level, where important interpretations may be made by TCI users. Qualitative studies included student interviews (N = 28) and online expert surveys (N = 30). Think-aloud student interviews (N = 12) were used to identify conceptual misunderstandings used by students. Novice response process validity interviews (N = 16) helped provide information on how students interpreted and answered TCI items and were the basis of item revisions. Practicing general chemistry instructors (N = 18), or experts, defined boundaries of thermochemistry content included on the TCI. Once TCI items were in the later stages of development, an online version of the TCI was used in expert response process validity survey (N = 12), to provide expert feedback on item content, format and consensus of the correct answer for each item. Quantitative studies included three phases: beta testing of TCI items (N = 280), pilot testing of the a 12-item TCI (N = 485), and a large data collection using a 10-item TCI ( N = 1331). In addition to traditional classical test theory analysis, Rasch model analysis was also used for evaluation of testing data at the test and item level. The TCI was administered in both formative assessment (beta and pilot testing) and summative assessment (large data collection), with items performing well in both. One item, item K, did not have acceptable psychometric properties when the TCI was used as a quiz (summative assessment), but was retained in the final version of the TCI based on the acceptable psychometric properties displayed in pilot testing (formative assessment).

  8. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    ERIC Educational Resources Information Center

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-01-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we…

  9. Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames

    NASA Astrophysics Data System (ADS)

    Wei, Chuyu; Pineda, Daniel I.; Paxton, Laurel; Egolfopoulos, Fokion N.; Spearrin, R. Mitchell

    2018-06-01

    A tomographic laser absorption spectroscopy technique, utilizing mid-infrared light sources, is presented as a quantitative method to spatially resolve species and temperature profiles in small-diameter reacting flows relevant to combustion systems. Here, tunable quantum and interband cascade lasers are used to spectrally resolve select rovibrational transitions near 4.98 and 4.19 μm to measure CO and {CO2}, respectively, as well as their vibrational temperatures, in piloted premixed jet flames. Signal processing methods are detailed for the reconstruction of axial and radial profiles of thermochemical structure in a canonical ethylene-air jet flame. The method is further demonstrated to quantitatively distinguish between different turbulent flow conditions.

  10. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry

    DOE PAGES

    Ruscic, Branko

    2015-03-31

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE 298) and bond dissociation energies at 0 K (D 0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CH n, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C 2H n, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHmore » n, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO 2 and H 2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.« less

  11. The Spectroscopy and Thermochemistry of Na and Na2.

    ERIC Educational Resources Information Center

    McSwiney, H. D.; And Others

    1989-01-01

    Presented is an experiment to show the connection between spectroscopy and thermochemistry by examining the spectra of atomic sodium and diatomic sodium. Background information; a description of the apparatus; procedures; calculations; and energy diagrams are included. (CW)

  12. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    PubMed

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  13. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    NASA Astrophysics Data System (ADS)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  14. Chemical Kinetics Interpretation of Hypergolicity of Ionic Liquid-Based Systems

    DTIC Science & Technology

    2009-04-01

    acid (WFNA) mixtures 6 4. Thermochemistry of imidazoles, triazoles and tetrazoles 8 5. Thermochemistry of compounds formed...reactivity of gaseous mixtures formed above ionic liquids (ILs) when mixed with white fuming nitric acid (WFNA). After a general introduction on the...replacement for NTO is also of interest but probably less crucial. For instance, NTO could be replaced by nitric acid (or by any other suitable

  15. Alternative group V precursors for CVD applications

    NASA Astrophysics Data System (ADS)

    Lum, R. M.; Klingert, J. K.

    1991-01-01

    The chemical vapor deposition (CVD) techniques used to grow III/V semiconductors films, such as metalorganic vapor phase epitaxy (MOVPE), hydride VPE, chemical beam epitaxy (CBE) and gas source molecular beam epitaxy (GS-MBE), all use hydrides (AsH 3 and PH 3) as the Group V source. However, the hydrides are extremely toxic gases which are stored under high pressure (200-2000 psi). To reduce the safety hazards associated with these gases, alternative Group V precursors have been investigated. Organoarsenic and phosphorous compounds have received the most attention as replacements for AsH 3 and PH 3 because they are typically low vapor pressure liquids, and thus present significantly lower exposure risks than the hydrides. For AsH 3 these have included the methyl, ethyl and butyl-based derivatives RnAsH 3- n, with varying degrees ( n = 1-3) of hydrogen atom substitution. In this paper the growth properties, thermochemistry and toxicity of the various alkylarsine precursors are compared with arsine. Data are presented on the impact of the thermochemistry of these compounds on film electrical properties, and on the effects of precursor composition and purity on overall film quality. The suitability of alternative As-precursors for device applications is demonstrated, and selection criteria are presented for the most effective alkylarsine compound for a particular CVD growth process.

  16. Calorimetric analysis of cryopreservation and freeze-drying formulations.

    PubMed

    Sun, Wendell Q

    2015-01-01

    Differential scanning calorimetry (DSC) is a commonly used thermal analysis technique in cryopreservation and freeze-drying research. It has been used to investigate crystallization, eutectic formation, glass transition, devitrification, recrystallization, melting, polymorphism, molecular relaxation, phase separation, water transport, thermochemistry, and kinetics of complex reactions (e.g., protein denaturation). Such information can be used for the optimization of protective formulations and process protocols. This chapter gives an introduction to beginners who are less familiar with this technique. It covers the instrument and its basic principles, followed by a discussion of the methods as well as examples of specific applications.

  17. Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model

    NASA Astrophysics Data System (ADS)

    Tarumi, Moto; Nakai, Hiromi

    2018-05-01

    This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.

  18. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes.

    PubMed

    Shakourian-Fard, Mehdi; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-09-19

    Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li(+) with pure carbonates and ethylene carbonate (EC)-based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06-2X/6-311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li-ion solvation in carbonates and EC-based mixtures. A strong local tetrahedral order involving four carbonates around the Li(+) was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li(+) ion with carbonates are negative and suggested the ion-carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li(+) interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO-EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li(+) ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO-EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li-ion batteries, which complies with experiments and other theoretical results. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements?

    DOE PAGES

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-08-18

    The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. By and large, the main strength of the hybrid Minnesota density functionals is that the best ones provide verymore » good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). Finally, as an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses.« less

  20. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  1. Passive Nosetip Technology (PANT) Program. Volume 17. Computer User’s Manual: Erosion Shape (EROS) Computer Code

    DTIC Science & Technology

    1974-12-01

    as a series of sections, eacN represent- ing one pressure and each preceding the corresponding pressure group of the sur- face thermochemistry deck...groups together make up the surface thermochemistry deck. Within each pressure group the transfer coefficient values will be ordered. Within each transfer...values in each pressure group may not exceed 5 but may be only 1. If no kinetics effects are to be considered a transfer coefficient of zero is acceptable

  2. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  3. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry

    NASA Astrophysics Data System (ADS)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.

    2018-04-01

    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  4. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    NASA Astrophysics Data System (ADS)

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-12-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.

  5. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  6. Chemistry and Composition of Atmospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kolb, Charles E.; Worsnop, Douglas R.

    2012-05-01

    For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ˜10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.

  7. Student’s mental model, misconceptions, troublesome knowledge, and threshold concept on thermochemistry with DToM-POE

    NASA Astrophysics Data System (ADS)

    Wiji, W.; Mulyani, S.

    2018-05-01

    The purpose of this study is to obtain a profile of students' mental models, misconceptions, troublesome knowledge, and threshold concept on thermochemistry. The subjects in this study were 35 students. The method used in this research was descriptive method with instruments Diagnostic Test of Mental Model - Prediction, Observation, and Explanation (DToM-POE). The results showed that the students' ability to predict, observe, and explain ΔH of neutralization reaction of NaOH with HCl was still lacking. Most students tended to memorize chemical concepts related to symbolic level and they did not understand the meaning of the symbols used. Furthermore, most students were unable to connect the results of observations at the macroscopic level with the symbolic level to determine ΔH of neutralization reaction of NaOH with HCl. Then, most students tended to give an explanation by a net ionic equation or a chemical reaction equation at the symbolic level when explaining ΔH of neutralization reaction at the submicroscopic level. In addition, there are seven misconceptions, three troublesome knowledges, and three threshold concepts held by students on thermochemistry.

  8. A Hierarchy of Homodesmotic Reactions for Thermochemistry

    PubMed Central

    Schleyer, Paul v. R.

    2009-01-01

    Chemical equations that balance bond types and atom hybridization to different degrees are often used in computational thermochemistry, for example, to increase accuracy when lower levels of theory are employed. We expose the widespread confusion over such classes of equations and demonstrate that the two most widely used definitions of “homodesmotic” reactions are not equivalent. New definitions are introduced and a consistent hierarchy of reaction classes (RC1 – RC5) for hydrocarbons is constructed: isogyric (RC1) ⊇ isodesmic (RC2) ⊇ hypohomodesmotic (RC3) ⊇ homodesmotic (RC4) ⊇ hyperhomodesmotic (RC5). Each of these successively conserves larger molecular fragments. The concept of isodesmic bond separation reactions is generalized to all classes in this hierarchy, providing a unique sectioning of a given molecule for each reaction type. Several ab initio and density functional methods are applied to the bond separation reactions of 38 hydrocarbons containing five or six carbon atoms. RC4 and RC5 reactions provide bond separation enthalpies with errors consistently less than 0.4 kcal mol−1 across a wide range of theoretical levels, performing significantly better than the other reaction types and far superior to atomization routes. Our recommended bond separation reactions were demonstrated by determining the enthalpies of formation (at 298 K) of 1,3,5-hexatriyne (163.7 ± 0.4 kcal mol−1), 1,3,5,7-octatetrayne (217.6 ± 0.6 kcal mol−1), the larger polyynes C10H2 through C26H2, and an infinite acetylenic carbon chain. PMID:19182999

  9. General Model for Multicomponent Ablation Thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).

  10. Hypersonics. Volume 1 - Defining the hypersonic environment; Proceedings of the First Joint Europe/U.S. Short Course on Hypersonics, Paris, France, Dec. 7-11, 1987

    NASA Astrophysics Data System (ADS)

    Bertin, John J.; Glowinski, Roland; Periaux, Jacques

    1989-05-01

    The present work discusses the general characterization of hypersonic flows, the hypersonic phenomena to be encountered by the Hermes spacecraft, industrial methodologies for the design of hypersonic vehicles, the definition of aerodynamic methodology, and hypersonic airbreathing-propulsion vehicle design practices applicable to the U.S. National Aerospace Plane. Also discussed are real gas effects in the hypersonic regime, the influence of thermochemistry and of nonequilibrium and surface catalysis on hypersonic vehicle design, the modelling of nonequilibrium effects in high speed flows, air-dissociation thermochemistry, and rarefied gas dynamics effects for spacecraft.

  11. Thermochemistry and Photochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    NASA Astrophysics Data System (ADS)

    Hu, R.; Seager, S.

    2013-12-01

    Dectection and characterization of low-mass exoplanets is poised to accelerate in the coming decade. Some low-mass exoplanets, namely super Earths and some mini Neptunes, will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model, we have simulated the molecular composition of thick atmospheres on warm and hot super Earths/mini Neptunes, and classified thick atmospheres into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres, depending on the hydrogen abundance and the carbon to oxygen abundance ratio. We find that carbon has to be in the form of CO2 rather than CH4 or CO in an H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons. For future observations, we find for GJ 1214b that (1) C2H2 features at 1.0 and 1.5 μm in transmission are diagnostic for hydrocarbon-rich atmospheres; (2) a constraint on the thermal emission at 4.5 μm could differentiate water-rich atmospheres versus hydrocarbon-rich atmospheres; (3) a detection of water-vapor features and a confirmation of nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. For a hot super Earth like 55 Cnc e, the diagnostic features of water-rich atmospheres (H2O) and the diagnostic features of hydrocarbon-rich atmospheres (CO and C2H2) are well separated in transmission spectra at 0.6-5 μm, which would enable straightforward characterization. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Theoretical transmission spectra and thermal emission spectra of non-H2-dominated atmospheres on GJ 1214b based on photochemistry-thermochemistry simulations in comparison with current observations. The simulated spectra are for an hydrogen abundance of 0.5 and a variety of carbon to oxygen ratios ranging from oxygen rich to carbon rich. The atmospheric scenarios with different carbon to oxygen ratios can be constrained via the spectral features of their hallmark molecules.

  12. Extrapolating Single Organic Ion Solvation Thermochemistry from Simulated Water Nanodroplets.

    PubMed

    Coles, Jonathan P; Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2016-09-08

    We compute the ion/water interaction energies of methylated ammonium cations and alkylated carboxylate anions solvated in large nanodroplets of 10 000 water molecules using 10 ns molecular dynamics simulations and an all-atom polarizable force-field approach. Together with our earlier results concerning the solvation of these organic ions in nanodroplets whose molecular sizes range from 50 to 1000, these new data allow us to discuss the reliability of extrapolating absolute single-ion bulk solvation energies from small ion/water droplets using common power-law functions of cluster size. We show that reliable estimates of these energies can be extrapolated from a small data set comprising the results of three droplets whose sizes are between 100 and 1000 using a basic power-law function of droplet size. This agrees with an earlier conclusion drawn from a model built within the mean spherical framework and paves the road toward a theoretical protocol to systematically compute the solvation energies of complex organic ions.

  13. Thermodynamics of organic compounds

    NASA Astrophysics Data System (ADS)

    Gammon, B. E.; Smith, N. K.

    1982-11-01

    This research program consisted of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure was used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials were synthesized, and their thermodynamic properties were evaluated. In cooperation with researcher at Wright-Patterson Air Force Base, ramjet fuels currently in use were subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure. During the last year of this effort, seven kerosene-type fuels produced by British Petroleum and seven jet fuels produced from shale oil were studied.

  14. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Wesley D.; Schaefer, Henry F.

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O 2. Numerous ROOmore » and QOOH intermediates in these R + O 2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts are emerging that can be used to explain the influence of dispersion on the thermochemistry of large hydrocarbons, including fuels important to combustion technologies.« less

  15. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.

    PubMed

    Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-12-16

    CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second layer of electronic structure method to recover all the missing long-range interactions in the parent large molecule. Overall, the work featured here dramatically decreases the computational expense and empowers the execution of very accurate ab initio calculations (gold-standard CCSD(T)) on large molecules and thereby facilitates sophisticated electronic structure applications to a wide range of important chemical problems.

  16. Rotational and vibrational Raman spectroscopy for thermochemistry measurements in supersonic flames

    NASA Astrophysics Data System (ADS)

    Bayeh, Alexander Christian

    High speed chemically reacting flows are important in a variety of aerospace applications, namely ramjets, scramjets, afterburners, and rocket exhausts. To study flame extinction under similar high Mach number conditions, we need access to thermochemistry measurements in supersonic environments. In the current work a two-stage miniaturized combustor has been designed that can produce open supersonic methane-air flames amenable to laser diagnostics. The first stage is a vitiation burner, and was inspired by well-known principles of jet combustors. We explored the salient parameters of operation experimentally, and verified flame holding computationally using a well-stirred reactor model. The second stage of the burner generates an external supersonic flame, operating in premixed and partially premixed modes. The very high Mach numbers present in the supersonic flames should provide a useful test bed for the examination of flame suppression and extinction using laser diagnostics. We also present the development of new line imaging diagnostics for thermochemistry measurements in high speed flows. A novel combination of vibrational and rotational Raman scattering is used to measure major species densities (O 2, N2, CH4, H2O,CO2, CO, & H2) and temperature. Temperature is determined by the rotational Raman technique by comparing measured rotational spectra to simulated spectra based on the measured chemical composition. Pressure is calculated from density and temperature measurements through the ideal gas law. The independent assessment of density and temperature allows for measurements in environments where the pressure is not known a priori. In the present study we applied the diagnostics to laboratory scale supersonic air and vitiation jets, and examine the feasibility of such measurements in reacting supersonic flames. Results of full thermochemistry were obtained for the air and vitiation jets that reveal the expected structure of an under-expanded jet. Centerline traces of density, temperature, and pressure of the air jet agree well with computations, while measurements of chemical composition for the vitiation flow also agree well with predicted equilibrium values. Finally, we apply the new diagnostics to the exhaust of the developed burner, and show the first ever results for density, temperature, and pressure, as well as chemical composition in a supersonic flame.

  17. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.

    1993-01-01

    The main focus was the development, implementation, and calibration of methods for performing molecular electronic structure calculations to high accuracy. These various methods were then applied to a number of chemical reactions and species of interest to NASA, notably in the area of combustion chemistry. Among the development work undertaken was a collaborative effort to develop a program to efficiently predict molecular structures and vibrational frequencies using energy derivatives. Another major development effort involved the design of new atomic basis sets for use in chemical studies: these sets were considerably more accurate than those previously in use. Much effort was also devoted to calibrating methods for computing accurate molecular wave functions, including the first reliable calibrations for realistic molecules using full CI results. A wide variety of application calculations were undertaken. One area of interest was the spectroscopy and thermochemistry of small molecules, including establishing small molecule binding energies to an accuracy rivaling, or even on occasion surpassing, the experiment. Such binding energies are essential input to modeling chemical reaction processes, such as combustion. Studies of large molecules and processes important in both hydrogen and hydrocarbon combustion chemistry were also carried out. Finally, some effort was devoted to the structure and spectroscopy of small metal clusters, with applications to materials science problems.

  18. The thermochemistry of london dispersion-driven transition metal reactions: getting the 'right answer for the right reason'.

    PubMed

    Hansen, Andreas; Bannwarth, Christoph; Grimme, Stefan; Petrović, Predrag; Werlé, Christophe; Djukic, Jean-Pierre

    2014-10-01

    Reliable thermochemical measurements and theoretical predictions for reactions involving large transition metal complexes in which long-range intramolecular London dispersion interactions contribute significantly to their stabilization are still a challenge, particularly for reactions in solution. As an illustrative and chemically important example, two reactions are investigated where a large dipalladium complex is quenched by bulky phosphane ligands (triphenylphosphane and tricyclohexylphosphane). Reaction enthalpies and Gibbs free energies were measured by isotherm titration calorimetry (ITC) and theoretically 'back-corrected' to yield 0 K gas-phase reaction energies (ΔE). It is shown that the Gibbs free solvation energy calculated with continuum models represents the largest source of error in theoretical thermochemistry protocols. The ('back-corrected') experimental reaction energies were used to benchmark (dispersion-corrected) density functional and wave function theory methods. Particularly, we investigated whether the atom-pairwise D3 dispersion correction is also accurate for transition metal chemistry, and how accurately recently developed local coupled-cluster methods describe the important long-range electron correlation contributions. Both, modern dispersion-corrected density functions (e.g., PW6B95-D3(BJ) or B3LYP-NL), as well as the now possible DLPNO-CCSD(T) calculations, are within the 'experimental' gas phase reference value. The remaining uncertainties of 2-3 kcal mol(-1) can be essentially attributed to the solvation models. Hence, the future for accurate theoretical thermochemistry of large transition metal reactions in solution is very promising.

  19. Methanol partial oxidation on Ag(111) from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Yoo, Jong Suk; Nørskov, Jens K.

    In this work, we examine the thermochemistry and kinetics of the partial oxidation of methanol to formaldehyde on silver surfaces. Periodic density functional theory calculations employing the BEEF-vdW functional are used to identify the most stable phases of the silver surface under relevant reaction conditions and the reaction energetics are obtained on these surfaces. The calculated binding energies and transition state energies are used as input in a mean-field microkinetic model providing the reaction kinetics on silver surfaces under different reaction conditions. Our results show that, under conditions pertaining to methanol partial oxidation, oxygen is present at low concentrations andmore » it plays a critical role in the catalytic reaction. Surface oxygen promotes the reaction by activating the OH bond in methanol, thus forming a methoxy intermediate, which can react further to form formaldehyde. Finally, the dissociation of molecular oxygen is identified as the most critical step.« less

  20. Methanol partial oxidation on Ag(111) from first principles

    DOE PAGES

    Aljama, Hassan; Yoo, Jong Suk; Nørskov, Jens K.; ...

    2016-10-26

    In this work, we examine the thermochemistry and kinetics of the partial oxidation of methanol to formaldehyde on silver surfaces. Periodic density functional theory calculations employing the BEEF-vdW functional are used to identify the most stable phases of the silver surface under relevant reaction conditions and the reaction energetics are obtained on these surfaces. The calculated binding energies and transition state energies are used as input in a mean-field microkinetic model providing the reaction kinetics on silver surfaces under different reaction conditions. Our results show that, under conditions pertaining to methanol partial oxidation, oxygen is present at low concentrations andmore » it plays a critical role in the catalytic reaction. Surface oxygen promotes the reaction by activating the OH bond in methanol, thus forming a methoxy intermediate, which can react further to form formaldehyde. Finally, the dissociation of molecular oxygen is identified as the most critical step.« less

  1. Energetics of the molecular interactions of L-cysteine, L-serine, and L-asparagine in aqueous propylene glycol solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2015-03-01

    Integral enthalpies of dissolution Δsol H m of L-cysteine, L-serine, and L-asparagine in aqueous solutions of 1,3-propylene glycol at organic solvent concentrations of up to 0.26 mole fraction are measured via the thermochemistry of dissolution. Standard enthalpies of dissolution (Δsol H ○) and transfer (Δtr H ○) of amino acids from water to a mixed solvent are calculated. It is found that the calculated enthalpy coefficients of pair interactions of the amino acids with polyhydric alcohol molecules have positive values. The effect the arrangement of the hydroxyl group in the structure of polyhydric alcohols has on the enthalpy of interaction of amino acids in aqueous solutions is revealed. The effect of different types of interactions in solutions and the structural features of biomolecules and cosolvents on the enthalpy of dissolution of amino acids is analyzed.

  2. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  3. Enthalpy of Formation of N 2 H 4 (Hydrazine) Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, David; Bross, David H.; Ruscic, Branko

    2017-08-02

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57more » ± 0.47 kJ/mol at 0 K (97.41 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and FPD enthalpies.« less

  4. Enthalpy of Formation of N2H4 (Hydrazine) Revisited.

    PubMed

    Feller, David; Bross, David H; Ruscic, Branko

    2017-08-17

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine, was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57 ± 0.47 kJ/mol at 0 K (97.42 ± 0.47 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and the FPD enthalpy.

  5. Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Courses.

    ERIC Educational Resources Information Center

    Temme, Susan M.

    1995-01-01

    Describes an exercise designed to be used in an Advanced Placement (AP) chemistry course to accompany the study of thermodynamics. Uses Differential Scanning Calorimetry in teaching the concepts of thermochemistry and thermodynamics. (JRH)

  6. Thermochemical Analysis of Neutralization Reactions: An Introductory Discovery Experiment

    ERIC Educational Resources Information Center

    Mills, Kenneth V.; Gullmette, Louise W.

    2007-01-01

    The article describes a new discovery experiment that uses thermodynamical analysis to study neutralization reactions based on neutralization of citric acid. The experiment would be able to reinforce students' understanding of stoichiometry and allow for the discovery of basic concepts of thermochemistry.

  7. A Streamline-Upwind Petrov-Galerkin Finite Element Scheme for Non-Ionized Hypersonic Flows in Thermochemical Nonequilibrium

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.

    2011-01-01

    Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.

  8. Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite

    DOE PAGES

    Pierce, Eric M.; Lilova, Kristina; Missimer, David M.; ...

    2016-12-05

    Here we report that treatment and immobilization of technetium-99 ( 99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na 8[AlSiO 4]6(ReO 4) 2, and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na 8[AlSiO 4] 6(ReO 4) 2-x(TcO 4) x. Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (Pmore » $$\\overline{43}$$n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO 4 – anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO 4 – anion occupies the center of the sodalite β-cage in Na8[AlSiO4]6(ReO4)2. We also demonstrate, for the first time, that the TcO4– anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of 99Tc present in reprocessed nuclear waste streams and contaminated subsurface environments.« less

  9. The structure of partially-premixed methane/air flames under varying premixing

    NASA Astrophysics Data System (ADS)

    Kluzek, Celine; Karpetis, Adonios

    2008-11-01

    The present work examines the spatial and scalar structure of laminar, partially premixed methane/air flames with the objective of developing flamelet mappings that capture the effect of varying premixture strength (air addition in fuel.) Experimental databases containing full thermochemistry measurements within laminar axisymmetric flames were obtained at Sandia National Laboratories, and the measurements of all major species and temperature are compared to opposed-jet one-dimensional flow simulation using Cantera and the full chemical kinetic mechanism of GRI 3.0. Particular emphasis is placed on the scalar structure of the laminar flames, and the formation of flamelet mappings that capture all of the salient features of thermochemistry in a conserved scalar representation. Three different premixture strengths were examined in detail: equivalence ratios of 1.8, 2.2, and 3.17 resulted in clear differences in the flame scalar structure, particularly in the position of the rich premixed flame zone and the attendant levels of major and intermediate species (carbon monoxide and hydrogen).

  10. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  11. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  12. Surface interaction of H2S, SO2, and SO3 on fullerene-like gallium nitride (GaN) nanostructure semiconductor

    NASA Astrophysics Data System (ADS)

    Salimifard, M.; Rad, A. Shokuhi; Mahanpoor, K.

    2017-10-01

    Density functional theory (DFT) using MPW1PW91 and B3LYP hybrid functionals was utilized for quantum-based investigations of three major sulfur compounds (H2S, SO2, and SO3) adsorption onto fullerene-like Ga12N12 nanocluster. All chemicals showed high chemisorption with the order of SO3>SO2>>H2S. Results of charge analysis showed that during adsorption, transfer of charge is from H2S to nanocluster while reverse direction of charge transfer is found for SO2 and SO3 molecules. Partial dissociation is found for adsorbates especially for SO2 and SO3 molecules. Results of thermochemistry analysis show negative values for enthalpy and Gibbs free energy of adsorption, confirming exothermic spontaneous process. Analysis of frontier molecular orbital (FMO) showed important role of orbital hybridizing towards formation of new bonds upon adsorption. As a result, we introduce Ga12N12 nanocluster as a strong adsorbent for sulfur compounds.

  13. Long-range corrected density functional through the density matrix expansion based semilocal exchange hole.

    PubMed

    Patra, Bikash; Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.

  14. Ground State Resonance Structure of Some Typical High Explosives Calculated by Density Functional Theory

    DTIC Science & Technology

    2011-03-04

    direct relationships between calculated quantities obtained by DFT and the “conveniently measurable” quantities α and rn...VCH Verlag, Weinheim, 2004). [11] A. D. Becke, “Density- funtional Thermochemistry. III. The Role of Exact Exchange”, J. Chem. Phys. 98, 5648-5652

  15. Electronegativity from Avogadro to Pauling: II. Late Nineteenth- and Early Twentieth-Century Developments.

    ERIC Educational Resources Information Center

    Jensen, William B.

    2003-01-01

    Traces electronegativity in four fundamental areas of chemistry during the period 1870-1910: (1) the relationship between electronegativity and classical valence; (2) the relationship between electronegativity and periodic law; (3) the relationship between electronegativity thermochemistry; and (4) the relationship between electronegativity and…

  16. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu

    2016-06-07

    In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less

  17. An investigation of equilibrium concepts

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    A different approach to modeling of the thermochemistry of rocket engine combustion phenomena is presented. The methodology described is based on the hypothesis of a new variational principle applicable to compressible fluid mechanics. This hypothesis is extended to treat the thermochemical behavior of a reacting (equilibrium) gas in an open system.

  18. Predicting the Stability of Hypervalent Molecules

    ERIC Educational Resources Information Center

    Mitchell, Tracy A.; Finnocchio, Debbie; Kua, Jeremy

    2007-01-01

    An exercise is described which introduces students to using concepts in thermochemistry to predict relative stability of a hypervalent molecule. Students will compare the energies of formation for both fluoride and the hydride by calculations and they will also explore the issue of partial ionic character in polar covalent bonds.

  19. High solubility pathway for the carbon dioxide free production of iron.

    PubMed

    Licht, Stuart; Wang, Baohui

    2010-10-07

    We report a fundamental change in the understanding of iron oxide thermochemistry, opening a facile, new CO(2)-free route to iron production. The resultant process can eliminate a major global source of greenhouse gas emission, producing the staple iron in molten media at high rate and low electrolysis energy.

  20. Carbon Footprint Calculations: An Application of Chemical Principles

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  1. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    PubMed

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  2. Energy Diagram for the Catalytic Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2013-01-01

    Drawing a schematic energy diagram for the decomposition of H[subscript 2]O[subscript 2] catalyzed by MnO[subscript 2] through a simple thermometric measurement outlined in this study is intended to integrate students' understanding of thermochemistry and kinetics of chemical reactions. The reaction enthalpy, delta[subscript r]H, is…

  3. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  4. Atomic and molecular adsorption on Au(111)

    DOE PAGES

    Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...

    2014-05-02

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH

  5. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  6. Thermochemistry of C60 fullerene solutions in benzene, toluene, o-xylene, and o-dichlorobenzene at 298.15 K

    NASA Astrophysics Data System (ADS)

    Akhapkina, T. E.; Krusheva, M. A.; Solov'ev, S. N.; Firer, A. A.

    2017-02-01

    The enthalpies of dissolution of C60 in benzene, toluene, o-xylene and o-dichlorobenzene are measured in a sealed high-sensitivity calorimeter at 298.15 K and at different concentrations of the solute. The standard enthalpies of dissolution of C60 in these solvents are determined.

  7. Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Venot, O.; Selsis, F.; Hersant, F.; Hartogh, P.; Leconte, J.

    2017-07-01

    Thermochemical models have been used in the past to constrain the deep oxygen abundance in the gas and ice giant planets from tropospheric CO spectroscopic measurements. Knowing the oxygen abundance of these planets is a key to better understand their formation. These models have widely used dry and/or moist adiabats to extrapolate temperatures from the measured values in the upper troposphere down to the level where the thermochemical equilibrium between H2O and CO is established. The mean molecular mass gradient produced by the condensation of H2O stabilizes the atmosphere against convection and results in a vertical thermal profile and H2O distribution that departs significantly from previous estimates. We revisit O/H estimates using an atmospheric structure that accounts for the inhibition of the convection by condensation. We use a thermochemical network and the latest observations of CO in Uranus and Neptune to calculate the internal oxygen enrichment required to satisfy both these new estimates of the thermal profile and the observations. We also present the current limitations of such modeling.

  8. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    NASA Astrophysics Data System (ADS)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  9. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    PubMed

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the thermochemistry of the substances and the analytical technique itself. The results emphasise the difference in chemical nature of inorganic and organic samples, which necessarily involves distinct thermochemistry when analysed by EA-IRMS. Therefore, they should not be processed using the same analytical procedure. This clearly impacts on the way international secondary reference materials should be used for the calibration of organic laboratory standards.

