Sample records for quantitative multiplex assay

  1. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  2. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    PubMed

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  3. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics.

    PubMed

    Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen

    2015-02-06

    Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.

  4. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    PubMed

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  5. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening.

    PubMed

    Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie

    2010-09-01

    Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.

  6. Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue.

    PubMed

    Percy, Andrew J; Michaud, Sarah A; Jardim, Armando; Sinclair, Nicholas J; Zhang, Suping; Mohammed, Yassene; Palmer, Andrea L; Hardie, Darryl B; Yang, Juncong; LeBlanc, Andre M; Borchers, Christoph H

    2017-04-01

    The mouse is the most commonly used laboratory animal, with more than 14 million mice being used for research each year in North America alone. The number and diversity of mouse models is increasing rapidly through genetic engineering strategies, but detailed characterization of these models is still challenging because most phenotypic information is derived from time-consuming histological and biochemical analyses. To expand the biochemists' toolkit, we generated a set of targeted proteomic assays for mouse plasma and heart tissue, utilizing bottom-up LC/MRM-MS with isotope-labeled peptides as internal standards. Protein quantitation was performed using reverse standard curves, with LC-MS platform and curve performance evaluated by quality control standards. The assays comprising the final panel (101 peptides for 81 proteins in plasma; 227 peptides for 159 proteins in heart tissue) have been rigorously developed under a fit-for-purpose approach and utilize stable-isotope labeled peptides for every analyte to provide high-quality, precise relative quantitation. In addition, the peptides have been tested to be interference-free and the assay is highly multiplexed, with reproducibly determined protein concentrations spanning >4 orders of magnitude. The developed assays have been used in a small pilot study to demonstrate their application to molecular phenotyping or biomarker discovery/verification studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    PubMed

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Constructing STR multiplex assays.

    PubMed

    Butler, John M

    2005-01-01

    Multiplex polymerase chain reaction (PCR) refers to the simultaneous amplification of multiple regions of deoxyribonucleic acid (DNA) using PCR. Commercial short tandem repeat (STR) assays that can coamplify as many as 16 different loci have become widely used in forensic DNA typing. This chapter will focus on some of the aspects of constructing robust STR multiplex assays, including careful design and quality control of PCR primers. Examples from the development of a cat STR 12plex and a human Y chromosome STR 20plex are used to illustrate the importance of various parts of the protocol. Primer design parameters and Internet-accessible resources are discussed, as are solutions to problems with residual dye artifacts that result from impure primers.

  9. Multiplexing a high-throughput liability assay to leverage efficiencies.

    PubMed

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  10. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma*

    PubMed Central

    Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.

    2015-01-01

    There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC

  11. A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples.

    PubMed

    Sedlak, Ruth Hall; Kuypers, Jane; Jerome, Keith R

    2014-12-01

    We demonstrate the development of a multiplex droplet digital PCR assay for human cytomegalovirus (CMV), human adenovirus species F, and an internal plasmid control that may be useful for PCR inhibition-prone clinical samples. This assay performs better on inhibition-prone stool samples than a quantitative PCR assay for CMV and is the first published clinical virology droplet digital PCR assay to incorporate an internal control. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    PubMed Central

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859

  13. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  14. Multiplexed chemiluminescent assays in ArrayPlates for high-throughput measurement of gene expression

    NASA Astrophysics Data System (ADS)

    Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.

    2002-06-01

    Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.

  15. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  16. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element

    PubMed Central

    Haudenshield, James S.; Song, Jeong Y.; Hartman, Glen L.

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5’-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction. PMID:28441441

  17. Multiplexed and Microparticle-based Analyses: Quantitative Tools for the Large-Scale Analysis of Biological Systems

    PubMed Central

    Nolan, John P.; Mandy, Francis

    2008-01-01

    While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537

  18. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  20. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  1. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens.

    PubMed

    Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W

    2012-03-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.

  2. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    PubMed

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  3. Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.

    PubMed

    Martel, Ralph R; Botros, Ihab W; Rounseville, Matthew P; Hinton, James P; Staples, Robin R; Morales, David A; Farmer, John B; Seligmann, Bruce E

    2002-11-01

    The principles and performance are described for the ArrayPlate mRNA assay, a multiplexed mRNA assay for high-throughput and high-content screening and drug development. THP-1 monocytes grown and subjected to compound treatments in 96-well plates were subjected to a multiplexed nuclease protection assay in situ. The nuclease protection assay destroyed all cell-derived mRNA, but left intact stoichiometric amounts of 16 target-specific oligonucleotide probes. Upon transfer of processed cell lysates to a microplate that contained a 16-element oligonucleotide array at the bottom of each well, the various probe species were separated by immobilization at predefined elements of the array. Quantitative detection of array-bound probes was by enzyme-mediated chemiluminescence. A high-resolution charge-coupled device imager was used for the simultaneous readout of all 1536 array elements in a 96-well plate. For the measurement of 16 genes in samples of 25000 cells, the average standard deviation from well to well within a plate was 8.6% of signal intensity and was 10.8% from plate to plate. Assay response was linear and reproducibility was constant for all detected genes in samples ranging from 1000 to 50000 cells. When THP-1 monocytes were differentiated with phorbol ester and subsequently activated with bacterial lipopolysaccharide that contained different concentrations of dexamethasone, dose-dependent effects of dexamethasone on the mRNA levels of several genes were observed.

  4. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright,more » UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.« less

  6. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.

    PubMed

    Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin

    2017-02-21

    Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.

  7. High-Throughput Multiplexed Quantitation of Protein Aggregation and Cytotoxicity in a Huntington’s Disease Model

    PubMed Central

    Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei

    2012-01-01

    A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268

  8. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  9. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.

    PubMed

    Petryayeva, Eleonora; Algar, W Russ

    2014-03-18

    Semiconductor quantum dot (QD) bioconjugates, with their unique and highly advantageous physicochemical and optical properties, have been extensively utilized as probes for bioanalysis and continue to generate widespread interest for these applications. An important consideration for expanding the utility of QDs and making their use routine is to make assays with QDs more accessible for laboratories that do not specialize in nanomaterials. Here, we show that digital color imaging of QD photoluminescence (PL) with a smartphone camera is a viable, easily accessible readout platform for quantitative, multiplexed, and real-time bioanalyses. Red-, green-, and blue-emitting CdSeS/ZnS QDs were conjugated with peptides that were labeled with a deep-red fluorescent dye, Alexa Fluor 647, and the dark quenchers, QSY9 and QSY35, respectively, to generate Förster resonance energy transfer (FRET) pairs sensitive to proteolytic activity. Changes in QD PL caused by the activity of picomolar to nanomolar concentrations of protease were detected as changes in the red-green-blue (RGB) channel intensities in digital color images. Importantly, measurements of replicate samples made with smartphone imaging and a sophisticated fluorescence plate reader yielded the same quantitative results, including initial proteolytic rates and specificity constants. Homogeneous two-plex and three-plex assays for the activity of trypsin, chymotrypsin, and enterokinase were demonstrated with RGB imaging. Given the ubiquity of smartphones, this work largely removes any instrumental impediments to the adoption of QDs as routine tools for bioanalysis in research laboratories and is a critical step toward the use of QDs for point-of-care diagnostics. This work also adds to the growing utility of smartphones in analytical methods by enabling multiplexed fluorimetric assays within a single sample volume and across multiple samples in parallel.

  10. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive

  11. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  12. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  13. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  14. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  15. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Respiratory viral panel multiplex nucleic acid... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral... simultaneously detect and identify multiple viral nucleic acids extracted from human respiratory specimens or...

  16. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers

    PubMed Central

    Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311

  17. Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Borchers, Christoph H

    2013-07-01

    An emerging approach for multiplexed targeted proteomics involves bottom-up LC-MRM-MS, with stable isotope-labeled internal standard peptides, to accurately quantitate panels of putative disease biomarkers in biofluids. In this paper, we used this approach to quantitate 27 candidate cancer-biomarker proteins in human plasma that had not been treated by immunoaffinity depletion or enrichment techniques. These proteins have been reported as biomarkers for a variety of human cancers, from laryngeal to ovarian, with breast cancer having the highest correlation. We implemented measures to minimize the analytical variability, improve the quantitative accuracy, and increase the feasibility and applicability of this MRM-based method. We have demonstrated excellent retention time reproducibility (median interday CV: 0.08%) and signal stability (median interday CV: 4.5% for the analytical platform and 6.1% for the bottom-up workflow) for the 27 biomarker proteins (represented by 57 interference-free peptides). The linear dynamic range for the MRM assays spanned four orders-of-magnitude, with 25 assays covering a 10(3) -10(4) range in protein concentration. The lowest abundance quantifiable protein in our biomarker panel was insulin-like growth factor 1 (calculated concentration: 127 ng/mL). Overall, the analytical performance of this assay demonstrates high robustness and sensitivity, and provides the necessary throughput and multiplexing capabilities required to verify and validate cancer-associated protein biomarker panels in human plasma, prior to clinical use. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories

    USDA-ARS?s Scientific Manuscript database

    Bead based multiplex assays (BBMA) also referred to as Luminex, MultiAnalyte Profiling or cytometric bead array (CBA) assays, are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several, up to 50-500 analytes within a single, small sample volume). Curren...

  19. Multiplex PCR assay to identify methicillin-resistant Staphylococcus haemolyticus.

    PubMed

    Schuenck, Ricardo P; Pereira, Eliezer M; Iorio, Natalia L P; Dos Santos, Kátia R N

    2008-04-01

    Staphylococcus haemolyticus is the most frequently coagulase-negative Staphylococcus species associated with antimicrobial resistance isolated from nosocomial infections. We developed an accurate and simple multiplex PCR assay to identify methicillin-resistant S. haemolyticus (MRSH) isolates. We designed species-specific primers of the mvaA gene that encodes a 3-hydroxy-3-methylglutaryl coenzyme A involved in the mevalonate pathway of the microorganism. Simultaneously, mecA gene primers of methicillin resistance were also used. The PCR assay was established using 16 strains of different reference Staphylococcus species and validated with a collection of 147 clinical staphylococcal isolates that were also phenotypically characterized. Reliable results for the detection of MRSH isolates were obtained for 100% of the strains evaluated, showing that this PCR assay can be used for the routine microbiology laboratories. This is the first report using species-specific multiplex PCR to detect a single segment of S. haemolyticus associated with a segment of mecA gene.

  20. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    USDA-ARS?s Scientific Manuscript database

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  1. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures

    PubMed Central

    Wiklander, Oscar P. B.; Bostancioglu, R. Beklem; Welsh, Joshua A.; Zickler, Antje M.; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W.; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O.; Mohammad, Dara K.; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z.; Jones, Jennifer C.; EL Andaloussi, Samir; Görgens, André

    2018-01-01

    Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived

  2. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures.

    PubMed

    Wiklander, Oscar P B; Bostancioglu, R Beklem; Welsh, Joshua A; Zickler, Antje M; Murke, Florian; Corso, Giulia; Felldin, Ulrika; Hagey, Daniel W; Evertsson, Björn; Liang, Xiu-Ming; Gustafsson, Manuela O; Mohammad, Dara K; Wiek, Constanze; Hanenberg, Helmut; Bremer, Michel; Gupta, Dhanu; Björnstedt, Mikael; Giebel, Bernd; Nordin, Joel Z; Jones, Jennifer C; El Andaloussi, Samir; Görgens, André

    2018-01-01

    Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived

  3. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples suchmore » as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term

  4. Challenges in designing a Taqman-based multiplex assay for the simultaneous detection of Herpes simplex virus types 1 and 2 and Varicella-zoster virus.

    PubMed

    Weidmann, Manfred; Armbruster, Katrin; Hufert, Frank T

    2008-08-01

    To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.

  5. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  6. Rapid Multiplex Assay for Serotyping Pneumococci with Monoclonal and Polyclonal Antibodies

    PubMed Central

    Yu, Jigui; Lin, Jisheng; Benjamin, William H.; Waites, Ken B.; Lee, Che-hung; Nahm, Moon H.

    2005-01-01

    We have developed and characterized a rapid semiautomated pneumococcal serotyping system incorporating a pneumococcal lysate preparation protocol and a multiplex serotyping assay. The lysate preparation incorporates a bile solubility test to confirm pneumococcal identification that also enhances assay specificity. The multiplex serotyping assay consists of 24 assays specific for 36 serotypes: serotypes 1, 2, 3, 4, 5, 6A, 6B, 7A/7F, 8, 9L/9N, 9V, 10A/10B/39/(33C), 11A/11D/11F, 12A/12B/12F, 14, 15B/(15C), 17F, 18C, 19A, 19F, 20, 22A/22F, 23F, and 33A/33F. The multiplex assay requires a flow cytometer, two sets of latex particles coated with pneumococcal polysaccharides, and serotype-specific antibodies. Fourteen newly developed monoclonal antibodies specific for common serotypes and a pool of polyclonal rabbit sera for some of the less-common serotypes are used. The two monoclonal antibodies specific for serotypes 18C and 23F recognize serotype-specific epitopes that have not been previously described. These monoclonal antibodies make the identification of the 14 common serotypes invariant. The specificity of the serotyping assay is fully characterized with pneumococci of all known (i.e., 90) serotypes. The assay is sensitive enough to use bacterial lysates diluted 20 fold. Our serotyping system can identify not only all the serotypes in pneumococcal vaccines but also most (>90%) of clinical isolates. This system should be very useful in serotyping clinical isolates for evaluating pneumococcal vaccine efficacy. PMID:15634965

  7. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species

    PubMed Central

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun

    2017-01-01

    ABSTRACT The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360. An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. PMID:28659320

  8. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    PubMed

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  9. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-07

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011

  10. On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay.

    PubMed

    Petrovic, Voin; Olaisen, Camilla; Sharma, Animesh; Nepal, Anala; Bugge, Steffen; Sundby, Eirik; Hoff, Bård Helge; Slupphaug, Geir; Otterlei, Marit

    2017-04-15

    The Multiplexed Inhibitor Bead (MIB) assay is a previously published quantitative proteomic MS-based approach to study cellular kinomes. A rather extensive procedure, need for multiple custom-made kinase inhibitors and an inability to re-use the MIB-columns, has limited its applicability. Here we present a modified MIB assay in which elution of bound proteins is facilitated by on-column trypsinization. We tested the modified MIB assay by analyzing extract from three human cancer cell lines treated with the cytotoxic drugs cisplatin or docetaxel. Using only three immobilized kinase inhibitors, we were able to detect about 6000 proteins, including ∼40% of the kinome, as well as other signaling, metabolic and structural proteins. The method is reproducible and the MIB-columns are re-usable without loss of performance. This makes the MIB assay a simple, affordable, and rapid assay for monitoring changes in cellular signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  12. A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood.

    PubMed

    Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James

    2010-11-21

    We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody "barcode" arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings.

  13. A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood†

    PubMed Central

    Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James

    2012-01-01

    We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody “barcode” arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings. PMID:20924527

  14. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Hardie, Darryl B; Borchers, Christoph H

    2014-05-01

    Accurate and rapid protein quantitation is essential for screening biomarkers for disease stratification and monitoring, and to validate the hundreds of putative markers in human biofluids, including blood plasma. An analytical method that utilizes stable isotope-labeled standard (SIS) peptides and selected/multiple reaction monitoring-mass spectrometry (SRM/MRM-MS) has emerged as a promising technique for determining protein concentrations. This targeted approach has analytical merit, but its true potential (in terms of sensitivity and multiplexing) has yet to be realized. Described herein is a method that extends the multiplexing ability of the MRM method to enable the quantitation 142 high-to-moderate abundance proteins (from 31mg/mL to 44ng/mL) in undepleted and non-enriched human plasma in a single run. The proteins have been reported to be associated to a wide variety of non-communicable diseases (NCDs), from cardiovascular disease (CVD) to diabetes. The concentrations of these proteins in human plasma are inferred from interference-free peptides functioning as molecular surrogates (2 peptides per protein, on average). A revised data analysis strategy, involving the linear regression equation of normal control plasma, has been instituted to enable the facile application to patient samples, as demonstrated in separate nutrigenomics and CVD studies. The exceptional robustness of the LC/MS platform and the quantitative method, as well as its high throughput, makes the assay suitable for application to patient samples for the verification of a condensed or complete protein panel. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  15. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    PubMed

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-05

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive

  16. Novel Multiplexed Assay for Identifying SH2 Domain Antagonists of STAT Family Proteins

    PubMed Central

    Takakuma, Kazuyuki; Ogo, Naohisa; Uehara, Yutaka; Takahashi, Susumu; Miyoshi, Nao; Asai, Akira

    2013-01-01

    Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z’ values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors. PMID:23977103

  17. Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins.

    PubMed

    Takakuma, Kazuyuki; Ogo, Naohisa; Uehara, Yutaka; Takahashi, Susumu; Miyoshi, Nao; Asai, Akira

    2013-01-01

    Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z' values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors.

  18. Methods for multiplex template sampling in digital PCR assays.

    PubMed

    Petriv, Oleh I; Heyries, Kevin A; VanInsberghe, Michael; Walker, David; Hansen, Carl L

    2014-01-01

    The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision.

  19. Development of a multiplexed urine assay for prostate cancer diagnosis.

    PubMed

    Vener, Tatiana; Derecho, Carlo; Baden, Jonathan; Wang, Haiying; Rajpurohit, Yashoda; Skelton, Joanne; Mehrotra, Jyoti; Varde, Shobha; Chowdary, Dondapati; Stallings, Walt; Leibovich, Bradley; Robin, Howard; Pelzer, Alexandre; Schäfer, Georg; Auprich, Marco; Mannweiler, Sebastian; Amersdorfer, Peter; Mazumder, Abhijit

    2008-05-01

    Several studies have demonstrated the value of DNA methylation in urine-based assays for prostate cancer diagnosis. However, a multicenter validation with a clinical prototype has not been published. We developed a multiplexed, quantitative methylation-specific polymerase chain reaction (MSP) assay consisting of 3 methylation markers, GSTP1, RARB, and APC, and an endogenous control, ACTB, in a closed-tube, homogeneous assay format. We tested this format with urine samples collected after digital rectal examination from 234 patients with prostate-specific antigen (PSA) concentrations > or =2.5 microg/L in 2 independent patient cohorts from 9 clinical sites. In the first cohort of 121 patients, we demonstrated 55% sensitivity and 80% specificity, with area under the curve (AUC) 0.69. In the second independent cohort of 113 patients, we found a comparable sensitivity of 53% and specificity of 76% (AUC 0.65). In the first cohort, as well as in a combined cohort, the MSP assay in conjunction with total PSA, digital rectal examination status, and age improved the AUC without MSP, although the difference was not statistically significant. Importantly, the GSTP1 cycle threshold value demonstrated a good correlation (R = 0.84) with the number of cores found to contain prostate cancer or premalignant lesions on biopsy. Moreover, samples that exhibited methylation for either GSTP1 or RARB typically contained higher tumor volumes at prostatectomy than those samples that did not exhibit methylation. These data confirm and extend previously reported studies and demonstrate the performance of a clinical prototype assay that should aid urologists in identifying men who should undergo biopsy.

  20. Methods for Multiplex Template Sampling in Digital PCR Assays

    PubMed Central

    Petriv, Oleh I.; Heyries, Kevin A.; VanInsberghe, Michael; Walker, David; Hansen, Carl L.

    2014-01-01

    The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision. PMID:24854517

  1. Multiplex Real-Time PCR Assays that Measure the Abundance of Extremely Rare Mutations Associated with Cancer

    PubMed Central

    Vargas, Diana Y.; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A. E.

    2016-01-01

    We describe the use of “SuperSelective” primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long “5' anchor sequence” that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, “3' foot sequence” that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation’s abundance by comparing its threshold value to the threshold value of a reference gene present in the sample. PMID:27244445

  2. Aqueous two-phase systems enable multiplexing of homogeneous immunoassays

    PubMed Central

    Simon, Arlyne B.; Frampton, John P.; Huang, Nien-Tsu; Kurabayashi, Katsuo; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD). PMID:25083509

  3. Indirect competitive assays on DVD for direct multiplex detection of drugs of abuse in oral fluids.

    PubMed

    Zhang, Lingling; Li, Xiaochun; Li, Yunchao; Shi, Xiaoli; Yu, Hua-Zhong

    2015-02-03

    On-site oral fluid testing for drugs of abuse has become prominent in order to take immediate administrative action in an enforcement process. Herein, we report a DVD technology-based indirect competitive immunoassay platform for the quantitative detection of drugs of abuse. A microfluidic approach was adapted to prepare multiplex immunoassays on a standard DVD-R, an unmodified multimode DVD/Blu-Ray drive to read signal, and a free disc-quality analysis software program to process the data. The DVD assay platform was successfully demonstrated for the simultaneous, quantitative detection of drug candidates (morphine and cocaine) in oral fluids with high selectivity. The detection limit achieved was as low as 1.0 ppb for morphine and 5.0 ppb for cocaine, comparable with that of standard mass spectrometry and ELISA methods.

  4. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  5. Multiplex Quantitative PCR Assays for the Detection and Quantification of the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces.

    PubMed

    Shridhar, P B; Noll, L W; Shi, X; An, B; Cernicchiaro, N; Renter, D G; Nagaraja, T G; Bai, J

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, called non-O157 STEC, are important foodborne pathogens. Cattle, a major reservoir, harbor the organisms in the hindgut and shed them in the feces. Although limited data exist on fecal shedding, concentrations of non-O157 STEC in feces have not been reported. The objectives of our study were (i) to develop and validate two multiplex quantitative PCR (mqPCR) assays, targeting O-antigen genes of O26, O103, and O111 (mqPCR-1) and O45, O121, and O145 (mqPCR-2); (ii) to utilize the two assays, together with a previously developed four-plex qPCR assay (mqPCR-3) targeting the O157 antigen and three virulence genes (stx1, stx2, and eae), to quantify seven serogroups and three virulence genes in cattle feces; and (iii) to compare the three mqPCR assays to a 10-plex conventional PCR (cPCR) targeting seven serogroups and three virulence genes and culture methods to detect seven E. coli serogroups in cattle feces. The two mqPCR assays (1 and 2) were shown to be specific to the target genes, and the detection limits were 4 and 2 log CFU/g of pure culture-spiked fecal samples, before and after enrichment, respectively. A total of 576 fecal samples collected from a feedlot were enriched in E. coli broth and were subjected to quantification (before enrichment) and detection (after enrichment). Of the 576 fecal samples subjected, before enrichment, to three mqPCR assays for quantification, 175 (30.4%) were quantifiable (≥4 log CFU/g) for at least one of the seven serogroups, with O157 being the most common serogroup. The three mqPCR assays detected higher proportions of postenriched fecal samples (P > 0.01) as positive for one or more serogroups compared with cPCR and culture methods. This is the first study to assess the applicability of qPCR assays to detect and quantify six non-O157 serogroups in cattle feces and to generate data on fecal concentration of the six serogroups.

  6. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    PubMed

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  7. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    PubMed

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since Bo

  8. How can we reduce costs of solid-phase multiplex-bead assays used to determine anti-HLA antibodies?

    PubMed

    Kamburova, E G; Wisse, B W; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M C; Spierings, E; Hack, C E; van Reekum, F E; van Zuilen, A D; Verhaar, M; Bots, M L; Drop, A C A D; Plaisier, L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E M; Gelens, M; Christiaans, M H L; van Ittersum, F J; Nurmohamed, A; Lardy, N M; Swelsen, W; van der Pant, K A; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A; van der Boog, P J M; de Fijter, J W; Betjes, M G H; Heidt, S; Roelen, D L; Claas, F H; Otten, H G

    2016-09-01

    Solid-phase multiplex-bead assays are widely used in transplantation to detect anti-human leukocyte antigen (HLA) antibodies. These assays enable high resolution detection of low levels of HLA antibodies. However, multiplex-bead assays are costly and yield variable measurements that limit the comparison of results between laboratories. In the context of a Dutch national Consortium study we aimed to determine the inter-assay and inter-machine variability of multiplex-bead assays, and we assessed how to reduce the assay reagents costs. Fifteen sera containing a variety of HLA antibodies were used yielding in total 7092 median fluorescence intensities (MFI) values. The inter-assay and inter-machine mean absolute relative differences (MARD) of the screening assay were 12% and 13%, respectively. The single antigen bead (SAB) inter-assay MARD was comparable, but showed a higher lot-to-lot variability. Reduction of screening assay reagents to 50% or 40% of manufacturers' recommendations resulted in MFI values comparable to 100% of the reagents, with an MARD of 12% or 14%, respectively. The MARD of the 50% and 40% SAB assay reagent reductions were 11% and 22%, respectively. From this study, we conclude that the reagents can be reliably reduced at least to 50% of manufacturers' recommendations with virtually no differences in HLA antibody assignments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The CPTAC Assay Portal serves as a centralized public repository of "fit-for-purpose," multiplexed quantitative mass spectrometry-based proteomic targeted assays. Targeted proteomic assays eliminate issues that are commonly observed using conventional protein detection systems.

  10. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti.

    PubMed

    Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat

    2013-12-20

    The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients' blood samples. Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study

  11. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti

    PubMed Central

    2013-01-01

    Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected

  12. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  13. Evaluation of multiplex assay platforms for detection of influenza hemagglutinin subtype specific antibody responses.

    PubMed

    Li, Zhu-Nan; Weber, Kimberly M; Limmer, Rebecca A; Horne, Bobbi J; Stevens, James; Schwerzmann, Joy; Wrammert, Jens; McCausland, Megan; Phipps, Andrew J; Hancock, Kathy; Jernigan, Daniel B; Levine, Min; Katz, Jacqueline M; Miller, Joseph D

    2017-05-01

    Influenza hemagglutination inhibition (HI) and virus microneutralization assays (MN) are widely used for seroprevalence studies. However, these assays have limited field portability and are difficult to fully automate for high throughput laboratory testing. To address these issues, three multiplex influenza subtype-specific antibody detection assays were developed using recombinant hemagglutinin antigens in combination with Chembio, Luminex ® , and ForteBio ® platforms. Assay sensitivity, specificity, and subtype cross-reactivity were evaluated using a panel of well characterized human sera. Compared to the traditional HI, assay sensitivity ranged from 87% to 92% and assay specificity in sera collected from unexposed persons ranged from 65% to 100% across the platforms. High assay specificity (86-100%) for A(H5N1) rHA was achieved for sera from exposed or unexposed to hetorosubtype influenza HAs. In contrast, assay specificity for A(H1N1)pdm09 rHA using sera collected from A/Vietnam/1204/2004 (H5N1) vaccinees in 2008 was low (22-30%) in all platforms. Although cross-reactivity against rHA subtype proteins was observed in each assay platform, the correct subtype specific responses were identified 78%-94% of the time when paired samples were available for analysis. These results show that high throughput and portable multiplex assays that incorporate rHA can be used to identify influenza subtype specific infections. Published by Elsevier B.V.

  14. Modification of two capripoxvirus quantitative real-time PCR assays to improve diagnostic sensitivity and include beta-actin as an internal positive control.

    PubMed

    Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T

    2017-05-01

    Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.

  15. Interlaboratory Evaluation of a Multiplexed High Information Content In Vitro Genotoxicity Assay

    PubMed Central

    Bryce, Steven M.; Bernacki, Derek T.; Bemis, Jeffrey C.; Spellman, Richard A.; Engel, Maria E.; Schuler, Maik; Lorge, Elisabeth; Heikkinen, Pekka T.; Hemmann, Ulrike; Thybaud, Véronique; Wilde, Sabrina; Queisser, Nina; Sutter, Andreas; Zeller, Andreas; Guérard, Melanie; Kirkland, David; Dertinger, Stephen D.

    2017-01-01

    We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow™ DNA Damage Kit— p53, γH2AX, Phospho-histone H3. For these experiments seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and non-genotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hrs. At 4 and 24 hrs cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all inter-laboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or non-genotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals’ predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. PMID:28370322

  16. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    PubMed

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The

  17. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    PubMed

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  18. Multiplex tandem mass spectrometry assay for newborn screening of X-linked adrenoleukodystrophy, biotinidase deficiency, and galactosemia with flexibility to assay other enzyme assays and biomarkers.

    PubMed

    Hong, Xinying; Kumar, Arun Babu; Ronald Scott, C; Gelb, Michael H

    2018-03-29

    All States screen for biotinidase deficiency and galactosemia, and X-linked adrenoleukodystrophy (X-ALD) has recently been added to the Recommended Uniform Screening Panel (RUSP).We sought to consolidate these tests by combining them into a single multiplex tandem mass spectrometry assay as well as to improve the current protocol for newborn screening of galactosemia.A 3 mm punch of a dried blood spot (DBS) was extracted with organic solvent for analysis of the C26:0-lysophosphatidylcholine biomarker for X-ALD.An additional punch was used to assay galactose-1-phosphate uridyltransferase (GALT) and biotinidase.All assays were combined for a single injection for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (2.3 min per sample).The GALT LC-MS/MS assay does not give a false positive for galactosemia if glucose-6-phosphate dehydrogenase is deficient.The multiplex assay shows acceptable reproducibility and provides for rapid analysis of X-ALD, biotinidase deficiency, and galactosemia.The throughput and ease of sample preparation are acceptable for newborn screening laboratories.We also show that the LC-MS/MS assay is expandable to include several other diseases including Pompe and Hurler diseases (enzymatic activities and biomarkers).Because of consolidation of assays, less manpower is needed compared to running individual assays on separate platforms.The flexibility of the LC-MS/MS platform allows each newborn screening laboratory to analyze the set of diseases offered in their panel. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  20. Multiplexed profiling of GPCR activities by combining split TEV assays and EXT-based barcoded readouts.

    PubMed

    Galinski, Sabrina; Wichert, Sven P; Rossner, Moritz J; Wehr, Michael C

    2018-05-25

    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated in the physiological regulation of many biological processes. The high diversity of GPCRs and their physiological functions make them primary targets for therapeutic drugs. For the generation of novel compounds, however, selectivity towards a given target is a critical issue in drug development as structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple GPCRs that are both closely and distantly related to assess compound selectivity need to be tested simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, which uses a β-arrestin recruitment strategy and combines split TEV protein-protein interaction and EXT-based barcode technologies. This approach enables simultaneous measurements of receptor activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were demonstrated. Technically, normalization of barcode reporters across individual assays allows quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions on multiple receptor activities in living cells.

  1. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment.

    PubMed

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  2. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    PubMed Central

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364

  3. Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Quek, Sue-Ing; Gao, Yuqian

    Biomarkers for effective early diagnosis and prognosis of prostate cancer are still lacking. Multiplexed assays for cancer-associated proteins could be useful for identifying biomarkers for cancer detection and stratification. Herein, we report the development of sensitive targeted mass spectrometry assays for simultaneous quantification of 10 prostate cancer-associated proteins in urine. The diagnostic utility of these markers was evaluated with an initial cohort of 20 clinical urine samples. Individual marker concentration was normalized against the measured urinary prostate-specific antigen level as a reference of prostate-specific secretion. The areas under the receiver-operating characteristic curves for the 10 proteins ranged from 0.75 formore » CXCL14 to 0.87 for CEACAM5. Furthermore, MMP9 level was found to be significantly higher in patients with high Gleason scores, suggesting a potential of MMP9 as a marker for risk level assessment. Taken together, our work illustrated the feasibility of accurate multiplexed measurements of low-abundance cancer-associated proteins in urine and provided a viable path forward for preclinical verification of candidate biomarkers for prostate cancer.« less

  4. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    PubMed

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  5. The plasma interleukin-6 response to acute psychosocial stress in humans is detected by a magnetic multiplex assay: comparison to high-sensitivity ELISA.

    PubMed

    Quinn, Andrea M; Williams, Allison R; Sivilli, Teresa I; Raison, Charles L; Pace, Thaddeus W W

    2018-03-13

    Circulating concentrations of interleukin (IL)-6, an inflammatory biomarker widely assessed in humans to study the inflammatory response to acute psychological stress, have for decades been quantified using enzyme-linked immunosorbent assay (ELISA). However, biobehavioral researchers are increasingly using cytokine multiplex assays instead of ELISA to measure IL-6 and other cytokines. Despite this trend, multiplex assays have not been directly compared to ELISA for their ability to detect subtle stress-induced changes of IL-6. Here, we tested the prediction that a high-sensitivity multiplex assay (human Magnetic Luminex Performance Assay, R&D Systems, Minneapolis, MN) would detect changes in IL-6 as a result of acute stress challenge in a manner comparable to high-sensitivity ELISA. Blood was collected from 12 healthy adults immediately before and then 90 and 210 min after the start of the Trier Social Stress Test (TSST), an acute laboratory psychosocial stress challenge. In addition to quantifying IL-6 concentrations in plasma with both multiplex and ELISA, we also assessed concentrations of tumor necrosis factor-alpha, IL-8, IL-10, IL-5, and IL-2 with multiplex. The multiplex detected IL-6 in all samples. Concentrations strongly correlated with values determined by ELISA across all samples (r = 0.941, p < .001) as well as among samples collected at individual TSST time points. IL-6 responses to the TSST (i.e. area under the curve) captured by multiplex and ELISA were also strongly correlated (r s   = 0.937, p < .001). While other cytokines were detected by multiplex, none changed as a result of TSST challenge at time points examined. These results suggest high-sensitivity magnetic multiplex assay is able to detect changes in plasma concentrations of IL-6 as a result of acute stress in humans.

  6. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  7. OzPythonPlex: An optimised forensic STR multiplex assay set for the Australasian carpet python (Morelia spilota).

    PubMed

    Ciavaglia, Sherryn; Linacre, Adrian

    2018-05-01

    Reptile species, and in particular snakes, are protected by national and international agreements yet are commonly handled illegally. To aid in the enforcement of such legislation, we report on the development of three 11-plex assays from the genome of the carpet python to type 24 loci of tetra-nucleotide and penta-nucleotide repeat motifs (pure, compound and complex included). The loci range in size between 70 and 550 bp. Seventeen of the loci are newly characterised with the inclusion of seven previously developed loci to facilitate cross-comparison with previous carpet python genotyping studies. Assays were optimised in accordance with human forensic profiling kits using one nanogram template DNA. Three loci are included in all three of the multiplex reactions as quality assurance markers, to ensure sample identity and genotyping accuracy is maintained across the three profiling assays. Allelic ladders have been developed for the three assays to ensure consistent and precise allele designation. A DNA reference database of allele frequencies is presented based on 249 samples collected from throughout the species native range. A small number of validation tests are conducted to demonstrate the utility of these multiplex assays. We suggest further appropriate validation tests that should be conducted prior to the application of the multiplex assays in criminal investigations involving carpet pythons. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood.

    PubMed

    Zheng, Zhi; Luo, Yuling; McMaster, Gary K

    2006-07-01

    Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.