  10. Thermochemistry and Reactivity of Metals Engaged in Chemiionization

    DTIC Science & Technology

    2015-12-03

    SUPPLEMENTARY NOTES 14. ABSTRACT The exothermicity of the chemi-ionization reaction Sm + O -> SmO+ + e– has been re evaluated. Guided ion beam tandem mass ...tandem mass spectrometer (GIBMS). Such reactions are of direct interest in understanding the chemistry that might occur when such lanthanides are...complete loss of communication. Scintillation can be caused by natural irregularities in the ionosphere. In critical applications, it may be desirable

  11. Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.

  12. Assessment of Orbital-Optimized MP2.5 for Thermochemistry and Kinetics: Dramatic Failures of Standard Perturbation Theory Approaches for Aromatic Bond Dissociation Energies and Barrier Heights of Radical Reactions.

    PubMed

    Soydaş, Emine; Bozkaya, Uğur

    2015-04-14

    An assessment of orbital-optimized MP2.5 (OMP2.5) [ Bozkaya, U.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 204105 ] for thermochemistry and kinetics is presented. The OMP2.5 method is applied to closed- and open-shell reaction energies, barrier heights, and aromatic bond dissociation energies. The performance of OMP2.5 is compared with that of the MP2, OMP2, MP2.5, MP3, OMP3, CCSD, and CCSD(T) methods. For most of the test sets, the OMP2.5 method performs better than MP2.5 and CCSD, and provides accurate results. For barrier heights of radical reactions and aromatic bond dissociation energies OMP2.5-MP2.5, OMP2-MP2, and OMP3-MP3 differences become obvious. Especially, for aromatic bond dissociation energies, standard perturbation theory (MP) approaches dramatically fail, providing mean absolute errors (MAEs) of 22.5 (MP2), 17.7 (MP2.5), and 12.8 (MP3) kcal mol(-1), while the MAE values of the orbital-optimized counterparts are 2.7, 2.4, and 2.4 kcal mol(-1), respectively. Hence, there are 5-8-folds reductions in errors when optimized orbitals are employed. Our results demonstrate that standard MP approaches dramatically fail when the reference wave function suffers from the spin-contamination problem. On the other hand, the OMP2.5 method can reduce spin-contamination in the unrestricted Hartree-Fock (UHF) initial guess orbitals. For overall evaluation, we conclude that the OMP2.5 method is very helpful not only for challenging open-shell systems and transition-states but also for closed-shell molecules. Hence, one may prefer OMP2.5 over MP2.5 and CCSD as an O(N(6)) method, where N is the number of basis functions, for thermochemistry and kinetics. The cost of the OMP2.5 method is comparable with that of CCSD for energy computations. However, for analytic gradient computations, the OMP2.5 method is only half as expensive as CCSD.

  13. New developments in theoretical thermochemistry and electronic structure applications in supramolecular chemistry and cluster science

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath Ozhapakkam

    In a concise display of the power and diversity of electronic structure theory (EST), the work presented herein involves the development of new computational methods to advance the practical utility of quantum chemistry, as well as solving different types of challenging chemical problems by applying existing EST tools. The research presented is highly interdisciplinary in nature and features synergistic collaborations to solve real-life problems such as regulating toxic chemicals and generating alternative sources of energy. In the first chapter of this dissertation, the solution to a long-standing problem in theoretical thermochemistry is accomplished by the development of the automated, chemically intuitive and generalized thermochemical hierarchy, Connectivity-Based Hierarchy (CBH) to accurately predict the thermochemical properties of organic molecules. The extension of the hierarchy to predict the enthalpies of formations of biomonomers such as amino acids is also presented. The development of a computationally efficient protocol to accurately extrapolate to high CCSD(T) energies based on MP2 and DFT energies using CBH is presented in the second chapter, thus merging theoretical thermochemistry with fragment-based methods in quantum chemistry. This merger drastically reduces the computational cost involved in a CCSD(T) calculation, while retaining the impeccable accuracy it offers. The practical utility of the CH hydrogen bond, commonly thought as being too weak to be used in supramolecular applications has been demonstrated by DFT calculations (along with experimental results from the Flood group) in the third chapter. This is accomplished by systematically studying the binding of monoatomic chloride, diatomic and toxic cyanide and the polyatomic bi-fluoride anions for the first time using only CH hydrogen bonds within a triazolophane macrocycle. The fourth chapter contains the introduction of the concept of fluxionality in the chemical reactions of transition metal oxide clusters. This is useful to develop a systematic paradigm for discussing the mechanisms in the reactions of larger transition metal oxide clusters with small molecules. Additionally, DFT calculations (along with experimental results from the C. C. Jarrold group) are shown to be useful to provide new insights on hydrogen liberation from water, thus aiding in the generation of alternative sources of energy.

  14. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.

    PubMed

    Yu, Haoyu S; He, Xiao; Truhlar, Donald G

    2016-03-08

    Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.

  15. Computational investigation of hydrogen storage on B5V3

    NASA Astrophysics Data System (ADS)

    Guo, Chen; Wang, Chong

    2018-05-01

    Based on density functional theory method with 6-311+G(d,p) basis set, the structures, stability and hydrogen storage capacity of B5V3 have been theoretically investigated. It is found that a maximum of seven hydrogen molecules can be adsorbed on B5V3 with gravimetric uptake capacity of 6.39 wt%. The uptake capacity exceeds the target set by the US Department of Energy for vehicular application. Moreover, the average adsorption energy of B5V3 01 (7H2) is 0.60 eV/H2 in the desirable range of reversible hydrogen storage. The kinetic stability of H2 adsorbed on B5V3 01 is confirmed by using gap between highest occupied molecular orbital (HOMO)and the lowest unoccupied molecular orbital (LUMO). The gap value of B5V3 01 (7H2) is 2.81 eV, which indicates the compound with high stability. In addition, the thermochemistry calculation (Gibbs free energy corrected adsorption energy) is used to analyse if the adsorption is favourable or not at different temperatures. It can be found that the Gibbs corrected adsorption energy of B5V3 01 (7H2) is still positive at 400 K at 1 atm. It means that the adsorption of seven hydrogen molecules on B5V3 01 is energetically favourable in a fairly wide temperature range. All the results show that B5V3 01 can be considered as a promising material for hydrogen storage.

  16. Hypersonic Transition and Turbulence with Non-Equilibrium Thermochemistry

    DTIC Science & Technology

    2009-08-31

    from the literamre. In summary, this AFOSR MURI project has resulted in the production of new knowledge that should significantly improve the accuracy...behavior. The accumulated knowledge and understanding are expected to help development of better dissipation models for compressible flow fields. 2.23.2...8ffipüC<Pressurt Modieung suggestions from physics study <T acautttc Hypersonic Mach numbers Supersonic Mach numbers * skier * *a Subsonic

  17. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  18. Effect of HMX on the combustion response function

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Cohen, N. S.

    1980-01-01

    Over a pressure range of 3.5-7 MPa and a frequency range of 500-2000 Hz and compared to propellants having equivalent energy and burn rate, HMX produces less pressure-coupled acoustic driving than AP and is equivalent to NC/TMETN. Formation of carbonaceous combustion products indicates that binder decomposition does not follow equilibrium thermochemistry, and that this is aggravated by fuel richness or the absence of AP.

  19. Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.

    PubMed

    Puzzarini, Cristina

    2011-12-28

    Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.

  20. Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.

    PubMed

    Goodson-Gregg, Nathan; De Stasio, Elizabeth A

    2009-01-01

    While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.

  1. High-pressure ion source combined with an in-axis ion trap mass spectrometer. 1. Instrumentation and applications

    PubMed

    Mathurin; Faye; Brunot; Tabet; Wells; Fuche

    2000-10-15

    A new combination of a dual EI/CI ion source with a quadrupole ion trap mass spectrometer has been realized in order to efficiently produce negative ions in the reaction cell. Analysis of volatile compounds was performed under negative ion chemical ionization (NICI) during a reaction period where selected reactant negative ions, previously produced in the external ion source, were allowed to interact with molecules, introduced by hyphenated techniques such as gas chromatography. The O2*-, CH3O-, and Cl- reactant ions were used in this study to ensure specific ion/molecule interactions such as proton transfer, nucleophilic displacement, or charge exchange processes, respectively leading to even-electron species, i.e., deprotonated [M - H]- molecules, diagnostic [M - R]- ions, or odd-electron M*- molecular species. The reaction orientation depends on the thermochemistry of reactions within kinetic controls. First analytical results are presented here for the trace-level detection of several contaminants under NICI/Cl- conditions. Phosphorus-containing compounds (malathion, ethyl parathion, and methyl parathion as representative for pesticides) and nitro-containing compounds (2,4,6-trinitrotoluene for explosive material) have been chosen in order to explore the analytical ability of this promising instrumental coupling.

  2. An Investigation of the Crystalchemistry and Thermochemistry of Selected Mineral Systems.

    DTIC Science & Technology

    1987-10-29

    PURPOSES AD-A 189 7581OCUMENTATION PAGE Is. REPOW Mb. RESTRICTIVE MARINGS iJf FL ui 3.DITRIDUTION /AVAILABIUTY OF REPOR 2b. DECLASSIFICATIONIOOWNGRAOiNG...Continuous Observation of Phase Transformations ", Journal of Metals Abstract April 1986. 5. Reeber, R.R. and Tesche, B. (1987) "Synchrotron...RD-AIlS ?59 AN INYESTIGATION OF THE CRYSTALCHENISTRY AND THERMNOCENISTRY OF SELECTED..(U) NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF GEOLOGY R R

  3. Experimental and Theoretical Studies of the Reactivity and Thermochemistry of Dicyanamide: N(CN)(2)(-).

    PubMed

    Nichols, Charles M; Wang, Zhe-Chen; Yang, Zhibo; Lineberger, W Carl; Bierbaum, Veronica M

    2016-02-25

    Dicyanamide [N(CN)2(-)] is a common anionic component of ionic liquids, several of which have shown hypergolic reactivity upon mixing with white-fuming nitric acid. In this study, we explore the thermochemistry of dicyanamide and its reactivity with nitric acid and other molecules to gain insight into the initial stages of the hypergolic phenomenon. We have developed and utilized an electrospray ion source for our selected ion flow tube (SIFT) to generate the dicyanamide anion. We have explored the general reactivity of this ion with several neutral molecules and atoms. Dicyanamide does not show reactivity with O2, H2SO4, H2O2, DBr, HCl, NH3, N2O, SO2, COS, CO2, CH3OH, H2O, CH4, N2, CF4, or SF6 (k < 1 × 10(-12) cm(3)/s); moreover, dicyanamide does not react with N atom, O atom, or electronically excited molecular oxygen (k < 5 × 10(-12) cm(3)/s), and our previous studies showed no reactivity with H atom. However, at 0.45 Torr helium, we observe the adduct of dicyanamide with nitric acid with an effective bimolecular rate constant of 2.7 × 10(-10) cm(3)/s. Intrinsically, dicyanamide is a very stable anion in the gas phase, as illustrated by its lack of reactivity, high electron-binding energy, and low proton affinity. The lack of reactivity of dicyanamide with H2SO4 gives an upper limit for the gas-phase deprotonation enthalpy of the parent compound (HNCNCN; <310 ± 3 kcal/mol). This limit is in agreement with theoretical calculations at the MP2/6-311++G(d,p) level of theory, finding that ΔH298 K(HNCNCN) = 308.5 kcal/mol. Dicyanamide has two different proton acceptor sites. Experimental and computational results indicate that it is lower in energy to protonate the terminal nitrile nitrogen than the central nitrogen. Although proton transfer to dicyanamide was not observed for any of the acidic molecules investigated here, the calculations on dicyanamide with one to three nitric acid molecules reveal that higher-order solvation can favor exothermic proton transfer. Furthermore, the formation of 1,5-dinitrobiuret, proposed to be the key intermediate during the hypergolic ignition of dicyanamide ionic liquids with nitric acid, is investigated by calculation of the reaction coordinate. Our results suggest that solvation dynamics of dicyanamide with nitric acid play an important role in hypergolic ignition and the interactions at the droplet/condensed-phase surface between the two hypergolic liquids are very important. Moreover, dicyanamide exists in the atmosphere of Saturn's moon, Titan; the intrinsic stability of dicyanamide strongly suggests that it may exist in molecular clouds of the interstellar medium, especially in regions where other stable carbon-nitrogen anions have been detected.

  4. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2017-01-01

    Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549

  5. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  6. Ultrafast Spectroscopy of Mid-Infrared Semiconductors Using the Signal and Idler Beams of a Synchronous Optical Parametric Oscillator

    DTIC Science & Technology

    2008-03-01

    then used to fit theoretical models describing radiative and non-radiative relaxation processes. 3.2 Experimental Setup This thesis uses a mode...Russian Efforts. Master’s thesis, Naval Postgraduate School, 2005. 5. Chirsto, Farid C. “Thermochemistry and Kinetics Models for MagnesiumTe- flon/Viton...Coherent Mira Model 900-F Laser. 7. Cooley, William T. Measurement of Ultrafast Carrier Recombination Dynamics in Mid-Infrared Semiconductor Laser Material

  7. Prediction of Transition States and Thermochemistry for Combustion Reactions.

    DTIC Science & Technology

    1984-04-07

    ARO have yet received their degrees, although Mr. Sohrab Zarrabian and Mr. David Magers have been working on ARO projects. Postdoctoral students who...Schaefer (141), using SD-CI techniques and David - son’s correction to estimate the effects of quadruple excitations, deter- mined the barriers and...T.. Purvis. G. D., Bart- land: Reidel; Langhoff, S. R.. David - lett. R. J. 1978. J. Chem. Phys. 69: son, E. R. 1974. Int. J. Quantum 5386 Chem. 8:61

  8. Thermochemistry and gas-phase ion energetics of 2-hydroxy-4-methoxy-benzophenone (oxybenzone).

    PubMed

    Lago, A F; Jimenez, P; Herrero, R; Dávalos, J Z; Abboud, J-L M

    2008-04-10

    We have investigated the thermochemistry and ion energetics of the oxybenzone (2-hydroxy-4-methoxy-benzophenone, C14H12O3, 1H) molecule. The following parameters have been determined for this species: gas-phase enthalpy for the of neutral molecule at 298.15K, (Delta(f)H0(m)(g) = -303.5 +/- 5.1 kJ x mol-1), the intrinsic (gas-phase) acidity (GA(1H) = 1402.1 +/- 8.4 kJ x mol-1), enthalpy of formation for the oxybenzone anion (Delta(f)H0(m)(1-,g) = -402.3 +/- 9.8 kJ x mol-1). We also have obtained the enthalpy of formation of, 4-hydroxy-4'-methoxybenzophenone (Delta(f)H0(m)(g) = -275.4 +/- 10 kJ x mol-1) and 3-methoxyphenol anion (Delta(f)H0(m)(C7H7O2-,g) = -317.7 +/- 8.7 kJ x mol-1). A reliable experimental estimation of enthalpy related to intramolecular hydrogen bonding in oxybenzone has also been obtained (30.1 +/- 6.3 kJ x mol-1) and compared with our theoretical calculations at the B3LYP/6-311++G** level of theory, by means of an isodesmic reaction scheme. In addition, heat capacities, temperature, and enthalpy of fusion have been determined for this molecule by differential scanning calorimetry.

  9. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.

    PubMed

    Sebbar, N; Bozzelli, J W; Bockhorn, H

    2014-01-09

    Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.

  10. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  11. Investigation of Thermochemistry Associated with the Carbon–Carbon Coupling Reactions of Furan and Furfural Using ab Initio Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Assary, Rajeev S.; Curtiss, Larry A.

    2014-06-26

    Upgrading of furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan, can be coupled with various C1 to C4 lower molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase tomore » produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (~25 kcal/mol) are lower than the cellulose activation or decomposition reactions (~50 kcal/mol). Cycloaddition of C5-C8 cyclo-ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ~20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.« less

  12. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  13. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    PubMed

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  14. Atomic Approaches to Defect Thermochemistry

    DTIC Science & Technology

    1992-04-30

    from the enthalpy of melting of ison with real experiments by a factor of Au to be 29 meV. (We have checked that the 2.1x10 3; the time scale of the...Diffusion and to Map Vacancy Concentrations at a Fixed Time V. Studies of Electroluminescent Flat-Panel Display Devices VI. Defect Characterization VII...kT), where n = ND - NA is the doping density, about the same time that P. Mei et al. published the first experimental report of this effect (Appl. Phys

  15. Exhaust plumes and their interaction with missile airframes - A new viewpoint

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Sinha, N.

    1992-01-01

    The present, novel treatment of missile airframe-exhaust plume interactions emphasizes their simulation via a formal solution of the Reynolds-averaged Navier-Stokes (RNS) equation and is accordingly able to address the simulation requirements of novel missiles with nonconventional/integrated propulsion systems. The method is made possible by implicit RNS codes with improved artificial dissipation models, generalized geometric capabilities, and improved two-equation turbulence models, as well as by such codes' recent incorporation of plume thermochemistry and multiphase flow effects.

  16. Aerodynamic Heating Computations for Projectiles. Volume 1. In-Depth Heat Conduction Modifications to the ABRES Shape Change Code (BRLASCC)

    DTIC Science & Technology

    1984-06-01

    preceding the corresponding pressure group of the surface thermochemistry deck as described below. The temperature entries within each section must be... pressure group the transfer coefficient values will be ordered. Within each transfer coefficient section, ablation rate entries need not he ordered in any...may not exceed 5 (and may be only I); the number of transfer coefficient values in each pressure group may not exceed 5 but may be only 1. If no

  17. Chemistry WebBook

    National Institute of Standards and Technology Data Gateway

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  18. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  19. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  20. Non-adiabatic behavior in the homolytic and heterolytic bond dissociation of protonated hydrazine: A guided ion beam and theoretical investigation

    NASA Astrophysics Data System (ADS)

    McNary, Christopher P.; Armentrout, P. B.

    2017-09-01

    Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N-N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the σ and π character of the binding and lone pair electrons on the nitrogen atoms.

  1. Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes

    PubMed Central

    Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714

  2. Quantitative functional characterization of conserved molecular interactions in the active site of mannitol 2-dehydrogenase

    PubMed Central

    Lucas, James E; Siegel, Justin B

    2015-01-01

    Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240

  3. Theoretical Calculation of Jet Fuel Thermochemistry. 1; Tetrahydrodicylopentadiene (JP10) Thermochemistry Using the CBS-QB3 and G3(MP2)//B3LYP Methods

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Jaffe, Richard L.

    2010-01-01

    High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.

  4. Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function

    NASA Astrophysics Data System (ADS)

    Zhang, Hongda; Han, Chao; Ye, Taohong; Ren, Zhuyin

    2016-03-01

    A method of chemistry tabulation combined with presumed probability density function (PDF) is applied to simulate piloted premixed jet burner flames with high Karlovitz number using large eddy simulation. Thermo-chemistry states are tabulated by the combination of auto-ignition and extended auto-ignition model. To evaluate the predictive capability of the proposed tabulation method to represent the thermo-chemistry states under the condition of different fresh gases temperature, a-priori study is conducted by performing idealised transient one-dimensional premixed flame simulations. Presumed PDF is used to involve the interaction of turbulence and flame with beta PDF to model the reaction progress variable distribution. Two presumed PDF models, Dirichlet distribution and independent beta distribution, respectively, are applied for representing the interaction between two mixture fractions that are associated with three inlet streams. Comparisons of statistical results show that two presumed PDF models for the two mixture fractions are both capable of predicting temperature and major species profiles, however, they are shown to have a significant effect on the predictions for intermediate species. An analysis of the thermo-chemical state-space representation of the sub-grid scale (SGS) combustion model is performed by comparing correlations between the carbon monoxide mass fraction and temperature. The SGS combustion model based on the proposed chemistry tabulation can reasonably capture the peak value and change trend of intermediate species. Aspects regarding model extensions to adequately predict the peak location of intermediate species are discussed.

  5. Boerhaave on Fire

    NASA Astrophysics Data System (ADS)

    Diemente, Damon

    2000-01-01

    In 1741 an English translation of Herman Boerhaave's celebrated textbook Elementa Chemic was published under the title A New Method of Chemistry. True to its time, this book included elaborate discussions of the elements earth, water, air, and fire. This article offers to teachers for classroom use a selection of passages from Boerhaave's chapter on fire. Now, today's teacher of chemistry is apt to feel that little of significance to the modern classroom can be gleaned from a two-and-a-half-centuries-old text, and especially from a topic as old-fashioned as fire. But this view is decidedly shortsighted. Boerhaave offers demonstrations and experiments that can be instructively performed today, quantitative data that can be checked against modern equations, and much theory and hypothesis that can be assessed in light of modern chemical ideas. In the readings presented here I have found material for discussion in class, for investigation in the laboratory, and for a few homework assignments. Modern students are well able to comprehend and paraphrase Boerhaave, to check his results, appreciate his insights, and identify his shortfalls. From him they learn firsthand how painstaking and difficult it was to imagine and develop the concepts of thermochemistry. To read from his chapter on fire is to stand witness to the birth and infancy of thermodynamics as conceived in the mind of a great chemist from the age when coherent chemical theory was just beginning to emerge.

  6. Quantitative Resistance: More Than Just Perception of a Pathogen

    PubMed Central

    2017-01-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. PMID:28302676

  7. Thermochemistry of myricetin flavonoid

    NASA Astrophysics Data System (ADS)

    Abil'daeva, A. Z.; Kasenova, Sh. B.; Kasenov, B. K.; Sagintaeva, Zh. I.; Kuanyshbekov, E. E.; Rakhimova, B. B.; Polyakov, V. V.; Adekenov, S. M.

    2014-08-01

    The enthalpies of myricetin dissolution are measured by means of calorimetry with mol dilutions of flavonoid: 96 mol % ethanol equal to 1: 9000, 1: 18000, and 1: 36000. The standard enthalpies of dissolution for the biologically active substance in an infinitely diluted (standard) solution of 96% ethanol are calculated from the experimental data. Physicochemical means of approximation are used to estimate the values of the standard enthalpy of combustion, and the enthalpy of melting is calculated for the investigated flavonoid. Finally, the compound's standard enthalpy of formation is calculated using the Hess cycle.

  8. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  9. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  10. Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress*

    PubMed Central

    Kültz, Dietmar; Li, Johnathon; Gardell, Alison; Sacchi, Romina

    2013-01-01

    A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change. PMID:24065692

  11. Quantitative Resistance: More Than Just Perception of a Pathogen.

    PubMed

    Corwin, Jason A; Kliebenstein, Daniel J

    2017-04-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  12. International Standards and Reference Materials for Quantitative Molecular Infectious Disease Testing

    PubMed Central

    Madej, Roberta M.; Davis, Jack; Holden, Marcia J.; Kwang, Stan; Labourier, Emmanuel; Schneider, George J.

    2010-01-01

    The utility of quantitative molecular diagnostics for patient management depends on the ability to relate patient results to prior results or to absolute values in clinical practice guidelines. To do this, those results need to be comparable across time and methods, either by producing the same value across methods and test versions or by using reliable and stable conversions. Universally available standards and reference materials specific to quantitative molecular technologies are critical to this process but are few in number. This review describes recent history in the establishment of international standards for nucleic acid test development, organizations involved in current efforts, and future issues and initiatives. PMID:20075208

  13. A new molecular diagnostic tool for quantitatively detecting and genotyping “Candidatus Liberibacter species”

    USDA-ARS?s Scientific Manuscript database

    A new molecular diagnostic method was developed for quantitative detection of “Candidatus Liberibacter” species associated with citrus Huanglongbing (“Ca. Liberibacter asiaticus”, “Ca. Liberibacter africanus” and “Ca. Liberibacter americanus”) and potato zebra chip disorder (“Ca. Liberibacter solana...

  14. Chemsheet as a Simulation Platform for Pyrometallurgical Processes

    NASA Astrophysics Data System (ADS)

    Penttilä, Karri; Salminen, Justin; Tripathi, Nagendra; Koukkari, Pertti

    ChemSheet is a thermodynamic multi-phase multi-component simulation software, which is used as an Add-in in Microsoft Excel. In ChemSheet, the unique Constrained Gibbs free energy method can be used to include dynamic constraints and reaction rates of kinetically slow reactions, yet retaining full consistency of the multiphase thermodynamic model. With appropriate data, ChemSheet models can be used to simulate reactors and processes in all fields of thermochemistry. The presentation will cover off-line modeling of Cu-flash smelters and advanced thermochemical simulation coupled with on-line process control of Cu-Ni smelting. The presentation will describe an off-line model of Cu-smelter based on critically assessed properties of the Al-Ca-Cu-Fe-O-S-Si -system (slag, matte and liquid metal) by using the quasichemical model. A four-stage reactor model (shaft, settler, uptake and bath) is used for optimizing process parameters and feed particle distribution. As a second example, an advanced thermochemical model of a Ni-Cu sulphide smelting plant will be given. The on-line model covers the operation of treating Ni-Cu-S concentrate via roasters, electric furnace and converters, producing a high grade Bessemer matte product for further refining. The model integrates the thermochemistry of the roasters and electric furnace, and predicts important process parameters such as degree of sulphur elimination in the fluid-bed roasters, matte grade, iron metallization, slag losses and the iron to silica ratio in the electric furnace slag. Both models can be used to assist process engineers and operators in calculating the addition rates of coke, flux and air for different feed scenarios.

  15. Comparison of genetic diversity and population structure of Pacific Coast whitebark pine across multiple markers

    Treesearch

    Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry

    2011-01-01

    Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...

  16. Kinetics of the Reactions between the Criegee Intermediate CH2OO and Alcohols.

    PubMed

    Tadayon, Sara V; Foreman, Elizabeth S; Murray, Craig

    2018-01-11

    Reactions of the simplest Criegee intermediate (CH 2 OO) with a series of alcohols have been studied in a flash photolysis flow reactor. Laser photolysis of diiodomethane at 355 nm in the presence of molecular oxygen was used to produce CH 2 OO, and the absolute number densities were determined as a function of delay time from analysis of broadband transient absorption spectra obtained using a pulsed LED. The kinetics for the reactions of CH 2 OO with methanol, ethanol, and 2-propanol were measured under pseudo-first-order conditions at 295 K, yielding rate constants of (1.4 ± 0.4) × 10 -13 cm 3 s -1 , (2.3 ± 0.6) × 10 -13 cm 3 s -1 , and (1.9 ± 0.5) × 10 -13 cm 3 s -1 , respectively. Complementary ab initio calculations were performed at the CCSD(T)/aug-cc-pVTZ//CCSD/cc-pVDZ level of theory to characterize stationary points on the reaction enthalpy and free energy surfaces and to elucidate the thermochemistry and mechanisms. The reactions proceed over free energy barriers of ∼8 kcal mol -1 to form geminal alkoxymethyl hydroperoxides: methoxymethyl hydroperoxide (MMHP), ethoxymethyl hydroperoxide (EMHP), and isopropoxymethyl hydroperoxide (PMHP). The experimental and theoretical results are compared to reactions of CH 2 OO with other hydroxylic compounds, such as water and carboxylic acids, and trends in reactivity are discussed.

  17. Drift mobility of photo-electrons in organic molecular crystals: Quantitative comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Reineker, P.; Kenkre, V. M.; Kühne, R.

    1981-08-01

    A quantitative comparison of a simple theoretical prediction for the drift mobility of photo-electrons in organic molecular crystals, calculated within the model of the coupled band-like and hopping motion, with experiments in napthalene of Schein et al. and Karl et al. is given.

  18. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  19. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination.

    PubMed

    Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C

    2004-09-30

    Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.

  20. Thermochemistry and Dynamics of Reactive Species: Nitrogen-rich Substituted Heterocycles, and Anionic Components of Ionic Liquids

    DTIC Science & Technology

    2012-02-23

    Transfer and Anionic σ-Adduct Formation ," J. Am. Soc. Mass Spectrom. 22, 1260-72 (2011). 6. S. W. Wren, K. M. Vogelhuber, J. M. Garver, S. Kato, L...Lineberger, and V. M. Bierbaum, "Gas Phase Reactions of 1,3,5-Triazine: Proton Transfer, Hydride Transfer and Anionic σ-Adduct Formation ," J. Am. Soc. Mass...been used to study the furanide anion (C4H3O−), dihalomethyl anions (CHX2−, where X = Cl, Br, and I), the cyanopolyyne anions HC4N− and HCCN

  1. Kinetics and thermochemistry of polyatomic free radicals: New results and new understandings

    NASA Technical Reports Server (NTRS)

    Gutman, David; Slagle, Irene R.

    1990-01-01

    An experimental facility for the study of the chemical kinetics of polyatomic free radicals is described which consists of a heatable tubular reactor coupled to a photoionization mass spectrometer. Its use in different kinds of chemical kinetic studies is also discussed. Examples presented include studies of the C2H3 + O2, C2H3 + HC1, CH3 + O, and CH3 + CH3 reactions. The heat of formation of C2H3 was obtained from the results of the study of the C2H3 + HC1 reaction.

  2. Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

  3. The IVTANTHERMO-Online database for thermodynamic properties of individual substances with web interface

    NASA Astrophysics Data System (ADS)

    Belov, G. V.; Dyachkov, S. A.; Levashov, P. R.; Lomonosov, I. V.; Minakov, D. V.; Morozov, I. V.; Sineva, M. A.; Smirnov, V. N.

    2018-01-01

    The database structure, main features and user interface of an IVTANTHERMO-Online system are reviewed. This system continues the series of the IVTANTHERMO packages developed in JIHT RAS. It includes the database for thermodynamic properties of individual substances and related software for analysis of experimental results, data fitting, calculation and estimation of thermodynamical functions and thermochemistry quantities. In contrast to the previous IVTANTHERMO versions it has a new extensible database design, the client-server architecture, a user-friendly web interface with a number of new features for online and offline data processing.

  4. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  5. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni

    2018-02-01

    The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

  6. Behavioral and molecular studies of quantitative differences in hygienic behavior in honeybees.

    PubMed

    Gempe, Tanja; Stach, Silke; Bienefeld, Kaspar; Otte, Marianne; Beye, Martin

    2016-10-21

    Hygienic behavior (HB) enables honeybees to tolerate parasites, including infection with the parasitic mite Varroa destructor, and it is a well-known example of a quantitative genetic trait. The understanding of the molecular processes underpinning the quantitative differences in this behavior remains limited. We performed gene expression studies in worker bees that displayed quantitative genetic differences in HB. We established a high and low genetic source of HB performance and studied the engagements into HB of single worker bees under the same environmental conditions. We found that the percentage of worker bees that engaged in a hygienic behavioral task tripled in the high versus low HB sources, thus suggesting that genetic differences may mediate differences in stimulated states to perform HB. We found 501 differently expressed genes (DEGs) in the brains of hygienic and non-hygienic performing workers in the high HB source bees, and 342 DEGs in the brains of hygienic performing worker bees, relative to the gene expression in non-hygienic worker bees from the low HB source group. "Cell surface receptor ligand signal transduction" in the high and "negative regulation of cell communication" in the low HB source were overrepresented molecular processes, suggesting that these molecular processes in the brain may play a role in the regulation of quantitative differences in HB. Moreover, only 21 HB-associated DEGs were common between the high and low HB sources. The better HB colony performance is primarily achieved by a high number of bees engaging in the hygienic tasks that associate with distinct molecular processes in the brain. We propose that different gene products and pathways may mediate the quantitative genetic differences of HB.