  9. Supercolor coding methods for large-scale multiplexing of biochemical assays.

    PubMed

    Rajagopal, Aditya; Scherer, Axel; Homyk, Andrew; Kartalov, Emil

    2013-08-20

    We present a novel method for the encoding and decoding of multiplexed biochemical assays. The method enables a theoretically unlimited number of independent targets to be detected and uniquely identified in any combination in the same sample. For example, the method offers easy access to 12-plex and larger PCR assays, as contrasted to the current 4-plex assays. This advancement would allow for large panels of tests to be run simultaneously in the same sample, saving reagents, time, consumables, and manual labor, while also avoiding the traditional loss of sensitivity due to sample aliquoting. Thus, the presented method is a major technological breakthrough with far-reaching impact on biotechnology, biomedical science, and clinical diagnostics. Herein, we present the mathematical theory behind the method as well as its experimental proof of principle using Taqman PCR on sequences specific to infectious diseases.

  10. Translating pharmacodynamic biomarkers from bench to bedside: analytical validation and fit-for-purpose studies to qualify multiplex immunofluorescent assays for use on clinical core biopsy specimens.

    PubMed

    Marrero, Allison; Lawrence, Scott; Wilsker, Deborah; Voth, Andrea Regier; Kinders, Robert J

    2016-08-01

    Multiplex pharmacodynamic (PD) assays have the potential to increase sensitivity of biomarker-based reporting for new targeted agents, as well as revealing significantly more information about target and pathway activation than single-biomarker PD assays. Stringent methodology is required to ensure reliable and reproducible results. Common to all PD assays is the importance of reagent validation, assay and instrument calibration, and the determination of suitable response calibrators; however, multiplex assays, particularly those performed on paraffin specimens from tissue blocks, bring format-specific challenges adding a layer of complexity to assay development. We discuss existing multiplex approaches and the development of a multiplex immunofluorescence assay measuring DNA damage and DNA repair enzymes in response to anti-cancer therapeutics and describe how our novel method addresses known issues. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.

    PubMed

    Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina

    2018-04-10

    This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.

  12. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    PubMed

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  13. Skiving stacked sheets of paper into test paper for rapid and multiplexed assay

    PubMed Central

    Yang, Mingzhu; Zhang, Wei; Yang, Junchuan; Hu, Binfeng; Cao, Fengjing; Zheng, Wenshu; Chen, Yiping; Jiang, Xingyu

    2017-01-01

    This paper shows that stacked sheets of paper preincubated with different biological reagents and skiving them into uniform test paper sheets allow mass manufacturing of multiplexed immunoassay devices and simultaneous detection of multiplex targets that can be read out by a barcode scanner. The thickness of one sheet of paper can form the width of a module for the barcode; when stacked, these sheets of paper can form a series of barcodes representing the targets, depending on the color contrast provided by a colored precipitate of an immunoassay. The uniform thickness of sheets of paper allows high-quality signal readout. The manufacturing method allows highly efficient fabrication of the materials and substrates for a straightforward assay of targets that range from drugs of abuse to biomarkers of blood-transmitted infections. In addition, as a novel alternative to the conventional point-of-care testing method, the paper-based barcode assay system can provide highly efficient, accurate, and objective diagnoses. PMID:29214218

  14. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  15. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; .Ortiz, J I; Tammero, L

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. Thismore » article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.« less

  16. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Relevance of a Novel Quantitative Assay to Detect up to 40 Major Streptococcus pneumoniae Serotypes Directly in Clinical Nasopharyngeal and Blood Specimens

    PubMed Central

    Albrich, Werner C.; van der Linden, Mark P. G.; Bénet, Thomas; Chou, Monidarin; Sylla, Mariam; Barreto Costa, Patricia; Richard, Nathalie; Klugman, Keith P.; Endtz, Hubert P.; Paranhos-Baccalà, Gláucia; Telles, Jean-Noël

    2016-01-01

    For epidemiological and surveillance purposes, it is relevant to monitor the distribution and dynamics of Streptococcus pneumoniae serotypes. Conventional serotyping methods do not provide rapid or quantitative information on serotype loads. Quantitative serotyping may enable prediction of the invasiveness of a specific serotype compared to other serotypes carried. Here, we describe a novel, rapid multiplex real-time PCR assay for identification and quantification of the 40 most prevalent pneumococcal serotypes and the assay impacts in pneumonia specimens from emerging and developing countries. Eleven multiplex PCR to detect 40 serotypes or serogroups were optimized. Quantification was enabled by reference to standard dilutions of known bacterial load. Performance of the assay was evaluated to specifically type and quantify S. pneumoniae in nasopharyngeal and blood samples from adult and pediatric patients hospitalized with pneumonia (n = 664) from five different countries. Serogroup 6 was widely represented in nasopharyngeal specimens from all five cohorts. The most frequent serotypes in the French, South African, and Brazilian cohorts were 1 and 7A/F, 3 and 19F, and 14, respectively. When both samples were available, the serotype in blood was always present as carriage with other serotypes in the nasopharynx. Moreover, the ability of a serotype to invade the bloodstream may be linked to its nasopharyngeal load. The mean nasopharyngeal concentration of the serotypes that moved to the blood was 3 log-fold higher than the ones only found in the nasopharynx. This novel, rapid, quantitative assay may potentially predict some of the S. pneumoniae serotypes invasiveness and assessment of pneumococcal serotype distribution. PMID:26986831

  18. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    PubMed

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  19. Methods for threshold determination in multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2014-06-24

    Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.

  20. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo

    NASA Astrophysics Data System (ADS)

    McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.

    2013-04-01

    In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).

  1. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors

    PubMed Central

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O.; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W.; Wang, Shan X.

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object. PMID:29507628

  2. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A new multiplex real-time polymerase chain reaction assay for the diagnosis of periprosthetic joint infection.

    PubMed

    Kawamura, Masaki; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Tezuka, Taro; Kubota, So; Saito, Tomoyuki

    2017-11-01

    A new multiplex real-time polymerase chain reaction (PCR) assay was developed to detect methicillin-resistant Staphylococcus (MRS) and to distinguish between gram-positive and gram-negative bacteria. In this study, we validated the sensitivity and specificity of this assay with periprosthetic joint infections (PJIs) and evaluated the utility of PCR for culture-negative PJI. Forty-five samples from 23 infectious PJI cases and 106 samples from 64 non-infectious control cases were analyzed by real-time PCR using a LightCycler Nano ® system. Twenty-eight clinical samples, comprising bacteria of known species isolated consecutively in the microbiological laboratory of our hospital, were used to determine the spectrum of bacterial species that could be detected using the new multiplex primers and probes. The sensitivity and specificity of the MRS- and universal-PCR assays were 92% and 99%, and 91% and 88%, respectively. Twenty-eight species of clinically isolated bacteria were detected using this method and the concordance rate for the identification of gram-positive or gram-negative organisms was 96%. Eight samples were identified as PCR-positive despite a culture-negative result. This novel multiplex real-time PCR system has acceptable sensitivity and specificity and several advantages; therefore, it has potential use for the diagnosis of PJIs, particularly in culture-negative cases.

  4. A Multiplexed Assay That Monitors Effects of Multiple Compound Treatment Times Reveals Candidate Immune-Enhancing Compounds.

    PubMed

    Zhao, Ziyan; Henowitz, Liza; Zweifach, Adam

    2018-05-01

    We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.

  5. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  6. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Multiplexed Quantitation of Endogenous Proteins in Dried Blood Spots by Multiple Reaction Monitoring - Mass Spectrometry

    PubMed Central

    Chambers, Andrew G.; Percy, Andrew J.; Yang, Juncong; Camenzind, Alexander G.; Borchers, Christoph H.

    2013-01-01

    Dried blood spot (DBS) sampling, coupled with multiple reaction monitoring mass spectrometry (MRM-MS), is a well-established approach for quantifying a wide range of small molecule biomarkers and drugs. This sampling procedure is simpler and less-invasive than those required for traditional plasma or serum samples enabling collection by minimally trained personnel. Many analytes are stable in the DBS format without refrigeration, which reduces the cost and logistical challenges of sample collection in remote locations. These advantages make DBS sample collection desirable for advancing personalized medicine through population-wide biomarker screening. Here we expand this technology by demonstrating the first multiplexed method for the quantitation of endogenous proteins in DBS samples. A panel of 60 abundant proteins in human blood was targeted by monitoring proteotypic tryptic peptides and their stable isotope-labeled analogs by MRM. Linear calibration curves were obtained for 40 of the 65 peptide targets demonstrating multiple proteins can be quantitatively extracted from DBS collection cards. The method was also highly reproducible with a coefficient of variation of <15% for all 40 peptides. Overall, this assay quantified 37 proteins spanning a range of more than four orders of magnitude in concentration within a single 25 min LC/MRM-MS analysis. The protein abundances of the 33 proteins quantified in matching DBS and whole blood samples showed an excellent correlation, with a slope of 0.96 and an R2 value of 0.97. Furthermore, the measured concentrations for 80% of the proteins were stable for at least 10 days when stored at −20 °C, 4 °C and 37 °C. This work represents an important first step in evaluating the integration of DBS sampling with highly-multiplexed MRM for quantitation of endogenous proteins. PMID:23221968

  8. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay.

    PubMed

    Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya

    2009-01-01

    Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  9. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    PubMed

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens.

    PubMed

    Higgins, Owen; Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert; Smith, Terry J

    2018-02-09

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae , Neisseria meningitidis and Haemophilus influenzae . Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae , N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  11. Development and validation of a multiplex conventional PCR assay for simultaneous detection and grouping of porcine bocaviruses.

    PubMed

    Zheng, Xiaowen; Liu, Gaopeng; Opriessnig, Tanja; Wang, Zining; Yang, Zongqi; Jiang, Yonghou

    2016-10-01

    Porcine bocavirus (PBoV), a newly described porcine parvovirus, has received attention because it can be commonly identified in clinically affected pigs including pigs with post-weaning multisystemic wasting syndrome (PWMS) and pigs with diarrhea. In recent years, novel PBoVs have been identified and were classified into three genogroups, but the ability to detect and classify these novel PBoVs is not comprehensive to date. In this study, a multiplex conventional PCR assay for simultaneous detection and grouping of PBoVs was developed by screening combinations of mixed primer pairs followed by optimization of the PCR conditions. This method exclusively amplifies targeted fragments of 531bp from the VP1 gene of PBoV G1, 291bp from the NP1 gene of PBoV G2, and 384bp from the NP1/VP1 gene of PBoV G3. The assay has a detection limit of 1.0×10(3)copies/μL for PBoV G1 4.5×10(3) for PBoV G2 and 3.8×10(3) for PBoV G3 based on testing mixed purified plasmid constructs containing the specific viral target fragments. The performance of the multiplex PCR assay was comparable to that of the single PCRs which used the same primer pairs. Using the newly established multiplex PCR assay, 227 field samples including faeces, serum and tissue samples from pigs were investigated. All three PBoV genogroups were detected in the clinical samples with a detection rate of 1.3%, 2.6% and 12.3%, respectively for PBoV G1, G2 and G3. Additionally, coinfections with two or more PBoV were detected in 1.7% of the samples investigated. These results indicate the multiplex PCR assay is specific, sensitive and rapid, and can be used for the detection and differentiation of single and multiple infections of the three PBoV genogroups in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindson, B J; Baker, B R; Bentley Tammero, L F

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspectmore » cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less

  13. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay.

    PubMed

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-12-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.

  14. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling*

    PubMed Central

    Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.

    2015-01-01

    In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412

  15. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  16. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of

  17. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  18. Quantitative multiplex detection of pathogen biomarkers

    DOEpatents

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  19. Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation.

    PubMed

    Percy, Andrew J; Simon, Romain; Chambers, Andrew G; Borchers, Christoph H

    2014-06-25

    Mass spectrometry (MS)-based protein quantitation is increasingly being employed to verify candidate protein biomarkers. Multiple or selected reaction monitoring-mass spectrometry (MRM-MS or SRM-MS) with isotopically labeled internal standards has proven to be a successful approach in that regard, but has yet to reach its full potential in terms of multiplexing and sensitivity. Here, we report the development of a new MRM method for the quantitation of 253 disease-associated proteins (represented by 625 interference-free peptides) in 13 LC fractions. This 2D RPLC/MRM-MS approach extends the depth and breadth of the assay by 2 orders of magnitude over pre-fractionation-free assays, with 31 proteins below 10 ng/mL and 41 proteins above 10 ng/mL now quantifiable. Standard flow rates are used in both chromatographic dimensions, and up-front depletion or antibody-based enrichment is not required. The LC separations utilize high and low pH conditions, with the former employing an ammonium hydroxide-based eluent, instead of the conventional ammonium formate, resulting in improved LC column lifetime and performance. The high sensitivity (determined concentration range: 15 mg/mL to 452 pg/mL) and robustness afforded by this method makes the full MRM panel, or subsets thereof, useful for the verification of disease-associated plasma protein biomarkers in patient samples. The described research extends the breadth and depth of protein quantitation in undepleted and non-enriched human plasma by employing standard-flow 2D RPLC/MRM-MS in conjunction with a complex mixture of isotopically labeled peptide standards. The proteins quantified are mainly putative biomarkers of non-communicable (i.e., non-infectious) disease (e.g., cardiovascular or cancer), which require pre-clinical verification and validation before clinical implementation. Based on the enhanced sensitivity and multiplexing, this quantitative plasma proteomic method should prove useful in future candidate biomarker

  20. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    PubMed

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  1. Multiplex Immunoassay Profiling.

    PubMed

    Stephen, Laurie

    2017-01-01

    Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labor than single immunoassays. This chapter details the methods to develop and manufacture multiplex assays for the Luminex ® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. The assay optimization, detection of cross-reactivity, and minimizing antibody interactions and matrix interferences will be addressed.

  2. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  3. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  4. Epidemiology of Epstein-Barr virus, cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus infections in peripheral blood leukocytes revealed by a multiplex PCR assay.

    PubMed

    Nishiwaki, Morie; Fujimuro, Masahiro; Teishikata, Yasuhiro; Inoue, Hisanori; Sasajima, Hitoshi; Nakaso, Kazuhiro; Nakashima, Kenji; Sadanari, Hidetaka; Yamamoto, Tomohiro; Fujiwara, Yoshie; Ogawa, Naoki; Yokosawa, Hideyoshi

    2006-12-01

    A multiplex polymerase chain reaction (PCR) has been developed for the simultaneous detection of Epstein-Barr virus (EBV), cytomegalovirus (CMV), and Kaposi's sarcoma-associated herpesvirus (KSHV) in a clinical sample. Primers of multiplex PCR were designed to amplify specific regions of the EBV EBNA1, CMV IE2, and KSHV LANA genes. This multiplex PCR assay was found to have detection sensitivities of 1-10 copies of purified viral DNA cloned into the plasmid. To assess diagnostic and pre-clinical applications with this method, we utilized KSHV-positive primary effusion lymphoma (PEL) cells, EBV-positive Burkitt's lymphoma cells, CMV-infected fibroblast cells, and clinically prepared peripheral blood leukocytes (PBLs) that had been infected with viruses. We found that this multiplex PCR assay has high sensitivity and specificity for simultaneous detection of EBV, CMV, and KSHV genomes in a single amplification from a clinical material. Using this multiplex PCR assay, we investigated the prevalence of EBV, CMV, and KSHV in PBL samples from normal Japanese randomly selected. KSHV, EBV, and CMV genomes were detected in samples from 2 (0.2%), 377 (39.5%), and 27 (2.8%) of the 953 blood donors, respectively. Interestingly, both EBV and CMV genomes were detected in samples from all KSHV-positive donors. (c) 2006 Wiley-Liss, Inc.

  5. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  6. Sample-ready multiplex qPCR assay for detection of malaria.

    PubMed

    Kamau, Edwin; Alemayehu, Saba; Feghali, Karla C; Juma, Dennis W; Blackstone, George M; Marion, William R; Obare, Peter; Ogutu, Bernhards; Ockenhouse, Christian F

    2014-04-25

    Microscopy and antigen detecting rapid diagnostic tests are the diagnostic tests of choice in management of clinical malaria. However, due to their limitations, the need to utilize more sensitive methods such as real-time PCR (qPCR) is evident as more studies are now utilizing molecular methods in detection of malaria. Some of the challenges that continue to limit the widespread utilization of qPCR include lack of assay standardization, assay variability, risk of contamination, and the need for cold-chain. Lyophilization of molecular assays can overcome some of these limitations and potentially enable widespread qPCR utilization. A recently published multiplex malaria qPCR assay was lyophilized by freezing drying into Sample-Ready™ format (MMSR). MMSR assay contained all the required reagents for qPCR including primers and probes, requiring only the addition of water and sample to perform qPCR. The performance of the MMSR assay was compared to the non-freeze dried, "wet" assay. Stability studies were done by maintaining the MMSR assays at four different ambient temperatures of 4°C, room temperature (RT), 37°C and 42°C over a period of 42 days, tested at seven-day intervals. Plasmodium falciparum and Plasmodium vivax DNAs were used for analysis of the MMSR assay either as single or mixed parasites, at two different concentrations. The CT values and the standard deviations (SD) were used in the analysis of the assay performance. The limit of detection for the MMSR assay was 0.244 parasites/μL for Plasmodium spp. (PLU) and P. falciparum (FAL) assay targets compared to "wet" assay which was 0.39 and 3.13 parasites/μL for PLU and FAL assay targets, respectively. The MMSR assay performed with high efficiencies similar to those of the "wet" assay and was stable at 37°C for 42 days, with estimated shelf-life of 5 months. When used to analyse field clinical samples, MMSR assay performed with 100% sensitivity and specificity compared to the "wet" assay. The MMSR

  7. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    PubMed

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  8. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    PubMed

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  9. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  10. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  11. Development of multiplex PCR assay for authentication of Cornu Cervi Pantotrichum in traditional Chinese medicine based on cytochrome b and C oxidase subunit 1 genes.