  7. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    PubMed

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  8. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. © 2015 John Wiley & Sons A/S.

  9. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  10. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  11. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  12. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  13. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less

  14. Thermochemistry, Tautomerism, and Thermal Decomposition of 1,5-Diaminotetrazole: A High-Level ab Initio Study.

    PubMed

    Shakhova, Margarita V; Muravyev, Nikita V; Gritsan, Nina P; Kiselev, Vitaly G

    2018-04-19

    Thermochemistry, kinetics, and mechanism of thermal decomposition of 1,5-diaminotetrazole (DAT), a widely used "building block" of nitrogen-rich energetic compounds, were studied theoretically at a high and reliable level of theory (viz., using the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ procedure). Quantum chemical calculations provided detailed insight into the thermolysis mechanism of DAT missing in the existing literature. Moreover, several contradictory assumptions on the mechanism and key intermediates of thermolysis were resolved. The unimolecular primary decomposition reactions of the seven isomers of DAT were studied in the gas phase and in the melt using a simplified model of the latter. The two-step reaction of N 2 elimination from the diamino tautomer was found to be the primary decomposition process of DAT in the gas phase and melt. The effective Arrhenius parameters of this process were calculated to be E a = 43.4 kcal mol -1 and log( A/s -1 ) = 15.2 in a good agreement with the experimental values. Contrary to the existing literature data, all other decomposition channels of DAT isomers turned out to be kinetically unimportant. Apart from this, a new primary decomposition channel yielding N 2 , cyanamide, and 1,1-diazene was found for some H-bonded dimers of DAT. We also determined a reliable and mutually consistent set of thermochemical values for DAT (Δ f H solid 0 = 74.5 ± 1.5 kcal·mol -1 ) by combining theoretically calculated (W1 multilevel procedure along with an isodesmic reaction) gas phase enthalpy of formation (Δ f H gas 0 = 100.7 ± 1.0 kcal·mol -1 ) and experimentally measured sublimation enthalpy (Δ sub H 0 = 26.2 ± 0.5 kcal·mol -1 ).

  15. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    DOE PAGES

    Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.; ...

    2017-02-05

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less

  16. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  17. Computational Thermochemistry of Jet Fuels and Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Crawford, T. Daniel

    2002-01-01

    The design of new high-energy density molecules as candidates for jet and rocket fuels is an important goal of modern chemical thermodynamics. The NASA Glenn Research Center is home to a database of thermodynamic data for over 2000 compounds related to this goal, in the form of least-squares fits of heat capacities, enthalpies, and entropies as functions of temperature over the range of 300 - 6000 K. The chemical equilibrium with applications (CEA) program written and maintained by researchers at NASA Glenn over the last fifty years, makes use of this database for modeling the performance of potential rocket propellants. During its long history, the NASA Glenn database has been developed based on experimental results and data published in the scientific literature such as the standard JANAF tables. The recent development of efficient computational techniques based on quantum chemical methods provides an alternative source of information for expansion of such databases. For example, it is now possible to model dissociation or combustion reactions of small molecules to high accuracy using techniques such as coupled cluster theory or density functional theory. Unfortunately, the current applicability of reliable computational models is limited to relatively small molecules containing only around a dozen (non-hydrogen) atoms. We propose to extend the applicability of coupled cluster theory- often referred to as the 'gold standard' of quantum chemical methods- to molecules containing 30-50 non-hydrogen atoms. The centerpiece of this work is the concept of local correlation, in which the description of the electron interactions- known as electron correlation effects- are reduced to only their most important localized components. Such an advance has the potential to greatly expand the current reach of computational thermochemistry and thus to have a significant impact on the theoretical study of jet and rocket propellants.

  18. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing

    PubMed Central

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-01-01

    Aims A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R2), using R2 as the primary metric of assay agreement. However, the use of R2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. Methods We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Results Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. Conclusions The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. PMID:28747393

  19. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  20. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  1. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in detail with numerical examples.

  2. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.D.; Siniscalco, M.

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  3. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  4. Theoretical analysis of oxygen diffusion at startup in an alkali metal heat pipe with gettered alloy walls

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1973-01-01

    The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

  5. Surprising performance for vibrational frequencies of the distinguishable clusters with singles and doubles (DCSD) and MP2.5 approximations

    NASA Astrophysics Data System (ADS)

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-11-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.

  6. Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Kamata, Masahiro; Nakai, Hiromi

    2016-07-01

    The harmonic solvation model (HSM) was applied to the solvation of gaseous molecules and compared to a procedure based on the ideal gas model (IGM). Examination of 25 molecules showed that (i) the accuracy of ΔGsolv was similar for both methods, but the HSM shows advantages for calculating ΔHsolv and TΔSsolv; (ii) TΔSsolv contributes more than ΔHsolv to ΔGsolv in the HSM, i.e. the solvation of gaseous molecules is entropy-driven, which agrees well with experimental understanding (the IGM does not show this); (iii) the temperature dependence of Henry's law coefficient was correctly reproduced with the HSM.

  7. Conference on Deep Earth and Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) rare gases systematics and mantle structure; (2) volatiles in the earth; (3) impact degassing of water and noble gases from silicates; (4) D/H ratios and H2O contents of mantle-derived amphibole megacrysts; (5) thermochemistry of dense hydrous magnesium silicates; (6) modeling of the effect of water on mantle rheology; (7) noble gas isotopes and halogens in volatile-rich inclusions in diamonds; (8) origin and loss of the volatiles of the terrestrial planets; (9) structure and the stability of hydrous minerals at high pressure; (10) recycling of volatiles at subduction zones and various other topics.

  8. Complete analysis of steady and transient missile aerodynamic/propulsive/plume flowfield interactions

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.

    1992-07-01

    The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.

  9. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  10. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

    PubMed

    Beran, Gregory J O; Hartman, Joshua D; Heit, Yonaton N

    2016-11-15

    Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic errors in the enthalpy and entropy cancel somewhat. Second, because solid state nuclear magnetic resonance (NMR) plays an increasingly important role in molecular crystal studies, this Account discusses how fragment methods can be used to achieve higher-accuracy chemical shifts in molecular crystals. Whereas widely used plane wave density functional theory models are largely restricted to generalized gradient approximation (GGA) functionals like PBE in practice, fragment methods allow the routine use of hybrid density functionals with only modest increases in computational cost. In extensive molecular crystal benchmarks, hybrid functionals like PBE0 predict chemical shifts with 20-30% higher accuracy than GGAs, particularly for 1 H, 13 C, and 15 N nuclei. Due to their higher sensitivity to polarization effects, 17 O chemical shifts prove slightly harder to predict with fragment methods. Nevertheless, the fragment model results are still competitive with those from GIPAW. The improved accuracy achievable with fragment approaches and hybrid density functionals increases discrimination between different potential assignments of individual shifts or crystal structures, which is critical in NMR crystallography applications. This higher accuracy and greater discrimination are highlighted in application to the solid state NMR of different acetaminophen and testosterone crystal forms.

  11. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    PubMed

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Divergent selection along climatic gradients in a rare central European endemic species, Saxifraga sponhemica

    PubMed Central

    Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart

    2015-01-01

    Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats. PMID:25862244

  13. Practical auxiliary basis implementation of Rung 3.5 functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.

    2014-07-21

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less

  14. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  15. Quantitative estimation of pesticide-likeness for agrochemical discovery.

    PubMed

    Avram, Sorin; Funar-Timofei, Simona; Borota, Ana; Chennamaneni, Sridhar Rao; Manchala, Anil Kumar; Muresan, Sorel

    2014-12-01

    The design of chemical libraries, an early step in agrochemical discovery programs, is frequently addressed by means of qualitative physicochemical and/or topological rule-based methods. The aim of this study is to develop quantitative estimates of herbicide- (QEH), insecticide- (QEI), fungicide- (QEF), and, finally, pesticide-likeness (QEP). In the assessment of these definitions, we relied on the concept of desirability functions. We found a simple function, shared by the three classes of pesticides, parameterized particularly, for six, easy to compute, independent and interpretable, molecular properties: molecular weight, logP, number of hydrogen bond acceptors, number of hydrogen bond donors, number of rotatable bounds and number of aromatic rings. Subsequently, we describe the scoring of each pesticide class by the corresponding quantitative estimate. In a comparative study, we assessed the performance of the scoring functions using extensive datasets of patented pesticides. The hereby-established quantitative assessment has the ability to rank compounds whether they fail well-established pesticide-likeness rules or not, and offer an efficient way to prioritize (class-specific) pesticides. These findings are valuable for the efficient estimation of pesticide-likeness of vast chemical libraries in the field of agrochemical discovery. Graphical AbstractQuantitative models for pesticide-likeness were derived using the concept of desirability functions parameterized for six, easy to compute, independent and interpretable, molecular properties: molecular weight, logP, number of hydrogen bond acceptors, number of hydrogen bond donors, number of rotatable bounds and number of aromatic rings.

  16. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  17. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  18. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  19. Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors.

    PubMed

    Ivanciuc, O; Ivanciuc, T; Klein, D J; Seitz, W A; Balaban, A T

    2001-02-01

    Quantitative structure-retention relationships (QSRR) represent statistical models that quantify the connection between the molecular structure and the chromatographic retention indices of organic compounds, allowing the prediction of retention indices of novel, not yet synthesized compounds, solely from their structural descriptors. Using multiple linear regression, QSRR models for the gas chromatographic Kováts retention indices of 129 alkylbenzenes are generated using molecular graph descriptors. The correlational ability of structural descriptors computed from 10 molecular matrices is investigated, showing that the novel reciprocal matrices give numerical indices with improved correlational ability. A QSRR equation with 5 graph descriptors gives the best calibration and prediction results, demonstrating the usefulness of the molecular graph descriptors in modeling chromatographic retention parameters. The sequential orthogonalization of descriptors suggests simpler QSRR models by eliminating redundant structural information.

  20. Laser beam heat method reported

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Hachiro; Goto, Hidekazu

    1988-07-01

    An outline of research involving the processing method utilizing laser-induced thermochemistry was presented, with the CO2 laser processing of ceramics in CF4 gas used as a practical processing example. It has become clear that it will be possible to conduct laser proccessing of ceramics with high efficiency and high precision by utilizing the thermochemical processes, but it is not believed that the present method is the best one and it is not clear that it can be applied to commercial processing. It is thought that the processing characteristics of this method will be greatly changed by the combination of the atmospheric gas and the material, and it is important to conduct tests on various combinations. However, it is believed that the improvement and development will become possible by theoretically confirming the basic process of the processing, especially of the the thermochemical process between the solid surface and the atmospheric gas molecule. Actually, it is believed that the thermochemical process on the solid surface is quite complicated. For example, it was confirmed that when thermochemical processing the Si monocrystal in the CF4 gas, the processing speed would change by at least 10 times through changing the gas pressure and the mixing O2 gas density. However, conversely speaking, it is believed that the fact that this method is complicated, with many unexplained points and room for research, conceals the possibility of its being applied to various fields, and also, in this sense, the quantitative confirmation of its basic process in an important problem to be solved in the future.

  1. Customized Molecular Phenotyping by Quantitative Gene Expression and Pattern Recognition Analysis

    PubMed Central

    Akilesh, Shreeram; Shaffer, Daniel J.; Roopenian, Derry

    2003-01-01

    Description of the molecular phenotypes of pathobiological processes in vivo is a pressing need in genomic biology. We have implemented a high-throughput real-time PCR strategy to establish quantitative expression profiles of a customized set of target genes. It enables rapid, reproducible data acquisition from limited quantities of RNA, permitting serial sampling of mouse blood during disease progression. We developed an easy to use statistical algorithm—Global Pattern Recognition—to readily identify genes whose expression has changed significantly from healthy baseline profiles. This approach provides unique molecular signatures for rheumatoid arthritis, systemic lupus erythematosus, and graft versus host disease, and can also be applied to defining the molecular phenotype of a variety of other normal and pathological processes. PMID:12840047

  2. Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics.

    PubMed

    Bahrami, Naeim; Hartman, Stephen J; Chang, Yu-Hsuan; Delfanti, Rachel; White, Nathan S; Karunamuni, Roshan; Seibert, Tyler M; Dale, Anders M; Hattangadi-Gluth, Jona A; Piccioni, David; Farid, Nikdokht; McDonald, Carrie R

    2018-06-02

    Molecular markers of WHO grade II/III glioma are known to have important prognostic and predictive implications and may be associated with unique imaging phenotypes. The purpose of this study is to determine whether three clinically relevant molecular markers identified in gliomas-IDH, 1p/19q, and MGMT status-show distinct quantitative MRI characteristics on FLAIR imaging. Sixty-one patients with grade II/III gliomas who had molecular data and MRI available prior to radiation were included. Quantitative MRI features were extracted that measured tissue heterogeneity (homogeneity and pixel correlation) and FLAIR border distinctiveness (edge contrast; EC). T-tests were conducted to determine whether patients with different genotypes differ across the features. Logistic regression with LASSO regularization was used to determine the optimal combination of MRI and clinical features for predicting molecular subtypes. Patients with IDH wildtype tumors showed greater signal heterogeneity (p = 0.001) and lower EC (p = 0.008) within the FLAIR region compared to IDH mutant tumors. Among patients with IDH mutant tumors, 1p/19q co-deleted tumors had greater signal heterogeneity (p = 0.002) and lower EC (p = 0.005) compared to 1p/19q intact tumors. MGMT methylated tumors showed lower EC (p = 0.03) compared to the unmethylated group. The combination of FLAIR border distinctness, heterogeneity, and pixel correlation optimally classified tumors by IDH status. Quantitative imaging characteristics of FLAIR heterogeneity and border pattern in grade II/III gliomas may provide unique information for determining molecular status at time of initial diagnostic imaging, which may then guide subsequent surgical and medical management.

  3. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  4. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  5. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers.

    PubMed

    Egorov, Evgeny S; Merzlyak, Ekaterina M; Shelenkov, Andrew A; Britanova, Olga V; Sharonov, George V; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Davydov, Alexey N; Barsova, Ekaterina; Lebedev, Yuriy B; Shugay, Mikhail; Chudakov, Dmitriy M

    2015-06-15

    Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Dealing with the Challenges of Teaching Molecular Biophysics to Biochemistry Majors through an Heuristics-Based Approach

    ERIC Educational Resources Information Center

    Castanho, Miguel A. R. B.

    2002-01-01

    The main distinction between the overlapping fields of molecular biophysics and biochemistry resides in their different approaches to the same problems. Molecular biophysics makes more use of physical techniques and focuses on quantitative data. This difference encounters two difficult pedagogical challenges when teaching molecular biophysics to…

  7. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling.

    PubMed

    Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian

    2012-10-24

    Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.

  8. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  9. Quantitative estimation of film forming polymer-plasticizer interactions by the Lorentz-Lorenz Law.

    PubMed

    Dredán, J; Zelkó, R; Dávid, A Z; Antal, I

    2006-03-09

    Molar refraction as well as refractive index has many uses. Beyond confirming the identity and purity of a compound, determination of molecular structure and molecular weight, molar refraction is also used in other estimation schemes, such as in critical properties, surface tension, solubility parameter, molecular polarizability, dipole moment, etc. In the present study molar refraction values of polymer dispersions were determined for the quantitative estimation of film forming polymer-plasticizer interactions. Information can be obtained concerning the extent of interaction between the polymer and the plasticizer from the calculation of molar refraction values of film forming polymer dispersions containing plasticizer.

  10. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring.

    PubMed

    Luu, Martin H; Press, Richard D

    2013-09-01

    The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.

  11. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  12. Recent developments in fast pyrolysis of ligno-cellulosic materials.

    PubMed

    Kersten, Sascha; Garcia-Perez, Manuel

    2013-06-01

    Pyrolysis is a thermochemical process to convert ligno-cellulosic materials into bio-char and pyrolysis oil. This oil can be further upgraded or refined for electricity, transportation fuels and chemicals production. At the time of writing, several demonstration factories are considered worldwide aiming at maturing the technology. Research is focusing on understanding the underlying processes at all relevant scales, ranging from the chemistry of cell wall deconstruction to optimization of pyrolysis factories, in order to produce better quality oils for targeted uses. Among the several bio-oil applications that are currently investigated the production and fermentation of pyrolytic sugars explores the promising interface between thermochemistry and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    PubMed

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.

  14. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students' Mathematical Reasoning in Biological Contexts

    ERIC Educational Resources Information Center

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course…

  15. Genetics and child psychiatry: I Advances in quantitative and molecular genetics.

    PubMed

    Rutter, M; Silberg, J; O'Connor, T; Simonoff, E

    1999-01-01

    Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.

  16. Alchemy: A Web 2.0 Real-time Quality Assurance Platform for Human Immunodeficiency Virus, Hepatitis C Virus, and BK Virus Quantitation Assays.

    PubMed

    Agosto-Arroyo, Emmanuel; Coshatt, Gina M; Winokur, Thomas S; Harada, Shuko; Park, Seung L

    2017-01-01

    The molecular diagnostics laboratory faces the challenge of improving test turnaround time (TAT). Low and consistent TATs are of great clinical and regulatory importance, especially for molecular virology tests. Laboratory information systems (LISs) contain all the data elements necessary to do accurate quality assurance (QA) reporting of TAT and other measures, but these reports are in most cases still performed manually: a time-consuming and error-prone task. The aim of this study was to develop a web-based real-time QA platform that would automate QA reporting in the molecular diagnostics laboratory at our institution, and minimize the time expended in preparing these reports. Using a standard Linux, Nginx, MariaDB, PHP stack virtual machine running atop a Dell Precision 5810, we designed and built a web-based QA platform, code-named Alchemy. Data files pulled periodically from the LIS in comma-separated value format were used to autogenerate QA reports for the human immunodeficiency virus (HIV) quantitation, hepatitis C virus (HCV) quantitation, and BK virus (BKV) quantitation. Alchemy allowed the user to select a specific timeframe to be analyzed and calculated key QA statistics in real-time, including the average TAT in days, tests falling outside the expected TAT ranges, and test result ranges. Before implementing Alchemy, reporting QA for the HIV, HCV, and BKV quantitation assays took 45-60 min of personnel time per test every month. With Alchemy, that time has decreased to 15 min total per month. Alchemy allowed the user to select specific periods of time and analyzed the TAT data in-depth without the need of extensive manual calculations. Alchemy has significantly decreased the time and the human error associated with QA report generation in our molecular diagnostics laboratory. Other tests will be added to this web-based platform in future updates. This effort shows the utility of informatician-supervised resident/fellow programming projects as learning opportunities and workflow improvements in the molecular laboratory.

  17. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  18. Ion Mediated Nucleation: how is it Influenced by Changes in the Solar Activity?

    NASA Astrophysics Data System (ADS)

    D'Auria, R.; Turco, R. P.

    2003-12-01

    Recently it has been pointed out that tropospheric cloudiness can be correlated with the galactic cosmic rays (GCRs) intensity [Svensmark and Friis-Christensen, 1997]. A possible explanation for such a correlation relies on the fact that GCRs are the main ionization source in the upper troposphere, hence, throughout ionic mediated nucleation, they could possibly influence the global cloud condensation nuclei (CCN) formation [e.g., Yu, 2001; Dickinson, 1975]. Because the GCRs are modulated by the interaction between the solar wind and the Earth's magnetosphere and their intensity generally decreases with increasing solar activity, subtle changes in the solar activity could indirectly affect the Earth's climate. We have been studying the very first steps of ionic nucleation considering the molecular species of atmospheric interest (e.g.,water, nitric acid, sulfuric acid, ammonia etc.). In our approach the formation and evolution of ionic clusters is followed by resolving the time dependent kinetic aggregation process and considering the ions sources (ultimately the atmospheric ionization of neutral species) and sinks. We show how in typical atmospheric conditions stable populations of molecular ions forms. The novelty of our work consists in the determination of the kinetic parameters that govern the molecular ions growth (i.e., the forward and reverse clustering reaction constants for each cluster type and size) at a microscopic level. In fact a thermochemistry data base is built for the species of interest by integrating laboratory measurements, quantum mechanical calculations and, when appropriate, results from the macroscopic liquid droplet model [Thomson, 1928]. Such database is than used to retrieve the reverse clustering reaction coefficients for the molecular ion type and size and for the environmental conditions (pressure and temperature) of interest. The forward reaction is instead determined by calculating the ionic-neutral collisional rate or is assumed from laboratory determinations. Here we discuss the methodology and some of the results from sensitivity tests in which the ionization rate is changed so to reflect natural variation of the GCRs as modulated by the Sun. References: Dickinson, R. E., Solar variability and the lower atmosphere, Bull. Am. Meterol. Soc., 56, 1240-1248, 1975. Svensmark, H., and E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage A missing link in solar-climate relationships, J. Atmos. Sol. Terr. Phys., 59, 1225-1232, 1997. Thomson, J. J and G. P. Thomson, Conduction of electricity through gases, Cambridge University Press, 1928. Yu, F., Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate, J. Geophys. Res., 107, 10.1029/2001JA000248, 2001.

  19. Measurement of incident molecular temperature in the formation of organic thin films

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Matsubara, Ryosuke; Hayakawa, Munetaka; Shimoyama, Akifumi; Tanaka, Takaaki; Tsuji, Akira; Takahashi, Yoshikazu; Kubono, Atsushi

    2018-03-01

    To investigate the effects of incident molecular temperature on organic-thin-film growth by vacuum evaporation, quantitative analysis of molecular temperature is required. In this study, we propose a method of determining molecular temperature based on the heat exchange between a platinum filament and molecular vapor. Molecular temperature is estimated from filament temperature, which remains unchanged even under molecular vapor supply. The results indicate that our method has sufficient sensitivity to evaluate the molecular temperature under the typical growth rate used for fabrication of functional organic thin films.

  20. Identification of common coexpression modules based on quantitative network comparison.

    PubMed

    Jo, Yousang; Kim, Sanghyeon; Lee, Doheon

    2018-06-13

    Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.

  1. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  2. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  3. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  4. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Renyu; Seager, Sara, E-mail: hury@caltech.edu

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmospheremore » and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 μm in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.« less

  5. The thermochemistry of cubane 50 years after its synthesis: a high-level theoretical study of cubane and its derivatives.

    PubMed

    Agapito, Filipe; Santos, Rui C; Borges dos Santos, Rui M; Martinho Simões, José A

    2015-03-26

    The gas-phase enthalpy of formation of cubane (603.4 ± 4 kJ mol(-1)) was calculated using an explicitly correlated composite method (W1-F12). The result obtained for cubane, together with the experimental value for the enthalpy of sublimation, 54.8 ± 2.0 kJ mol(-1), led to 548.6 ± 4.5 kJ mol(-1) for the solid-phase enthalpy of formation. This value is only 6.8 kJ mol(-1) higher than the 50-year-old original calorimetric result. The carbon-hydrogen bond dissociation enthalpy (C-H BDE) of cubane (438.4 ± 4 kJ mol(-1)), together with properties relevant for its experimental determination using gas-phase ion thermochemistry, namely the cubane gas-phase acidity (1704.6 ± 4 kJ mol(-1)), cubyl radical electron affinity (45.8 ± 4 kJ mol(-1)), cubane ionization energy (1435.1 ± 4 kJ mol(-1)), cubyl radical cation proton affinity (918.8 ± 4 kJ mol(-1)), cubane cation appearance energy (1099.6 ± 4 kJ mol(-1)), and cubyl ionization energy (661.2 ± 4 kJ mol(-1)), were also determined. These values were compared with those calculated for unstrained hydrocarbons (viz., methane, ethane, and isobutane). The strain energy of cubane (667.2 kJ mol(-1)) and cubyl radical (689.4 kJ mol(-1)) were independently estimated via quasihomodesmotic reactions. These values were related via a simple model to the C-H BDE in cubane. Taking into account the accuracy of the computational method, the comparison with high-precision experimental results, and the data consistency afforded by the relevant thermodynamic cycles, we claim an uncertainty better than ±4 kJ mol(-1) for the new enthalpy of formation values presented.

  6. Oxidation of atomic gold ions: thermochemistry for the activation of O(2) and N(2)O BY Au(+) ((1)S(0) and (3)D).

    PubMed

    Li, Feng-Xia; Gorham, Katrine; Armentrout, P B

    2010-10-28

    Reaction of Au(+) ((1)S(0) and (3)D) with O(2) and N(2)O is studied as a function of kinetic energy using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) primarily in its (1)S(0) (5d(10)) electronic ground state level but with some (3)D and perhaps higher lying excited states. The distribution of states can be altered by adding N(2)O, which completely quenches the excited states, or CH(4) to the flow gases. Cross sections as a function of kinetic energy are measured for both neutral reagents and both ground and excited states of Au(+). Formation of AuO(+) is common to both systems with the N(2)O system also exhibiting AuN(2)(+) and AuNO(+) formation. All reactions of Au(+) ((1)S(0)) are observed to be endothermic, whereas the excitation energy available to the (3)D state allows some reactions to be exothermic. Because of the closed shell character of ground state Au(+) ((1)S(0), 5d(10)), the reactivity of these systems is low and has cross sections with onsets and peaks at higher energies than expected from the known thermochemistry but lower than energies expected from impulsive processes. Analyses of the endothermic reaction cross sections yield the 0 K bond dissociation energy (BDE) in eV of D(0)(Au(+)-O) = 1.12 ± 0.08, D(0)(Au(+)-N(2)) ≥ 0.30 ± 0.04, and D(0)(Au(+)-NO) = 0.89 ± 0.17, values that are all speculative because of the unusual experimental behavior. Combining the AuO(+) BDE measured here with literature data also yields the ionization energy of AuO as 10.38 ± 0.23 eV. Quantum chemical calculations show reasonable agreement with the experimental bond energies and provide the electronic structures of these species.

  7. Modeling the gas-phase thermochemistry of organosulfur compounds.

    PubMed

    Vandeputte, Aäron G; Sabbe, Maarten K; Reyniers, Marie-Françoise; Marin, Guy B

    2011-06-27

    Key to understanding the involvement of organosulfur compounds in a variety of radical chemistries, such as atmospheric chemistry, polymerization, pyrolysis, and so forth, is knowledge of their thermochemical properties. For organosulfur compounds and radicals, thermochemical data are, however, much less well documented than for hydrocarbons. The traditional recourse to the Benson group additivity method offers no solace since only a very limited number of group additivity values (GAVs) is available. In this work, CBS-QB3 calculations augmented with 1D hindered rotor corrections for 122 organosulfur compounds and 45 organosulfur radicals were used to derive 93 Benson group additivity values, 18 ring-strain corrections, 2 non-nearest-neighbor interactions, and 3 resonance corrections for standard enthalpies of formation, standard molar entropies, and heat capacities for organosulfur compounds and organosulfur radicals. The reported GAVs are consistent with previously reported GAVs for hydrocarbons and hydrocarbon radicals and include 77 contributions, among which 26 radical contributions, which, to the best of our knowledge, have not been reported before. The GAVs allow one to estimate the standard enthalpies of formation at 298 K, the standard entropies at 298 K, and standard heat capacities in the temperature range 300-1500 K for a large set of organosulfur compounds, that is, thiols, thioketons, polysulfides, alkylsulfides, thials, dithioates, and cyclic sulfur compounds. For a validation set of 26 organosulfur compounds, the mean absolute deviation between experimental and group additively modeled enthalpies of formation amounts to 1.9  kJ  mol(-1). For an additional set of 14 organosulfur compounds, it was shown that the mean absolute deviations between calculated and group additively modeled standard entropies and heat capacities are restricted to 4 and 2 J  mol(-1)  K(-1), respectively. As an alternative to Benson GAVs, 26 new hydrogen-bond increments are reported, which can also be useful for the prediction of radical thermochemistry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coupled cluster investigation on the thermochemistry of dimethyl sulphide, dimethyl disulphide and their dissociation products: the problem of the enthalpy of formation of atomic sulphur

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2014-04-01

    By means of coupled cluster theory and correlation consistent basis sets we investigated the thermochemistry of dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and four closely related sulphur-containing molecules: CH3SS, CH3S, CH3SH and CH3CH2SH. For the four closed-shell molecules studied, their enthalpies of formation (EOFs) were derived using bomb calorimetry. We found that the deviation of the EOF with respect to experiment was 0.96, 0.65, 1.24 and 1.29 kcal/mol, for CH3SH, CH3CH2SH, DMS and DMDS, respectively, when ΔHf,0 = 65.6 kcal/mol was utilised (JANAF value). However, if the recently proposed ΔHf,0 = 66.2 kcal/mol was used to estimate EOF, the errors dropped to 0.36, 0.05, 0.64 and 0.09 kcal/mol, respectively. In contrast, for the CH3SS radical, a better agreement with experiment was obtained if the 65.6 kcal/mol value was used. To compare with experiment avoiding the problem of the ΔHf,0 (S), we determined the CH3-S and CH3-SS bond dissociation energies (BDEs) in CH3S and CH3SS. At the coupled cluster with singles doubles and perturbative triples correction level of theory, these values are 48.0 and 71.4 kcal/mol, respectively. The latter BDEs are 1.5 and 1.2 kcal/mol larger than the experimental values. The agreement can be considered to be acceptable if we take into consideration that these two radicals present important challenges when determining their EOFs. It is our hope that this work stimulates new studies which help elucidate the problem of the EOF of atomic sulphur.

  9. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    PubMed

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with ΔE int for all 1-butylpyridinium ion pairs (R 2 = 0.9918). The ionic crystal density values calculated by using DFT-based MESP showed only slight variations from experimentally reported values.

  10. Are three generations of quantitative molecular methods sufficient in medical virology? Brief review.

    PubMed

    Clementi, Massimo; Bagnarelli, Patrizia

    2015-10-01

    In the last two decades, development of quantitative molecular methods has characterized the evolution of clinical virology more than any other methodological advancement. Using these methods, a great deal of studies has addressed efficiently in vivo the role of viral load, viral replication activity, and viral transcriptional profiles as correlates of disease outcome and progression, and has highlighted the physio-pathology of important virus diseases of humans. Furthermore, these studies have contributed to a better understanding of virus-host interactions and have sharply revolutionized the research strategies in basic and medical virology. In addition and importantly from a medical point of view, quantitative methods have provided a rationale for the therapeutic intervention and therapy monitoring in medically important viral diseases. Despite the advances in technology and the development of three generations of molecular methods within the last two decades (competitive PCR, real-time PCR, and digital PCR), great challenges still remain for viral testing related not only to standardization, accuracy, and precision, but also to selection of the best molecular targets for clinical use and to the identification of thresholds for risk stratification and therapeutic decisions. Future research directions, novel methods and technical improvements could be important to address these challenges.

  11. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  12. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli

    PubMed Central

    Tyurin, Vladimir A.; Tyurina, Yulia Y.; Jung, Mi-Yeon; Tungekar, Muhammad A.; Wasserloos, Karla J.; Bayir, Hülya; Greenberger, Joel S.; Kochanek, Patrick M.; Shvedova, Anna A.; Pitt, Bruce; Kagan, Valerian E.

    2009-01-01

    Oxidation of two anionic phospholipids - cardiolipin (CL) in mitochondria and phosphatidylserine (PS) in extramitochondrial compartments - are important signaling events, particularly during the execution of programmed cell death and clearance of apoptotic cells. Quantitative analysis of CL and PS oxidation products is central to understanding their molecular mechanisms of action. We combined the identification of diverse phospholipid molecular species by ESI-MS with quantitative assessments of lipid hydroperoxides using a fluorescence HPLC-based protocol. We characterized CL and PS oxidation products formed in a model system (cyt c/H2O2), in apoptotic cells (neurons, pulmonary artery endothelial cells) and mouse lung under inflammatory/oxidative stress conditions (hyperoxia, inhalation of single walled carbon nanotubes). Our results demonstrate the usefulness of this approach for quantitative assessments, identification of individual molecular species and structural characterization of anionic phospholipids that are involved in oxidative modification in cells and tissues. PMID:19328050

  13. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    PubMed

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  14. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging

    PubMed Central

    Zhang, Liang; Thurber, Greg M.

    2016-01-01

    Purpose Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type-1 diabetes. The glucagon like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Procedures Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Results Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Conclusions Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, downregulation of the GLP-1 receptor and non-specific background uptake result in a higher TBR for fast-clearing agents. PMID:26194012

  15. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  16. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    PubMed

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-07

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  17. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or guidelines are developed for assignment of the SFG-VS spectrum. Using the selection rules, SFG-VS spectra of vapour/diol, and vapour/n-normal alcohol (n˜ 1-8) interfaces are assigned, and some of the ambiguity and confusion, as well as their implications in previous IR and Raman assignment, are duly discussed. The ability to assign a SFG-VS spectrum using the polarization selection rules makes SFG-VS not only an effective and useful vibrational spectroscopy technique for interface studies, but also a complementary vibrational spectroscopy method in general condensed phase studies. These developments will put quantitative orientational and spectral analysis in SFG-VS on a more solid foundation. The formulations, concepts and issues discussed in this review are expected to find broad applications for investigations on molecular interfaces in the future.

  18. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into cancer angiogenesis, and thus potentially improve cancer diagnosis and management.

  19. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  20. Quantitative Characterization of Molecular Similarity Spaces: Tools for Computational Toxicology

    DTIC Science & Technology

    2000-01-20

    numbers for hydrogen-filled molecular structure, hydrogen-suppressed molecular structure, and van der Waals volume. Van der Waals...relative covalent radii Geometrical Vw van der Waals volume 3DW 3-D Wiener number for the hydrogen-suppressed geometric distance matrix...molecular structure, and van der Waals volume. Van der Waals volume, Vw (Bondi 1964). was calculated using Sybyl 6.1 from Tripos As- sociates. Inc

  1. Essential Set of Molecular Descriptors for ADME Prediction in Drug and Environmental Chemical Space

    EPA Science Inventory

    Historically, the disciplines of pharmacology and toxicology have embraced quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR) to predict ADME properties or biological activities of untested chemicals. The question arises ...

  2. Understanding molecular structure from molecular mechanics.

    PubMed

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  3. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    NASA Astrophysics Data System (ADS)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  4. On Topological Indices of Certain Families of Nanostar Dendrimers.

    PubMed

    Husin, Mohamad Nazri; Hasni, Roslan; Arif, Nabeel Ezzulddin; Imran, Muhammad

    2016-06-24

    A topological index of graph G is a numerical parameter related to G which characterizes its molecular topology and is usually graph invariant. In the field of quantitative structure-activity (QSAR)/quantitative structure-activity structure-property (QSPR) research, theoretical properties of the chemical compounds and their molecular topological indices such as the Randić connectivity index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are used to predict the bioactivity of different chemical compounds. A dendrimer is an artificially manufactured or synthesized molecule built up from the branched units called monomers. In this paper, the fourth version of ABC index and the fifth version of GA index of certain families of nanostar dendrimers are investigated. We derive the analytical closed formulas for these families of nanostar dendrimers. The obtained results can be of use in molecular data mining, particularly in researching the uniqueness of tested (hyper-branched) molecular graphs.

  5. 2D- and 3D-quantitative structure-activity relationship studies for a series of phenazine N,N'-dioxide as antitumour agents.

    PubMed

    Cunha, Jonathan Da; Lavaggi, María Laura; Abasolo, María Inés; Cerecetto, Hugo; González, Mercedes

    2011-12-01

    Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r² = 0.755, q² = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r² = 0.757, q² = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r² = 0.736, q² = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r² = 0.858, q² = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency. © 2011 John Wiley & Sons A/S.

  6. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  7. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.

    PubMed

    Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine

    2017-01-01

    Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  8. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  9. Bond Dissociation Energies of the Tungsten Fluorides and Their Singly-Charged Ions: A Density Functional Survey

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Arnold, James (Technical Monitor)

    1999-01-01

    The dissociation of WF6 and the related singly-charged cations and anions into the lower fluorides and fluorine atoms has been investigated theoretically using density functional theory (B3LYP) and relativistic effective core potentials, with estimates of spin-orbit effects included using a simple model. The inclusion of spin-orbit is essential for a correct description of the thermochemistry. The total atomization energy of the neutral and anionic WF6 is reproduced to within 25 kcal/mol, but comparison of individual bond dissociation energies with available experimental data shows discrepancies of up to 10 kcal/mol. The results are nevertheless useful to help resolve discrepancies in experimental data and provide estimates of missing data.

  10. Thermochemistry of organic reactions in microporous oxides by atomistic simulations: benchmarking against periodic B3LYP.

    PubMed

    Bleken, Francesca; Svelle, Stian; Lillerud, Karl Petter; Olsbye, Unni; Arstad, Bjørnar; Swang, Ole

    2010-07-15

    The methylation of ethene by methyl chloride and methanol in the microporous materials SAPO-34 and SSZ-13 has been studied using different periodic atomistic modeling approaches based on density functional theory. The RPBE functional, which earlier has been used successfully in studies of surface reactions on metals, fails to yield a qualitatively correct description of the transition states under study. Employing B3LYP as functional gives results in line with experimental data: (1) Methanol is adsorbed more strongly than methyl chloride to the acid site. (2) The activation energies for the methylation of ethene are slightly lower for SSZ-13. Furthermore, the B3LYP activation energies are lower for methyl chloride than for methanol.

  11. Statistical differences between relative quantitative molecular fingerprints from microbial communities.

    PubMed

    Portillo, M C; Gonzalez, J M

    2008-08-01

    Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.

  12. Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A.

    2017-06-01

    Molecular distribution in mammalian cells was studied by soft X-ray scanning transmission microscopy with respect to the quantitative aspect of analysis. NEXAFS profiles at the C, N and O K-absorption edges were combined and used for the analysis. For the estimation of quantity for nucleic acids and proteins, NEXAFS profiles of DNA and bovine serum albumin (BSA) at the N K-absorption edge were applied assuming that those were their representatives. The method has a potential to explore the other molecular components than nucleic acids and proteins.

  13. Detecting molecular forms of antithrombin by LC-MRM-MS: defining the measurands.

    PubMed

    Ruhaak, L Renee; Romijn, Fred P H T M; Smit, Nico P M; van der Laarse, Arnoud; Pieterse, Mervin M; de Maat, Moniek P M; Haas, Fred J L M; Kluft, Cornelis; Amiral, Jean; Meijer, Piet; Cobbaert, Christa M

    2018-05-01

    Antithrombin (AT) is a critical regulator of coagulation, and its overall activity is typically measured using functional tests. A large number of molecular forms of AT have been identified and each individual carries multiple molecular proteoforms representing variable activities. Conventional functional tests are completely blind for these proteoforms. A method that ensures properly defined measurands for AT is therefore needed. We here assess whether mass spectrometry technology, in particular multiple reaction monitoring (MRM), is suitable for the quantification of AT and the qualitative detection of its molecular proteoforms. Plasma proteins were denatured, reduced and alkylated prior to enzymatic digestion. MRM transitions were developed towards tryptic peptides and glycopeptides using AT purified from human plasma. For each peptide, three transitions were measured, and stable isotope-labeled peptides were used for quantitation. Completeness of digestion was assessed using digestion time curves. MRM transitions were developed for 19 tryptic peptides and 4 glycopeptides. Two peptides, FDTISEK and FATTFYQHLADSK, were used for quantitation, and using a calibration curve of isolated AT in 40 g/L human serum albumin, CVs below 3.5% were obtained for FDTISEK, whereas CVs below 8% were obtained for FATTFYQHLADSK. Of the 26 important AT mutations, 20 can be identified using this method, while altered glycosylation profiles can also be detected. We here show the feasibility of the liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) technique for the quantitation of AT and the qualitative analysis of most of its molecular proteoforms. Knowing the measurands will enable standardization of AT tests by providing in-depth information on the molecular proteoforms of AT.

  14. INTERNALIZATION AND FATE OF INDIVIDUAL MANUFACTURED NANOMATERIAL WITHIN LIVING CELLS

    EPA Science Inventory

    Using quantitative fluorescence imaging with single molecule sensitivity, combined with molecular biology techniques, we have been investigating the cellular interactions and fate of one nanoparticle or nanoscale aggregate at a time, identifying molecular interactions and cellula...

  15. Alchemy: A Web 2.0 Real-time Quality Assurance Platform for Human Immunodeficiency Virus, Hepatitis C Virus, and BK Virus Quantitation Assays

    PubMed Central

    Agosto-Arroyo, Emmanuel; Coshatt, Gina M.; Winokur, Thomas S.; Harada, Shuko; Park, Seung L.

    2017-01-01

    Background: The molecular diagnostics laboratory faces the challenge of improving test turnaround time (TAT). Low and consistent TATs are of great clinical and regulatory importance, especially for molecular virology tests. Laboratory information systems (LISs) contain all the data elements necessary to do accurate quality assurance (QA) reporting of TAT and other measures, but these reports are in most cases still performed manually: a time-consuming and error-prone task. The aim of this study was to develop a web-based real-time QA platform that would automate QA reporting in the molecular diagnostics laboratory at our institution, and minimize the time expended in preparing these reports. Methods: Using a standard Linux, Nginx, MariaDB, PHP stack virtual machine running atop a Dell Precision 5810, we designed and built a web-based QA platform, code-named Alchemy. Data files pulled periodically from the LIS in comma-separated value format were used to autogenerate QA reports for the human immunodeficiency virus (HIV) quantitation, hepatitis C virus (HCV) quantitation, and BK virus (BKV) quantitation. Alchemy allowed the user to select a specific timeframe to be analyzed and calculated key QA statistics in real-time, including the average TAT in days, tests falling outside the expected TAT ranges, and test result ranges. Results: Before implementing Alchemy, reporting QA for the HIV, HCV, and BKV quantitation assays took 45–60 min of personnel time per test every month. With Alchemy, that time has decreased to 15 min total per month. Alchemy allowed the user to select specific periods of time and analyzed the TAT data in-depth without the need of extensive manual calculations. Conclusions: Alchemy has significantly decreased the time and the human error associated with QA report generation in our molecular diagnostics laboratory. Other tests will be added to this web-based platform in future updates. This effort shows the utility of informatician-supervised resident/fellow programming projects as learning opportunities and workflow improvements in the molecular laboratory. PMID:28480121

  16. Molecular Dissection of a Major Gene Effect on a Quantitative Trait: The Level of Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Stam, L. F.; Laurie, C. C.

    1996-01-01

    A molecular mapping experiment shows that a major gene effect on a quantitative trait, the level of alcohol dehydrogenase expression in Drosophila melanogaster, is due to multiple polymorphisms within the Adh gene. These polymorphisms are located in an intron, the coding sequence, and the 3' untranslated region. Because of nonrandom associations among polymorphisms at different sites, the individual effects combine (in some cases epistatically) to produce ``superalleles'' with large effect. These results have implications for the interpretation of major gene effects detected by quantitative trait locus mapping methods. They show that large effects due to a single locus may be due to multiple associated polymorphisms (or sequential fixations in isolated populations) rather than individual mutations of large effect. PMID:8978044

  17. [Quantitative relationship between gas chromatographic retention time and structural parameters of alkylphenols].

    PubMed

    Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao

    2007-03-01

    Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.

  18. Analysis of glycerophosphocholine molecular species as derivatives of 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin.

    PubMed

    Wheelan, P; Zirrolli, J A; Clay, K L

    1992-01-01

    A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.

  19. Quantitative imaging as cancer biomarker

    NASA Astrophysics Data System (ADS)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine whether the drug reaches the target; (3) identify an early response to treatment; and (4) predict the impact of therapy on long-term outcomes such as survival. The manuscript reviews basic concepts important in the application of molecular imaging to cancer drug therapy, in general, and will discuss specific examples of studies in humans, and highlight future directions, including ongoing multi-center clinical trials using molecular imaging as a cancer biomarker.

  20. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  1. Quantitative Predictions of Binding Free Energy Changes in Drug-Resistant Influenza Neuraminidase

    DTIC Science & Technology

    2012-08-30

    drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and...conformations that are virtually identical to WT [10]. Molecular simulations that rigorously model the microscopic structure and thermodynamics PLOS...influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with

  2. Molecular basis of quantitative structure-properties relationships (QSPR): a quantum similarity approach.

    PubMed

    Ponec, R; Amat, L; Carbó-Dorca, R

    1999-05-01

    Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett sigma constants and the logarithm of the octanol-water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

  3. Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach

    NASA Astrophysics Data System (ADS)

    Ponec, Robert; Amat, Lluís; Carbó-dorca, Ramon

    1999-05-01

    Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett σ constants and the logarithm of the octanol- water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

  4. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    PubMed

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  6. Quantitative analysis of pyroglutamic acid in peptides.

    PubMed

    Suzuki, Y; Motoi, H; Sato, K

    1999-08-01

    A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.

  7. iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains.

    PubMed

    Yu, Haizhong; Wang, Xueyang; Xu, Jiaping; Ma, Yan; Zhang, Shangzhi; Yu, Dong; Fei, Dongqiong; Muhammad, Azharuddin

    2017-08-08

    Bombyx mori nucleopolyhedrovirus (BmNPV) has been identified as a major pathogen responsible for severe economic loss. Most silkworm strains are susceptible to BmNPV, with only a few highly resistant strains thus far identified. Here we investigated the molecular basis of silkworm resistance to BmNPV using susceptible (the recurrent parent P50) and resistant (near-isogenic line BC9) strains and a combination of iTRAQ-based quantitative proteomics, reverse-transcription quantitative PCR and Western blotting. By comparing the proteomes of infected and non-infected P50 and BC9 silkworms, we identified 793 differentially expressed proteins (DEPs). By gene ontology and KEGG enrichment analyses, we found that these DEPs are preferentially involved in metabolism, catalytic activity, amino sugar and nucleotide sugar metabolism and carbon metabolism. 114 (14.38%) DEPs were associated with the cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. After removing the genetic background and individual immune stress response proteins, we identified 84 DEPs were found that are potentially involved in resistance to BmNPV. Further studies showed that a serine protease was down-regulated in P50 and up-regulated in BC9 after BmNPV infection. Taken together, these results provide insights into the molecular mechanism of silkworm response to BmNPV. Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, causing serious losses in sericulture every year. However, the molecular mechanisms of BmNPV infection and host defence remain unclear. Here we combined quantitative proteomic, bioinformatics, RT-qPCR and Western blotting analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut, and that these changes are related to cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. Five important differentially expression proteins were validation by independent approaches. These finding will help address the molecular mechanisms of silkworm resistance to BmNPV and provide a molecular target for resisting BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    PubMed Central

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  9. Contrasting patterns of structural host specificity of two species of Heligmosomoides nematodes in sympatric rodents.

    PubMed

    Clough, Dagmar; Råberg, Lars

    2014-12-01

    Host specificity is a fundamental property of parasites. Whereas most studies focus on measures of specificity on host range, only few studies have considered quantitative aspects such as infection intensity or prevalence. The relative importance of these quantitative aspects is still unclear, mainly because of methodological constraints, yet central to a precise assessment of host specificity. Here, we assessed simultaneously two quantitative measures of host specificity of Heligmosomoides glareoli and Heligmosomoides polygyrus polygyrus infections in sympatric rodent hosts. We used standard morphological techniques as well as real-time quantitative PCR and sequencing of the rDNA ITS2 fragment to analyse parasite infection via faecal sample remains. Although both parasite species are thought to be strictly species-specific, we found morphologically and molecularly validated co- and cross-infections. We also detected contrasting patterns within and between host species with regard to specificity for prevalence and intensity of infection. H. glareoli intensities were twofold higher in bank voles than in yellow-necked mice, but prevalence did not differ significantly between species (33 vs. 18%). We found the opposite pattern in H. polygyrus infections with similar intensity levels between host species but significantly higher prevalence in mouse hosts (56 vs. 10%). Detection rates were higher with molecular tools than morphological methods. Our results emphasize the necessity to consider quantitative aspects of specificity for a full view of a parasites' capacity to replicate and transmit in hosts and present a worked example of how modern molecular tools help to advance our understanding of selective forces in host-parasite ecology and evolution.

  10. QUANTITATION OF MOLECULAR ENDPOINTS FOR THE DOSE-RESPONSE COMPONENT OF CANCER RISK ASSESSMENT

    EPA Science Inventory

    Cancer risk assessment involves the steps of hazard identification, dose-response assessment, exposure assessment and risk characterization. The rapid advances in the use of molecular biology approaches has had an impact on all four components, but the greatest overall current...

  11. Multiplexed and Microparticle-based Analyses: Quantitative Tools for the Large-Scale Analysis of Biological Systems

    PubMed Central

    Nolan, John P.; Mandy, Francis

    2008-01-01

    While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537

  12. A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes.

    PubMed

    Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H

    2018-05-17

    A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.

  13. Second generation biofuels: Thermochemistry of glucose and fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmont, A.; Catoire, L.; C.N.R.S. - I.N.S.I.S., I.C.A.R.E., 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2

    2010-06-15

    The energetic conversion of biomass into syngas or biogas is a more and more important topic. In the framework of these studies, improved understanding of glucose and fructose thermal decomposition and oxidation appears crucial. For this task, thermodynamic data are needed to make possible, for instance, the building of a detailed chemical kinetic model of glucose and fructose reactivity at high temperature. A semitheoretical protocol, presented elsewhere, is used for the estimation of the thermodynamic data of glucose and fructose in the gas phase. Five isomers of glucose and five isomers of fructose are considered and the lowest-energy conformers aremore » found to be {beta}-D-glucopyranose for glucose and {beta}-D-fructopyranose for fructose. The data for all 10 isomers are provided in the CHEMKIN-NASA format. (author)« less

  14. Theoretical investigation on H abstraction reaction mechanisms and rate constants of sevoflurane with the OH radical

    NASA Astrophysics Data System (ADS)

    Ren, Hongjiang; Li, Xiaojun; Qu, Yingjuan; Li, Feng

    2018-01-01

    The H abstraction reaction mechanism for sevoflurane with an ·OH radical was investigated theoretically using dual levels B3LYP/6-311++G(d, p)//QCISD(T)/6-311G(d, p). Thermochemistry properties at 298.15-2000 K were analyzed with the standard statistical thermodynamics method. Three pathways P(1), P(2) and P(3) were found and corresponded to the H13, H14 and H15 abstractions reactions with the Gibbs free barriers of 54.86, 55.05 and 54.86 kJ mol-1, respectively. The corresponding rate constants for three pathways over a wide temperature range of 298.15-2000 K were calculated and the results are in good agreement with the experimental data.

  15. Methane Activation by 5 d Transition Metals: Energetics, Mechanisms, and Periodic Trends.

    PubMed

    Armentrout, Peter B

    2017-01-01

    Although it has been known for almost three decades that several 5d transition-metal cations will activate methane at room temperature, a more detailed examination of these reactions across the periodic table has only recently been completed. In this Minireview, we compare and contrast studies of the kinetic energy dependence of these reactions as studied using guided-ion-beam tandem mass spectrometry. Thermochemistry for the various products observed (MH + , MH 2 + , MC + , MCH + , MCH 2 + , and MCH 3 + ) are collected and periodic trends evaluated and discussed. The mechanisms for the reactions as elucidated by synergistic quantum chemical calculations are also reviewed. Recent spectroscopic evidence for the structures of the MCH 2 + dehydrogenation products are discussed as well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  17. The effect of water on thermal stresses in polymer composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  18. Clustering of amines and hydrazines in atmospheric nucleation

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  19. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  20. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  1. Quantitative AOP-based predictions for two aromatase inhibitors evaluating the influence of bioaccumulation on prediction accuracy

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework can be used to support the use of mechanistic toxicology data as a basis for risk assessment. For certain risk contexts this includes defining, quantitative linkages between the molecular initiating event (MIE) and subsequent key events...

  2. Toxicoproteomics in Aquatic Toxicology: iTRAQ Reveals Insight into Proteins Affected by 17alpha-ethinylestradiol, Dieldrin, and 17â-trenbolone

    EPA Science Inventory

    Toxicoproteomics is an emerging discipline in toxicology for characterizing chemical modes of action at the molecular level. We have successfully utilized a quantitative proteomics method termed isobaric tagging for relative and absolute quantitation (iTRAQ) to measure protein re...

  3. NEW TARGET AND CONTROL ASSAYS FOR QUANTITATIVE POLYMERASE CHAIN REACTION (QPCR) ANALYSIS OF ENTEROCOCCI IN WATER

    EPA Science Inventory

    Enterococci are frequently monitored in water samples as indicators of fecal pollution. Attention is now shifting from culture based methods for enumerating these organisms to more rapid molecular methods such as QPCR. Accurate quantitative analyses by this method requires highly...

  4. Filling the knowledge gap: Integrating quantitative genetics and genomics in graduate education and outreach

    USDA-ARS?s Scientific Manuscript database

    The genomics revolution provides vital tools to address global food security. Yet to be incorporated into livestock breeding, molecular techniques need to be integrated into a quantitative genetics framework. Within the U.S., with shrinking faculty numbers with the requisite skills, the capacity to ...

  5. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  6. B97-3c: A revised low-cost variant of the B97-D density functional method

    NASA Astrophysics Data System (ADS)

    Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas; Grimme, Stefan

    2018-02-01

    A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed. Like B97-D, it is based on Becke's power-series ansatz from 1997 and is explicitly parametrized by including the standard D3 semi-classical dispersion correction. The orbitals are expanded in a modified valence triple-zeta Gaussian basis set, which is available for all elements up to Rn. Remaining basis set errors are mostly absorbed in the modified B97 parametrization, while an established atom-pairwise short-range potential is applied to correct for the systematically too long bonds of main group elements which are typical for most semi-local density functionals. The new composite scheme (termed B97-3c) completes the hierarchy of "low-cost" electronic structure methods, which are all mainly free of basis set superposition error and account for most interactions in a physically sound and asymptotically correct manner. B97-3c yields excellent molecular and condensed phase geometries, similar to most hybrid functionals evaluated in a larger basis set expansion. Results on the comprehensive GMTKN55 energy database demonstrate its good performance for main group thermochemistry, kinetics, and non-covalent interactions, when compared to functionals of the same class. This also transfers to metal-organic reactions, which is a major area of applicability for semi-local functionals. B97-3c can be routinely applied to hundreds of atoms on a single processor and we suggest it as a robust computational tool, in particular, for more strongly correlated systems where our previously published "3c" schemes might be problematic.

  7. Biomarkers: Delivering on the expectation of molecularly driven, quantitative health.

    PubMed

    Wilson, Jennifer L; Altman, Russ B

    2018-02-01

    Biomarkers are the pillars of precision medicine and are delivering on expectations of molecular, quantitative health. These features have made clinical decisions more precise and personalized, but require a high bar for validation. Biomarkers have improved health outcomes in a few areas such as cancer, pharmacogenetics, and safety. Burgeoning big data research infrastructure, the internet of things, and increased patient participation will accelerate discovery in the many areas that have not yet realized the full potential of biomarkers for precision health. Here we review themes of biomarker discovery, current implementations of biomarkers for precision health, and future opportunities and challenges for biomarker discovery. Impact statement Precision medicine evolved because of the understanding that human disease is molecularly driven and is highly variable across patients. This understanding has made biomarkers, a diverse class of biological measurements, more relevant for disease diagnosis, monitoring, and selection of treatment strategy. Biomarkers' impact on precision medicine can be seen in cancer, pharmacogenomics, and safety. The successes in these cases suggest many more applications for biomarkers and a greater impact for precision medicine across the spectrum of human disease. The authors assess the status of biomarker-guided medical practice by analyzing themes for biomarker discovery, reviewing the impact of these markers in the clinic, and highlight future and ongoing challenges for biomarker discovery. This work is timely and relevant, as the molecular, quantitative approach of precision medicine is spreading to many disease indications.

  8. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  9. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    PubMed

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  10. Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model

    PubMed Central

    Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon

    2012-01-01

    Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146

  11. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is superior by almost an order of magnitude over the ANN method in terms of the stability, generality, and robustness of the final model. The LS-SVM model needs a much smaller numbers of samples (a much smaller sample set) to make accurate prediction results. Potential energy surface (PES) approximations for molecular dynamics (MD) studies are discussed as a promising application for the LS-SVM calibration approach. This journal is © the Owner Societies 2011

  12. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    PubMed Central

    Renault, Ilana Zalcberg; Scholl, Vanesa; Hassan, Rocio; Capelleti, Paola; de Lima, Marcos; Cortes, Jorge

    2011-01-01

    Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging. PMID:23049363

  13. Reverse engineering systems models of regulation: discovery, prediction and mechanisms.

    PubMed

    Ashworth, Justin; Wurtmann, Elisabeth J; Baliga, Nitin S

    2012-08-01

    Biological systems can now be understood in comprehensive and quantitative detail using systems biology approaches. Putative genome-scale models can be built rapidly based upon biological inventories and strategic system-wide molecular measurements. Current models combine statistical associations, causative abstractions, and known molecular mechanisms to explain and predict quantitative and complex phenotypes. This top-down 'reverse engineering' approach generates useful organism-scale models despite noise and incompleteness in data and knowledge. Here we review and discuss the reverse engineering of biological systems using top-down data-driven approaches, in order to improve discovery, hypothesis generation, and the inference of biological properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  15. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Core: Toward a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2005-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.

  16. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  17. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry.

    PubMed

    Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David

    2009-06-01

    A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.

  19. Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean1[W][OA

    PubMed Central

    Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary

    2011-01-01

    Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820

  20. System-Wide Quantitative Proteomics of the Metabolic Syndrome in Mice: Genotypic and Dietary Effects.

    PubMed

    Terfve, Camille; Sabidó, Eduard; Wu, Yibo; Gonçalves, Emanuel; Choi, Meena; Vaga, Stefania; Vitek, Olga; Saez-Rodriguez, Julio; Aebersold, Ruedi

    2017-02-03

    Advances in mass spectrometry have made the quantitative measurement of proteins across multiple samples a reality, allowing for the study of complex biological systems such as the metabolic syndrome. Although the deregulation of lipid metabolism and increased hepatic storage of triacylglycerides are known to play a part in the onset of the metabolic syndrome, its molecular basis and dependency on dietary and genotypic factors are poorly characterized. Here, we used an experimental design with two different mouse strains and dietary and metabolic perturbations to generate a compendium of quantitative proteome data using three mass spectrometric techniques. The data reproduce known properties of the metabolic system and indicate differential molecular adaptation of the two mouse strains to perturbations, contributing to a better understanding of the metabolic syndrome. We show that high-quality, high-throughput proteomic data sets provide an unbiased broad overview of the behavior of complex systems after perturbation.

  1. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives.

    PubMed

    Tham, S Y; Agatonovic-Kustrin, S

    2002-05-15

    Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.

  2. Assessment of Orbital-Optimized Third-Order Møller-Plesset Perturbation Theory and Its Spin-Component and Spin-Opposite Scaled Variants for Thermochemistry and Kinetics.

    PubMed

    Soydaş, Emine; Bozkaya, Uğur

    2013-03-12

    An assessment of the OMP3 method and its spin-component and spin-scaled variants for thermochemistry and kinetics is presented. For reaction energies of closed-shell systems, the CCSD, SCS-MP3, and SCS-OMP3 methods show better performances than other considered methods, and no significant improvement is observed due to orbital optimization. For barrier heights, OMP3 and SCS-OMP3 provide the lowest mean absolute deviations. The MP3 method yields considerably higher errors, and the spin scaling approaches do not help to improve upon MP3, but worsen it. For radical stabilization energies, the CCSD, OMP3, and SCS-OMP3 methods exhibit noticeably better performances than MP3 and its variants. Our results demonstrate that if the reference wave function suffers from a spin-contamination, then the MP3 methods dramatically fail. On the other hand, the OMP3 method and its variants can tolerate the spin-contamination in the reference wave function. For overall evaluation, we conclude that OMP3 is quite helpful, especially in electronically challenged systems, such as free radicals or transition states where spin contamination dramatically deteriorates the quality of the canonical MP3 and SCS-MP3 methods. Both OMP3 and CCSD methods scale as n(6), where n is the number of basis functions. However, the OMP3 method generally converges in much fewer iterations than CCSD. In practice, OMP3 is several times faster than CCSD in energy computations. Further, the stationary properties of OMP3 make it much more favorable than CCSD in the evaluation of analytic derivatives. For OMP3, the analytic gradient computations are much less expensive than CCSD. For the frequency computation, both methods require the evaluation of the perturbed amplitudes and orbitals. However, in the OMP3 case there is still a significant computational time savings due to simplifications in the analytic Hessian expression owing to the stationary property of OMP3. Hence, the OMP3 method emerges as a very useful tool for computational quantum chemistry.

  3. Development of Quantitative Adverse Outcome Pathways Using Health-Protective Assumptions to Fill Data Gaps

    EPA Science Inventory

    In an adverse outcome pathway (AOP), the target site dose participates in a molecular initiating event (MIE), which in turn triggers a sequence of key events leading to an adverse outcome (AO). Quantitative AOPs (QAOP) are needed if AOP characterization is to address risk as well...

  4. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Mingsen; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, 550018; Ye, Gui

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precisemore » control of molecular devices.« less

  6. Quantitative Imaging in Cancer Clinical Trials

    PubMed Central

    Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.

    2015-01-01

    As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162

  7. Automated tumor analysis for molecular profiling in lung cancer

    PubMed Central

    Boyd, Clinton; James, Jacqueline A.; Loughrey, Maurice B.; Hougton, Joseph P.; Boyle, David P.; Kelly, Paul; Maxwell, Perry; McCleary, David; Diamond, James; McArt, Darragh G.; Tunstall, Jonathon; Bankhead, Peter; Salto-Tellez, Manuel

    2015-01-01

    The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics. PMID:26317646

  8. Estimations of BCR-ABL/ABL transcripts by quantitative PCR in chronic myeloid leukaemia after allogeneic bone marrow transplantation and donor lymphocyte infusion.