    PubMed

    Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua

    2016-07-01

    This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.

  12. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu; Mendonca, Kevin; Yamamoto, Hidemi S.

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascularmore » markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety.

  13. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  14. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus.

    PubMed

    Tan, Thean Yen; Zou, Hao; Ong, Danny Chee Tiong; Ker, Khor Jia; Chio, Martin Tze Wei; Teo, Rachael Yu Lin; Koh, Mark Jean Aan

    2013-12-01

    Herpes simplex virus (HSV) and varicella zoster virus (VZV) are related members of the Herpesviridae family and are well-documented human pathogens causing a spectrum of diseases, from mucocutaneous disease to infections of the central nervous system. This study was carried out to evaluate and validate the performance of a multiplex real-time polymerase chain reaction (PCR) assay in detecting and differentiating HSV1, HSV2, and VZV from clinical samples. Consensus PCR primers for HSV were designed from the UL30 component of the DNA polymerase gene of HSV, with 2 separate hydrolysis probes designed to differentiate HSV1 and HSV2. Separate primers and a probe were also designed against the DNA polymerase gene of VZV. A total of 104 clinical samples were available for testing by real-time PCR, conventional PCR, and viral culture. The sensitivity and specificity of the real-time assay was calculated by comparing the multiplex PCR result with that of a combined standard of virus culture and conventional PCR. The sensitivity of the real-time assay was 100%, with specificity ranging from 98% to 100% depending on the target gene. Both PCR methods detected more positive samples for HSV or VZV, compared with conventional virus culture. This multiplex PCR assay provides accurate and rapid diagnostic capabilities for the diagnosis and differentiation of HSV1, HSV2, and VZV infections, with the presence of an internal control to monitor for inhibition of the PCR reaction.

  15. Genotyping of Toxoplasma gondii Isolates with 15 Microsatellite Markers in a Single Multiplex PCR Assay

    PubMed Central

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-01-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers. PMID:20881166

  16. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes.

    PubMed

    Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan

    2016-10-18

    Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.

  17. Sample-ready multiplex qPCR assay for detection of malaria

    PubMed Central

    2014-01-01

    Background Microscopy and antigen detecting rapid diagnostic tests are the diagnostic tests of choice in management of clinical malaria. However, due to their limitations, the need to utilize more sensitive methods such as real-time PCR (qPCR) is evident as more studies are now utilizing molecular methods in detection of malaria. Some of the challenges that continue to limit the widespread utilization of qPCR include lack of assay standardization, assay variability, risk of contamination, and the need for cold-chain. Lyophilization of molecular assays can overcome some of these limitations and potentially enable widespread qPCR utilization. Methods A recently published multiplex malaria qPCR assay was lyophilized by freezing drying into Sample-Ready™ format (MMSR). MMSR assay contained all the required reagents for qPCR including primers and probes, requiring only the addition of water and sample to perform qPCR. The performance of the MMSR assay was compared to the non-freeze dried, “wet” assay. Stability studies were done by maintaining the MMSR assays at four different ambient temperatures of 4°C, room temperature (RT), 37°C and 42°C over a period of 42 days, tested at seven-day intervals. Plasmodium falciparum and Plasmodium vivax DNAs were used for analysis of the MMSR assay either as single or mixed parasites, at two different concentrations. The CT values and the standard deviations (SD) were used in the analysis of the assay performance. Results The limit of detection for the MMSR assay was 0.244 parasites/μL for Plasmodium spp. (PLU) and P. falciparum (FAL) assay targets compared to “wet” assay which was 0.39 and 3.13 parasites/μL for PLU and FAL assay targets, respectively. The MMSR assay performed with high efficiencies similar to those of the “wet” assay and was stable at 37°C for 42 days, with estimated shelf-life of 5 months. When used to analyse field clinical samples, MMSR assay performed with 100% sensitivity and specificity

  18. Multiplex pyrosequencing assay using AdvISER-MH-PYRO algorithm: a case for rapid and cost-effective genotyping analysis of prostate cancer risk-associated SNPs.

    PubMed

    Ambroise, Jérôme; Butoescu, Valentina; Robert, Annie; Tombal, Bertrand; Gala, Jean-Luc

    2015-06-25

    Single Nucleotide Polymorphisms (SNPs) identified in Genome Wide Association Studies (GWAS) have generally moderate association with related complex diseases. Accordingly, Multilocus Genetic Risk Scores (MGRSs) have been computed in previous studies in order to assess the cumulative association of multiple SNPs. When several SNPs have to be genotyped for each patient, using successive uniplex pyrosequencing reactions increases analytical reagent expenses and Turnaround Time (TAT). While a set of several pyrosequencing primers could theoretically be used to analyze multiplex amplicons, this would generate overlapping primer-specific pyro-signals that are visually uninterpretable. In the current study, two multiplex assays were developed consisting of a quadruplex (n=4) and a quintuplex (n=5) polymerase chain reaction (PCR) each followed by multiplex pyrosequencing analysis. The aim was to reliably but rapidly genotype a set of prostate cancer-related SNPs (n=9). The nucleotide dispensation order was selected using SENATOR software. Multiplex pyro-signals were analyzed using the new AdvISER-MH-PYRO software based on a sparse representation of the signal. Using uniplex assays as gold standard, the concordance between multiplex and uniplex assays was assessed on DNA extracted from patient blood samples (n = 10). All genotypes (n=90) generated with the quadruplex and the quintuplex pyroquencing assays were perfectly (100 %) concordant with uniplex pyrosequencing. Using multiplex genotyping approach for analyzing a set of 90 patients allowed reducing TAT by approximately 75 % (i.e., from 2025 to 470 min) while reducing reagent consumption and cost by approximately 70 % (i.e., from ~229 US$ /patient to ~64 US$ /patient). This combination of quadruplex and quintuplex pyrosequencing and PCR assays enabled to reduce the amount of DNA required for multi-SNP analysis, and to lower the global TAT and costs of SNP genotyping while providing results as reliable as uniplex

  19. Development and validation of a multiplex quantitative polymerase chain reaction assay for the detection of Mollicutes impurities in human cells, cultured under good manufacturing practice conditions, and following European Pharmacopoeia requirements and the International Conference on Harmonization guidelines.

    PubMed

    Vanni, Irene; Ugolotti, Elisabetta; Raso, Alessandro; Di Marco, Eddi; Melioli, Giovanni; Biassoni, Roberto

    2012-07-01

    The clinical applications of in vitro manipulated cultured cells and their precursors are often made use of in therapeutic trials. However, tissue cultures can be easily contaminated by the ubiquitous Mollicutes micro-organisms, which can cause various and severe alterations in cellular function. Thus methods able to detect and trace Mollicutes impurities contaminating cell cultures are required before starting any attempt to grow cells under good manufacturing practice (GMP) conditions. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay specific for the 16S-23S rRNA intergenic spacer regions, for the Tuf and P1 cytoadhesin genes, able to detect contaminant Mollicutes species in a single tube reaction. The system was validated by analyzing different cell lines and the positive samples were confirmed by 16S and P1 cytoadhesin gene dideoxy sequencing. Our multiplex qPCR detection system was able to reach a sensitivity, specificity and robustness comparable with the culture and the indicator cell culture method, as required by the European Pharmacopoeia guidelines. We have developed a multiplex qPCR method, validated following International Conference on Harmonization (ICH) guidelines, as a qualitative limit test for impurities, assessing the validation characteristics of limit of detection and specificity. It also follows the European Pharmacopoeia guidelines and Food and Drug Administration (FDA) requirements.

  20. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review.

    PubMed

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-05-28

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process.

  1. Multiplex qPCR for serodetection and serotyping of hepatitis viruses: A brief review

    PubMed Central

    Irshad, Mohammad; Gupta, Priyanka; Mankotia, Dhananjay Singh; Ansari, Mohammad Ahmad

    2016-01-01

    The present review describes the current status of multiplex quantitative real time polymerase chain reaction (qPCR) assays developed and used globally for detection and subtyping of hepatitis viruses in body fluids. Several studies have reported the use of multiplex qPCR for the detection of hepatitis viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In addition, multiplex qPCR has also been developed for genotyping HBV, HCV, and HEV subtypes. Although a single step multiplex qPCR assay for all six hepatitis viruses, i.e., A to G viruses, is not yet reported, it may be available in the near future as the technologies continue to advance. All studies use a conserved region of the viral genome as the basis of amplification and hydrolysis probes as the preferred chemistries for improved detection. Based on a standard plot prepared using varying concentrations of template and the observed threshold cycle value, it is possible to determine the linear dynamic range and to calculate an exact copy number of virus in the specimen. Advantages of multiplex qPCR assay over singleplex or other molecular techniques in samples from patients with co-infection include fast results, low cost, and a single step investigation process. PMID:27239109

  2. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation.

    PubMed

    Fichorova, Raina N; Mendonca, Kevin; Yamamoto, Hidemi S; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV+2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P<0.05), and decreased levels of TLR2 (P<0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P<0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    PubMed Central

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  4. Metal-amplified Density Assays, (MADAs), including a Density-Linked Immunosorbent Assay (DeLISA).

    PubMed

    Subramaniam, Anand Bala; Gonidec, Mathieu; Shapiro, Nathan D; Kresse, Kayleigh M; Whitesides, George M

    2015-02-21

    This paper reports the development of Metal-amplified Density Assays, or MADAs - a method of conducting quantitative or multiplexed assays, including immunoassays, by using Magnetic Levitation (MagLev) to measure metal-amplified changes in the density of beads labeled with biomolecules. The binding of target analytes (i.e. proteins, antibodies, antigens) to complementary ligands immobilized on the surface of the beads, followed by a chemical amplification of the binding in a form that results in a change in the density of the beads (achieved by using gold nanoparticle-labeled biomolecules, and electroless deposition of gold or silver), translates analyte binding events into changes in density measureable using MagLev. A minimal model based on diffusion-limited growth of hemispherical nuclei on a surface reproduces the dynamics of the assay. A MADA - when performed with antigens and antibodies - is called a Density-Linked Immunosorbent Assay, or DeLISA. Two immunoassays provided a proof of principle: a competitive quantification of the concentration of neomycin in whole milk, and a multiplexed detection of antibodies against Hepatitis C virus NS3 protein and syphilis T. pallidum p47 protein in serum. MADAs, including DeLISAs, require, besides the requisite biomolecules and amplification reagents, minimal specialized equipment (two permanent magnets, a ruler or a capillary with calibrated length markings) and no electrical power to obtain a quantitative readout of analyte concentration. With further development, the method may be useful in resource-limited or point-of-care settings.

  5. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

    PubMed Central

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.

    2016-01-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  6. A multiplex allele-specific real-time PCR assay for screening of ESR1 mutations in metastatic breast cancer.

    PubMed

    Wang, Ting; Liu, Jin-Hui; Zhang, Jie; Wang, Le; Chen, Chao; Dai, Peng-Gao

    2015-04-01

    Acquired resistance to endocrine-based therapies occurs in virtually all estrogen receptor-α (ERα, encoded by ESR1) positive breast cancer patients. The underlying molecular mechanism is attributed to the activating mutations in ESR1. These mutations provide an exciting opportunity for the development of new antagonists that specifically inhibit the mutant proteins. Therefore, accurate detection of ESR1 mutations is of critical importance in clinical practice. We carried out a single tube, multiplex allele-specific real-time PCR assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N, and D538G). The assay was found to be highly specific and sensitive. With this assay, as low as 1% mutant DNA template in wild type DNA could be detected. Fifteen DNA samples were prepared from archived formalin-fixed paraffin-embedded metastatic breast cancer biopsies. They were further screened with this assay, and three samples were identified as ESR1 mutant. The results were validated with pyrosequencing and complete concordance was observed between the two assays. The multiplex allele-specific real-time PCR assay provides a rapid and reliable diagnostic tool for accurate detection of ESR1 mutations. This procedure may be used in the clinical treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Integrated analyses of proteins and their glycans in a magnetic bead-based multiplex assay format.

    PubMed

    Li, Danni; Chiu, Hanching; Chen, Jing; Zhang, Hui; Chan, Daniel W

    2013-01-01

    Well-annotated clinical samples are valuable resources for biomarker discovery and validation. Multiplex and integrated methods that simultaneously measure multiple analytes and generate integrated information about these analytes from a single measurement are desirable because these methods help conserve precious samples. We developed a magnetic bead-based system for multiplex and integrated glycoprotein quantification by immunoassays and glycan detection by lectin immunosorbent assays (LISAs). Magnetic beads coupled with antibodies were used for capturing proteins of interest. Biotinylated antibodies in combination with streptavidin-labeled phycoerythrin were used for protein quantification. In the LISAs, biotinylated detection antibodies were replaced by biotinylated lectins for glycan detection. Using tissue inhibitor of metallopeptidase 1 (TIMP-1), tissue plasminogen activator, membrane metallo-endopeptidase, and dipeptidyl peptidase-IV (DPP-4) as models, we found that the multiplex integrated system was comparable to single immunoassays in protein quantification and LISAs in glycan detection. The merits of this system were demonstrated when applied to well-annotated prostate cancer tissues for validation of biomarkers in aggressive prostate cancer. Because of the system's multiplex ability, we used only 300 ng of tissue protein for the integrated detection of glycans in these proteins. Fucosylated TIMP-1 and DPP-4 offered improved performance over the proteins in distinguishing aggressive and nonaggressive prostate cancer. The multiplex and integrated system conserves samples and is a useful tool for validation of glycoproteins and their glycoforms as biomarkers. © 2012 American Association for Clinical Chemistry

  8. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    PubMed

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella

  9. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial

    PubMed Central

    Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz; Gray, Darren J.; Verweij, Jaco J.; Clements, Archie C. A.; Gomes, Santina J.; Traub, Rebecca; McCarthy, James S.

    2016-01-01

    Background Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy. Methodology/Principal Findings Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections. Conclusions/Significance Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and

  10. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98

  11. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8

  12. A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation

    PubMed Central

    Volpetti, Francesca; Garcia-Cordero, Jose; Maerkl, Sebastian J.

    2015-01-01

    We present a high-throughput microfluidic platform capable of quantitating up to 384 biomarkers in 4 distinct samples by immunoassay. The microfluidic device contains 384 unit cells, which can be individually programmed with pairs of capture and detection antibody. Samples are quantitated in each unit cell by four independent MITOMI detection areas, allowing four samples to be analyzed in parallel for a total of 1,536 assays per device. We show that the device can be pre-assembled and stored for weeks at elevated temperature and we performed proof-of-concept experiments simultaneously quantitating IL-6, IL-1β, TNF-α, PSA, and GFP. Finally, we show that the platform can be used to identify functional antibody combinations by screening 64 antibody combinations requiring up to 384 unique assays per device. PMID:25680117

  13. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  14. Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection.

    PubMed

    Rougemont, Blandine; Bontemps Gallo, Sébastien; Ayciriex, Sophie; Carrière, Romain; Hondermarck, Hubert; Lacroix, Jean Marie; Le Blanc, J C Yves; Lemoine, Jérôme

    2017-02-07

    Targeted mass spectrometry of a surrogate peptide panel is a powerful method to study the dynamics of protein networks, but chromatographic time scheduling remains a major limitation for dissemination and implementation of robust and large multiplexed assays. We unveil a Multiple Reaction Monitoring method (Scout-MRM) where the use of spiked scout peptides triggers complex transition lists, regardless of the retention time of targeted surrogate peptides. The interest of Scout-MRM method regarding the retention time independency, multiplexing capability, reproducibility, and putative interest in facilitating method transfer was illustrated by a 782-peptide-plex relative assay targeting 445 proteins of the phytopathogen Dickeya dadantii during plant infection.

  15. Wide spectral-range imaging spectroscopy of photonic crystal microbeads for multiplex biomolecular assay applications

    NASA Astrophysics Data System (ADS)

    Li, Jianping

    2014-05-01

    Suspension assay using optically color-encoded microbeads is a novel way to increase the reaction speed and multiplex of biomolecular detection and analysis. To boost the detection speed, a hyperspectral imaging (HSI) system is of great interest for quickly decoding the color codes of the microcarriers. Imaging Fourier transform spectrometer (IFTS) is a potential candidate for this task due to its advantages in HSI measurement. However, conventional IFTS is only popular in IR spectral bands because it is easier to track its scanning mirror position in longer wavelengths so that the fundamental Nyquist criterion can be satisfied when sampling the interferograms; the sampling mechanism for shorter wavelengths IFTS used to be very sophisticated, high-cost and bulky. In order to overcome this handicap and take better usage of its advantages for HSI applications, a new wide spectral range IFTS platform is proposed based on an optical beam-folding position-tracking technique. This simple technique has successfully extended the spectral range of an IFTS to cover 350-1000nm. Test results prove that the system has achieved good spectral and spatial resolving performances with instrumentation flexibilities. Accurate and fast measurement results on novel colloidal photonic crystal microbeads also demonstrate its practical potential for high-throughput and multiplex suspension molecular assays.

  16. Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat

    PubMed Central

    Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua

    2015-01-01

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271

  17. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts.