    PubMed

    Otazú, Ivone B; Tavares, Rita de Cassia B; Hassan, Rocío; Zalcberg, Ilana; Tabak, Daniel G; Seuánez, Héctor N

    2002-02-01

    Serial assays of qualitative (multiplex and nested) and quantitative PCR were carried out for detecting and estimating the level of BCR-ABL transcripts in 39 CML patients following bone marrow transplantation. Seven of these patients, who received donor lymphocyte infusions (DLIs) following to relapse, were also monitored. Quantitative estimates of BCR-ABL transcripts were obtained by co-amplification with a competitor sequence. Estimates of ABL transcripts were used, an internal control and the ratio BCR-ABL/ABL was thus estimated for evaluating the kinetics of residual clones. Twenty four patients were followed shortly after BMT; two of these patients were in cytogenetic relapse coexisting with very high BCR-ABL levels while other 22 were in clinical, haematologic and cytogenetic remission 2-42 months after BMT. In this latter group, seven patients showed a favourable clinical-haematological progression in association with molecular remission while in 14 patients quantitative PCR assays indicated molecular relapse that was not associated with an early cytogenetic-haematologic relapse. BCR-ABL/ABL levels could not be correlated with presence of GVHD in 24 patients after BMT. In all seven patients treated with DLI, high levels of transcripts were detected at least 4 months before the appearance of clinical haematological relapse. Following DLI, five of these patients showed decreasing transcript levels from 2 to 5 logs between 4 and 12 months. In eight other patients studied long after BMT, five showed molecular relapse up to 117 months post-BMT and only one showed cytogenetic relapse. Our findings indicated that quantitative estimates of BCR-ABL transcripts were valuable for monitoring minimal residual disease in each patient.

  9. Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity.

    PubMed

    Draffehn, Astrid M; Li, Li; Krezdorn, Nicolas; Ding, Jia; Lübeck, Jens; Strahwald, Josef; Muktar, Meki S; Walkemeier, Birgit; Rotter, Björn; Gebhardt, Christiane

    2013-01-01

    Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.

  10. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, Laura; Rodrigues, Mafalda; Benito, Angel Maria; Pérez-García, Lluïsa; Puig-Vidal, Manel; Otero, Jorge

    2015-12-01

    The quantitative measurement of biomolecular interactions is of great interest in molecular biology. Atomic force microscopy (AFM) has proved its capacity to act as a biosensor and determine the affinity between biomolecules of interest. Nevertheless, the detection scheme presents certain limitations when it comes to developing a compact biosensor. Recently, piezoelectric quartz tuning forks (QTFs) have been used as laser-free detection sensors for AFM. However, only a few studies along these lines have considered soft biological samples, and even fewer constitute quantified molecular recognition experiments. Here, we demonstrate the capacity of QTF probes to perform specific interaction measurements between biotin-streptavidin complexes in buffer solution. We propose in this paper a variant of dynamic force spectroscopy based on representing adhesion energies E (aJ) against pulling rates v (nm s-1). Our results are compared with conventional AFM measurements and show the great potential of these sensors in molecular interaction studies.

  11. Investigating Factors that Generate and Maintain Variation in Migratory Orientation: A Primer for Recent and Future Work.

    PubMed

    Delmore, Kira E; Liedvogel, Miriam

    2016-01-01

    The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation.

  12. Effect of substituents on prediction of TLC retention of tetra-dentate Schiff bases and their Copper(II) and Nickel(II) complexes.

    PubMed

    Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M

    2017-03-01

    The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.

  13. In silico method for modelling metabolism and gene product expression at genome scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome andmore » transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.« less

  14. Quantitative prediction of solvation free energy in octanol of organic compounds.

    PubMed

    Delgado, Eduardo J; Jaña, Gonzalo A

    2009-03-01

    The free energy of solvation, DeltaGS0, in octanol of organic compounds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a DeltaGS0 range from about -50 to 0 kJ.mol(-1). The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ.mol(-1), just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  15. Quantitative Prediction of Solvation Free Energy in Octanol of Organic Compounds

    PubMed Central

    Delgado, Eduardo J.; Jaña, Gonzalo A.

    2009-01-01

    The free energy of solvation, ΔGS0, in octanol of organic compunds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a ΔGS0 range from about −50 to 0 kJ·mol−1. The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ·mol−1, just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set. PMID:19399236

  16. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  17. Comparison of fate profiles of PAHs in soil, sediments and mangrove leaves after oil spills by QSAR and QSPR.

    PubMed

    Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z

    2013-08-15

    First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    PubMed

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  19. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information.

    PubMed

    Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino

    2016-09-10

    Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source code, along with the manual and the example files can be downloaded at http://lissp.irb.hr/software/magellan-1-0/ and https://github.com/sristov/magellan .

  20. The Molecular Basis of β-Thalassemia

    PubMed Central

    Thein, Swee Lay

    2013-01-01

    The β-thalassemias are characterized by a quantitative deficiency of β-globin chains underlaid by a striking heterogeneity of molecular defects. Although most of the molecular lesions involve the structural β gene directly, some down-regulate the gene through distal cis effects, and rare trans-acting mutations have also been identified. Most β-thalassemias are inherited in a Mendelian recessive fashion but there is a subgroup of β-thalassemia alleles that behave as dominant negatives. Unraveling the molecular basis of β-thalassemia has provided a paradigm for understanding of much of human genetics. PMID:23637309

  1. Investigation of antigen-antibody interactions of sulfonamides with a monoclonal antibody in a fluorescence polarization immunoassay using 3D-QSAR models

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...

  2. Twin Studies and Their Implications for Molecular Genetic Studies: Endophenotypes Integrate Quantitative and Molecular Genetics in ADHD Research

    ERIC Educational Resources Information Center

    Wood, Alexis C.; Neale, Michael C.

    2010-01-01

    Objective: To describe the utility of twin studies for attention-deficit/hyperactivity disorder (ADHD) research and demonstrate their potential for the identification of alternative phenotypes suitable for genomewide association, developmental risk assessment, treatment response, and intervention targets. Method: Brief descriptions of the classic…

  3. Development of quantitative structure-activity relationships and its application in rational drug design.

    PubMed

    Yang, Guang-Fu; Huang, Xiaoqin

    2006-01-01

    Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

  4. Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids.

    PubMed

    Senet, P; Aparicio, F

    2007-04-14

    By using the exact density functional theory, one demonstrates that the value of the local electronic softness of a molecular fragment is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the fragment. Our finding generalizes to a chemical group a formal relation between these molecular descriptors recently obtained for an atom in a molecule using an approximate atomistic model [P. Senet and M. Yang, J. Chem. Sci. 117, 411 (2005)]. In addition, a practical ab initio computational scheme of the Coulomb hole and related local descriptors of reactivity of a molecular family having in common a similar fragment is presented. As a blind test, the method is applied to the lateral chains of the 20 isolated amino acids. One demonstrates that the local softness of the lateral chain is a quantitative measure of the similarity of the amino acids. It predicts the separation of amino acids in different biochemical groups (aliphatic, basic, acidic, sulfur contained, and aromatic). The present approach may find applications in quantitative structure activity relationship methodology.

  5. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  6. Insufficient Hartree–Fock Exchange in Hybrid DFT Functionals Produces Bent Alkynyl Radical Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyeyemi, Victor B.; Keith, John A.; Pavone, Michele

    2012-01-11

    Density functional theory (DFT) is often used to determine the electronic and geometric structures of molecules. While studying alkynyl radicals, we discovered that DFT exchange-correlation (XC) functionals containing less than ~22% Hartree–Fock (HF) exchange led to qualitatively different structures than those predicted from ab initio HF and post-HF calculations or DFT XCs containing 25% or more HF exchange. We attribute this discrepancy to rehybridization at the radical center due to electron delocalization across the triple bonds of the alkynyl groups, which itself is an artifact of self-interaction and delocalization errors. Inclusion of sufficient exact exchange reduces these errors and suppressesmore » this erroneous delocalization; we find that a threshold amount is needed for accurate structure determinations. Finally, below this threshold, significant errors in predicted alkyne thermochemistry emerge as a consequence.« less

  7. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  8. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  9. National Institute for Petroleum and Energy Research quarterly technical report for April 1--June 30, 1993. Volume 1, Fuels research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress reports are presented for the following fuels researches: Development of analytical methodology for analysis of heave crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom-containing compounds. Some of the accomplishments are: Topical reports summarizing GC/MS methodology for determination of amines in petroleum and catalytic cracking behavior of compound type in Wilmington 650{degrees} F+ resid were completed; density measurements between 320 K and 550 K were completed for 8-methylquinoline; high-temperature heat-capacities and critical temperature (near 800 K) for 8-methylquinoline were determined; vapor-pressure measurements were completed for 2,6-dimethylpyridine; and a series of enthalpy-of-combustion measurement was completed for 1,10-phenanthroline, phenazine,more » 2-methylquinoline, and 8-methylquinoline.« less

  10. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992. [Dinitrogen compound 1,10-phenanthroline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress reports are presented for the following two fuel research programs: (1) development of analytical methodology for analysis of heavy crudes; and (2) thermochemistry and thermophysical properties of organic nitrogen and diheteroatom-containing compounds. For the first research program, gasoline range (82--43[degree]) components in liquid products from catalytic cracking whole Wilmington >650[degree]F resid, Wilmington >650[degree]F neutrals, and blends of neutrals plus 650--1000[degree]F acids and bases were determined by gas chromatography/mass spectroscopy. For the second research program, density measurements were completed for thianthrene between 450 K and near 570 K, and for phenoxathiin between 348 K and 548 K. Heat capacity measurementsmore » were begun for the dinitrogen compound 1,10-phenanthroline.« less

  11. Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation.

    PubMed

    Yamaguchi, Takumi; Sakae, Yoshitake; Zhang, Ying; Yamamoto, Sayoko; Okamoto, Yuko; Kato, Koichi

    2014-10-06

    Exploration of the conformational spaces of flexible biomacromolecules is essential for quantitatively understanding the energetics of their molecular recognition processes. We employed stable isotope- and lanthanide-assisted NMR approaches in conjunction with replica-exchange molecular dynamics (REMD) simulations to obtain atomic descriptions of the conformational dynamics of high-mannose-type oligosaccharides, which harbor intracellular glycoprotein-fate determinants in their triantennary structures. The experimentally validated REMD simulation provided quantitative views of the dynamic conformational ensembles of the complicated, branched oligosaccharides, and indicated significant expansion of the conformational space upon removal of a terminal mannose residue during the functional glycan-processing pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bacterial growth laws and their applications

    PubMed Central

    SCOTT, Matthew; HWA, Terence

    2011-01-01

    Quantitative empirical relationships between cell composition and growth rate played an important role in the early days of microbiology. Gradually, the focus of the field began to shift from growth physiology to the ever more elaborate molecular mechanisms of regulation employed by the organisms. Advances in systems biology and biotechnology have renewed interest in the physiology of the cell as a whole. Furthermore, gene expression is known to be intimately coupled to the growth state of the cell. Here, we review recent efforts in characterizing such couplings, particularly the quantitative phenomenological approaches exploiting bacterial `growth laws.' These approaches point toward underlying design principles that can guide the predictive manipulation of cell behavior in the absence of molecular details. PMID:21592775

  13. Quantitative contribution of molecular orbitals to hydrogen bonding in a water dimer: Electron density projected integral (EDPI) analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Jiang, Wanrun; Wang, Bo; Wang, Zhigang

    2017-06-01

    We introduce the orbital-resolved electron density projected integral (EDPI) along the H-bond in the real space to quantitatively investigate the specific contribution from the molecular orbitals (MOs) aspect in (H2O)2. Calculation results show that, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about surprisingly 40% of the electron density at the bond critical point. Moreover, the electronic density difference analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the understanding of H-bond with specific contributions from certain MOs.

  14. Molecular-level simulations of turbulence and its decay

    DOE PAGES

    Gallis, M. A.; Bitter, N. P.; Koehler, T. P.; ...

    2017-02-08

    Here, we provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov –5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can bemore » used to investigate turbulent flows quantitatively.« less

  15. Molecular spectral imaging system for quantitative immunohistochemical analysis of early diabetic retinopathy.

    PubMed

    Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng

    2009-12-01

    A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.

  16. A Novel Strategy for Human Papillomavirus Detection and Genotyping with SybrGreen and Molecular Beacon Polymerase Chain Reaction

    PubMed Central

    Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.

    2001-01-01

    Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426

  17. Quantitation of low molecular weight sugars by chemical derivatization-liquid chromatography/multiple reaction monitoring/mass spectrometry.

    PubMed

    Han, Jun; Lin, Karen; Sequria, Carita; Yang, Juncong; Borchers, Christoph H

    2016-07-01

    A new method for the separation and quantitation of 13 mono- and disaccharides has been developed by chemical derivatization/ultra-HPLC/negative-ion ESI-multiple-reaction monitoring MS. 3-Nitrophenylhydrazine (at 50°C for 60 min) was shown to be able to quantitatively derivatize low-molecular weight (LMW) reducing sugars. The nonreducing sugar, sucrose, was not derivatized. A pentafluorophenyl-bonded phase column was used for the chromatographic separation of the derivatized sugars. This method exhibits femtomole-level sensitivity, high precision (CVs of ≤ 4.6%) and high accuracy for the quantitation of LMW sugars in wine. Excellent linearity (R(2) ≥ 0.9993) and linear ranges of ∼500-fold for disaccharides and ∼1000-4000-fold for monosaccharides were achieved. With internal calibration ((13) C-labeled internal standards), recoveries were between 93.6% ± 1.6% (xylose) and 104.8% ± 5.2% (glucose). With external calibration, recoveries ranged from 82.5% ± 0.8% (ribulose) to 105.2% ± 2.1% (xylulose). Quantitation of sugars in two red wines and two white wines was performed using this method; quantitation of the central carbon metabolism-related carboxylic acids and tartaric acid was carried out using a previously established derivatization procedure with 3-nitrophenylhydrazine as well. The results showed that these two classes of compounds-both of which have important organoleptic properties-had different compositions in red and white wines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Qualitative and quantitative analysis of heparin and low molecular weight heparins using size exclusion chromatography with multiple angle laser scattering/refractive index and inductively coupled plasma/mass spectrometry detectors.

    PubMed

    Ouyang, Yilan; Zeng, Yangyang; Yi, Lin; Tang, Hong; Li, Duxin; Linhardt, Robert J; Zhang, Zhenqing

    2017-11-03

    Heparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. Low molecular weight heparins (LMWHs), heparins partially depolymerized using different processes, are widely used as clinical anticoagulants. Qualitative molecular weight (MW) and quantitative mass content analysis are two important factors that contribute to LMWH quality control. Size exclusion chromatography (SEC), relying on multiple angle laser scattering (MALS)/refractive index (RI) detectors, has been developed for accurate analysis of heparin MW in the absence of standards. However, the cations, which ion-pair with the anionic polysaccharide chains of heparin and LMWHs, had not been considered in previous reports. In this study, SEC with MALS/RI and inductively coupled plasma/mass spectrometry detectors were used in a comprehensive analytical approach taking both anionic polysaccharide and ion-paired cations heparin products. This approach was also applied to quantitative analysis of heparin and LMWHs. Full profiles of MWs and mass recoveries for three commercial heparin/LMWH products, heparin sodium, enoxaparin sodium and nadroparin calcium, were obtained and all showed higher MWs than previously reported. This important improvement more precisely characterized the MW properties of heparin/LMWHs and potentially many other anionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Systems Toxicology: From Basic Research to Risk Assessment

    PubMed Central

    2014-01-01

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment. PMID:24446777

  20. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  1. Systems toxicology: from basic research to risk assessment.

    PubMed

    Sturla, Shana J; Boobis, Alan R; FitzGerald, Rex E; Hoeng, Julia; Kavlock, Robert J; Schirmer, Kristin; Whelan, Maurice; Wilks, Martin F; Peitsch, Manuel C

    2014-03-17

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment.

  2. WormQTLHD—a web database for linking human disease to natural variation data in C. elegans

    PubMed Central

    van der Velde, K. Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L. Basten; Kammenga, Jan E.; Jansen, Ritsert C.; Swertz, Morris A.; Li, Yang

    2014-01-01

    Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism—Caenorhabditis elegans—has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTLHD (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene–disease associations in man. WormQTLHD, available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene–disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench. PMID:24217915

  3. WormQTLHD--a web database for linking human disease to natural variation data in C. elegans.

    PubMed

    van der Velde, K Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L Basten; Kammenga, Jan E; Jansen, Ritsert C; Swertz, Morris A; Li, Yang

    2014-01-01

    Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism-Caenorhabditis elegans-has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTL(HD) (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene-disease associations in man. WormQTL(HD), available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene-disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench.

  4. Graph Theoretical Representation of Atomic Asymmetry and Molecular Chirality of Benzenoids in Two-Dimensional Space

    PubMed Central

    Zhao, Tanfeng; Zhang, Qingyou; Long, Hailin; Xu, Lu

    2014-01-01

    In order to explore atomic asymmetry and molecular chirality in 2D space, benzenoids composed of 3 to 11 hexagons in 2D space were enumerated in our laboratory. These benzenoids are regarded as planar connected polyhexes and have no internal holes; that is, their internal regions are filled with hexagons. The produced dataset was composed of 357,968 benzenoids, including more than 14 million atoms. Rather than simply labeling the huge number of atoms as being either symmetric or asymmetric, this investigation aims at exploring a quantitative graph theoretical descriptor of atomic asymmetry. Based on the particular characteristics in the 2D plane, we suggested the weighted atomic sum as the descriptor of atomic asymmetry. This descriptor is measured by circulating around the molecule going in opposite directions. The investigation demonstrates that the weighted atomic sums are superior to the previously reported quantitative descriptor, atomic sums. The investigation of quantitative descriptors also reveals that the most asymmetric atom is in a structure with a spiral ring with the convex shape going in clockwise direction and concave shape going in anticlockwise direction from the atom. Based on weighted atomic sums, a weighted F index is introduced to quantitatively represent molecular chirality in the plane, rather than merely regarding benzenoids as being either chiral or achiral. By validating with enumerated benzenoids, the results indicate that the weighted F indexes were in accordance with their chiral classification (achiral or chiral) over the whole benzenoids dataset. Furthermore, weighted F indexes were superior to previously available descriptors. Benzenoids possess a variety of shapes and can be extended to practically represent any shape in 2D space—our proposed descriptor has thus the potential to be a general method to represent 2D molecular chirality based on the difference between clockwise and anticlockwise sums around a molecule. PMID:25032832

  5. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  6. Quantitative RHEED Studies of MBE Growth of 3-5 Compounds

    DTIC Science & Technology

    1991-06-03

    Vertical - Cavity Surface - Emitting Laser Using Molecular Beam Epitaxial ...Growth of Vertical Cavity Surface - emitting Lasers Our work under this ARO contract on the control of MBE growth has enhanced our ability to grow...pattern about the surface structure of nearly perfect crystals prepared by Molecular Beam Epitaxy ( MBE ) and to use these techniques

  7. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    PubMed

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  8. Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.

    PubMed

    Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J

    2009-05-01

    Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.

  9. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  10. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors.

    PubMed

    Bridge, Julia A

    2017-01-01

    The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.

  11. Quantitative background parenchymal uptake on molecular breast imaging and breast cancer risk: a case-control study.

    PubMed

    Hruska, Carrie B; Geske, Jennifer R; Swanson, Tiffinee N; Mammel, Alyssa N; Lake, David S; Manduca, Armando; Conners, Amy Lynn; Whaley, Dana H; Scott, Christopher G; Carter, Rickey E; Rhodes, Deborah J; O'Connor, Michael K; Vachon, Celine M

    2018-06-05

    Background parenchymal uptake (BPU), which refers to the level of Tc-99m sestamibi uptake within normal fibroglandular tissue on molecular breast imaging (MBI), has been identified as a breast cancer risk factor, independent of mammographic density. Prior analyses have used subjective categories to describe BPU. We evaluate a new quantitative method for assessing BPU by testing its reproducibility, comparing quantitative results with previously established subjective BPU categories, and determining the association of quantitative BPU with breast cancer risk. Two nonradiologist operators independently performed region-of-interest analysis on MBI images viewed in conjunction with corresponding digital mammograms. Quantitative BPU was defined as a unitless ratio of the average pixel intensity (counts/pixel) within the fibroglandular tissue versus the average pixel intensity in fat. Operator agreement and the correlation of quantitative BPU measures with subjective BPU categories assessed by expert radiologists were determined. Percent density on mammograms was estimated using Cumulus. The association of quantitative BPU with breast cancer (per one unit BPU) was examined within an established case-control study of 62 incident breast cancer cases and 177 matched controls. Quantitative BPU ranged from 0.4 to 3.2 across all subjects and was on average higher in cases compared to controls (1.4 versus 1.2, p < 0.007 for both operators). Quantitative BPU was strongly correlated with subjective BPU categories (Spearman's r = 0.59 to 0.69, p < 0.0001, for each paired combination of two operators and two radiologists). Interoperator and intraoperator agreement in the quantitative BPU measure, assessed by intraclass correlation, was 0.92 and 0.98, respectively. Quantitative BPU measures showed either no correlation or weak negative correlation with mammographic percent density. In a model adjusted for body mass index and percent density, higher quantitative BPU was associated with increased risk of breast cancer for both operators (OR = 4.0, 95% confidence interval (CI) 1.6-10.1, and 2.4, 95% CI 1.2-4.7). Quantitative measurement of BPU, defined as the ratio of average counts in fibroglandular tissue relative to that in fat, can be reliably performed by nonradiologist operators with a simple region-of-interest analysis tool. Similar to results obtained with subjective BPU categories, quantitative BPU is a functional imaging biomarker of breast cancer risk, independent of mammographic density and hormonal factors.

  12. Quantitative scanning thermal microscopy of ErAs/GaAs superlattice structures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.

    2013-02-01

    A proximal probe-based quantitative measurement of thermal conductivity with ˜100-150 nm lateral and vertical spatial resolution has been implemented. Measurements on an ErAs/GaAs superlattice structure grown by molecular beam epitaxy with 3% volumetric ErAs content yielded thermal conductivity at room temperature of 9 ± 2 W/m K, approximately five times lower than that for GaAs. Numerical modeling of phonon scattering by ErAs nanoparticles yielded thermal conductivities in reasonable agreement with those measured experimentally and provides insight into the potential influence of nanoparticle shape on phonon scattering. Measurements of wedge-shaped samples created by focused ion beam milling provide direct confirmation of depth resolution achieved.

  13. Bacterial growth laws and their applications.

    PubMed

    Scott, Matthew; Hwa, Terence

    2011-08-01

    Quantitative empirical relationships between cell composition and growth rate played an important role in the early days of microbiology. Gradually, the focus of the field began to shift from growth physiology to the ever more elaborate molecular mechanisms of regulation employed by the organisms. Advances in systems biology and biotechnology have renewed interest in the physiology of the cell as a whole. Furthermore, gene expression is known to be intimately coupled to the growth state of the cell. Here, we review recent efforts in characterizing such couplings, particularly the quantitative phenomenological approaches exploiting bacterial 'growth laws.' These approaches point toward underlying design principles that can guide the predictive manipulation of cell behavior in the absence of molecular details. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    NASA Astrophysics Data System (ADS)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  15. Detection system for a gas chromatograph

    DOEpatents

    Hayes, John M.; Small, Gerald J.

    1984-01-01

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.

  16. Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Gonzalez Debs, Mariam

    The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.

  17. Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study

    DOE PAGES

    Song, Lingshuang; Yang, Lin; Meng, Jie; ...

    2016-12-29

    Here, we present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure inter-leucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 Å -1. Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0$-$1.5 Å -1). This experimental-computational consistence enables a first glimpse of the leucineleucine interacting landscape, where two leucine molecules are aligned mostlymore » in a parallel fashion, as opposed to anti-parallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables a quantitative characterization on effective inter-molecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding.« less

  18. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    PubMed

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Lingshuang; Yang, Lin; Meng, Jie

    Here, we present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure inter-leucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 Å -1. Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0$-$1.5 Å -1). This experimental-computational consistence enables a first glimpse of the leucineleucine interacting landscape, where two leucine molecules are aligned mostlymore » in a parallel fashion, as opposed to anti-parallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables a quantitative characterization on effective inter-molecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding.« less

  20. Quantitative computational models of molecular self-assembly in systems biology

    PubMed Central

    Thomas, Marcus; Schwartz, Russell

    2017-01-01

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149

  1. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J.; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T.; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J.

    2017-01-01

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival. PMID:28401902

  2. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound.

    PubMed

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J

    2017-04-12

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.

  3. Quantitative computational models of molecular self-assembly in systems biology.

    PubMed

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  4. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  5. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  6. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.

    PubMed

    Miao, Jianyin; Chen, Feilong; Duan, Shan; Gao, Xiangyang; Liu, Guo; Chen, Yunjiao; Dixon, William; Xiao, Hang; Cao, Yong

    2015-08-19

    Antimicrobial peptides have received increasing attention in the agricultural and food industries due to their potential to control pathogens. However, to facilitate the development of novel peptide-based antimicrobial agents, details regarding the molecular mechanisms of these peptides need to be elucidated. The aim of this study was to investigate the antimicrobial mechanism of peptide F1, a bacteriocin found in Tibetan kefir, against Escherichia coli at protein levels using iTRAQ-based quantitative proteomic analysis. In response to treatment with peptide F1, 31 of the 280 identified proteins in E. coli showed alterations in their expression, including 10 down-regulated proteins and 21 up-regulated proteins. These 31 proteins all possess different molecular functions and are involved in different molecular pathways, as is evident in referencing the Kyoto Encyclopedia of Genes and Genomes pathways. Specifically, pathways that were significantly altered in E. coli in response to peptide F1 treatment include the tricarboxylic acid cycle, oxidative phosphorylation, glycerophospholipid metabolism, and the cell cycle-caulobacter pathways, which was also associated with inhibition of the cell growth, induction of morphological changes, and cell death. The results provide novel insights into the molecular mechanisms of antimicrobial peptides.

  7. Theory of Microwave 5-WAVE Mixing of Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin

    2016-06-01

    Microwave three-wave mixing spectroscopy produces a Free Induction Decay Field that is proportional to the enantiomeric excess ( ee ) of a sample of chiral molecules. However, since there is an unavoidable loss of measured signal strength due to dephasing of the molecular emission, it is not possible to quantitate this ee unless one has an enantiomeric pure sample of the same molecule with which to compare the amplitude of the signal of a sample of unknown ee. In this talk, I will demonstrate that it is in principle possible to use a 5 wave mixing experiment, based upon AC Stark shifts produced by nearly resonant fields, to produce a differential splitting of a transition such that one has frequency resolved peaks for the two enantiomers. The peaks corresponding to the two enantiomers can be switched by phase cycling of the fields. This method is promising to allow the quantitative measurement of molecular ee's by microwave spectroscopy. There are experimental issues that make such an experiment difficult. It will likely be required to use of skimmed molecular beam (which will substantially reduce the number of molecular emitters and thus signal level) in order to reduce the field amplitude and phase inhomogeneity of the excited molecules.

  8. Structure–property reduced order model for viscosity prediction in single-component CO 2 -binding organic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.

    2016-01-01

    CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less

  9. Molecular diagnosis of toxoplasmosis in immunocompromised patients.

    PubMed

    Robert-Gangneux, Florence; Belaz, Sorya

    2016-08-01

    Toxoplasmosis in immunocompromised patients is associated with a high mortality rate. Molecular techniques are important tools to diagnose acute disease in immunocompromised patients, but there are various methods with variable efficiency. Some of them have been validated for the diagnosis of congenital toxoplasmosis, but the impact of their use has not been evaluated in immunocompromised patients. Toxoplasmosis is of increasing importance in non-HIV immunocompromised patients. In addition, the picture of disease shows greater severity in South America, both in immunocompetent study participants and in congenitally infected infants. These epidemiological differences could influence the sensitivity of diagnostic methods. This review analyzes recent data on molecular diagnosis and compares them with older ones, in light of progress gained in molecular techniques and of recent epidemiological findings. Most recent studies were conducted in South America and used PCR targeting the B1 gene. PCR on blood could allow diagnosing a significant proportion of patients with ocular toxoplasmosis in Brazil. Quantitative PCR methods with specific probes should be used to improve sensitivity and warrant specificity. Performance of quantitative PCR targeting the repeated 529 bp sequence for the diagnosis of toxoplasmosis in immunocompromised patients needs evaluation in field studies in South America and in western countries.

  10. Thermochemistry and Kinetics of the Cl+O2 Association Reaction

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Laser flash photolysis of Cl2/O2 mixtures has been employed in conjunction with Cl((sup 2)P(sub 3/2)) detection by time-resolved fluorescence spectroscopy to investigate equilibration kinetics for the reactions Cl + O2 + O is in equilibrium with ClOO + O2 at temperatures of 181-200 K and O2 pressures of 15-40 Torr. The third-order rate coefficient for the association reaction at 186.5 +/- 5.5 K is (8.9 +/- 2.9) x 10(exp -33) cm(exp 6) molecule(exp -2) s(exp -1) and the equilibrium constant (K(p)) at 185.4 K is 18.9 atm(exp -1) (factor of 1.7 uncertainty). A third law analysis of our data leads to a value for the Cl-OO bond dissociation energy of 4.76 +/- 0.49 kcal mol(exp -1).

  11. Hydrolysis of Nerve Agents by Model Nucleophiles: A Computational Study

    PubMed Central

    Beck, Jeremy M.

    2008-01-01

    Density functional theory calculations were employed to study the reaction of five nerve agents with model nucleophiles, including EtX− and EtXH (X = O, S, Se) for serine, cysteine and selenocysteine, respectively. Calculations at the B3LYP/6-311++G(2d,p) level of theory predict an exothermic reaction between ethoxide and all of the nerve agents studied. As compared to EtO− as a nucleophile, these reactions become ~30 kcal/mol more endothermic for EtS−, and by ~40 kcal/mol for EtSe−. The equivalent reactions with the neutral nucleophiles (EtXH) were more endothermic. The effect of solvation on the reaction thermochemistry was determined using a polarizable continuum model simulating the dielectric constant of chloroform. While there was a large exothermic shift for reactions involving charged nucleophiles with solvation modeling, the corresponding shift was minimal for the reaction with neutral nucleophiles. PMID:18538754

  12. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, Peter

    1992-01-01

    Effort continued through this period to refine and expand the SIRIUS/ABACUS program package for CASSCF and RASSCF second derivatives. A new approach to computing the Gaussian integral derivatives that require much of the time in gradient and Hessian calculations was devised. Several different studies were undertaken in the area of application calculations. These include a study of proton transfer in the HF trimer, which provides an analog of rearrangement reactions, and the extension of our previous work on Be and Mg clusters to Ca clusters. In addition, a very accurate investigation of the lowest-lying potential curves of the O2 molecule was completed. These curves are essential for evaluating different models of the terrestrial atmosphere nightglow. The most effort this year was devoted to a large scale investigation of stationary points on the C4H4 surface, and the thermochemistry of acetylene/acetylene reaction.

  13. Residual Gases in Crystal Growth Systems: Their Origin, Magnitude, and Dependence on the Processing Conditions

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. Their presence may affect techniques requiring low pressures and affect the crystal quality in different ways. For that reason a good understanding and control of formation of residual gases may be important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical study includes degassing of silica glass and generation of gases from various source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  14. Calculation of State Specific Rate Coefficients for Non-Equilibrium Hypersonics Applications: from H(Psi) = E(Psi) to k(T) = A *exp(-E(sub a)/RT)

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco

    2014-01-01

    Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.

  15. Metal-silicate thermochemistry at high temperature - Magma oceans and the 'excess siderophile element' problem of the earth's upper mantle

    NASA Technical Reports Server (NTRS)

    Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.

    1993-01-01

    Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.

  16. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 1. Accurate thermochemistry and barrier heights.

    PubMed

    Alecu, I M; Truhlar, Donald G

    2011-04-07

    The reactions of CH(3)OH with the HO(2) and CH(3) radicals are important in the combustion of methanol and are prototypes for reactions of heavier alcohols in biofuels. The reaction energies and barrier heights for these reaction systems are computed with CCSD(T) theory extrapolated to the complete basis set limit using correlation-consistent basis sets, both augmented and unaugmented, and further refined by including a fully coupled treatment of the connected triple excitations, a second-order perturbative treatment of quadruple excitations (by CCSDT(2)(Q)), core-valence corrections, and scalar relativistic effects. It is shown that the M08-HX and M08-SO hybrid meta-GGA density functionals can achieve sub-kcal mol(-1) agreement with the high-level ab initio results, identifying these functionals as important potential candidates for direct dynamics studies on the rates of these and homologous reaction systems.

  17. Experimental and computational investigation of the thermochemistry of the six isomers of dichloroaniline.

    PubMed

    Ribeiro da Silva, Manuel A V; Amaral, Luísa M P F; Gomes, José R B

    2006-07-27

    The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.

  18. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  19. Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs

    NASA Astrophysics Data System (ADS)

    Deyoreo, J.; Depaolo, D. J.

    2009-12-01

    It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to achieve the efficient filling of pore space while maximizing solubility and mineral trapping and reducing potential leakage. Advanced knowledge of these small-scale processes is an important step toward developing a next-generation predictive capability for reactive transport of CO2-brine systems. The Center involves scientists with expertise in hydrology, geochemistry, materials science, mineralogy, chemistry, microbiology, geophysics, and reactive transport modeling and simulation. This presentation will describe the initial stages of some of the research, which in total involves the use of synchrotron light sources, neutron scattering methods, NanoSIMS, molecular dynamics simulations, thermochemistry, molecular biology, nanotechnology, laboratory scale experiments, and advanced computation applied to flow and reactive transport in heterogeneous porous media. The Center for Nanoscale Control of Geologic CO2 key personnel: Director - D. DePaolo, Co-Director - J. DeYoreo; Research Area Leads - K. Knauss (LBNL), G. Waychunas (LBNL), J. Banfield (UCB/LBNL), A Navrotsky (UC Davis), F.J. Ryerson (LLNL); G. Sposito (UCB/LBNL), T. Tokunaga (LBNL), D. Cole (ORNL), C. Steefel (LBNL), D. Rothman (MIT), S. Pride (LBNL).

  20. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    PubMed

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  1. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Smart Sensing Based on DNA-Metal Interaction Enables a Label-Free and Resettable Security Model of Electrochemical Molecular Keypad Lock.

    PubMed

    Du, Yan; Han, Xu; Wang, Chenxu; Li, Yunhui; Li, Bingling; Duan, Hongwei

    2018-01-26

    Recently, molecular keypad locks have received increasing attention. As a new subgroup of smart biosensors, they show great potential for protecting information as a molecular security data processor, rather than merely molecular recognition and quantitation. Herein, label-free electrochemically transduced Ag + and cysteine (Cys) sensors were developed. A molecular keypad lock model with reset function was successfully realized based on the balanced interaction of metal ion with its nucleic acid and chemical ligands. The correct input of "1-2-3" (i.e., "Ag + -Cys-cDNA") is the only password of such molecular keypad lock. Moreover, the resetting process of either correct or wrong input order could be easily made by Cys, buffer, and DI water treatment. Therefore, our system provides an even smarter system of molecular keypad lock, which could inhibit illegal access of unauthorized users, holding great promise in information protection at the molecular level.

  3. Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis.

    PubMed

    Dai, Peng; Wang, Qin; Wang, Weihua; Jing, Ruirui; Wang, Wei; Wang, Fengqin; Azadzoi, Kazem M; Yang, Jing-Hua; Yan, Zhen

    2016-01-21

    Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched pairs of human GC and adjacent tissues were analyzed by a coupled label-free Mass Spectrometry (MS) approach, followed by functional annotation with software analysis. Nano-LC-MS/MS, quantitative real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry were used to validate dysregulated proteins. One hundred forty-six dysregulated proteins with more than twofold expressions were quantified, 22 of which were first reported to be relevant with GC. Most of them were involved in cancers and gastrointestinal disease. The expression of a panel of four upregulated nucleic acid binding proteins, heterogeneous nuclear ribonucleoprotein hnRNPA2B1, hnRNPD, hnRNPL and Y-box binding protein 1 (YBX-1) were validated by Nano-LC-MS/MS, qRT-PCR, western blot and immunohistochemistry assays in ten GC patients' tissues. They were located in the keynotes of a predicted interaction network and might play important roles in abnormal cell growth. The label-free quantitative proteomic approach provides a deeper understanding and novel insight into GC-related molecular changes and possible mechanisms. It also provides some potential biomarkers for clinical diagnosis.

  4. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  5. Non-invasive molecular imaging for preclinical cancer therapeutic development

    PubMed Central

    O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH

    2013-01-01

    Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622

  6. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  7. Durable resistance: A key to sustainable management of pathogens and pests

    PubMed Central

    Mundt, Christopher C.

    2014-01-01

    This review briefly addresses what has been learned about resistance durability in recent years, as well as the questions that still remain. Molecular analyses of major gene interactions have potential to contribute to both breeding for resistance and improved understanding of virulence impacts on pathogen fitness. Though the molecular basis of quantitative resistance is less clear substantial evidence has accumulated for the relative simplicity of inheritance. There is increasing evidence for specific interactions with quantitative resistance, though implications o this for durability are still unknown. Mechanisms by which resistance gene pyramids contribute to durability remain elusive, though ideas have been generated for identifying gene combinations that may be more durable. Though cultivar mixtures and related approaches have been used successfully, identifying the diseases and conditions that are most conducive to the use of diversity has been surprisingly difficult, and the selective influence of diversity on pathogen populations is complex. The importance of considering resistance durability in a landscape context has received increasing emphasis and is an important future area of research. Experimental systems are being developed to test resistance gene deployment strategies that previously could be addressed only with logic and observation. The value of molecular markers for identifying and pyramiding major genes is quite clear, but the successful use of quantitative trait loci (QTL) for marker-assisted selection of quantitative resistance will depend greatly on the degree to which the identified QTL are expressed in different genetic backgrounds. Transgenic approaches will likely provide opportunities for control of some recalcitrant pathogens, though issues of durability for transgenes are likely to be no different than other genes for resistance. The need for high quality phenotypic analysis and screening methodologies is a priority, and field-based studies are likely to remain of signal importance in the foreseeable future. PMID:24486735

  8. Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.

    2005-09-01

    We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.

  9. Molecular diagnostics in medical microbiology: yesterday, today and tomorrow.

    PubMed

    van Belkum, Alex

    2003-10-01

    Clinical microbiology is clearly on the move, and various new diagnostic technologies have been introduced into laboratory practice over the past few decades. However, Henri D Isenberg recently stated that molecular biology techniques promised to revolutionise the diagnosis of infectious disease, but that, to date, this promise is still in its infancy. Molecular diagnostics have now surpassed these early stages and have definitely reached puberty. Currently, a second generation of automated molecular approaches is already within the microbiologists' reach. Quantitative amplification tests in combination with genomics, transcriptomics, proteomics and related methodologies will pave the way to further enhancement of innovative microbial detection and identification.

  10. Quantitative implementation of the endogenous molecular-cellular network hypothesis in hepatocellular carcinoma.

    PubMed

    Wang, Gaowei; Zhu, Xiaomei; Gu, Jianren; Ao, Ping

    2014-06-06

    A quantitative hypothesis for cancer genesis and progression-the endogenous molecular-cellular network hypothesis, intended to include both genetic and epigenetic causes of cancer-has been proposed recently. Using this hypothesis, here we address the molecular basis for maintaining normal liver and hepatocellular carcinoma (HCC), and the potential strategy to cure or relieve HCC. First, we elaborate the basic assumptions of the hypothesis and establish a core working network of HCC according to the hypothesis. Second, we quantify the working network by a nonlinear dynamical system. We show that the working network reproduces the main known features of normal liver and HCC at both the modular and molecular levels. Lastly, the validated working network reveals that (i) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (ii) inhibiting proliferation and inflammation-related positive feedback loops and simultaneously inducing a liver-specific positive feedback loop is predicated as a potential strategy to cure or relieve HCC; and (iii) the genesis and regression of HCC are asymmetric. In light of the characteristic properties of the nonlinear dynamical system, we demonstrate that positive feedback loops must exist as a simple and general molecular basis for the maintenance of heritable phenotypes, such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  11. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens.

    PubMed

    Malapelle, Umberto; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; Rosell, Rafael; Savic, Spasenija; Bihl, Michel; Bubendorf, Lukas; Salto-Tellez, Manuel; de Biase, Dario; Tallini, Giovanni; Hwang, David H; Sholl, Lynette M; Luthra, Rajyalakshmi; Weynand, Birgit; Vander Borght, Sara; Missiaglia, Edoardo; Bongiovanni, Massimo; Stieber, Daniel; Vielh, Philippe; Schmitt, Fernando; Rappa, Alessandra; Barberis, Massimo; Pepe, Francesco; Pisapia, Pasquale; Serra, Nicola; Vigliar, Elena; Bellevicine, Claudio; Fassan, Matteo; Rugge, Massimo; de Andrea, Carlos E; Lozano, Maria D; Basolo, Fulvio; Fontanini, Gabriella; Nikiforov, Yuri E; Kamel-Reid, Suzanne; da Cunha Santos, Gilda; Nikiforova, Marina N; Roy-Chowdhuri, Sinchita; Troncone, Giancarlo

    2017-08-01

    Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences. Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology. All laboratories using NGS (n = 11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P = .171) and 5% (P = .063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n = 2) showed lower concordance in terms of mutation detection and mutant AF quantification. Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational assays, and this could lead to better standardization of molecular cytopathology procedures. Cancer Cytopathol 2017;125:615-26. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. Quantitative Field Testing Rotylenchulus reniformis DNA from Metagenomic Samples Isolated Directly from Soil

    PubMed Central

    Showmaker, Kurt; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

    2011-01-01

    A quantitative PCR procedure targeting the β-tubulin gene determined the number of Rotylenchulus reniformis Linford & Oliveira 1940 in metagenomic DNA samples isolated from soil. Of note, this outcome was in the presence of other soil-dwelling plant parasitic nematodes including its sister genus Helicotylenchus Steiner, 1945. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from soil. PMID:22194958

  13. Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae).

    PubMed

    Bessega, C; Pometti, C; Ewens, M; Saidman, B O; Vilardi, J C

    2015-02-01

    Signals of selection on quantitative traits can be detected by the comparison between the genetic differentiation of molecular (neutral) markers and quantitative traits, by multivariate extensions of the same model and by the observation of the additive covariance among relatives. We studied, by three different tests, signals of occurrence of selection in Prosopis alba populations over 15 quantitative traits: three economically important life history traits: height, basal diameter and biomass, 11 leaf morphology traits that may be related with heat-tolerance and physiological responses and spine length that is very important from silvicultural purposes. We analyzed 172 G1-generation trees growing in a common garden belonging to 32 open pollinated families from eight sampling sites in Argentina. The multivariate phenotypes differ significantly among origins, and the highest differentiation corresponded to foliar traits. Molecular genetic markers (SSR) exhibited significant differentiation and allowed us to provide convincing evidence that natural selection is responsible for the patterns of morphological differentiation. The heterogeneous selection over phenotypic traits observed suggested different optima in each population and has important implications for gene resource management. The results suggest that the adaptive significance of traits should be considered together with population provenance in breeding program as a crucial point prior to any selecting program, especially in Prosopis where the first steps are under development.

  14. Development and Use of Numerical and Factual Data Bases

    DTIC Science & Technology

    1983-10-01

    the quantitative description of what has been accomplished by their scientific and technical endeavors. 1-3 overhead charge to the national treasury... Molecular properties calculated with the aid of quantum mechanics or the prediction of solar eclipses using celestial mechanics are examples of theoretical...system under study. Examples include phase diagrams, molecular models, geological maps, metabolic pathways. Symbolic data (F3) are data presented in

  15. Studies of Peptide-Mineral Interactions and Biosilicification

    DTIC Science & Technology

    2010-07-16

    His). The effect of zinc oxide -binding peptides ( ZnO -BPs) on the morphology and formation of ZnO were studied using G-12 (GLHVMHKVAPPR) and EM-12...interactions with silica and zinc oxide . Detailed quantitative experimental studies together with molecular modeling studies have shown that G12 (GLHVMHKVAPPR...studies of a primitive 15. SUBJECT TERMS Peptides, zinc oxide , silica, silver, peptide-mineral interactions, computational chemistry, molecular

  16. Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling.

    PubMed

    van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D

    2014-07-21

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.

  17. Quantitative Hydrocarbon Energies from the PMO Method.

    ERIC Educational Resources Information Center

    Cooper, Charles F.

    1979-01-01

    Details a procedure for accurately calculating the quantum mechanical energies of hydrocarbons using the perturbational molecular orbital (PMO) method, which does not require the use of a computer. (BT)

  18. Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics

    PubMed Central

    Lavallée-Adam, Mathieu

    2017-01-01

    PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. PMID:27010334

  19. Detection system for a gas chromatograph. [. cap alpha. -methylnaphthalene,. beta. -methylnapthalene

    DOEpatents

    Hayes, J.M.; Small, G.J.

    1982-04-26

    A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam. 3 figures, 2 tables.

  20. Inverse transport problems in quantitative PAT for molecular imaging

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  1. Micro-machined calorimetric biosensors

    DOEpatents

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  2. Intramolecular fluorine migration via four-member cyclic transition states

    PubMed

    Nguyen; Mayer; Morton

    2000-11-17

    Gaseous CF(3)(+) interchanges F(+) for O with simple carbonyl compounds. CF(3)(+) reacts with propionaldehyde in the gas phase to produce (CH(3))(2)CF(+) via two competing pathways. Starting with 1-(13)C-propionaldehyde, the major pathway (80%) produces (CH(3))(2)CF(+) with the carbon label in one of the methyl groups. The minor pathway (20%) produces (CH(3))(2)CF(+) with the carbon label in the central position. The relative proportions of these two pathways are measured by (19)F NMR analysis of the neutral CH(3)CF=CH(2) produced by deprotonation of (CH(3))(2)CF(+) at <10(-)(3) Torr in an electron bombardment flow (EBFlow) reactor. Formation of alkene in which carbon is directly bonded to fluorine means that (in the minor product, at least) an F(+) for O transposition occurs via adduct formation followed by 1,3-atom transfer and then isomerization of CH(3)CH(2)CHF(+) to the more stable (CH(3))(2)CF(+). Use of CF(4) as a chemical ionization (CI) reagent gas leads to CF(3)(+) adduct ions for a variety of ketones, in addition to isoelectronic transposition of F(+) for O. Metastable ion decompositions of the adduct ions yield the metathesis products. Decompositions of fluorocycloalkyl cations formed in this manner give evidence for the same kinds of rearrangements as take place in CH(3)CH(2)CHF(+). Density functional calculations confirm that F(+) for O metathesis takes place via addition of CF(3)(+) to the carbonyl oxygen followed by transposition via a four-member cyclic transition state. A computational survey of the effects of different substituents in a series of aldehydes and acyclic ketones reveals no systematic variation of the energy of the transition state as a function of thermochemistry, but the Hammond postulate does appear to be obeyed in terms of progress along the reaction coordinate. Bond lengths corresponding to the central barrier correlate with overall thermochemistry of the F(+) for O interchange, but in a sense opposite to what might have been expected: the transition state becomes more product-like as the metathesis becomes increasingly exothermic. This reversal of the naive interpretation of the Hammond postulate is accounted for by the relative positions of the potential energy wells that precede and follow the central barrier.

  3. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Sopko, J.F.; Houf, William G.

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accuratemore » data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.« less

  4. Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format.

    PubMed

    Bisso, Paul W; Tai, Michelle; Katepalli, Hari; Bertrand, Nicolas; Blankschtein, Daniel; Langer, Robert

    2018-01-10

    Hydrophobic self-assembly pairs diverse chemical precursors and simple formulation processes to access a vast array of functional colloids. Exploration of this design space, however, is stymied by lack of broadly general, high-throughput colloid characterization tools. Here, we show that a narrow structural subset of fluorescent, zwitterionic molecular rotors, dialkylaminostilbazolium sulfonates [DASS] with intermediate-length alkyl tails, fills this major analytical void by quantitatively sensing hydrophobic interfaces in microplate format. DASS dyes supersede existing interfacial probes by avoiding off-target fluorogenic interactions and dye aggregation while preserving hydrophobic partitioning strength. To illustrate the generality of this approach, we demonstrate (i) a microplate-based technique for measuring mass concentration of small (20-200 nm), dilute (submicrogram sensitivity) drug delivery nanoparticles; (ii) elimination of particle size, surfactant chemistry, and throughput constraints on quantifying the complex surfactant/metal oxide adsorption isotherms critical for environmental remediation and enhanced oil recovery; and (iii) more reliable self-assembly onset quantitation for chemically and structurally distinct amphiphiles. These methods could streamline the development of nanotechnologies for a broad range of applications.

  5. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex.

    PubMed

    McClatchy, D B; Savas, J N; Martínez-Bartolomé, S; Park, S K; Maher, P; Powell, S B; Yates, J R

    2016-02-01

    Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP downregulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this data set identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating.

  6. Learning abilities and disabilities: generalist genes in early adolescence.

    PubMed

    Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert

    2009-01-01

    The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.

  7. Study books on ADHD genetics: balanced or biased?

    PubMed Central

    te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans

    2017-01-01

    ABSTRACT Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master’s programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics’ outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them. PMID:28532325

  8. Study books on ADHD genetics: balanced or biased?

    PubMed

    Te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans

    2017-06-01

    Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master's programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics' outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them.

  9. Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra

    2017-02-01

    Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.

  10. Nucleolar molecular signature of pluripotent stem cells.

    PubMed

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N

    2013-04-02

    Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in macromolecular organization of the cell at different stages of reprogramming.

  11. Quantitative structure-activity relationship and molecular docking of artemisinin derivatives to vascular endothelial growth factor receptor 1.

    PubMed

    Saeed, Mohamed E M; Kadioglu, Onat; Seo, Ean-Jeong; Greten, Henry Johannes; Brenk, Ruth; Efferth, Thomas

    2015-04-01

    The antimalarial drug artemisinin has been shown to exert anticancer activity through anti-angiogenic effects. For further drug development, it may be useful to have derivatives with improved anti-angiogenic properties. We performed molecular docking of 52 artemisinin derivatives to vascular endothelial growth factor receptors (VEGFR1, VEGFR2), and VEGFA ligand using Autodock4 and AutodockTools-1.5.7.rc1 using the Lamarckian genetic algorithm. Quantitative structure-activity relationship (QSAR) analyses of the compounds prepared by Corina Molecular Networks were performed using the Molecular Operating Environment MOE 2012.10. A statistically significant inverse relationship was obtained between in silico binding energies to VEGFR1 and anti-angiogenic activity in vivo of a test-set of artemisinin derivatives (R=-0.843; p=0.035). This served as a control experiment to validate molecular docking predicting anti-angiogenc effects. Furthermore, 52 artemisinin derivatives were docked to VEGFR1 and in selected examples also to VEGFR2 and VEGFA. Higher binding affinities were calculated for receptors than for the ligand. The best binding affinities to VEGFR1 were found for an artemisinin dimer, 10-dihydroartemisinyl-2-propylpentanoate, and dihydroartemisinin α-hemisuccinate sodium salt. QSAR analyses revealed significant relationships between VEGFR1 binding energies and defined molecular descriptors of 35 artemisinins assigned to the training set (R=0.0848, p<0.0001) and 17 derivatives assigned to the test set (R=0.761, p<0.001). Molecular docking and QSAR calculations can be used to identify novel artemisinin derivatives with anti-angiogenic effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Computational Toxicology (S)

    EPA Science Inventory

    The emerging field of computational toxicology applies mathematical and computer models and molecular biological and chemical approaches to explore both qualitative and quantitative relationships between sources of environmental pollutant exposure and adverse health outcomes. Th...

  13. Linking short-term responses to ecologically-relevant outcomes

    EPA Pesticide Factsheets

    Opportunity to participate in the conduct of collaborative integrative lab, field and modelling efforts to characterize molecular-to-organismal level responses and make quantitative testable predictions of population level outcomes

  14. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing.

    PubMed

    Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher

    2008-09-15

    We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.

  15. Glycolytic activity in breast cancer using 18F-FDG PET/CT as prognostic predictor: A molecular phenotype approach.

    PubMed

    Garcia Vicente, A M; Soriano Castrejón, A; Amo-Salas, M; Lopez Fidalgo, J F; Muñoz Sanchez, M M; Alvarez Cabellos, R; Espinosa Aunion, R; Muñoz Madero, V

    2016-01-01

    To explore the relationship between basal (18)F-FDG uptake in breast tumors and survival in patients with breast cancer (BC) using a molecular phenotype approach. This prospective and multicentre study included 193 women diagnosed with BC. All patients underwent an (18)F-FDG PET/CT prior to treatment. Maximum standardized uptake value (SUVmax) in tumor (T), lymph nodes (N), and the N/T index was obtained in all the cases. Metabolic stage was established. As regards biological prognostic parameters, tumors were classified into molecular sub-types and risk categories. Overall survival (OS) and disease free survival (DFS) were obtained. An analysis was performed on the relationship between semi-quantitative metabolic parameters with molecular phenotypes and risk categories. The effect of molecular sub-type and risk categories in prognosis was analyzed using Kaplan-Meier and univariate and multivariate tests. Statistical differences were found in both SUVT and SUVN, according to the molecular sub-types and risk classifications, with higher semi-quantitative values in more biologically aggressive tumors. No statistical differences were observed with respect to the N/T index. Kaplan-Meier analysis revealed that risk categories were significantly related to DFS and OS. In the multivariate analysis, metabolic stage and risk phenotype showed a significant association with DFS. High-risk phenotype category showed a worst prognosis with respect to the other categories with higher SUVmax in primary tumor and lymph nodes. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  16. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    PubMed Central

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  17. Entropy in molecular recognition by proteins

    PubMed Central

    Caro, José A.; Harpole, Kyle W.; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G.; Sharp, Kim A.

    2017-01-01

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein–ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein–ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein–ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or “entropy meter” also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water–protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins. PMID:28584100

  18. In-Line Detection and Measurement of Molecular Contamination in Semiconductor Process Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Jason; West, Michael; Han, Ye; McDonald, Robert C.; Yang, Wenjing; Ormond, Bob; Saini, Harmesh

    2005-09-01

    This paper discusses a fully automated metrology tool for detection and quantitative measurement of contamination, including cationic, anionic, metallic, organic, and molecular species present in semiconductor process solutions. The instrument is based on an electrospray ionization time-of-flight mass spectrometer (ESI-TOF/MS) platform. The tool can be used in diagnostic or analytical modes to understand process problems in addition to enabling routine metrology functions. Metrology functions include in-line contamination measurement with near real-time trend analysis. This paper discusses representative organic and molecular contamination measurement results in production process problem solving efforts. The examples include the analysis and identification of organic compounds in SC-1 pre-gate clean solution; urea, NMP (N-Methyl-2-pyrrolidone) and phosphoric acid contamination in UPW; and plasticizer and an organic sulfur-containing compound found in isopropyl alcohol (IPA). It is expected that these unique analytical and metrology capabilities will improve the understanding of the effect of organic and molecular contamination on device performance and yield. This will permit the development of quantitative correlations between contamination levels and process degradation. It is also expected that the ability to perform routine process chemistry metrology will lead to corresponding improvements in manufacturing process control and yield, the ability to avoid excursions and will improve the overall cost effectiveness of the semiconductor manufacturing process.

  19. Submillimetre flux as a probe of molecular ISM mass in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Lichen; Feldmann, Robert; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Hayward, Christopher C.; Quataert, Eliot; Scoville, Nick Z.

    2018-07-01

    Recent long-wavelength observations on the thermal dust continuum suggest that the Rayleigh-Jeans tail can be used as a time-efficient quantitative probe of the dust and interstellar medium (ISM) mass in high-z galaxies. We use high-resolution cosmological simulations from the Feedback in Realistic Environment (FIRE) project to analyse the dust emission of M* ≳ 1010 M⊙ galaxies at z= 2-4. Our simulations (MASSIVEFIRE) explicitly include various forms of stellar feedback, and they produce the stellar masses and star formation rates of high-z galaxies in agreement with observations. Using radiative transfer modelling, we show that sub-millimetre (sub-mm) luminosity and molecular ISM mass are tightly correlated and that the overall normalization is in quantitative agreement with observations. Notably, sub-mm luminosity traces molecular ISM mass even during starburst episodes as dust mass and mass-weighted temperature evolve only moderately between z = 4 and z = 2, including during starbursts. Our finding supports the empirical approach of using broadband sub-mm flux as a proxy for molecular gas content in high-z galaxies. We thus expect single-band sub-mm observations with ALMA to dramatically increase the sample size of high-z galaxies with reliable ISM masses in the near future.

  20. The discovery of novel histone lysine methyltransferase G9a inhibitors (part 1): molecular design based on a series of substituted 2,4-diamino-7- aminoalkoxyquinazoline by molecular-docking-guided 3D quantitative structure-activity relationship studies.

    PubMed

    Feng, Taotao; Wang, Hai; Zhang, Xiaojin; Sun, Haopeng; You, Qidong

    2014-06-01

    Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. This suggests that small molecular inhibitors of G9a might be attractive antitumor agents. Herein we report our efforts on the design of novel G9a inhibitor based on the 3D quantitative structure-activity relationship (3D-QSAR) analysis of a series of 2,4-diamino-7-aminoalkoxyquinazolineas G9a inhibitors. The 3D-QSAR model was generated from 47 compounds using docking based molecular alignment. The best predictions were obtained with CoMFA standard model (q2 =0.700, r2 = 0.952) and CoMSIA model combined with steric, electrostatic, hydrophobic, hydrogen bond donor and acceptor fields (q2 = 0.724, r2 =0.960). The structural requirements for substituted 2,4-diamino-7-aminoalkoxyquinazoline for G9a inhibitory activity can be obtained by analysing the COMSIA plots. Based on the information, six novel follow-up analogs were designed.

  1. Developing and applying the adverse outcome pathway ...

    EPA Pesticide Factsheets

    To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out

  2. Submillimeter flux as a probe of molecular ISM mass in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Lichen; Feldmann, Robert; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Hayward, Christopher C.; Quataert, Eliot; Scoville, Nick Z.

    2018-04-01

    Recent long wavelength observations on the thermal dust continuum suggest that the Rayleigh-Jeans (RJ) tail can be used as a time-efficient quantitative probe of the dust and ISM mass in high-z galaxies. We use high-resolution cosmological simulations from the Feedback in Realistic Environment (FIRE) project to analyze the dust emission of M* ≳ 1010M⊙ galaxies at z = 2 - 4. Our simulations (MassiveFIRE) explicitly include various forms of stellar feedback, and they produce the stellar masses and star formation rates of high-z galaxies in agreement with observations. Using radiative transfer modelling, we show that sub-millimeter (sub-mm) luminosity and molecular ISM mass are tightly correlated and that the overall normalization is in quantitative agreement with observations. Notably, sub-mm luminosity traces molecular ISM mass even during starburst episodes as dust mass and mass-weighted temperature evolve only moderately between z = 4 and z = 2, including during starbursts. Our finding supports the empirical approach of using broadband sub-mm flux as a proxy for molecular gas content in high-z galaxies. We thus expect single-band sub-mm observations with ALMA to dramatically increase the sample size of high-z galaxies with reliable ISM masses in the near future.

  3. Entropy in molecular recognition by proteins.

    PubMed

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  4. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  5. Exploring glycogen biosynthesis through Monte Carlo simulation.

    PubMed

    Zhang, Peng; Nada, Sharif S; Tan, Xinle; Deng, Bin; Sullivan, Mitchell A; Gilbert, Robert G

    2018-05-08

    Glycogen, a complex branched polymer of glucose (average chain length ~10 monomer units), is the blood-sugar reservoir in humans and other animals. Certain aspects of its molecular structure relevant to its biological functions are currently unamenable to experimental exploration. Knowledge of these is needed to develop future models for quantitative data-fitting to obtain mechanistic understanding of the biosynthetic processes that give rise to glycogen structure. Monte Carlo simulations of the biosynthesis of this structure with realistic macromolecular parameters reveal how chain growth and stoppage (the latter assumed to be through both the action of glycogen branching enzyme and other degradative enzymes, and by hindrance) control structural features. The simulated chain-length, pair-distance and radial density distributions agree semi-quantitatively with the limited available data. The simulations indicate that a steady state in molecular structure and size is rapidly obtained, that molecular density reaches a maximum near the center of the particle (not at the periphery, as is the case with dendrimers), and that particle size is controlled by both enzyme activity and hindrance. This knowledge will aid in the understanding of diabetes (loss of blood-sugar control), which has been found to involve subtle differences in glycogen molecular structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Diverse assessment and active student engagement sustain deep learning: A comparative study of outcomes in two parallel introductory biochemistry courses.

    PubMed

    Bevan, Samantha J; Chan, Cecilia W L; Tanner, Julian A

    2014-01-01

    Although there is increasing evidence for a relationship between courses that emphasize student engagement and achievement of student deep learning, there is a paucity of quantitative comparative studies in a biochemistry and molecular biology context. Here, we present a pedagogical study in two contrasting parallel biochemistry introductory courses to compare student surface and deep learning. Surface and deep learning were measured quantitatively by a study process questionnaire at the start and end of the semester, and qualitatively by questionnaires and interviews with students. In the traditional lecture/examination based course, there was a dramatic shift to surface learning approaches through the semester. In the course that emphasized student engagement and adopted multiple forms of assessment, a preference for deep learning was sustained with only a small reduction through the semester. Such evidence for the benefits of implementing student engagement and more diverse non-examination based assessment has important implications for the design, delivery, and renewal of introductory courses in biochemistry and molecular biology. © 2014 The International Union of Biochemistry and Molecular Biology.