    PubMed

    Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios

    2017-07-01

    A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.

  18. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in Skin Biopsy Specimens Using a Multiplex Real-time Polymerase Chain Reaction Assay

    PubMed Central

    Denison, Amy M.; Amin, Bijal D.; Nicholson, William L.; Paddock, Christopher D.

    2015-01-01

    Background Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. Methods This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. Results The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. Conclusions This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. PMID:24829214

  19. Evaluation of Multiplex Type-Specific Real-Time PCR Assays Using the LightCycler and Joint Biological Agent Identification and Diagnostic System Platforms for Detection and Quantitation of Adult Human Respiratory Adenoviruses

    DTIC Science & Technology

    2010-04-01

    53592), Escherichia coli, Klebsiella pneu- moniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 97), Mycoplasma pneu- moniae, and Legionella pneumophila... Legionella pneumophila. Additionally, when we tested all samples with the multiplex assays, we did not see any cross- reactivity (data not shown...Chlamydophila pneumoniae Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Mycoplasma pneumoniae Legionella pneumophila VOL. 48, 2010

  20. Reduced-cost Chlamydia trachomatis-specific multiplex real-time PCR diagnostic assay evaluated for ocular swabs and use by trachoma research programmes.

    PubMed

    Butcher, Robert; Houghton, Jo; Derrick, Tamsyn; Ramadhani, Athumani; Herrera, Beatriz; Last, Anna R; Massae, Patrick A; Burton, Matthew J; Holland, Martin J; Roberts, Chrissy H

    2017-08-01

    Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), is the leading infectious cause of preventable blindness. Many commercial platforms are available that provide highly sensitive and specific detection of Ct DNA. However, the majority of these commercial platforms are inaccessible for population-level surveys in resource-limited settings typical to trachoma control programmes. We developed two low-cost quantitative PCR (qPCR) tests for Ct using readily available reagents on standard real-time thermocyclers. Each multiplex qPCR test targets one genomic and one plasmid Ct target in addition to an endogenous positive control for Homo sapiens DNA. The quantitative performance of the qPCR assays in clinical samples was determined by comparison to a previously evaluated droplet digital PCR (ddPCR) test. The diagnostic performance of the qPCR assays were evaluated against a commercial assay (artus C. trachomatis Plus RG PCR, Qiagen) using molecular diagnostics quality control standards and clinical samples. We examined the yield of Ct DNA prepared from five different DNA extraction kits and a cold chain-free dry-sample preservation method using swabs spiked with fixed concentrations of human and Ct DNA. The qPCR assay was highly reproducible (Ct plasmid and genomic targets mean total coefficients of variance 41.5% and 48.3%, respectively). The assay detected 8/8 core specimens upon testing of a quality control panel and performed well in comparison to commercially marketed comparator test (sensitivity and specificity>90%). Optimal extraction and sample preservation methods for research applications were identified. We describe a pipeline from collection to diagnosis providing the most efficient sample preservation and extraction with significant per test cost savings over a commercial qPCR diagnostic assay. The assay and its evaluation should allow control programs wishing to conduct independent research within the context of trachoma control

  1. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae.

    PubMed

    Settypalli, Tirumala Bharani Kumar; Lamien, Charles Euloge; Spergser, Joachim; Lelenta, Mamadou; Wade, Abel; Gelaye, Esayas; Loitsch, Angelika; Minoungou, Germaine; Thiaucourt, Francois; Diallo, Adama

    2016-01-01

    Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples

  2. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindson, B J; Reid, S M; Baker, B R

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouthmore » disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less

  4. A quantitative comet infection assay for influenza virus

    PubMed Central

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  5. Multiplexed Microsphere Suspension-Array Assay for Urine Mitochondrial DNA Typing by C-Stretch Length in Hypervariable Regions.

    PubMed

    Aoki, Kimiko; Tanaka, Hiroyuki; Kawahara, Takashi

    2018-07-01

    The standard method for personal identification and verification of urine samples in doping control is short tandem repeat (STR) analysis using nuclear DNA (nDNA). The DNA concentration of urine is very low and decreases under most conditions used for sample storage; therefore, the amount of DNA from cryopreserved urine samples may be insufficient for STR analysis. We aimed to establish a multiplexed assay for urine mitochondrial DNA typing containing only trace amounts of DNA, particularly for Japanese populations. A multiplexed suspension-array assay using oligo-tagged microspheres (Luminex MagPlex-TAG) was developed to measure C-stretch length in hypervariable region 1 (HV1) and 2 (HV2), five single nucleotide polymorphisms (SNPs), and one polymorphic indel. Based on these SNPs and the indel, the Japanese population can be classified into five major haplogroups (D4, B, M7a, A, D5). The assay was applied to DNA samples from urine cryopreserved for 1 - 1.5 years (n = 63) and fresh blood (n = 150). The assay with blood DNA enabled Japanese subjects to be categorized into 62 types, exhibiting a discriminatory power of 0.960. The detection limit for cryopreserved urine was 0.005 ng of nDNA. Profiling of blood and urine pairs revealed that 5 of 63 pairs showed different C-stretch patterns in HV1 or HV2. The assay described here yields valuable information in terms of the verification of urine sample sources employing only trace amounts of recovered DNA. However, blood cannot be used as a reference sample.

  6. A multiplex PCR assay for the rapid and sensitive detection of methicillin-resistant Staphylococcus aureus and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci.

    PubMed

    Xu, Benjin; Liu, Ling; Liu, Li; Li, Xinping; Li, Xiaofang; Wang, Xin

    2012-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern, which had been detected in food and food production animals. Conventional testing for detection of MRSA takes 3 to 5 d to yield complete information of the organism and its antibiotic sensitivity pattern. So, a rapid method is needed to diagnose and treat the MRSA infections. The present study focused on the development of a multiplex PCR assay for the rapid and sensitive detection of MRSA. The assay simultaneously detected 4 genes, namely, 16S rRNA of the Staphylococcus genus, femA of S. aureus, mecA that encodes methicillin resistance, and one internal control. It was rapid and yielded results within 4 h. The analytical sensitivity and specificity of the multiplex PCR assay was evaluated by comparing it with the conventional method. The analytical sensitivity of the multiplex PCR assay at the DNA level was 10 ng DNA. The analytical specificity was evaluated with 10 reference staphylococci strains and was 100%. The diagnostic evaluation of MRSA was carried out using 360 foodborne staphylococci isolates, and showed 99.1% of specificity, 96.4% of sensitivity, 97.5% of positive predictive value, and 97.3% of negative predictive value compared to the conventional method. The inclusion of an internal control in the multiplex PCR assay is important to exclude false-negative cases. This test can be used as an effective diagnostic and surveillance tool to investigate the spread and emergence of MRSA. © 2012 Institute of Food Technologists®

  7. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    PubMed

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  8. Ultra-performance liquid chromatography-tandem mass spectrometry-based multiplex enzyme assay for six enzymes associated with hereditary hemolytic anemia.

    PubMed

    Park, Chul Min; Lee, Kyunghoon; Jun, Sun-Hee; Song, Sang Hoon; Song, Junghan

    2017-08-15

    Deficiencies in erythrocyte metabolic enzymes are associated with hereditary hemolytic anemia. Here, we report the development of a novel multiplex enzyme assay for six major enzymes, namely glucose-6-phosphate dehydrogenase, pyruvate kinase, pyrimidine 5'-nucleotidase, hexokinase, triosephosphate isomerase, and adenosine deaminase, deficiencies in which are implicated in erythrocyte enzymopathies. To overcome the drawbacks of traditional spectrophotometric enzyme assays, the present assay was based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The products of the six enzymes were directly measured by using ion pairing UPLC-MS/MS, and the precision, linearity, ion suppression, optimal sample amounts, and incubation times were evaluated. Eighty-three normal individuals and 13 patients with suspected enzymopathy were analyzed. The UPLC running time was within 5min. No ion suppression was observed at the retention time for the products or internal standards. We selected an optimal dilution factor and incubation time for each enzyme system. The intra- and inter-assay imprecision values (CVs) were 2.5-12.1% and 2.9-14.3%, respectively. The linearity of each system was good, with R 2 values >0.97. Patient samples showed consistently lower enzyme activities than those from normal individuals. The present ion paring UPLC-MS/MS assay enables facile and reproducible multiplex evaluation of the activity of enzymes implicated in enzymopathy-associated hemolytic anemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular allergy diagnostics using multiplex assays: methodological and practical considerations for use in research and clinical routine: Part 21 of the Series Molecular Allergology.

    PubMed

    Jakob, Thilo; Forstenlechner, Peter; Matricardi, Paolo; Kleine-Tebbe, Jörg

    The availability of single allergens and their use in microarray technology enables the simultaneous determination of specific IgE (sIgE) to a multitude of different allergens (> 100) in a multiplex procedure requiring only minute amounts of serum. This allows extensive individual sensitization profiles to be determined from a single analysis. Combined with a patient's medical history, these profiles simplify identification of cross-reactivity; permit a more accurate estimation of the risk of severe reactions; and enable the indication for specific immunotherapy to be more precisely established, particularly in cases of polysensitization. Strictly speaking, a multiplex assay is not a single test, but instead more than 100 simultaneous tests. This places considerable demands on the production, quality assurance, and interpretation of data. The following chapter describes the multiplex test systems currently available and discusses their characteristics. Performance data are presented and the sIgE values obtained from multiplex and singleplex assays are compared. Finally, the advantages and limitations of molecular allergy diagnostics using multiplex assays in clinical routine are discussed, and innovative possibilities for clinical research are described. The multiplex diagnostic tests available for clinical routine have now become well established. The interpretation of test results is demanding, particularly since all individual results need to be checked for their plausibility and clinical relevance on the basis of previous history (patient history, clinical symptoms, challenge test results). There is still room for improvement in certain areas, for example with respect to the overall test sensitivity of the method, as well as the availability and quality of particular allergens. The current test systems are just the beginning of a continuous development that will influence and most likely change clinical allergology in the coming years.

  10. Clinical performance of the LCx HCV RNA quantitative assay.

    PubMed

    Bertuzis, Rasa; Hardie, Alison; Hottentraeger, Barbara; Izopet, Jacques; Jilg, Wolfgang; Kaesdorf, Barbara; Leckie, Gregor; Leete, Jean; Perrin, Luc; Qiu, Chunfu; Ran, Iris; Schneider, George; Simmonds, Peter; Robinson, John

    2005-02-01

    This study was conducted to assess the performance of the Abbott laboratories LCx HCV RNA Quantitative Assay (LCx assay) in the clinical setting. Four clinical laboratories measured LCx assay precision, specificity, and linearity. In addition, a method comparison was conducted between the LCx assay and the Roche HCV Amplicor Monitor, version 2.0 (Roche Monitor 2.0) and the Bayer VERSANT HCV RNA 3.0 Assay (Bayer bDNA 3.0) quantitative assays. For precision, the observed LCx assay intra-assay standard deviation (S.D.) was 0.060-0.117 log IU/ml, the inter-assay S.D. was 0.083-0.133 log IU/ml, the inter-lot S.D. was 0.105-0.177 log IU/ml, the inter-site S.D. was 0.099-0.190 log IU/ml, and the total S.D. was 0.113-0.190 log IU/ml. The specificity of the LCx assay was 99.4% (542/545; 95% CI, 98.4-99.9%). For linearity, the mean pooled LCx assay results were linear (r=0.994) over the range of the panel (2.54-5.15 log IU/ml). A method comparison demonstrated a correlation coefficient of 0.881 between the LCx assay and Roche Monitor 2.0, 0.872 between the LCx assay and Bayer bDNA 3.0, and 0.870 between Roche Monitor 2.0 and Bayer bDNA 3.0. The mean LCx assay result was 0.04 log IU/ml (95% CI, -0.08, 0.01) lower than the mean Roche Monitor 2.0 result, but 0.57 log IU/ml (95% CI, 0.53, 0.61) higher than the mean Bayer bDNA 3.0 result. The mean Roche Monitor 2.0 result was 0.60 log IU/ml (95% CI, 0.56, 0.65) higher than the mean Bayer bDNA 3.0 result. The LCx assay quantitated genotypes 1-4 with statistical equivalency. The vast majority (98.9%, 278/281) of paired LCx assay-Roche Monitor 2.0 specimen results were within 1 log IU/ml. Similarly, 86.6% (240/277) of paired LCx assay and Bayer bDNA 3.0 specimen results were within 1 log, as were 85.6% (237/277) of paired Roche Monitor 2.0 and Bayer specimen results. These data demonstrate that the LCx assay may be used for quantitation of HCV RNA in HCV-infected individuals.

  11. Multiplex quantification of Escherichia coli, Salmonella typhi and Vibrio cholera with three DNA targets in single reaction assay.

    PubMed

    Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar

    2017-09-01

    Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    PubMed

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of a multiplex PCR assay for detection of cytomegalovirus in stool samples from patients with ulcerative colitis

    PubMed Central

    Nahar, Saifun; Iraha, Atsushi; Hokama, Akira; Uehara, Ayako; Parrott, Gretchen; Ohira, Tetsuya; Kaida, Masatoshi; Kinjo, Tetsu; Kinjo, Takeshi; Hirata, Tetsuo; Kinjo, Nagisa; Fujita, Jiro

    2015-01-01

    AIM: To evaluate a multiplex PCR assay for the detection of bacterial and viral enteropathogens in stool samples from patients with ulcerative colitis (UC). METHODS: We prospectively analyzed 300 individuals, including immunocompetent patients, immunocompromised patients, and patients with UC. Stool samples were collected from the recto-sigmoid region of the colon by endoscopy. The samples were qualitatively analyzed for bacterial and viral enteropathogens with a multiplex PCR assay using a Seeplex® Kit. Additional clinical and laboratory data were collected from the medical records. RESULTS: A multiplex PCR assay detected 397 pathogens (191 bacteria and 206 viruses) in 215 samples (71.7%). The most frequently detected bacteria were Escherichia coli H7, 85 (28.3%); followed by Aeromonas spp., 43 (14.3%); and Clostridium perfringens, 36 (12.0%) samples. The most prevalent viruses were Epstein-Barr virus (EBV), 90 (30.0%); followed by human herpes virus-6 (HHV-6), 53 (17.7%); and cytomegalovirus (CMV), 37 (12.3%) samples. The prevalence rate of CMV infection was significantly higher in the immunocompromised group than in the immunocompetent group (P < 0.01). CMV infection was more common in patients with UC (26/71; 36.6%) than in the immunocompetent patients excluding UC (6/188; 3.2%) (P < 0.01). CMV infection was more prevalent in UC active patients (25/58; 43.1%) than in UC inactive patients (1/13; 7.7%) (P < 0.05). Among 4 groups which defined by the UC activity and immunosuppressive drugs, the prevalence rate of CMV infection was highest in the UC active patients with immunosuppressive drugs (19/34; 55.8%). Epstein-Barr virus (EBV) infection was more common in the immunocompromised patients excluding UC (18/41; 43.9%) than in the immunocompetent patients excluding UC (47/188; 25.0%) (P < 0.05). The simultaneous presence of CMV and EBV and/or HHV6 in UC active patients (14/58; 24.1%) was greater than in immunocompromised patients excluding UC (5/41; 12.2%) (P < 0

  14. A New Multiplex Assay of 17 Autosomal STRs and Amelogenin for Forensic Application

    PubMed Central

    Zhang, Suhua; Tian, Huaizhou; Wu, Jun; Zhao, Shumin; Li, Chengtao

    2013-01-01

    This paper describes a newly devised autosomal short tandem repeat (STR) multiplex polymerase chain reaction (PCR) systems for 17 autosomal loci (D1S1656, D2S441, D3S1358, D3S3045, D6S477, D7S3048, D8S1132, D10S1435, D10S1248, D11S2368, D13S325, D14S608, D15S659, D17S1290, D18S535, D19S253 and D22-GATA198B05) and Amelogenin. Primers for the loci were designed and optimized so that all of the amplicons were distributed from 50 base pairs (bp) to less than 500 bp within a five-dye chemistry design with the fifth dye reserved for the sizing standard. Strategies were developed to overcome challenges that encountered in creating the final assay. The limits of the multiplex were tested, resulting in the successful amplification of genomic DNA range from 0.25–4 ng with 30 PCR cycles. A total of 681 individuals from the Chinese Han population were studied and forensic genetic data were present. No significant deviations from Hardy–Weinberg equilibrium were observed. A total of 180 alleles were detected for the 17 autosomal STRs. The cumulative mean exclusion chance in duos (CMECD) was 0.999967, and cumulative mean exclusion chance in trios (CMECT) was 0.99999995. We conclude that the present 17plex autosomal STRs assay provides an additional powerful tool for forensic applications. PMID:23451235

  15. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus.

    PubMed

    Ghaznavi-Rad, Ehsanollah; Nor Shamsudin, Mariana; Sekawi, Zamberi; van Belkum, Alex; Neela, Vasanthakumari

    2010-10-01

    A multiplex PCR assay was developed for the identification of major types and subtypes of staphylococcal cassette chromosome mec (SCCmec) in meticillin-resistant Staphylococcus aureus (MRSA) strains. The method uses a novel 9 valent multiplex PCR plus two primer pairs for S. aureus identification and detection of meticillin resistance. All 389 clinical MRSA isolates from Malaysia and 18 European isolates from the Harmony collection harbouring different SCCmec types that we tested were correctly characterized by our PCR assay. SCCmec type III and V were by far the most common types among both hospital- and community-acquired Malaysian MRSA isolates, with an apparent emergence of MRSA harbouring the IVh type.