  8. Predicting unfolding thermodynamics and stable intermediates for alanine-rich helical peptides with the aid of coarse-grained molecular simulation.

    PubMed

    Calero-Rubio, Cesar; Paik, Bradford; Jia, Xinqiao; Kiick, Kristi L; Roberts, Christopher J

    2016-10-01

    This report focuses on the molecular-level processes and thermodynamics of unfolding of a series of helical peptides using a coarse-grained (CG) molecular model. The CG model was refined to capture thermodynamics and structural changes as a function of temperature for a set of published peptide sequences. Circular dichroism spectroscopy (CD) was used to experimentally monitor the temperature-dependent conformational changes and stability of published peptides and new sequences introduced here. The model predictions were quantitatively or semi-quantitatively accurate in all cases. The simulations and CD results showed that, as expected, in most cases the unfolding of helical peptides is well described by a simply 2-state model, and conformational stability increased with increased length of the helices. A notable exception in a 19-residue helix was when two Ala residues were each replaced with Phe. This stabilized a partly unfolded intermediate state via hydrophobic contacts, and also promoted aggregates at higher peptide concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Direct molecular dynamics simulation of Ge deposition on amorphous SiO 2 at experimentally relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Claire Y.; Zepeda-Ruiz, Luis A.; Han, Sang M.

    2015-06-01

    Molecular dynamics simulations were used to study Ge island nucleation and growth on amorphous SiO 2 substrates. This process is relevant in selective epitaxial growth of Ge on Si, for which SiO 2 is often used as a template mask. The islanding process was studied over a wide range of temperatures and fluxes, using a recently proposed empirical potential model for the Si–SiO 2–Ge system. The simulations provide an excellent quantitative picture of the Ge islanding and compare well with detailed experimental measurements. These quantitative comparisons were enabled by an analytical rate model as a bridge between simulations and experimentsmore » despite the fact that deposition fluxes accessible in simulations and experiments are necessarily different by many orders of magnitude. In particular, the simulations led to accurate predictions of the critical island size and the scaling of island density as a function of temperature. Lastly, the overall approach used here should be useful not just for future studies in this particular system, but also for molecular simulations of deposition in other materials.« less

  10. Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus sylvestris.

    PubMed

    Waldmann, P; García-Gil, M R; Sillanpää, M J

    2005-06-01

    Comparison of the level of differentiation at neutral molecular markers (estimated as F(ST) or G(ST)) with the level of differentiation at quantitative traits (estimated as Q(ST)) has become a standard tool for inferring that there is differential selection between populations. We estimated Q(ST) of timing of bud set from a latitudinal cline of Pinus sylvestris with a Bayesian hierarchical variance component method utilizing the information on the pre-estimated population structure from neutral molecular markers. Unfortunately, the between-family variances differed substantially between populations that resulted in a bimodal posterior of Q(ST) that could not be compared in any sensible way with the unimodal posterior of the microsatellite F(ST). In order to avoid publishing studies with flawed Q(ST) estimates, we recommend that future studies should present heritability estimates for each trait and population. Moreover, to detect variance heterogeneity in frequentist methods (ANOVA and REML), it is of essential importance to check also that the residuals are normally distributed and do not follow any systematically deviating trends.

  11. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  12. High- to low-dose extrapolation: critical determinants involved in the dose response of carcinogenic substances.

    PubMed

    Swenberg, J A; Richardson, F C; Boucheron, J A; Deal, F H; Belinsky, S A; Charbonneau, M; Short, B G

    1987-12-01

    Recent investigations on mechanism of carcinogenesis have demonstrated important quantitative relationships between the induction of neoplasia, the molecular dose of promutagenic DNA adducts and their efficiency for causing base-pair mismatch, and the extent of cell proliferation in target organ. These factors are involved in the multistage process of carcinogenesis, including initiation, promotion, and progression. The molecular dose of DNA adducts can exhibit supralinear, linear, or sublinear relationships to external dose due to differences in absorption, biotransformation, and DNA repair at high versus low doses. In contrast, increased cell proliferation is a common phenomena that is associated with exposures to relatively high doses of toxic chemicals. As such, it enhances the carcinogenic response at high doses, but has little effect at low doses. Since data on cell proliferation can be obtained for any exposure scenario and molecular dosimetry studies are beginning to emerge on selected chemical carcinogens, methods are needed so that these critical factors can be utilized in extrapolation from high to low doses and across species. The use of such information may provide a scientific basis for quantitative risk assessment.

  13. High- to low-dose extrapolation: critical determinants involved in the dose response of carcinogenic substances.

    PubMed Central

    Swenberg, J A; Richardson, F C; Boucheron, J A; Deal, F H; Belinsky, S A; Charbonneau, M; Short, B G

    1987-01-01

    Recent investigations on mechanism of carcinogenesis have demonstrated important quantitative relationships between the induction of neoplasia, the molecular dose of promutagenic DNA adducts and their efficiency for causing base-pair mismatch, and the extent of cell proliferation in target organ. These factors are involved in the multistage process of carcinogenesis, including initiation, promotion, and progression. The molecular dose of DNA adducts can exhibit supralinear, linear, or sublinear relationships to external dose due to differences in absorption, biotransformation, and DNA repair at high versus low doses. In contrast, increased cell proliferation is a common phenomena that is associated with exposures to relatively high doses of toxic chemicals. As such, it enhances the carcinogenic response at high doses, but has little effect at low doses. Since data on cell proliferation can be obtained for any exposure scenario and molecular dosimetry studies are beginning to emerge on selected chemical carcinogens, methods are needed so that these critical factors can be utilized in extrapolation from high to low doses and across species. The use of such information may provide a scientific basis for quantitative risk assessment. PMID:3447904

  14. Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes.

    PubMed Central

    Ashbaugh, H S; Garde, S; Hummer, G; Kaler, E W; Paulaitis, M E

    1999-01-01

    Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes. PMID:10423414

  15. Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations.

    PubMed

    Liao, Chenyi; Esai Selvan, Myvizhi; Zhao, Jun; Slimovitch, Jonathan L; Schneebeli, Severin T; Shelley, Mee; Shelley, John C; Li, Jianing

    2015-08-20

    Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed—for the first time in atomistic detail—that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety.

  16. Determination of the complete structure of natural lecithins.

    PubMed

    Kuksis, A; Marai, L

    1967-05-01

    A method is described for the separation, identification, and quantitative estimation of the individual molecular species occurring in natural lecithin mixtures. Purified lecithin preparations are converted into diglyceride acetates by enzymic dephosphorylation and acetylation. The diglyceride acetates are separated on the basis of the degree of unsaturation and the molecular geometry by means of chromatography on thin layers of silica gel which are impregnated with silver nitrate. The various acetates thus resolved are separately recovered from the plates and diluted with tridecanoin internal standard; the quantitative distribution of the molecular weights is determined by gas chromatography.Suitable aliquots of the saturated and unsaturated diglyceride acetates are further analyzed for over-all and for positional distribution of fatty acids. The identity and proportions of the various lecithins are deduced by integration and normalization of all the experimental data. Where doubt exists, specific diglyceride acetates are isolated by preparative gas chromatography, and their fatty acid composition is determined. The method is illustrated with data obtained for the mixed lecithins of egg yolk. The general approach is applicable to the determination of the structure of other phospholipids of comparable complexity.

  17. Invasion of gas into mica nanopores: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Zhang, Fei; Qiao, Rui

    2018-06-01

    The invasion of gas into liquid-filled nanopores is encountered in many engineering problems but is not yet well understood. We report molecular dynamics simulations of the invasion of methane gas into water-filled mica pores with widths of 2–6 nm. Gas invades into a pore only when the pressure exceeds a breakthrough pressure and a thin residual water film is left on the mica wall as the gas phase moves deeper into the pore. The gas breakthrough pressure of pores as narrow as 2 nm can be modeled reasonably well by the capillary pressure if the finite thickness of residual liquid water film and the liquid–gas interface are taken into account. The movement of the front of the liquid meniscus during gas invasion can be quantitatively described using the classical hydrodynamics when the negative slip length on the strongly hydrophilic mica walls is taken into account. Understanding the molecular mechanisms underlying the gas invasion in the system studied here will form the foundation for quantitative prediction of gas invasion in practical porous media.

  18. EPAs Virtual Embryo: Modeling Developmental Toxicity

    EPA Science Inventory

    Embryogenesis is regulated by concurrent activities of signaling pathways organized into networks that control spatial patterning, molecular clocks, morphogenetic rearrangements and cell differentiation. Quantitative mathematical and computational models are needed to better unde...

  19. Molecular dispersion spectroscopy – new capabilities in laser chemical sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state-of-the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS) based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace-gases and enable new capabilities such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459

  20. Predicting RNA Duplex Dimerization Free-Energy Changes upon Mutations Using Molecular Dynamics Simulations.

    PubMed

    Sakuraba, Shun; Asai, Kiyoshi; Kameda, Tomoshi

    2015-11-05

    The dimerization free energies of RNA-RNA duplexes are fundamental values that represent the structural stability of RNA complexes. We report a comparative analysis of RNA-RNA duplex dimerization free-energy changes upon mutations, estimated from a molecular dynamics simulation and experiments. A linear regression for nine pairs of double-stranded RNA sequences, six base pairs each, yielded a mean absolute deviation of 0.55 kcal/mol and an R(2) value of 0.97, indicating quantitative agreement between simulations and experimental data. The observed accuracy indicates that the molecular dynamics simulation with the current molecular force field is capable of estimating the thermodynamic properties of RNA molecules.

  1. A collaborative molecular modeling environment using a virtual tunneling service.

    PubMed

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.

  2. Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.

    PubMed

    Nielsen, A D; Borch, K; Westh, P

    2000-06-15

    The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.

  3. Density functional theory study of homologous organometallic molecules of the [RhXL2]2 (X=Cl, Br, or I; L=CO, PH3, or PF3) type

    NASA Astrophysics Data System (ADS)

    Seuret, P.; Weber, J.; Wesolowski, T. A.

    Density functional theory generalized gradient approximation calculations, which were tested in our previous detailed study of [RhCl(PF3)2]2 (Seuret et al., 2003, Phys. Chem. chem. Phys., 5, 268-274), were applied for a series of homologous organometallic compounds of the [RhXL2]2 (X = Cl, Br, or I; L = CO, PH3, or PF3) type. Various properties of the studied compounds were obtained. Optimized geometries of [RhCl(PH3)2]2 and [RhCl(CO)2]2 are in very good agreement with available experimental data. Geometries of other compounds as well as other properties (thermochemistry of selected fragmentation channels, barriers to structural changes, frontier orbitals) which are not available experimentally were predicted. All the considered compounds are not planar. Enforcing planarity of the central [RhX]2 moiety requires only a small energetic cost ranging from 2.2 to 3.9 kcal mol-1. The analysis of frontier orbitals indicates that the metals provide the most favourable site for the electrophilic attack in all considered compounds. The analysis of the shape of the lowest unoccupied molecular orbitals indicates that the halogens and ligands provide the most favourable site for the nucleophilic attack for [RhCl(CO)2]2 or [RhCl(PF3)2]. For [RhBr(PF3)2]2, [RhI(PF3)2]2 and [RhCl(PH3)2]2, the nucleophilic attack on the halogen is less probable. Except for [RhCl(CO)2]2, the least energetically expensive decomposition channel involves initial separation of ligands. For [RhCl(CO)2]2, its decomposition into the RhCl(CO)2 fragments was found to be the least energetically expensive fragmentation reaction which is probably one of the reasons for the known catalytic activity of this compound.

  4. Multiscale Computational Analysis of Nitrogen and Oxygen Gas-Phase Thermochemistry in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Bender, Jason D.

    Understanding hypersonic aerodynamics is important for the design of next-generation aerospace vehicles for space exploration, national security, and other applications. Ground-level experimental studies of hypersonic flows are difficult and expensive; thus, computational science plays a crucial role in this field. Computational fluid dynamics (CFD) simulations of extremely high-speed flows require models of chemical and thermal nonequilibrium processes, such as dissociation of diatomic molecules and vibrational energy relaxation. Current models are outdated and inadequate for advanced applications. We describe a multiscale computational study of gas-phase thermochemical processes in hypersonic flows, starting at the atomic scale and building systematically up to the continuum scale. The project was part of a larger effort centered on collaborations between aerospace scientists and computational chemists. We discuss the construction of potential energy surfaces for the N4, N2O2, and O4 systems, focusing especially on the multi-dimensional fitting problem. A new local fitting method named L-IMLS-G2 is presented and compared with a global fitting method. Then, we describe the theory of the quasiclassical trajectory (QCT) approach for modeling molecular collisions. We explain how we implemented the approach in a new parallel code for high-performance computing platforms. Results from billions of QCT simulations of high-energy N2 + N2, N2 + N, and N2 + O2 collisions are reported and analyzed. Reaction rate constants are calculated and sets of reactive trajectories are characterized at both thermal equilibrium and nonequilibrium conditions. The data shed light on fundamental mechanisms of dissociation and exchange reactions -- and their coupling to internal energy transfer processes -- in thermal environments typical of hypersonic flows. We discuss how the outcomes of this investigation and other related studies lay a rigorous foundation for new macroscopic models for hypersonic CFD. This research was supported by the Department of Energy Computational Science Graduate Fellowship and by the Air Force Office of Scientific Research Multidisciplinary University Research Initiative.

  5. Theoretical investigations of the thermochemistry, structures, and internal rotation of conjugated polyynes

    NASA Astrophysics Data System (ADS)

    Jarowski, Peter D.

    Chapter 1 discusses the thermochemistry of conjugated double and triple bonds. The conjugation stabilization energies of dienes and diynes are considerably larger than estimates based on heat of hydrogenation differences between 1,3-butadiyne and 1-butyne as well as between 1,3-butadiene and 1-butene. Such comparisons do not take into account the counterbalancing hyperconjugative stabilization of the partially hydrogenated products by their ethyl groups. When alkyl hyperconjugation is considered, the conjugation stabilization of diynes (≈ 9.3 kcal/mol) is found by two methods (involving isomerization of non-conjugated into conjugated isomers and heats of hydrogenation) to be larger than that of dienes (≈ 8.2 kcal/mol). In Chapter 2 the stabilization of substituted organic radicals, relative to methyl, are computed using bond separation energies and the block localized wavefunction method. These energies are typically evaluated from C-H bond dissociation energies (computed here by the CBS-RAD method). However, this method gives stabilization energies of an increasing number of mono-, di-, and tri-substituted vinyl and ethynyl substituents, which differ from the predictions of Perturbation Molecular Orbital (PMO) and Huckel Molecular Orbital (HMO) theory. The saturation (attenuation) effect for both series should be monotonic and small. Instead, the attenuation computed by the allylic series is larger than that predicted by HMO theory and the behavior of the propargylic series is erratic. These discrepancies arise from the use of bond dissociation energy data in the evaluations, which depend not only on the stabilization of the radicals, but also on the substantial substituent effects (e.g., hyperconjugation) on the energies of the reference hydrocarbons. New evaluation schemes are proposed that avoid such complications and thus estimate radical stabilization effects directly; the results agree with PMO and HMO theories. Substitution effects are analyzed using isodesmic equations with CBS-RAD data and also with the block localized wavefunction (BLW) method. The new estimates give essentially the same vinyl (22.3 kcal/mol) and ethynyl (21.9 kcal/mol) stabilization energies in the allyl and propargyl radicals, contrary to conventional evaluations. Likewise, the vinyl and ethynyl stabilizations in di-substituted and tri-substituted radicals are similar. These conclusions are corroborated with the block localized wavefunction (BLW) method, which is used to analyze resonance stabilization energies in the radical systems and hyperconjugative stabilization energies in the reference hydrocarbons. Chapter 3 presents the structures, heats of formation, and strain energies of diacetylene (buta-1,3-diynediyl) expanded molecules computed with ab initio and molecular mechanics calculations. Expanded cubane, prismane, tetrahedrane, and expanded monocyclics and bicyclics were optimized at the HF/6-31G(d) and B3LYP/6-31G(d) levels. The heats of formation of these systems were obtained from isodesmic equations at the HF/6-31G(d) level. Heats of formation were also calculated from Benson group equivalents. The strain energies of these expanded molecules were estimated by several independent methods. An adapted MM3* molecular mechanics force field, specifically parameterized to treat conjugated acetylene units, was employed for one measure of strain energy and as an additional method for structural analysis. Expanded dodecahedrane and icosahedrane were calculated by this method. Expanded molecules were considered structurally in the context of their potential material applications. Chapter 4 addresses the computation of the rotational barriers of substituted ethynlene and butatriene as well as their geometric and electronic structures. The barriers to internal rotation of methylated, ethynylated, and vinylated butatrienes and alkenes were calculated at the CASPT2/6-31G(d)//B3LYP/6-31G(d) level. Calculated butatriene rotational barriers are lower than analogous alkenes, but there is a larger variance in rotational barrier for alkenes than for butatrienes. The barriers to rotation were analyzed by isodesmic equations designed to estimate the substituent effects in the ground (GS) and transition state (TS) individually. The GSs of both series are stabilized to roughly the same extent. In contrast, the TSs of butatrienes are more stabilized overall than those of alkenes. Much of the stabilization in the TS of butatrienes comes from the internal triple bond and not from the substituent. Estimation of the substituent stabilization alone reveals the TSs of ethylenes to be more stabilized by substitution than butatrienes. In Chapter 5 the energetic and structural changes taking place upon rotation of the central phenylene of 1,4-bis(3,3,3-triphenylpropynyl)benzene molecular gyroscopes in the solid-state were computed using molecular mechanics calculations. Pseudopolymorphic crystals of a benzene clathrate (1A) and a desolvated form (1B) were analyzed with models that account for varying degrees of freedom within the corresponding lattices. The calculated rotational barriers in a rigid lattice approximation, 78 kcal/mol for 1A and 72 kcal/mol for 1B, are about five times greater than those previously measured by variable temperature 13C CPMAS NMR and quadrupolar echo 2H NMR line shape analysis; 12.8 kcal/mol for 1A and 14.6 kcal/mol for 1B. The rotational barriers calculated with a model that restricts whole body rotation and translational motions but allows for internal rotations give results that are consistent with experiment. The calculated barriers for 1A and 1B are 15.5 kcal/mol and 16.2 kcal/mol, respectively. The differences between the two models are attributed to the effect of correlated motions of the lattice and the rotating group, which are evident from the structural analysis of the atomic position data as a function of the dihedral angle of the rotator. The displacements of neighboring molecules near the rotary transition states for 1A and 1B can be as large as 2.7 and 1.1 A, respectively. While the displacement of interpenetrating phenyl rings from neighboring rotors proximal to the event are significant for both 1A and 1B, six-fold (C6) benzene rotations in clathrate 1A were found to be directly correlated to the rotation the phenylene rotator. The Trueblood model estimates solid-state rotational barriers by fitting anisotropic displacement parameters (thermal ellipsoids) from X-ray diffraction data determined at varying temperature to quadratic or sinusoidal functions that approximate the potential energy profile to libration. The applicability of this model towards substituted and unsubstituted 1,4-bis(3,3,3-triphenylpropynyl)benzene molecular rotor crystals is gauged using computational data generated from molecular mechanics force field calculations. Unsubstituted and mono-fluoro, -amino, and -nitro, substituted derivatives are calculated. Benzene clathrate polymorphs are also included. Estimated barriers agree well with experimental data, although they are slightly overestimated. The barriers are not strictly correlated to substituent volume and reside within a small range of values.

  6. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  7. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various oligopeptides and polypeptides including 58 dipeptides and 31 pentapeptides with angiotensin converting enzyme (ACE) inhibition by multiple linear regression (MLR) method. In order to explain the ability to characterize molecular structure of polypeptides, a molecular modeling investigation on QSAR was performed for functional prediction of polypeptide sequences with antigenic activity and heptapeptide sequences with tachykinin activity through quantitative sequence-activity models (QSAMs) by the molecular electronegativity edge-distance vector (VMED). The results showed that VMED exhibited both excellent structural selectivity and good activity prediction. Moreover, the results showed that VMED behaved quite well for both QSAR and QSAM of poly-and oligopeptides, which exhibited both good estimation ability and prediction power, equal to or better than those reported in the previous references. Finally, a preliminary conclusion was drawn: both classical and modified MED vectors were very useful structural descriptors. Some suggestions were proposed for further studies on QSAR/QSAM of proteins in various fields.

  8. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  9. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  10. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  11. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  12. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians.

    PubMed

    Geng, Xiaofang; Wang, Gaiping; Qin, Yanli; Zang, Xiayan; Li, Pengfei; Geng, Zhi; Xue, Deming; Dong, Zimei; Ma, Kexue; Chen, Guangwen; Xu, Cunshuan

    2015-01-01

    The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.

  13. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  14. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms

    PubMed Central

    Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu

    2012-01-01

    Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742

  15. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  16. Quantitative proteomics in biological research.

    PubMed

    Wilm, Matthias

    2009-10-01

    Proteomics has enabled the direct investigation of biological material, at first through the analysis of individual proteins, then of lysates from cell cultures, and finally of extracts from tissues and biopsies from entire organisms. Its latest manifestation - quantitative proteomics - allows deeper insight into biological systems. This article reviews the different methods used to extract quantitative information from mass spectra. It follows the technical developments aimed toward global proteomics, the attempt to characterize every expressed protein in a cell by at least one peptide. When applications of the technology are discussed, the focus is placed on yeast biology. In particular, differential quantitative proteomics, the comparison between an experiment and its control, is very discriminating for proteins involved in the process being studied. When trying to understand biological processes on a molecular level, differential quantitative proteomics tends to give a clearer picture than global transcription analyses. As a result, MS has become an even more indispensable tool for biochemically motivated biological research.

  17. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations.

    PubMed

    Ashkani, S; Rafii, M Y; Shabanimofrad, M; Ghasemzadeh, A; Ravanfar, S A; Latif, M A

    2016-01-01

    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.

  18. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  19. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    PubMed

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  20. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.

    PubMed

    Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui

    2006-11-03

    Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.

  1. The agony of choice in dermatophyte diagnostics-performance of different molecular tests and culture in the detection of Trichophyton rubrum and Trichophyton interdigitale.

    PubMed

    Kupsch, C; Ohst, T; Pankewitz, F; Nenoff, P; Uhrlaß, S; Winter, I; Gräser, Y

    2016-08-01

    Dermatophytosis caused by dermatophytes of the genera Trichophyton and Microsporum belong to the most frequent mycoses worldwide. Molecular detection methods proved to be highly sensitive and enable rapid and accurate detection of dermatophyte species from clinical specimens. For the first time, we compare the performance of different molecular methods with each other and with conventional diagnostics in the detection of dermatophytoses caused by Trichophyton rubrum and Trichophyton interdigitale in clinical specimens (nail, skin and hair). The compared molecular methods comprise two already published PCR-ELISAs, a published quantitative RT-PCR as well as a newly developed PCR-ELISA targeting the internal transcribed spacer region. We investigated the sensitivity of the assays by analysing 375 clinical samples. In 148 specimens (39.5%) a positive result was gained in at least one of the four molecular tests or by culture, but the number of detected agents differed significantly between some of the assays. The most sensitive assay, a PCR-ELISA targeting a microsatellite region, detected 81 T. rubrum infections followed by an internal transcribed spacer PCR-ELISA (60), quantitative RT-PCR (52) and a topoisomerase II PCR-ELISA (51), whereas cultivation resulted in T. rubrum identification in 37 samples. The pros and cons of all four tests in routine diagnostics are discussed. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Quantitative Image Informatics for Cancer Research (QIICR) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.

  3. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    PubMed

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  5. Introduction to digital PCR.

    PubMed

    Bizouarn, Francisco

    2014-01-01

    Digital PCR (dPCR) is a molecular biology technique going through a renaissance. With the arrival of new instrumentation dPCR can now be performed as a routine molecular biology assay. This exciting new technique provides quantitative and detection capabilities that by far surpass other methods currently used. This chapter is an overview of some of the applications currently being performed using dPCR as well as the fundamental concepts and techniques this technology is based on.

  6. Mass spectrometry in life science research.

    PubMed

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  7. Semi-Automated Curation Allows Causal Network Model Building for the Quantification of Age-Dependent Plaque Progression in ApoE-/- Mouse.

    PubMed

    Szostak, Justyna; Martin, Florian; Talikka, Marja; Peitsch, Manuel C; Hoeng, Julia

    2016-01-01

    The cellular and molecular mechanisms behind the process of atherosclerotic plaque destabilization are complex, and molecular data from aortic plaques are difficult to interpret. Biological network models may overcome these difficulties and precisely quantify the molecular mechanisms impacted during disease progression. The atherosclerosis plaque destabilization biological network model was constructed with the semiautomated curation pipeline, BELIEF. Cellular and molecular mechanisms promoting plaque destabilization or rupture were captured in the network model. Public transcriptomic data sets were used to demonstrate the specificity of the network model and to capture the different mechanisms that were impacted in ApoE -/- mouse aorta at 6 and 32 weeks. We concluded that network models combined with the network perturbation amplitude algorithm provide a sensitive, quantitative method to follow disease progression at the molecular level. This approach can be used to investigate and quantify molecular mechanisms during plaque progression.

  8. Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics

    PubMed Central

    Parker, David; Bryant, Zev; Delp, Scott L.

    2010-01-01

    Experimental and computational approaches are needed to uncover the mechanisms by which molecular motors convert chemical energy into mechanical work. In this article, we describe methods and software to generate structurally realistic models of molecular motor conformations compatible with experimental data from different sources. Coarse-grained models of molecular structures are constructed by combining groups of atoms into a system of rigid bodies connected by joints. Contacts between rigid bodies enforce excluded volume constraints, and spring potentials model system elasticity. This simplified representation allows the conformations of complex molecular motors to be simulated interactively, providing a tool for hypothesis building and quantitative comparisons between models and experiments. In an example calculation, we have used the software to construct atomically detailed models of the myosin V molecular motor bound to its actin track. The software is available at www.simtk.org. PMID:20428469

  9. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  10. EDITORIAL: SPECTROSCOPIC IMAGING

    EPA Science Inventory

    A foremost goal in biology is understanding the molecular basis of single cell behavior, as well as cell interactions that result in functioning tissues. Accomplishing this goal requires quantitative analysis of multiple, specific macromolecules (e.g. proteins, ligands and enzyme...

  11. Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose Effects in the Lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Lee

    This is the Final Progress Report for DOE-funded research project DE-PS02-08ER08-01 titled “Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose Effects in the Lens”. The project focuses on the effects of low-linear energy transfer (LET) radiation on the ocular lens. The lens is an exquisitely radiosensitive tissue with a highly-ordered molecular structure that is amenable to non-invasive optical study from the periphery. These merits point to the lens as an ideal target for laser-based molecular biodosimetry (MBD). Following exposure to different types of ionizing radiations, the lens demonstrates molecular changes (e.g., oxidation, racemization, crosslinkage, truncation, aggregation, etc.) thatmore » impact the structure and function of the long-lived proteins in the cytosol of lens fiber cells. The vast majority of proteins in the lens comprise the highly-ordered crystallins. These highly conserved lens proteins are amongst the most concentrated and stable in the body. Once synthesized, the crystallins are retained in the fiber cell cytoplasm for life. Taken together, these properties point to the lens as an ideal system for quantitative in vivo MBD assessment using quasi-elastic light scattering (QLS) analysis. In this project, we deploy a purpose-designed non-invasive infrared laser QLS instrument as a quantitative tool for longitudinal assessment of pre-cataractous molecular changes in the lenses of living mice exposed to low-dose low-LET radiation compared to non-irradiated sham controls. We hypothesize that radiation exposure will induce dose-dependent changes in the molecular structure of matrix proteins in the lens. Mechanistic assays to ascertain radiation-induced molecular changes in the lens focus on protein aggregation and gene/protein expression patterns. We anticipate that this study will contribute to our understanding of early molecular changes associated with radiation-induced tissue pathology. This study also affords potential for translational development of molecular biodosimetry instrumentation to assess human exposure to mixed radiation fields.« less

  12. A Short Review of the Generation of Molecular Descriptors and Their Applications in Quantitative Structure Property/Activity Relationships.

    PubMed

    Sahoo, Sagarika; Adhikari, Chandana; Kuanar, Minati; Mishra, Bijay K

    2016-01-01

    Synthesis of organic compounds with specific biological activity or physicochemical characteristics needs a thorough analysis of the enumerable data set obtained from literature. Quantitative structure property/activity relationships have made it simple by predicting the structure of the compound with any optimized activity. For that there is a paramount data set of molecular descriptors (MD). This review is a survey on the generation of the molecular descriptors and its probable applications in QSP/AR. Literatures have been collected from a wide class of research journals, citable web reports, seminar proceedings and books. The MDs were classified according to their generation. The applications of the MDs on the QSP/AR have also been reported in this review. The MDs can be classified into experimental and theoretical types, having a sub classification of the later into structural and quantum chemical descriptors. The structural parameters are derived from molecular graphs or topology of the molecules. Even the pixel of the molecular image can be used as molecular descriptor. In QSPR studies the physicochemical properties include boiling point, heat capacity, density, refractive index, molar volume, surface tension, heat of formation, octanol-water partition coefficient, solubility, chromatographic retention indices etc. Among biological activities toxicity, antimalarial activity, sensory irritant, potencies of local anesthetic, tadpole narcosis, antifungal activity, enzyme inhibiting activity are some important parameters in the QSAR studies. The classification of the MDs is mostly generic in nature. The application of the MDs in QSP/AR also has a generic link. Experimental MDs are more suitable in correlation analysis than the theoretical ones but are more expensive for generation. In advent of sophisticated computational tools and experimental design proliferation of MDs is inevitable, but for a highly optimized MD, studies on generation of MD is an unending process.

  13. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish

    2013-08-01

    A molecular motor is made of either a single macromolecule or a macromolecular complex. Just like their macroscopic counterparts, molecular motors “transduce” input energy into mechanical work. All the nano-motors considered here operate under isothermal conditions far from equilibrium. Moreover, one of the possible mechanisms of energy transduction, called Brownian ratchet, does not even have any macroscopic counterpart. But, molecular motor is not synonymous with Brownian ratchet; a large number of molecular motors execute a noisy power stroke, rather than operating as Brownian ratchet. We review not only the structural design and stochastic kinetics of individual single motors, but also their coordination, cooperation and competition as well as the assembly of multi-module motors in various intracellular kinetic processes. Although all the motors considered here execute mechanical movements, efficiency and power output are not necessarily good measures of performance of some motors. Among the intracellular nano-motors, we consider the porters, sliders and rowers, pistons and hooks, exporters, importers, packers and movers as well as those that also synthesize, manipulate and degrade “macromolecules of life”. We review mostly the quantitative models for the kinetics of these motors. We also describe several of those motor-driven intracellular stochastic processes for which quantitative models are yet to be developed. In part I, we discuss mainly the methodology and the generic models of various important classes of molecular motors. In part II, we review many specific examples emphasizing the unity of the basic mechanisms as well as diversity of operations arising from the differences in their detailed structure and kinetics. Multi-disciplinary research is presented here from the perspective of physicists.