  16. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  17. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    PubMed

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  18. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay.

    PubMed

    Denison, Amy M; Amin, Bijal D; Nicholson, William L; Paddock, Christopher D

    2014-09-01

    Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari are the most common causes of spotted fever group rickettsioses indigenous to the United States. Infected patients characteristically present with a maculopapular rash, often accompanied by an inoculation eschar. Skin biopsy specimens are often obtained from these lesions for diagnostic evaluation. However, a species-specific diagnosis is achieved infrequently from pathologic specimens because immunohistochemical stains do not differentiate among the causative agents of spotted fever group rickettsiae, and existing polymerase chain reaction (PCR) assays generally target large gene segments that may be difficult or impossible to obtain from formalin-fixed tissues. This work describes the development and evaluation of a multiplex real-time PCR assay for the detection of these 3 Rickettsia species from formalin-fixed, paraffin-embedded (FFPE) skin biopsy specimens. The multiplex PCR assay was specific at discriminating each species from FFPE controls of unrelated bacterial, viral, protozoan, and fungal pathogens that cause skin lesions, as well as other closely related spotted fever group Rickettsia species. This multiplex real-time PCR demonstrates greater sensitivity than nested PCR assays in FFPE tissues and provides an effective method to specifically identify cases of Rocky Mountain spotted fever, rickettsialpox, and R. parkeri rickettsiosis by using skin biopsy specimens. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    PubMed

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This m

  20. Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing.

    PubMed

    Wan, Zhi; Ostendorff, Heather P; Liu, Ziying; Schneider, Lynda C; Rothschild, Kenneth J; Lim, Mark J

    2018-01-01

    Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the "matrix effect" caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE) prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay). AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children's Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%). In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative predictive

  1. Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing

    PubMed Central

    Wan, Zhi; Ostendorff, Heather P.; Liu, Ziying; Schneider, Lynda C.; Rothschild, Kenneth J.

    2018-01-01

    Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the “matrix effect” caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE) prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay). AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children’s Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%). In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative predictive

  2. Multiplex polymerase chain reaction assay developed to diagnose adult bacterial meningitis in Taiwan.

    PubMed

    Lee, Chi-Tsung; Hsiao, Kuang-Ming; Chen, Jin-Cherng; Su, Cheng-Chuan

    2015-11-01

    Acute bacterial meningitis causes high morbidity and mortality; the associated clinical symptoms often are insensitive or non-specific; and the pathogenic bacteria are geographically diverse. Clinical diagnosis requires a rapid and accurate methodology. This study aimed to develop a new multiplex polymerase chain reaction (mPCR) assay to detect simultaneously six major bacteria that cause adult bacterial meningitis in Taiwan: Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. Species-specific primers for the six bacteria were developed using reference strains. The specificities of the mPCRs for these bacteria were validated, and the sensitivities were evaluated via serial dilutions. The mPCR assay specifically detected all of the six pathogens, particularly with sensitivities of 12 colony forming units (CFU)/mL, 90 CFU/mL, and 390 CFU/mL for E. coli, S. pneumoniae, and K. pneumoniae, respectively. This mPCR assay is a rapid and specific tool to detect the six major bacterial pathogens that cause acute adult meningitis in Taiwan, particularly sensitive for detecting E. coli, S. pneumoniae, and K. pneumoniae. The assay may facilitate early diagnosis and guidance for antimicrobial therapy for adult patients with this deadly disease in Taiwan. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  3. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  4. Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Rachel M.; Servoss, Shannon; Crowley, Sheila A.

    Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays are emerging as a strong candidate platform for multiplex biomarker analysis because of the ELISA’s ability to quantitatively measure rare proteins in complex biological fluids. Advantages of this platform are high-throughput potential, assay sensitivity and stringency, and the similarity to the standard ELISA test, which facilitates assay transfer from a research setting to a clinical laboratory. However, a major concern with the multiplexing of ELISAs is maintaining high assay specificity. In this study, we systematically determine the amount of assay interference and noise contributed by individual components of the multiplexed 24-assay system. We findmore » that non-specific reagent cross-reactivity problems are relatively rare. We did identify the presence of contaminant antigens in a “purified antigen”. We tested the validated ELISA microarray chip using paired serum samples that had been collected from four women at a 6-month interval. This analysis demonstrated that protein levels typically vary much more between individuals then within an individual over time, a result which suggests that longitudinal studies may be useful in controlling for biomarker variability across a population. Overall, this research demonstrates the importance of a stringent screening protocol and the value of optimizing the antibody and antigen concentrations when designing chips for ELISA microarrays.« less

  5. Mini-SNaPshot multiplex assays authenticate elephant ivory and simultaneously identify the species origin.

    PubMed

    Kitpipit, Thitika; Thongjued, Kantima; Penchart, Kitichaya; Ouithavon, Kanita; Chotigeat, Wilaiwan

    2017-03-01

    Illegal trading of ivory is mainly responsible for the dramatic decline in elephant populations. Thailand is one of the largest laundering hotspots for African ivory, as the domestic Asian elephant ivory can be legally traded. So, to help combat ivory poaching and smuggling, an efficient method is needed to identify the elephant species from its ivory and ivory products. In this study, a mini-SNaPshot ® multiplex assay was developed and fully validated for the identification of confiscated ivory and low DNA template ivory products. Elephantid- and elephant species-specific mitochondrial single nucleotide polymorphisms (SNPs) were identified from 207 mammalian and 1705 elephant/mammoth cytochrome b sequence alignments. Seven informative SNPs were used for assay development. The assay unambiguously and accurately identified authentic elephant ivory and its species of origin on the basis of peak size and color observed in the haplotype profile. The assay was highly efficient for analysis of confiscated ivory and low-template ivory products with a 99.29% success rate (N=140). It was highly reproducible, exhibited no cross-reaction with eight other mammalian DNA; and had 100% identification accuracy. In addition, nested and direct PCR amplification were also compatible with the developed assay. This efficient assay should benefit wildlife forensic laboratories and aid in the prosecution of elephant-related crimes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A Cytolethal Distending Toxin Gene-Based Multiplex PCR Assay for Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari.

    PubMed

    Kamei, Kazumasa; Kawabata, Hiroki; Asakura, Masahiro; Samosornsuk, Worada; Hinenoya, Atsushi; Nakagawa, Shinsaku; Yamasaki, Shinji

    2016-05-20

    In this study, we devised a multiplex PCR assay based on the gene of cytolethal distending toxin (cdt) B subunit to simultaneously detect and discriminate Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari. Species-specific PCR products were successfully obtained from all 38 C. jejuni, 12 C. fetus, 39 C. coli, 22 C. upsaliensis, 24 C. hyointestinalis, and 7 C. lari strains tested. On the other hand, no specific PCR products were obtained from other campylobacters and bacterial species tested (41 strains in total). The proposed multiplex PCR assay is a valuable tool for detection and descrimination of 6 major Campylobacter species, that are associated with gastrointestinal diseases in humans.

  7. Quantitative Analysis of Energy Metabolic Pathways in MCF-7 Breast Cancer Cells by Selected Reaction Monitoring Assay*

    PubMed Central

    Drabovich, Andrei P.; Pavlou, Maria P.; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P.

    2012-01-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells. PMID:22535206

  8. Simultaneous Identification of Four "Legal High" Plant Species in a Multiplex PCR High-Resolution Melt Assay.

    PubMed

    Elkins, Kelly M; Perez, Anjelica C U; Quinn, Alicia A

    2017-05-01

    The international prevalence of "legal high" drugs necessitates the development of a method for their detection and identification. Herein, we describe the development and validation of a tetraplex multiplex real-time polymerase chain reaction (PCR) assay used to simultaneously identify morning glory, jimson weed, Hawaiian woodrose, and marijuana detected by high-resolution melt using LCGreen Plus ® . The PCR assay was evaluated based on the following: (i) specificity and selectivity-primers were tested on DNA extracted from 30 species and simulated forensic samples, (ii) sensitivity-serial dilutions of the target DNA were prepared, and (iii) reproducibility and reliability-sample replicates were tested and remelted on different days. The assay is ideal for cases in which inexpensive assays are needed to quickly detect and identify trace biological material present on drug paraphernalia that is too compromised for botanical microscopic identification and for which analysts are unfamiliar with the morphology of the emerging "legal high" species. © 2016 American Academy of Forensic Sciences.

  9. Development of a multiplex assay for genus and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    USDA-ARS?s Scientific Manuscript database

    The availability of a molecular diagnostic assay for Phytophthora that is specific, sensitive, has both genus and species specific detection capabilities multiplexed and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory ef...

  10. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay.

    PubMed

    Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N

    2016-10-01

    A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  12. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-04

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement.

  13. Multiplex biomarker approach to cardiovascular diseases.

    PubMed

    Adamcova, Michaela; Šimko, Fedor

    2018-04-12

    Personalized medicine is partly based on biomarker-guided diagnostics, therapy and prognosis, which is becoming an unavoidable concept in modern cardiology. However, the clinical significance of single biomarker studies is rather limited. A promising novel approach involves combining multiple markers into a multiplex panel, which could refine the management of a particular patient with cardiovascular pathology. Two principally different assay formats have been developed to facilitate simultaneous quantification of multiple antigens: planar array assays and microbead assays. These approaches may help to better evaluate the complexity and dynamic nature of pathologic processes and offer substantial cost and sample savings compared with traditional enzyme-linked immunosorbent assay (ELISA) measurements. However, a multiplex multimarker approach cannot become a generally disseminated method until analytical problems are solved and further studies confirming improved clinical outcomes are accomplished. These drawbacks underlie the fact that a limited number of systematic studies are available regarding the use of a multiplex biomarker approach in cardiovascular medicine to date. Our perspective underscores the significant potential of the use of the multiplex approach in a wider conceptual framework under the close cooperation of clinical and experimental cardiologists, pathophysiologists and biochemists so that the personalized approach based on standardized multimarker testing may improve the management of various cardiovascular pathologies and become a ubiquitous partner of population-derived evidence-based medicine.

  14. Multiplex real-time PCR for the detection and quantification of latent and persistent viral genomes in cellular or plasma blood fractions.

    PubMed

    Compston, Lara Isobel; Sarkobie, Francis; Li, Chengyao; Candotti, Daniel; Opare-Sem, Ohene; Allain, Jean-Pierre

    2008-07-01

    In common with latent viruses such as herpesviruses, parvovirus B19, HBV and GBV-C are contained successfully by the immune response and persist in the host. When immune control breaks down, reactivation of both latent and persistent viruses occurs. Two multiplex assays were developed (B19, HBV, HHV-8), (EBV, CMV, VZV) for blood screening, and tested on blood donor samples from Ghana to determine baseline prevalence of viraemia in immunocompetent persons. Single-virus real-time quantitative PCR (qPCR) assays were optimised for viral load determination of positive initial screening. The qPCR method utilised was absolute quantification with external standards. Multiplex and single-virus qPCR assays had similar sensitivity, except for the B19 assay in which sensitivity was 100-fold lower. Assays were optimised for reproducibility and repeatability, with R(2) of 0.9 being obtained for most assays. With the exception of B19 and CMV, assays had 100% detection limit ranging between 10(1) and 10(2) copies, IU or arbitrary units under single-virus and multiplex assay conditions. The prevalence of viraemia was 1.6% HBV (0.8% DNA+/HBsAg-, 0.8% DNA+/HBsAg+), 0.8% parvovirus B19, and 3.3% GBV-C viraemia in the plasma fraction. The prevalence of four herpesviruses was 1.0% HHV-8, 0.85% CMV, and 8.3% EBV, and no detectable VZV viraemia.

  15. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses.

    PubMed

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben

    2012-12-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.

  16. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors

    PubMed Central

    Ikten, Cengiz; Ustun, Rustem; Catal, Mursel; Yol, Engin; Uzun, Bulent

    2016-01-01

    Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.). Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease. PMID:27195795

  17. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting.

    PubMed

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile; Bamford, Colleen

    2017-01-01

    Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation.

  18. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting

    PubMed Central

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile

    2017-01-01

    Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504

  19. High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligation-dependent probe amplification assay

    PubMed Central

    Quarello, Paola; Garelli, Emanuela; Brusco, Alfredo; Carando, Adriana; Mancini, Cecilia; Pappi, Patrizia; Vinti, Luciana; Svahn, Johanna; Dianzani, Irma; Ramenghi, Ugo

    2012-01-01

    Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy. PMID:22689679

  20. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  1. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus.

    PubMed

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-05-30

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.

  2. Multiplex Droplet Digital PCR Protocols for Quantification of GM Maize Events.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Štebih, Dejan; Morisset, Dany; Holst-Jensen, Arne; Žel, Jana

    2018-01-01

    The standard-curve based simplex quantitative polymerase chain reaction (qPCR) has been the gold standard for DNA target quantification for more than a decade. The large and growing number of individual analyses needed to test for genetically modified organisms (GMOs) is reducing the cost-effectiveness of qPCR. Droplet digital PCR (ddPCR) enables absolute quantification without standard curves, avoids the amplification efficiency bias observed with qPCR, allows more accurate estimations at low target copy numbers and, in combination with multiplexing, significantly improves cost efficiency. Here we describe two protocols for multiplex quantification of GM maize events: (1) nondiscriminating, with multiplex quantification of targets as a group (12 GM maize lines) and (2) discriminating, with multiplex quantification of individual targets (events). The first enables the quantification of twelve European Union authorized GM maize events as a group with only two assays, but does not permit determination of the individual events present. The second protocol enables the quantification of four individual targets (three GM events and one endogene) in a single reaction. Both protocols can be modified for quantification of any other DNA target.

  3. Developing high throughput quantitative PCR assays for diagnosing Ikeda and other Theileria orientalis types common to New Zealand in bovine blood samples.

    PubMed

    Pulford, D J; Gias, E; Bueno, I M; McFadden, Amj

    2016-01-01

    To develop rapid, quantitative PCR (qPCR) assays using high resolution melt (HRM) analysis and type-specific TaqMan assays for identifying the prevalent types of Theileria orientalis found in New Zealand cattle; and to evaluate their analytical and diagnostic characteristics compared with other assays for T. orientalis. Nucleotide sequences aligned with T. orientalis Buffeli, Chitose and Ikeda types, obtained from DNA extracted from blood samples from infected cattle, were used to design HRM and type-specific probe-based qPCR assays. The three type-specific assays were also incorporated into a single-tube multiplex qPCR assay. These assays were validated using DNA extracted from blood samples from cattle in herds with or without clinical signs of T. orientalis infection, other veterinary laboratory samples, as well as plasmids containing T. orientalis type-specific sequences. Diagnostic specificity (DSp) and sensitivity (DSe) estimates for the qPCR assays were compared to blood smear piroplasm results, and other PCR assays for T. orientalis. Copy number estimates of Ikeda DNA in blood were determined from cattle exhibiting anaemia using the Ikeda-specific qPCR assay. The T. orientalis type-specific and the HRM qPCR assays displayed 100% analytical specificity. The Ikeda-specific qPCR assay exhibited linearity (R(2) = 0.997) with an efficiency of 94.3%. Intra-assay CV were ≤0.08 and inter-assay CV were ≤0.095. For blood samples from cows with signs of infection with T. orientalis, the DSp and DSe of the multiplex probe qPCR assay were 93 and 96%, respectively compared with blood smears, and 97 and 100%, respectively compared with conventional PCR assays. For the Ikeda-specific qPCR assay, the number of positive samples (n=66) was slightly higher than a conventional PCR assay (n=64). The concentration of Ikeda genomes in blood samples from 41 dairy cows with signs of infection with T. orientalis ranged between 5.6 × 10(4) and 3.3 × 10(6) genomes per

  4. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Treesearch

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  5. A Melting Curve-Based Multiplex RT-qPCR Assay for Simultaneous Detection of Four Human Coronaviruses

    PubMed Central

    Wan, Zhenzhou; Zhang, Ya’nan; He, Zhixiang; Liu, Jia; Lan, Ke; Hu, Yihong; Zhang, Chiyu

    2016-01-01

    Human coronaviruses HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1 are common respiratory viruses associated with acute respiratory infection. They have a global distribution. Rapid and accurate diagnosis of HCoV infection is important for the management and treatment of hospitalized patients with HCoV infection. Here, we developed a melting curve-based multiplex RT-qPCR assay for simultaneous detection of the four HCoVs. In the assay, SYTO 9 was used to replace SYBR Green I as the fluorescent dye, and GC-modified primers were designed to improve the melting temperature (Tm) of the specific amplicon. The four HCoVs were clearly distinguished by characteristic melting peaks in melting curve analysis. The detection sensitivity of the assay was 3 × 102 copies for HCoV-OC43, and 3 × 101 copies for HCoV-NL63, HCoV-229E and HCoV-HKU1 per 30 μL reaction. Clinical evaluation and sequencing confirmation demonstrated that the assay was specific and reliable. The assay represents a sensitive and reliable method for diagnosis of HCoV infection in clinical samples. PMID:27886052

  6. A Melting Curve-Based Multiplex RT-qPCR Assay for Simultaneous Detection of Four Human Coronaviruses.

    PubMed

    Wan, Zhenzhou; Zhang, Ya'nan; He, Zhixiang; Liu, Jia; Lan, Ke; Hu, Yihong; Zhang, Chiyu

    2016-11-23

    Human coronaviruses HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1 are common respiratory viruses associated with acute respiratory infection. They have a global distribution. Rapid and accurate diagnosis of HCoV infection is important for the management and treatment of hospitalized patients with HCoV infection. Here, we developed a melting curve-based multiplex RT-qPCR assay for simultaneous detection of the four HCoVs. In the assay, SYTO 9 was used to replace SYBR Green I as the fluorescent dye, and GC-modified primers were designed to improve the melting temperature (Tm) of the specific amplicon. The four HCoVs were clearly distinguished by characteristic melting peaks in melting curve analysis. The detection sensitivity of the assay was 3 × 10² copies for HCoV-OC43, and 3 × 10¹ copies for HCoV-NL63, HCoV-229E and HCoV-HKU1 per 30 μL reaction. Clinical evaluation and sequencing confirmation demonstrated that the assay was specific and reliable. The assay represents a sensitive and reliable method for diagnosis of HCoV infection in clinical samples.

  7. Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays

    PubMed Central

    Yuan, Junjie; Zhao, Xiangwei; Wang, Xiaoxia; Gu, Zhongze

    2014-01-01

    Along with the miniaturization and intellectualization of biomedical instruments, the increasing demand of health monitoring at anywhere and anytime elevates the need for the development of point of care testing (POCT). Photonic crystal beads (PCBs) as one kind of good encoded microcarriers can be integrated with microfluidic chips in order to realize cost-effective and high sensitive multiplex bioassays. However, there are difficulties in analyzing them towards automated analysis due to the characters of the PCBs and the unique detection manner. In this paper, we propose a strategy to take advantage of automated image processing for the color decoding of the PCBs array in the microfluidic chip for multiplex assays. By processing and alignment of two modal images of epi-fluorescence and epi-white light, every intact bead in the image is accurately extracted and decoded by PC colors, which stand for the target species. This method, which shows high robustness and accuracy under various configurations, eliminates the high hardware requirement of spectroscopy analysis and user-interaction software, and provides adequate supports for the general automated analysis of POCT based on PCBs array. PMID:25341876

  8. A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons.

    PubMed

    Javani, Atefeh; Javadi-Zarnaghi, Fatemeh; Rasaee, Mohammad Javad

    2017-11-15

    Lateral flow assays (LFAs) have promising potentials for point-of-care applications. Recently, many LFAs have been reported that are based on hybridization of oligonucleotide strands. Mostly, biotinylated capture DNAs are immobilized on the surface of a nitrocellulose membrane via streptavidin interactions. During the assay, stable colorful complexes get formed that are visible by naked eyes. Here, we present an inexpensive and unique design of LFA that applies unmodified oligonucleotides at capture lines. The presented LFA do not utilize streptavidin or any other affinity protein. We employ structural switch of molecular beacons (MB) in combination with base stacking hybridization (BSH) phenomenon. The unique design of the reported LFA provided high selectivity for target oligonucleotides. We validated potential applications of the system for detection of DNA mimics of two microRNAs in multiplex assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Retrospective Species Identification of Microsporidian Spores in Diarrheic Fecal Samples from Human Immunodeficiency Virus/AIDS Patients by Multiplexed Fluorescence In Situ Hybridization▿

    PubMed Central

    Graczyk, Thaddeus K.; Johansson, Michael A.; Tamang, Leena; Visvesvara, Govinda S.; Moura, Laci S.; DaSilva, Alexandre J.; Girouard, Autumn S.; Matos, Olga

    2007-01-01

    In order to assess the applicability of multiplexed fluorescence in situ hybridization (FISH) assay for the clinical setting, we conducted retrospective analysis of 110 formalin-stored diarrheic stool samples from human immunodeficiency virus (HIV)/AIDS patients with intestinal microsporidiosis collected between 1992 and 2003. The multiplexed FISH assay identified microsporidian spores in 94 of 110 (85.5%) samples: 49 (52.1%) were positive for Enterocytozoon bieneusi, 43 (45.8%) were positive for Encephalitozoon intestinalis, 2 (2.1%) were positive for Encephalitozoon hellem, and 9 samples (9.6%) contained both E. bieneusi and E. intestinalis spores. Quantitative spore counts per ml of stool yielded concentration values from 3.5 × 103 to 4.4 × 105 for E. bieneusi (mean, 8.8 × 104/ml), 2.3 × 102 to 7.8 × 104 (mean, 1.5 × 104/ml) for E. intestinalis, and 1.8 × 102 to 3.6 × 102 for E. hellem (mean, 2.7 × 102/ml). Identification of microsporidian spores by multiplex FISH assay was more sensitive than both Chromotrope-2R and CalcoFluor White M2R stains; 85.5% versus 72.7 and 70.9%, respectively. The study demonstrated that microsporidian coinfection in HIV/AIDS patients with intestinal microsporidiosis is not uncommon and that formalin-stored fecal samples older than 10 years may not be suitable for retrospective analysis by techniques targeting rRNA. Multiplexed FISH assay is a reliable, quantitative fluorescence microscopy method for the simultaneous identification of E. bieneusi, E. intestinalis, and E. hellem, as well as Encephalitozoon cuniculi, spores in fecal samples and is a useful tool for assessing spore shedding intensity in intestinal microsporidiosis. The method can be used for epidemiological investigations and applied in clinical settings. PMID:17287331

  10. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    PubMed

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  11. Flow cytometric immunobead assay for quantitative detection of platelet autoantibodies in immune thrombocytopenia patients.

    PubMed

    Zhai, Juping; Ding, Mengyuan; Yang, Tianjie; Zuo, Bin; Weng, Zhen; Zhao, Yunxiao; He, Jun; Wu, Qingyu; Ruan, Changgeng; He, Yang

    2017-10-23

    Platelet autoantibody detection is critical for immune thrombocytopenia (ITP) diagnosis and prognosis. Therefore, we aimed to establish a quantitative flow cytometric immunobead assay (FCIA) for ITP platelet autoantibodies evaluation. Capture microbeads coupled with anti-GPIX, -GPIb, -GPIIb, -GPIIIa and P-selectin antibodies were used to bind the platelet-bound autoantibodies complex generated from plasma samples of 250 ITP patients, 163 non-ITP patients and 243 healthy controls, a fluorescein isothiocyanate (FITC)-conjugated secondary antibody was the detector reagent and mean fluorescence intensity (MFI) signals were recorded by flow cytometry. Intra- and inter-assay variations of the quantitative FCIA assay were assessed. Comparisons of the specificity, sensitivity and accuracy between quantitative and qualitative FCIA or monoclonal antibody immobilization of platelet antigen (MAIPA) assay were performed. Finally, treatment process was monitored by our quantitative FCIA in 8 newly diagnosed ITPs. The coefficient of variations (CV) of the quantitative FCIA assay were respectively 9.4, 3.8, 5.4, 5.1 and 5.8% for anti-GPIX, -GPIb, -GPIIIa, -GPIIb and -P-selectin autoantibodies. Elevated levels of autoantibodies against platelet glycoproteins GPIX, GPIb, GPIIIa, GPIIb and P-selectin were detected by our quantitative FCIA in ITP patients compared to non-ITP patients or healthy controls. The sensitivity, specificity and accuracy of our quantitative assay were respectively 73.13, 81.98 and 78.65% when combining all 5 autoantibodies, while the sensitivity, specificity and accuracy of MAIPA assay were respectively 41.46, 90.41 and 72.81%. A quantitative FCIA assay was established. Reduced levels of platelet autoantibodies could be confirmed by our quantitative FCIA in ITP patients after corticosteroid treatment. Our quantitative assay is not only good for ITP diagnosis but also for ITP treatment monitoring.

  12. Cross-reactivity profiles of legumes and tree nuts using the xMAP® multiplex food allergen detection assay.

    PubMed

    Cho, Chung Y; Oles, Carolyn; Nowatzke, William; Oliver, Kerry; Garber, Eric A E

    2017-10-01

    The homology between proteins in legumes and tree nuts makes it common for individuals with food allergies to be allergic to multiple legumes and tree nuts. This propensity for allergenic and antigenic cross-reactivity means that commonly employed commercial immunodiagnostic assays (e.g., dipsticks) for the detection of food allergens may not always accurately detect, identify, and quantitate legumes and tree nuts unless additional orthogonal analytical methods or secondary measures of analysis are employed. The xMAP ® Multiplex Food Allergen Detection Assay (FADA) was used to determine the cross-reactivity patterns and the utility of multi-antibody antigenic profiling to distinguish between legumes and tree nuts. Pure legumes and tree nuts extracted using buffered detergent displayed a high level of cross-reactivity that decreased upon dilution or by using a buffer (UD buffer) designed to increase the stringency of binding conditions and reduce the occurrence of false positives due to plant-derived lectins. Testing for unexpected food allergens or the screening for multiple food allergens often involves not knowing the identity of the allergen present, its concentration, or the degree of modification during processing. As such, the analytical response measured may represent multiple antigens of varying antigenicity (cross-reactivity). This problem of multiple potential analytes is usually unresolved and the focus becomes the primary analyte, the antigen the antibody was raised against, or quantitative interpretation of the content of the analytical sample problematic. The alternative solution offered here to this problem is the use of an antigenic profile as generated by the xMAP FADA using multiple antibodies (bead sets). By comparing the antigenic profile to standards, the allergen may be identified along with an estimate of the concentration present. Cluster analysis of the xMAP FADA data was also performed and agreed with the known phylogeny of the legumes

  13. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  14. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  15. Isolation, identification and differentiation of Campylobacter spp. using multiplex PCR assay from goats in Khartoum State, Sudan.

    PubMed

    Elbrissi, Atif; Sabeil, Y A; Khalifa, Khalda A; Enan, Khalid; Khair, Osama M; El Hussein, A M

    2017-03-01

    The aim of this study was to identify and characterize thermophilic Campylobacter species in faecal samples from goats in Khartoum State, Sudan, by application of multiplex polymerase chain reaction. Campylobacteriosis is a zoonotic disease of global concern, and the organisms can be transmitted to human via food, water and through contact with farm animals and pets. There are five clinically related Campylobacter species: Campylobacter jejuni (C. jejuni). Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and Campylobacter fetus. Conventional cultural methods to diagnose campylobacteriosis are tedious and time consuming. Wide ranges of genes have been reported to be used for PCR-based identification of Campylobacter spp. We used a multiplex PCR assay to simultaneously detect genes from the major five clinically significant Campylobacter spp. The genes selected were hipO (hippuricase) and 23S rRNA from glyA (serine hydroxymethyl transferase) from each of C. jejuni. C. coli, C. lari, and C. upsaliensis; and sapB2 (surface layer protein) from C. fetus subsp. fetus. The assay was used to identify Campylobacter isolates recovered from 336 cultured faecal samples from goats in three localities in Khartoum State. C. coli was the most predominant isolate (234; 69.6%), followed by C. jejuni (19; 5.7%), C. upsaliensis (13; 3.9%), C. fetus subsp. fetus (7; 2.1%) and C. lari (6; 1.8%). Twenty-nine goats showed mixed infection with Campylobacter spp., 21 of which harbored two Campylobacter spp., while eight animals were infected with three species. Ten out of twelve goats that displayed diarrhea harbored C. coli only. C. coli, C. jejuni and C. upsaliensis showed significant variation with localities. The prevalence of C. coli was significantly higher (87; 25.9%) in goats from Omdurman, whereas C. jejuni and C. upsaliensis were significantly higher (11; 3.3%, 9; 2.7%) in goats from Khartoum. The multiplex PCR assay was found to be rapid and easy to perform and

  16. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  17. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  18. Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins

    PubMed Central

    Chen, Yi; Fisher, Kate J.; Lloyd, Mark; Wood, Elizabeth R.; Coppola, Domenico; Siegel, Erin; Shibata, David; Chen, Yian A.; Koomen, John M.

    2017-01-01

    Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g. Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays. PMID:28808993

  19. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  20. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    PubMed Central

    Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification

  1. Two Multiplex Real-Time PCR Assays to Detect and Differentiate Acinetobacter baumannii and Non- baumannii Acinetobacter spp. Carrying blaNDM, blaOXA-23-Like, blaOXA-40-Like, blaOXA-51-Like, and blaOXA-58-Like Genes

    PubMed Central

    Yang, Qiu; Rui, Yongyu

    2016-01-01

    Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including blaNDM, blaOXA-23-like, blaOXA-40-like, blaOXA-51-like, and blaOXA-58-like. We demonstrate the potential utility of these assays for the direct detection of blaNDM-, blaOXA-23-like-, blaOXA-40-like-, blaOXA-51-like-, and blaOXA-58-like-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene blaNDM; and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (blaOXA-23-like, blaOXA-40-like, blaOXA-51-like,and blaOXA-58-like). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay

  2. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    PubMed

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  3. Multiplex Hydrolysis Probe Real-Time PCR for Simultaneous Detection of Hepatitis A Virus and Hepatitis E Virus

    PubMed Central

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-01-01

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV. PMID:24886818

  4. [Application of multiplex rt-PCR assay for screening rare or cryptic chromosome translocations in de novo patients with acute myeloid leukemia].

    PubMed

    Chen, Hai-Min; Yuan, Hai-Yang; Fan, Xing; He, Hai-Yan; Chen, Bing; Shi, Jing-Yi; Zhu, Yong-Mei

    2010-10-01

    This study was aimed to investigate the clinical feasibility of using multiplex PT-PCR assay for screening rare/cryptic chromosome translocations in patients with de novo acute myeloid leukemia. For 126 patients with de novo AML-M4/M5 without common chromosome translocations including t(15;17), t(8;21) and t(16;16), 3 parallel multiplex RT-PCR assays were set up to detect 6 mll-related gene rearrangements (mll/af10, mll/af17, mll/ell, mll/af9, mll/af6 and mll/enl) with low detection rate and 4 rare fusion genes (dek/can, tls/erg, aml1/mds (evi1) and npm/mlf1). The results showed that 11 patients with positive result from 126 patients were detected which involved in 5 molecular abnormalities. Among them, 10 cases were AML-M5 (16.67%), 1 cases AML-M4 (1.51%). The marker chromosomes were observed in 2 cases out of 11 cases through conventional karyotyping analysis, the karyotyping analysis in 1 case was not performed because this case had 1 mitotic figure only, no any cytogenetic aberrations were found in other 8 cases through R-band karyotyping analysis. It is concluded that multiplex RT-PCR designed in this study can quickly, effectively and accurately identify the rare/cryptic chromosome translocations and can be used in clinical detection.

  5. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    PubMed

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  6. A Liquid Array Platform For the Multiplexed Analysis of Synthetic Molecule-Protein Interactions

    PubMed Central

    Doran, Todd M.; Kodadek, Thomas

    2014-01-01

    Synthetic molecule microarrays, consisting of many different compounds spotted onto a planar surface such as modified glass or cellulose, have proven to be useful tools for the multiplexed analysis of small molecule- and peptide-protein interactions. However, these arrays are technically difficult to manufacture and use with high reproducibility and require specialized equipment. Here we report a more convenient alternative comprised of color-encoded beads that display a small molecule protein ligand on the surface. Quantitative, multiplexed assay of protein binding to up to 24 different ligands can be achieved using a common flow cytometer for the readout. This technology should be useful for evaluating hits from library screening efforts, the determination of structure activity relationships and for certain types of serological analyses. PMID:24245981

  7. Development and validation of the AmpFℓSTR® Identifiler® Direct PCR Amplification Kit: a multiplex assay for the direct amplification of single-source samples.

    PubMed

    Wang, Dennis Y; Chang, Chien-Wei; Lagacé, Robert E; Oldroyd, Nicola J; Hennessy, Lori K

    2011-07-01

    The AmpFℓSTR(®) Identifiler(®) Direct PCR Amplification Kit is a new short tandem repeat multiplex assay optimized to allow the direct amplification of single-source blood and buccal samples on FTA(®) card without the need for sample purification and quantification. This multiplex assay has been validated according to the FBI/National Standards and SWGDAM guidelines. Validation results revealed that slight variations in primer concentration, master mix component concentration, and thermal cycling parameters did not affect the performance of the chemistry. The assay's sensitivity was demonstrated by amplifying known amounts of white blood cells spotted onto FTA(®) cards, and the assay's specificity was verified by establishing minimal cross-reactivity with nonhuman DNA. No effect on the age of the sample stored on the FTA(®) substrate was observed and full concordance was established in the population study. These findings of the validation study support the use of the Identifiler(®) Direct Kit for forensic standards and database samples genotyping. © 2011 American Academy of Forensic Sciences.

  8. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  9. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  10. Multiplex PCR assay discriminates rabbit, rat and squirrel meat in food chain.

    PubMed

    Ahamad, Mohammad Nasir Uddin; Ali, Md Eaqub; Hossain, M A Motalib; Asing, Asing; Sultana, Sharmin; Jahurul, M H A

    2017-12-01

    Rabbit meat is receiving increasing attention because it contains a high level of proteins with relatively little fat. On the other hand, squirrel meat is served in upper-class meals in certain countries, so is sold at higher prices. The other side of the coin is rat meat, which has family ties with rabbit and squirrel but poses substantial threats to public health because it is a potential carrier of several zoonotic organisms. Recently, rat meat was mislabelled and sold as lamb after chemical modification. Thus, the chances of rabbit and squirrel meat substitution by rat meat cannot be ruled out. For the first time, a multiplex PCR assay was developed in Malaysia for the discriminatory identification of rat, rabbit and squirrel in the food chain. Rabbit (123 bp), rat (108 bp) and squirrel (243 bp) targets were amplified from ATP6 and cytb genes, along with a eukaryotic internal control (141bp). The products were sequenced and cross-tested against 22 species. A total of 81 reference samples and 72 meatball specimens were screened to validate the assay. Analyte stability was evaluated through boiling, autoclaving and micro-oven cooking. The tested lower limits of detection were 0.01 ng DNA for pure meat and 0.1% for meatballs.