  14. Strain-induced friction anisotropy between graphene and molecular liquids

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent; Vo, Van-Hoang

    2017-01-01

    In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.

  15. Conceptual framework for drought phenotyping during molecular breeding.

    PubMed

    Salekdeh, Ghasem Hosseini; Reynolds, Matthew; Bennett, John; Boyer, John

    2009-09-01

    Drought is a major threat to agricultural production and drought tolerance is a prime target for molecular approaches to crop improvement. To achieve meaningful results, these approaches must be linked with suitable phenotyping protocols at all stages, such as the screening of germplasm collections, mutant libraries, mapping populations, transgenic lines and breeding materials and the design of OMICS and quantitative trait loci (QTLs) experiments. Here we present a conceptual framework for molecular breeding for drought tolerance based on the Passioura equation of expressing yield as the product of water use (WU), water use efficiency (WUE) and harvest index (HI). We identify phenotyping protocols that address each of these factors, describe their key features and illustrate their integration with different molecular approaches.

  16. A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service

    PubMed Central

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721

  17. Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Psycharakis, Stylianos; Schönig, Kai; Bartsch, Dusan; Mamalaki, Clio; Papamatheakis, Joseph; Ripoll, Jorge; Zacharakis, Giannis

    2016-02-01

    Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture.

  18. Quantitative imaging with fluorescent biosensors.

    PubMed

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  19. Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a Myxozoan parasite causing intestinal giant cystic disease in the Israel carp.

    PubMed

    Seo, Jung Soo; Jeon, Eun Ji; Kim, Moo Sang; Woo, Sung Ho; Kim, Jin Do; Jung, Sung Hee; Park, Myoung Ae; Jee, Bo Young; Kim, Jin Woo; Kim, Yi-Cheong; Lee, Eun Hye

    2012-06-01

    Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.

  20. Quantitative identification of chemical compounds by dual-soliton based coherent anti-Stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Wu, Tao; Li, Yan; Wei, Haoyun

    2017-12-01

    Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopy technique that is rapidly gaining recognition of different molecules. Unfortunately, molecular concentration information is generally not immediately accessible from the raw CARS signal due to the nonresonant background. In addition, mainstream biomedical applications of CARS are currently hampered by a complex and bulky excitation setup. Here, we establish a dual-soliton Stokes based CARS spectroscopy scheme capable of quantifying the sample molecular, using a single fiber laser. This dual-soliton CARS scheme takes advantage of a differential configuration to achieve efficient suppression of nonresonant background and therefore allows extraction of quantitative composition information. Besides, our all-fiber based excitation source can probe the most fingerprint region (1100-1800 cm-1) with a spectral resolution of 15 cm-1 under the spectral focusing mechanism, where is considerably more information contained throughout an entire spectrum than at just a single frequency within that spectrum. Systematic studies of the scope of application and several fundamental aspects are discussed. Quantitative capability is further experimentally demonstrated through the determination of oleic acid concentration based on the linear dependence of signal on different Raman vibration bands.

  1. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    DTIC Science & Technology

    2017-07-01

    panels of MIBI multiplexed in situ detection reagents, and compare the quantitative data to the conventional clinically derived “one at a time” and...Measure standard curves for each analyte against western blots using cell lines and tumor samples. Compare quantitation dynamic ranges to...GSTM1, CD68, BAG1, ER, PGR, BCL2, SCUBE2, ACTB, GAPDH, RPLPO, GUS, TFRC) IIa. Compare hybridization results for mass tagged probe designs from both

  3. Critical methodological factors in diagnosing minimal residual disease in hematological malignancies using quantitative PCR.

    PubMed

    Nyvold, Charlotte Guldborg

    2015-05-01

    Hematological malignancies are a heterogeneous group of cancers with respect to both presentation and prognosis, and many subtypes are nowadays associated with aberrations that make up excellent molecular targets for the quantification of minimal residual disease. The quantitative PCR methodology is outstanding in terms of sensitivity, specificity and reproducibility and thus an excellent choice for minimal residual disease assessment. However, the methodology still has pitfalls that should be carefully considered when the technique is integrated in a clinical setting.

  4. Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells.

    PubMed

    Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T

    2018-06-01

    We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.

  5. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  6. Quantitative biology of single neurons

    PubMed Central

    Eberwine, James; Lovatt, Ditte; Buckley, Peter; Dueck, Hannah; Francis, Chantal; Kim, Tae Kyung; Lee, Jaehee; Lee, Miler; Miyashiro, Kevin; Morris, Jacqueline; Peritz, Tiina; Schochet, Terri; Spaethling, Jennifer; Sul, Jai-Yoon; Kim, Junhyong

    2012-01-01

    The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible. PMID:22915636

  7. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  8. Teaching Ion-Ion, Ion-Dipole, and Dipole-Dipole Interactions

    ERIC Educational Resources Information Center

    Yoder, Claude H.

    1977-01-01

    Discusses how electrostatic interactions can be taught quantitatively through Coulomb's Law at a variety of points in a chemistry curriculum. Each type of interaction is shown at both the intramolecular and the inter-"molecular" levels. (MR)

  9. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steenbergen, K. G., E-mail: kgsteen@gmail.com; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement formore » a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.« less

  10. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR.

    PubMed

    Sauer, Eva; Reinke, Ann-Kathrin; Courts, Cornelius

    2016-05-01

    Applying molecular genetic approaches for the identification of forensically relevant body fluids, which often yield crucial information for the reconstruction of a potential crime, is a current topic of forensic research. Due to their body fluid specific expression patterns and stability against degradation, microRNAs (miRNA) emerged as a promising molecular species, with a range of candidate markers published. The analysis of miRNA via quantitative Real-Time PCR, however, should be based on a relevant strategy of normalization of non-biological variances to deliver reliable and biologically meaningful results. The herein presented work is the as yet most comprehensive study of forensic body fluid identification via miRNA expression analysis based on a thoroughly validated qPCR procedure and unbiased statistical decision making to identify single source samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  12. Quantitative imaging of disease signatures through radioactive decay signal conversion

    PubMed Central

    Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-01-01

    In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701

  13. Identification of feline immunodeficiency virus subtype-B on St. Kitts, West Indies by quantitative PCR.

    PubMed

    Kelly, Patrick J; Stocking, Ruey; Gao, Dongya; Phillips, Nikol; Xu, Chuanling; Kaltenboeck, Bernhard; Wang, Chengming

    2011-07-04

    Although antibodies to the feline immunodeficiency virus (FIV) have been detected by SNAP assay in cats from St. Kitts, there have been no molecular studies to further confirm the infection and determine the FIV subtypes present. Total nucleic acids were extracted from EDTA whole blood specimens from 35 cats, followed by quantitative fluorescence resonance energy transfer (FRET) PCR under a six-channel LightCycler 2.0 Instrument with Software version 4.1. Four of 11 stray cats (36 %) but none of 24 owned cats were FIV positive by real-time PCR.  High-resolution melting curve analysis indicated that all four positive cats were infected with FIV subtype-B. This is the first molecular characterization of FIV subtypes on St. Kitts and the results confirm the high prevalence of FIV infection in stray cats on the island.

  14. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings.

    PubMed

    Jensen, Malene Ringkjøbing; Markwick, Phineus R L; Meier, Sebastian; Griesinger, Christian; Zweckstetter, Markus; Grzesiek, Stephan; Bernadó, Pau; Blackledge, Martin

    2009-09-09

    Intrinsically disordered proteins (IDPs) inhabit a conformational landscape that is too complex to be described by classical structural biology, posing an entirely new set of questions concerning the molecular understanding of functional biology. The characterization of the conformational properties of IDPs, and the elucidation of the role they play in molecular function, is therefore one of the major challenges remaining for modern structural biology. NMR is the technique of choice for studying this class of proteins, providing information about structure, flexibility, and interactions at atomic resolution even in completely disordered states. In particular, residual dipolar couplings (RDCs) have been shown to be uniquely sensitive and powerful tools for characterizing local and long-range structural behavior in disordered proteins. In this review we describe recent applications of RDCs to quantitatively describe the level of local structure and transient long-range order in IDPs involved in viral replication, neurodegenerative disease, and cancer.

  15. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    NASA Astrophysics Data System (ADS)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  16. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  17. [Method validation according to ISO 15189 and SH GTA 04: application for the extraction of DNA and its quantitative evaluation by a spectrophotometric assay].

    PubMed

    Harlé, Alexandre; Lion, Maëva; Husson, Marie; Dubois, Cindy; Merlin, Jean-Louis

    2013-01-01

    According to the French legislation on medical biology (January 16th, 2010), all biological laboratories must be accredited according to ISO 15189 for at least 50% of their activities before the end of 2016. The extraction of DNA from a sample of interest, whether solid or liquid is one of the critical steps in molecular biology and specifically in somatic or constitutional genetic. The extracted DNA must meet a number of criteria such quality and also be in sufficient concentration to allow molecular biology assays such as the detection of somatic mutations. This paper describes the validation of the extraction and purification of DNA using chromatographic column extraction and quantitative determination by spectrophotometric assay, according to ISO 15189 and the accreditation technical guide in Human Health SH-GTA-04.

  18. Mechanochemical models of processive molecular motors

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Sun, Sean X.

    2012-05-01

    Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule experiments can now observe motor protein movement with increasing precision. The emerging data must be combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a modelling framework where quantitative understanding of motor behaviour can be developed based on the protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of protein domains are important in regulating motor function. Simple models of protein domain elasticity are presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely-Simmons description of muscle movement in the mean-field limit.

  19. Two worlds collide: image analysis methods for quantifying structural variation in cluster molecular dynamics.

    PubMed

    Steenbergen, K G; Gaston, N

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  20. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  1. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification.

    PubMed

    McMahan, Lanakila; Grunden, Amy M; Devine, Anthony A; Sobsey, Mark D

    2012-04-15

    The sensitivity and specificity of the H(2)S test to detect fecal bacteria in water has been variable and uncertain in previous studies, partly due to its presence-absence results. Furthermore, in groundwater samples false-positive results have been reported, with H(2)S-positive samples containing no fecal coliforms or Escherichia coli. False-negative results also have been reported in other studies, with H(2)S-negative samples found to contain E. coli. Using biochemical and molecular methods and a novel quantitative test format, this research identified the types and numbers of microbial community members present in natural water samples, including fecal indicators and pathogens as well as other bacteria. Representative water sources tested in this study included cistern rainwater, a protected lake, and wells in agricultural and forest settings. Samples from quantitative H(2)S tests of water were further cultured for fecal bacteria by spread plating onto the selective media for detection and isolation of Aeromonas spp., E. coli, Clostridium spp., H(2)S-producers, and species of Salmonella and Shigella. Isolates were then tested for H(2)S production, and identified to the genus and species level using biochemical methods. Terminal Restriction Fragment Length Polymorphisms (TRFLP) was the molecular method employed to quantitatively characterize microbial community diversity. Overall, it was shown that water samples testing positive for H(2)S bacteria also had bacteria of likely fecal origin and waters containing fecal pathogens also were positive for H(2)S bacteria. Of the microorganisms isolated from natural water, greater than 70 percent were identified using TRFLP analysis to reveal a relatively stable group of organisms whose community composition differed with water source and over time. These results further document the validity of the H(2)S test for detecting and quantifying fecal contamination of water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik

    2005-01-01

    Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.

  3. Dual fluorescence of excited state intra-molecular proton transfer of HBFO: mechanistic understanding, substituent and solvent effects.

    PubMed

    Yang, Wenjing; Chen, Xuebo

    2014-03-07

    A combined approach of the multiconfigurational perturbation theory with the Rice-Ramsperger-Kassel-Marcus methodology has been employed to calculate the minimum potential energy profiles and the rates of excited state intra-molecular proton transfer (ESIPT) for the WOLED material molecule of HBFO and its four meta- or para-substituted compounds in gas phase, acetonitrile and cyclohexane solvents. The kinetic control for these reactions is quantitatively determined and extensively studied on the basis of the accurate potential energy surfaces when the thermodynamic factor associated with the free energy change becomes negligible in the case of the existence of a significant barrier in the ESIPT process. These computational efforts contribute to a deep understanding of the ESIPT mechanism, dual emission characteristics, kinetic controlling factor, substituent and solvent effects for these material molecules. The white light emission is generated by the establishment of dynamic equilibrium between enol and keto forms in the charge transfer excited SCT((1)ππ*) state. The performance of white light emission is quantitatively demonstrated to be mainly sensitive to the molecular tailoring approach of the electronic properties of meta- or para- substituents by the modulation of the forward/backward ESIPT rate ratio. The quality of white light emission is slightly tunable through its surrounding solvent environment. These computational results will provide a useful strategy for the molecular design of OLED and WOLED materials.

  4. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    PubMed

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Molecular characters of melon (Cucumismelo L. "Tacapa") in response to karst critical land

    NASA Astrophysics Data System (ADS)

    Rachmawati, Yuanita; Daryono, Budi Setiadi; Aristya, Ganies Riza

    2017-06-01

    Yogyakarta district has 158.600 ha critical land and spread off in three Agro Ecosystem zones. Two of them are karsts critical land. Critical lands which contain calcium carbonate in high concentration and water dehydration in upper surface give abiotic stress in wide range of plant. Melon cultivar TACAPA has superior characteristic derived from parental crossing, ♀ Action 434 and ♂ PI 371795 and potential to be developed in karsts critical land. Abscicic acid (ABA) is a phytohormone expressed by plant in abiotic stress condition. CmBG1 is a gene which regulate ABA hormone in melon. The purposes of this research were examining the molecular character of melon cultivar TACAPA in response to karsts critical land in order to study molecular characterization of CmBG1 gene. Analysis was done qualitatively by using Reverse Transcriptase-PCR (RT-PCR) and Electrophoresis, while quantitative analysis was conducted by observing absorbance score in spectrophotometer. CmBG1 gene expression is examined by using Real time PCR (qPCR). Molecular characters obtained are CmBG1 detected in size ±1258 bp, CmBG1 gene concentrations in melon which planted in control media are lower than melon in critical lands media. These results are similar with the real time quantitative analysis method. It also be revealed that melon TACAPA is more potential plant compared to another cultivar that can be developed in karst critical land area.

  6. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  7. Assessment of density functional methods for the study of olefin metathesis catalysed by ruthenium alkylidene complexes

    NASA Astrophysics Data System (ADS)

    Śliwa, Paweł; Handzlik, Jarosław

    2010-06-01

    Performance of 31 DFT methods in thermochemistry of olefin metathesis involving the model catalyst (PH 3) 2(Cl) 2Ru dbnd CH 2 is studied using the CCSD(T) reference energies. The best methods are M06, ωB97X-D and PBE0, followed by MPW1B95, LC-ωPBE, M05-2X and B1B95. Among 20 functionals tested in reproduction of experimental PCy 3 dissociation energy for the Grubbs catalyst (H 2IMes)(PCy 3)(Cl) 2Ru dbnd CHPh, the M06-class and M05-2X methods are most accurate. ωB97X-D overestimates the dissociation energy, whereas MPW1B95, LC-ωPBE, PBE0 and B1B95 underestimate it, similarly to other methods, which give larger errors. LC-ωPBE, B1B95, MPW1B95 and PBE0 provide the best geometries.

  8. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  9. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  10. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  11. CFD Analysis of Hypersonic Flowfields With Surface Thermochemistry and Ablation

    NASA Technical Reports Server (NTRS)

    Henline, W. D.

    1997-01-01

    In the past forty years much progress has been made in computational methods applied to the solution of problems in spacecraft hypervelocity flow and heat transfer. Although the basic thermochemical and physical modeling techniques have changed little in this time, several orders of magnitude increase in the speed of numerically solving the Navier-Stokes and associated energy equations have been achieved. The extent to which this computational power can be applied to the design of spacecraft heat shields is dependent on the proper coupling of the external flow equations to the boundary conditions and governing equations representing the thermal protection system in-depth conduction, pyrolysis and surface ablation phenomena. A discussion of the techniques used to do this in past problems as well as the current state-of-art is provided. Specific examples, including past missions such as Galileo, together with the more recent case studies of ESA/Rosetta Sample Comet Return, Mars Pathfinder and X-33 will be discussed. Modeling assumptions, design approach and computational methods and results are presented.

  12. Extrinsic doping of the half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Stern, Robin; Dongre, Bonny; Madsen, Georg K. H.

    2016-08-01

    Controlling the p- and n-type doping is a key tool to improve the power-factor of thermoelectric materials. In the present work we provide a detailed understanding of the defect thermochemistry in half-Heusler compounds. We calculate the formation energies of intrinsic and extrinsic defects in state of the art n-type TiNiSn and p-type TiCoSb thermoelectric materials. It is shown how the incorporation of online repositories can reduce the workload in these calculations. In TiNiSn we find that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration of TiNiSn. Furthermore, we find that extrinsic doping with Sb can substantially enhance the carrier concentration, in agreement with experiment. In case of TiCoSb, we find ScTi, FeCo and SnSb being possible p-type dopants. While experimental work has mainly focussed on Sn-doping of the Sb site, the present result underlines the possibility to p-dope TiCoSb on all lattice sites.

  13. From an Easily Accessible Pentacarbonylcobalt(I) Salt to Piano-Stool Cations [(arene)Co(CO)2 ].

    PubMed

    Meier, Stefan C; Holz, Albina; Schmidt, Alexei; Kratzert, Daniel; Himmel, Daniel; Krossing, Ingo

    2017-10-17

    The facile synthesis of a pentacarbonyl cobalt(I) salt without the need for a superacid as solvent is presented. This salt, [Co(CO) 5 ] + [Al(OR F ) 4 ] - {R F =C(CF 3 ) 3 }, readily accessible on a multigram scale, undergoes substitution reactions with arenes yielding the hitherto unknown class of two-legged cobalt piano-stool complexes [(arene)Co(CO) 2 ] + with four different arene ligands. Such a substitution chemistry would have been impossible in superacid solution, as the arenes used would have been oxidized and/or protonated. Thus, the general approach described herein may have a wide synthetic use. Additionally, the thermochemistry of the piano-stool complexes is shown to be not easy to describe computationally and most of the established DFT methods overestimate the reaction energies. Only CCSD(T) calculations close to the basis set limit gave energies fully agreeing with the experiment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  15. Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. Part I: Accurate Thermochemistry and Barrier Heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alecu, I. M.; Truhlar, D. G.

    2011-04-07

    The reactions of CH 3OH with the HO 2 and CH 3 radicals are important in the combustion of methanol and are prototypes for reactions of heavier alcohols in biofuels. The reaction energies and barrier heights for these reaction systems are computed with CCSD(T) theory extrapolated to the complete basis set limit using correlation-consistent basis sets, both augmented and unaugmented, and further refined by including a fully coupled treatment of the connected triple excitations, a second-order perturbative treatment of quadruple excitations (by CCSDT(2) Q), core–valence corrections, and scalar relativistic effects. It is shown that the M08-HX and M08-SO hybrid meta-GGAmore » density functionals can achieve sub-kcal mol -1 agreement with the high-level ab initio results, identifying these functionals as important potential candidates for direct dynamics studies on the rates of these and homologous reaction systems.« less

  16. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  17. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: next next-generation biofuels.

    PubMed

    Simmie, John M

    2012-05-10

    The enthalpies of formation, entropies, specific heats at constant pressure, enthalpy functions, and all carbon-hydrogen and carbon-methyl bond dissociation energies have been computed using high-level methods for the cyclic ethers (oxolanes) tetrahydrofuran, 2-methyltetrahydrofuran, and 2,5-dimethyltetrahydrofuran. Barrier heights for hydrogen-abstraction reactions by hydrogen atoms and the methyl radical are also computed and shown to correlate with reaction energy change. The results show a pleasing consistency and considerably expands the available data for these important compounds. Abstraction by ȮH is accompanied by formation of both pre- and postreaction weakly bound complexes. The resulting radicals formed after abstraction undergo ring-opening reactions leading to readily recognizable intermediates, while competitive H-elimination reactions result in formation of dihydrofurans. Formation enthalpies of all 2,3- and 2,5-dihydrofurans and associated radicals are also reported. It is probable that the compounds at the center of this study will be relatively clean-burning biofuels, although formation of intermediate aldehydes might be problematic.

  18. Theoretical studies on atmospheric chemistry of HFE-245mc and perfluoro-ethyl formate: Reaction with OH radicals, atmospheric fate of alkoxy radical and global warming potential

    NASA Astrophysics Data System (ADS)

    Lily, Makroni; Baidya, Bidisha; Chandra, Asit K.

    2017-02-01

    Theoretical studies have been performed on the kinetics, mechanism and thermochemistry of the hydrogen abstraction reactions of CF3CF2OCH3 (HFE-245mc) and CF3CF2OCHO with OH radical using DFT based M06-2X method. IRC calculation shows that both hydrogen abstraction reactions proceed via weakly bound hydrogen-bonded complex preceding to the formation of transition state. The rate coefficients calculated by canonical transition state theory along with Eckart's tunnelling correction at 298 K: k1(CF3CF2OCH3 + OH) = 1.09 × 10-14 and k2(CF3CF2OCHO + OH) = 1.03 × 10-14 cm3 molecule-1 s-1 are in very good agreement with the experimental values. The atmospheric implications of CF3CF2OCH3 and CF3CF2OCHO are also discussed.

  19. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  20. Feasibility Study of Laboratory Simulation of Single-Stage-to-Orbit Vehicle Base Heating

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The feasibility of simulating in a laboratory the heating environment of the base region of the proposed reusable single-stage-to-orbit vehicle during its ascent is examined. The propellant is assumed to consist of hydrocarbon (RP1), liquid hydrogen (LH2), and liquid oxygen (LO2), which produces CO and H2 as the main combustible components of the exhaust effluent. Since afterburning in the recirculating region can dictate the temperature of the base flowfield and ensuing heating phenomena, laboratory simulation focuses on the thermochemistry of the afterburning. By extrapolating the Saturn V flight data, the Damkohler number, in the base region with afterburning for SSTO vehicle, is estimated to be between 30 and 140. It is shown that a flow with a Damkohler number of 1.8 to 25 can be produced in an impulse ground test facility. Even with such a reduced Damkohler number, the experiment can adequately reproduce the main features of the flight environment.

  1. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  2. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  3. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  4. Production of Substitute Natural Gas from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon frommore » the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.« less

  5. Thermochemistry of the gaseous fluorides of samarium, europium, and thulium

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, P. D.; Lau, K. H.; Hildenbrand, D. L.

    1981-01-01

    The gaseous mono-, di-, and trifluorides of the lanthanide metals samarium, europium, and thulium were characterized thermochemically from high temperature equilibrium studies carried out by mass spectrometry. Reaction enthalpies and entropies were derived using second-law analysis throughout, and the results were used to evaluate the enthalpies of formation and bond dissociation energies (BDE) of the gaseous fluorides, and to obtain approximate values for the electronic entropies of the MF and MF2 species. The dissociation energies of the monofluorides D°0(SmF)=134 kcal/mole, D°0(EuF)=129 kcal/mole, and D°0(TmF)=121 kcal/mole, all ±2 kcal/mole, are in good agreement with values predicted by the Rittner electrostatic model, whereas values in the polyatomic fluorides show considerable variation and do not seem to follow any clear trends. Although the BDE values in some instances differ from previous estimates, their sums yield trifluoride heats of atomization that are in close accord with values derived from the vaporization thermodynamics of the solid trifluorides.

  6. BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Melius, Carl F.

    2004-09-01

    In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less

  7. Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics.

    PubMed

    Lavallée-Adam, Mathieu; Yates, John R

    2016-03-24

    PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the Web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  8. An accurate computational method for an order parameter with a Markov state model constructed using a manifold-learning technique

    NASA Astrophysics Data System (ADS)

    Ito, Reika; Yoshidome, Takashi

    2018-01-01

    Markov state models (MSMs) are a powerful approach for analyzing the long-time behaviors of protein motion using molecular dynamics simulation data. However, their quantitative performance with respect to the physical quantities is poor. We believe that this poor performance is caused by the failure to appropriately classify protein conformations into states when constructing MSMs. Herein, we show that the quantitative performance of an order parameter is improved when a manifold-learning technique is employed for the classification in the MSM. The MSM construction using the K-center method, which has been previously used for classification, has a poor quantitative performance.

  9. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites.

    PubMed

    Lietz, Christopher B; Gemperline, Erin; Li, Lingjun

    2013-07-01

    Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites

    PubMed Central

    Lietz, Christopher B.; Gemperline, Erin; Li, Lingjun

    2013-01-01

    Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. PMID:23603211

  11. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    PubMed Central

    Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.

    2015-01-01

    Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847

  12. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    PubMed

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Diagnostic accuracy of quantitative real-time PCR assay versus clinical and Gram stain identification of bacterial vaginosis.

    PubMed

    Menard, J-P; Mazouni, C; Fenollar, F; Raoult, D; Boubli, L; Bretelle, F

    2010-12-01

    The purpose of this investigation was to determine the diagnostic accuracy of quantitative real-time polymerase chain reaction (PCR) assay in diagnosing bacterial vaginosis versus the standard methods, the Amsel criteria and the Nugent score. The Amsel criteria, the Nugent score, and results from the molecular tool were obtained independently from vaginal samples of 163 pregnant women who reported abnormal vaginal symptoms before 20 weeks gestation. To determine the performance of the molecular tool, we calculated the kappa value, sensitivity, specificity, and positive and negative predictive values. Either or both of the Amsel criteria (≥3 criteria) and the Nugent score (score ≥7) indicated that 25 women (15%) had bacterial vaginosis, and the remaining 138 women did not. DNA levels of Gardnerella vaginalis or Atopobium vaginae exceeded 10(9) copies/mL or 10(8) copies/mL, respectively, in 34 (21%) of the 163 samples. Complete agreement between both reference methods and high concentrations of G. vaginalis and A. vaginae was found in 94.5% of women (154/163 samples, kappa value = 0.81, 95% confidence interval 0.70-0.81). The nine samples with discordant results were categorized as intermediate flora by the Nugent score. The molecular tool predicted bacterial vaginosis with a sensitivity of 100%, a specificity of 93%, a positive predictive value of 73%, and a negative predictive value of 100%. The quantitative real-time PCR assay shows excellent agreement with the results of both reference methods for the diagnosis of bacterial vaginosis.

  14. Molecular biology of myopia.

    PubMed

    Schaeffel, Frank; Simon, Perikles; Feldkaemper, Marita; Ohngemach, Sibylle; Williams, Robert W

    2003-09-01

    Experiments in animal models of myopia have emphasised the importance of visual input in emmetropisation but it is also evident that the development of human myopia is influenced to some degree by genetic factors. Molecular genetic approaches can help to identify both the genes involved in the control of ocular development and the potential targets for pharmacological intervention. This review covers a variety of techniques that are being used to study the molecular biology of myopia. In the first part, we describe techniques used to analyse visually induced changes in gene expression: Northern Blot, polymerase chain reaction (PCR) and real-time PCR to obtain semi-quantitative and quantitative measures of changes in transcription level of a known gene, differential display reverse transcription PCR (DD-RT-PCR) to search for new genes that are controlled by visual input, rapid amplification of 5' cDNA (5'-RACE) to extend the 5' end of sequences that are regulated by visual input, in situ hybridisation to localise the expression of a given gene in a tissue and oligonucleotide microarray assays to simultaneously test visually induced changes in thousands of transcripts in single experiments. In the second part, we describe techniques that are used to localise regions in the genome that contain genes that are involved in the control of eye growth and refractive errors in mice and humans. These include quantitative trait loci (QTL) mapping, exploiting experimental test crosses of mice and transmission disequilibrium tests (TDT) in humans to find chromosomal intervals that harbour genes involved in myopia development. We review several successful applications of this battery of techniques in myopia research.

  15. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. [Isolation and identification of Cronobacter (Enterobacter sakazakii) strains from food].

    PubMed

    Dong, Xiaohui; Li, Chengsi; Wu, Qingping; Zhang, Jumei; Mo, Shuping; Guo, Weipeng; Yang, Xiaojuan; Xu, Xiaoke

    2013-05-04

    This study aimed to detect and quantify Cronobacter in 300 powdered milk samples and 50 non-powdered milk samples. Totally, 24 Cronobacter (formerly Enterobacter sakazakii) strains isolated from powdered milk and other foods were identified and confirmed. Cronobacter strains were detected quantitatively using most probable number (MPN) method and molecular detection method. We identified 24 Cronobacter strains using biochemical patterns, including indole production and dulcitol, malonate, melezitose, turanose, and myo-Inositol utilization. Of the 24 strains, their 16S rRNA genes were sequenced, and constructed phylogenetic tree by N-J (Neighbour-Joining) with the 16S rRNA gene sequences of 17 identified Cronobacter strains and 10 non-Cronobacter strains. Quantitative detection showed that Cronobacter strains were detected in 23 out of 350 samples yielding 6.6% detection rate. Twenty-four Cronobacter strains were isolated from 23 samples and the Cronobacter was more than 100 MPN/100g in 4 samples out of 23 samples. The 24 Cronobacter spp. isolates strains were identified and confirmed, including 19 Cronobacter sakazakii strains, 2 C. malonaticus strains, 2 C. dubliensis subsp. lactaridi strains, and 1 C. muytjensii strain. The combination of molecular detection method and most probable number (MPN) method could be suitable for the detection of Cronobacter in powdered milk, with low rate of contamination and high demand of quantitative detection. 24 isolated strains were confirmed and identified by biochemical patterns and molecular technology, and C. sakazakii could be the dominant species. The problem of Cronobacter in powdered milk should be a hidden danger to nurseling, and should catch the government and consumer's attention.

  17. A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    PubMed Central

    Blackiston, Douglas; Shomrat, Tal; Nicolas, Cindy L.; Granata, Christopher; Levin, Michael

    2010-01-01

    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science. PMID:21179424

  18. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Experimental design and quantitative analysis of microbial community multiomics.

    PubMed

    Mallick, Himel; Ma, Siyuan; Franzosa, Eric A; Vatanen, Tommi; Morgan, Xochitl C; Huttenhower, Curtis

    2017-11-30

    Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.

  20. Diagnostic molecular microbiology: a 2013 snapshot.

    PubMed

    Fairfax, Marilynn Ransom; Salimnia, Hossein

    2013-12-01

    Molecular testing has a large and increasing role in the diagnosis of infectious diseases. It has evolved significantly since the first probe tests were FDA approved in the early 1990s. This article highlights the uses of molecular techniques in diagnostic microbiology, including "older," as well as innovative, probe techniques, qualitative and quantitative RT-PCR, highly multiplexed PCR panels, some of which use sealed microfluidic test cartridges, MALDI TOF, and nuclear magnetic resonance. Tests are grouped together by technique and target. Tests with similar roles for similar analytes are compared with respect to benefits, drawbacks, and possible problems. Copyright © 2013 Elsevier Inc. All rights reserved.

Top