  11. Clinical evaluation of a new single-tube multiplex reverse transcription PCR assay for simultaneous detection of 11 respiratory viruses, Mycoplasma pneumoniae and Chlamydia in hospitalized children with acute respiratory infections.

    PubMed

    Zhao, Meng-Chuan; Li, Gui-Xia; Zhang, Dan; Zhou, Hang-Yu; Wang, Hao; Yang, Shuo; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2017-06-01

    Respiratory Pathogen 13 Detection Kit (13× kit) is able to simultaneously detect 11 respiratory viruses, Mycoplasma pneumoniae (MP) and Chlamydia in a single reaction. Using 572 Nasopharyngeal aspirates collected from hospitalized children, the clinical performance of 13× kit for detecting 11 respiratory viruses was evaluated in comparison with a routinely used 2-tube multiplex reverse transcription PCR assay (2-tube assay) at provincial Centers for Disease Control and Prevention in China. The clinical performance of 13× kit for detecting MP and Chlamydia was evaluated by commercial real-time quantitative PCR (qPCR) kits or sequencing. For tested viruses, the assay concordance was 95.98% and the kappa coefficient was 0.89. All the MP and Chlamydia positive samples detected by 13× kit were confirmed as true positives. The utilization of the 13× kit in clinical settings will be helpful for doctors to assess clinical outcome according to virus type or multiple infections, and to limit the use of antibiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Multiplex Snapback Primer System for the Enrichment and Detection of JAK2 V617F and MPL W515L/K Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Zhang, Yunqing; Zhang, Xinju; Xu, Xiao; Kang, Zhihua; Li, Shibao; Zhang, Chen; Su, Bing

    2014-01-01

    A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process. PMID:24729973

  13. Highly Sensitive Multiplex Assay for Detection of Human Immunodeficiency Virus Type 1 and Hepatitis C Virus RNA

    PubMed Central

    Giachetti, C.; Linnen, J. M.; Kolk, D. P.; Dockter, J.; Gillotte-Taylor, K.; Park, M.; Ho-Sing-Loy, M.; McCormick, M. K.; Mimms, L. T.; McDonough, S. H.

    2002-01-01

    Various nucleic acid assays have been developed and implemented for diagnostics and therapeutic monitoring of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections. The high-throughput, semiautomated assays described here were developed to provide a method suitable for screening plasma specimens for the presence of HIV-1 and HCV RNAs. Three assays were developed: a multiplex HIV-1/HCV assay for simultaneous detection of HIV-1 and HCV, and discriminatory assays for specific detection of HIV-1 and HCV. The assay systems utilize three proprietary technologies: (i) target capture-based sample preparation, (ii) transcription-mediated amplification (TMA), and (iii) hybridization protection assay (HPA). An internal control is incorporated into each reaction to control for every step of the assay and identify random false-negative reactions. The assays demonstrated a sensitivity of at least 100 copies/ml for each target, and they detected with similar sensitivity all major variants of HCV and HIV-1, including HIV-1 group O strains. Assay sensitivity for one virus was not affected by the presence of the other. The specificity of these TMA-driven assays was ≥99.5% in both normal donor specimens and plasma containing potentially interfering substances or other blood-borne pathogens. Statistical receiver operating characteristic plots of 1 − specificity versus sensitivity data determined very wide analyte cutoff values for each assay at the point at which the assay specificity and sensitivity were both ≥99.5%. The sensitivity, specificity, and throughput capability predict that these assays will be valuable for large-volume plasma screening, either in a blood bank setting or in other diagnostic applications. PMID:12089255

  14. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  15. Implementation of a Multiplex and Quantitative Proteomics Platform for Assessing Protein Lysates Using DNA-Barcoded Antibodies.

    PubMed

    Lee, Jinho; Geiss, Gary K; Demirkan, Gokhan; Vellano, Christopher P; Filanoski, Brian; Lu, Yiling; Ju, Zhenlin; Yu, Shuangxing; Guo, Huifang; Bogatzki, Lisa Y; Carter, Warren; Meredith, Rhonda K; Krishnamurthy, Savitri; Ding, Zhiyong; Beechem, Joseph M; Mills, Gordon B

    2018-06-01

    Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  17. Looking for new biomarkers of skin wound vitality with a cytokine-based multiplex assay: preliminary study.

    PubMed

    Peyron, Pierre-Antoine; Baccino, Éric; Nagot, Nicolas; Lehmann, Sylvain; Delaby, Constance

    2017-02-01

    Determination of skin wound vitality is an important issue in forensic practice. No reliable biomarker currently exists. Quantification of inflammatory cytokines in injured skin with MSD ® technology is an innovative and promising approach. This preliminary study aims to develop a protocol for the preparation and the analysis of skin samples. Samples from ante mortem wounds, post mortem wounds, and intact skin ("control samples") were taken from corpses at the autopsy. After an optimization of the pre-analytical protocol had been performed in terms of skin homogeneisation and proteic extraction, the concentration of TNF-α was measured in each sample with the MSD ® approach. Then five other cytokines of interest (IL-1β, IL-6, IL-10, IL-12p70 and IFN-γ) were simultaneously quantified with a MSD ® multiplex assay. The optimal pre-analytical conditions consist in a proteic extraction from a 6 mm diameter skin sample, in a PBS buffer with triton 0,05%. Our results show the linearity and the reproductibility of the TNF-α quantification with MSD ® , and an inter- and intra-individual variability of the concentrations of proteins. The MSD ® multiplex assay is likely to detect differential skin concentrations for each cytokine of interest. This preliminary study was used to develop and optimize the pre-analytical and analytical conditions of the MSD ® method using injured and healthy skin samples, for the purpose of looking for and identifying the cytokine, or the set of cytokines, that may be biomarkers of skin wound vitality.

  18. A multiplex TaqMan qPCR assay for sensitive and rapid detection of phytoplasmas infecting Rubus species.

    PubMed

    Linck, Holger; Krüger, Erika; Reineke, Annette

    2017-01-01

    Rubus stunt is an economically important disease in the production of raspberries, blackberries, and loganberries. A fast, sensitive, and reliable diagnosis of phytoplasmas, the causal agent of the disease, is of prime importance to stop its spread by vegetative propagation and by insect vectors. Therefore, multiplex qPCR assays using TaqMan probes with different kinds of fluorophores in one reaction were developed, allowing the detection of phytoplasmas in general as well as a more specific detection of phytoplasmas belonging to group 16SrV and host DNA (either plant or insect). This assay now provides a practical tool for the screening of motherplants and monitoring the presence and distribution of phytoplasmas in Rubus plants of different geographic origins, cultivars, and cultivation systems, as well as in putative insect vectors like leafhoppers.

  19. A multiplex TaqMan qPCR assay for sensitive and rapid detection of phytoplasmas infecting Rubus species

    PubMed Central

    Krüger, Erika; Reineke, Annette

    2017-01-01

    Rubus stunt is an economically important disease in the production of raspberries, blackberries, and loganberries. A fast, sensitive, and reliable diagnosis of phytoplasmas, the causal agent of the disease, is of prime importance to stop its spread by vegetative propagation and by insect vectors. Therefore, multiplex qPCR assays using TaqMan probes with different kinds of fluorophores in one reaction were developed, allowing the detection of phytoplasmas in general as well as a more specific detection of phytoplasmas belonging to group 16SrV and host DNA (either plant or insect). This assay now provides a practical tool for the screening of motherplants and monitoring the presence and distribution of phytoplasmas in Rubus plants of different geographic origins, cultivars, and cultivation systems, as well as in putative insect vectors like leafhoppers. PMID:28545043

  20. Single-tube, non-isotopic, multiplex PCR/OLA assay and sequence-coded separation for simultaneous screening of 31 cystic fibrosis mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinson, E.C.; Adriano, T.; Bloch, W.

    1994-09-01

    We have developed a rapid, single-tube, non-isotopic assay that screens a patient sample for the presence of 31 cystic fibrosis (CF) mutations. This assay can identify these mutations in a single reaction tube and a single electrophoresis run. Sample preparation is a simple, boil-and-go procedure, completed in less than an hour. The assay is composed of a 15-plex PCR, followed by a 61-plex oligonucleotide ligation assay (OLA), and incorporates a novel detection scheme, Sequence Coded Separation. Initially, the multiplex PCR amplifies 15 relevant segments of the CFTR gene, simultaneously. These PCR amplicons serve as templates for the multiplex OLA, whichmore » detects the normal or mutant allele at all loci, simultaneously. Each polymorphic site is interrogated by three oligonucleotide probes, a common probe and two allele-specific probes. Each common probe is tagged with a fluorescent dye, and the competing normal and mutant allelic probes incorporate different, non-nucleotide, mobility modifiers. These modifiers are composed of hexaethylene oxide (HEO) units, incorporated as HEO phosphoramidite monomers during automated DNA synthesis. The OLA is based on both probe hybridization and the ability of DNA ligase to discriminate single base mismatches at the junction between paired probes. Each single tube assay is electrophoresed in a single gel lane of a 4-color fluorescent DNA sequencer (Applied Biosystems, Model 373A). Each of the ligation products is identified by its unique combination of electrophoretic mobility and one of three colors. The fourth color is reserved for the in-lane size standard, used by GENESCAN{sup TM} software (Applied Biosystems) to size the OLA electrophoresis products. The Genotyper{sub TM} software (Applied Biosystems) decodes these Sequence-Coded-Separation data to create a patient summary report for all loci tested.« less

  1. Development of Internal Controls for the Luminex Instrument as Part of a Multiplex Seven-Analyte Viral Respiratory Antibody Profile

    PubMed Central

    Martins, Thomas B.

    2002-01-01

    The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument’s ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument’s multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay. PMID:11777827

  2. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile.

    PubMed

    Martins, Thomas B

    2002-01-01

    The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument's ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument's multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay.

  3. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.

    PubMed

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.

  4. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  5. Novel Multiplex PCR Assay for Characterization and Concomitant Subtyping of Staphylococcal Cassette Chromosome mec Types I to V in Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Zhang, Kunyan; McClure, Jo-Ann; Elsayed, Sameer; Louie, Thomas; Conly, John M.

    2005-01-01

    Staphylococcal cassette chromosome mec (SCCmec) typing is essential for understanding the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA). SCCmec elements are currently classified into types I to V based on the nature of the mec and ccr gene complexes, and are further classified into subtypes according to their junkyard region DNA segments. Previously described traditional SCCmec PCR typing schemes require multiple primer sets and PCR experiments, while a previously published multiplex PCR assay is limited in its ability to detect recently discovered types and subtypes such as SCCmec type V and subtypes IVa, b, c, and d. We designed new sets of SCCmec type- and subtype-unique and specific primers and developed a novel multiplex PCR assay allowing for concomitant detection of the methicillin resistance (mecA gene) (also serving as an internal control) to facilitate detection and classification of all currently described SCCmec types and subtypes I, II, III, IVa, b, c, d, and V. Our assay demonstrated 100% sensitivity and specificity in accurately characterizing 54 MRSA strains belonging to the various known SCCmec types and subtypes, when compared with previously described typing methods. Further application of our assay in 453 randomly selected local clinical isolates confirmed its feasibility and practicality. This novel assay offers a rapid, simple, and feasible method for SCCmec typing of MRSA, and may serve as a useful tool for clinicians and epidemiologists in their efforts to prevent and control infections caused by this organism. PMID:16207957

  6. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation

    PubMed Central

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A.

    2010-01-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. PMID:20488258

  7. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation.

    PubMed

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A

    2010-08-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  8. Simultaneous detection of antibodies to five Actinobacillus pleuropneumoniae serovars using bead-based multiplex analysis.

    PubMed

    Berger, Sanne Schou; Lauritsen, Klara Tølbøll; Boas, Ulrik; Lind, Peter; Andresen, Lars Ole

    2017-11-01

    We developed and made a preliminary validation of a bead-based multiplexed immunoassay for simultaneous detection of porcine serum antibodies to Actinobacillus pleuropneumoniae serovars 1, 2, 6, 7, and 12. Magnetic fluorescent beads were coupled with A. pleuropneumoniae antigens and tested with a panel of serum samples from experimentally infected pigs and with serum samples from uninfected and naturally infected pigs. The multiplex assay was compared to in-house ELISAs and complement fixation (CF) tests, which have been used for decades as tools for herd classification in the Danish Specific Pathogen Free system. Assay specificities and sensitivities as well as the corresponding cutoff values were determined using receiver operating characteristic (ROC) curve analysis, and the A. pleuropneumoniae multiplex assay showed good correlation with the in-house ELISAs and CF tests with areas under ROC curves ≥ 0.988. Benefits of multiplexed assays compared to ELISAs and CF tests include reduced serum sample volumes needed for analysis, less labor, and shorter assay time.

  9. Rapid genetic typing of diarrheagenic Escherichia coli using a two-tube modified molecular beacon based multiplex real-time PCR assay and its clinical application

    PubMed Central

    2014-01-01

    Background Diarrheagenic Escherichia coli (DEC), including Enterotoxigenic E.coli (ETEC), Enteroaggregative E.coli (EAEC), Enteropathogenic E.coli (EPEC), Enterohemolysin E.coli (EHEC) and Enteroinvasive E.coli (EIEC) causes diarrhea or hemolytic uremic syndromes among infants and travelers around the world. A rapid, reliable and repeatable method is urgent for identifying DEC so as to provide the reference for responding to diarrheal disease outbreak and the treatment of the diarrheal patients associated with DEC. Methods In this study, specific primers and modified molecular beacon probes of nine specific virulence genes, whose 5′end were added with homo tail sequence, were designed; and a two-tube modified molecular beacon based multiplex real–time PCR (rtPCR) assay for the identification of five Escherichia coli pathotypes, including ETEC, EAEC, EPEC, EHEC and EIEC was developed and optimized. Totally 102 bacterial strains, including 52 reference bacterial strains and 50 clinical strains were detected to confirm whether the target genes selected were specific. Then detection limits of the assay were tested. Lastly, the assay was applied to the detection of 11860 clinical samples to evaluate the specificity and sensitivity of the developed assay compared with the conventional PCR. Results The target genes were 100% specific as assessed on 102 bacterial strains since no cross-reactions were observed. The detection limits ranged from 88 CFU/mL (EHEC) to 880 CFU/mL (EPEC). Compared with the conventional PCR, the specificity and sensitivity of the multiplex rtPCR was 100% and over 99%, respectively. The coefficient of variation (CV) for each target gene ranged from 0.45% to 1.53%. 171 positive clinical samples were mostly identified as ETEC (n = 111, 64.9%) and EPEC (n = 38, 22.2%), which were the dominating pathotypes of DEC strains. Conclusion The developed multiplex rtPCR assay for the identification of DEC was high sensitive and specific and could

  10. Novel Multiplex Real-Time PCR Diagnostic Assay for Identification and Differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis Complex Strains▿†

    PubMed Central

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-01-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC. PMID:21123525

  11. Genotoxic Mode of Action Predictions from a Multiplexed Flow Cytometric Assay and a Machine Learning Approach

    PubMed Central

    Bryce, Steven M.; Bernacki, Derek T.; Bemis, Jeffrey C.; Dertinger, Stephen D.

    2015-01-01

    Several endpoints associated with cellular responses to DNA damage as well as overt cytotoxicity were multiplexed into a miniaturized, “add and read” type flow cytometric assay. Reagents included a detergent to liberate nuclei, propidium iodide and RNase to serve as a pan-DNA dye, fluorescent antibodies against γH2AX, phospho-histone H3, and p53, and fluorescent microspheres for absolute nuclei counts. The assay was applied to TK6 cells and 67 diverse reference chemicals that served as a training set. Exposure was for 24 hrs in 96 well plates, and unless precipitation or foreknowledge about cytotoxicity suggested otherwise, the highest concentration was 1 mM. At 4 and 24 hrs aliquots were removed and added to microtiter plates containing the reagent mix. Following a brief incubation period robotic sampling facilitated walk-away data acquisition. Univariate analyses identified biomarkers and time points that were valuable for classifying agents into one of three groups: clastogenic, aneugenic, or non-genotoxic. These mode of action predictions were optimized with a forward-stepping process that considered Wald test p-values, receiver operator characteristic curves, and pseudo R2 values, among others. A particularly high performing multinomial logistic regression model was comprised of four factors: 4hr γH2AX and phospho-histone H3 values, and 24 hr p53 and polyploidy values. For the training set chemicals, the four-factor model resulted in 94% concordance with our a priori classifications. Cross validation occurred via a leave-one-out approach, and in this case 91% concordance was observed. A test set of 17 chemicals that were not used to construct the model were evaluated, some of which utilized a short-term treatment in the presence of a metabolic activation system, and in 16 cases mode of action was correctly predicted. These initial results are encouraging as they suggest a machine learning strategy can be used to rapidly and reliably predict new

  12. Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach.

    PubMed

    Bryce, Steven M; Bernacki, Derek T; Bemis, Jeffrey C; Dertinger, Stephen D

    2016-04-01

    Several endpoints associated with cellular responses to DNA damage as well as overt cytotoxicity were multiplexed into a miniaturized, "add and read" type flow cytometric assay. Reagents included a detergent to liberate nuclei, RNase and propidium iodide to serve as a pan-DNA dye, fluorescent antibodies against γH2AX, phospho-histone H3, and p53, and fluorescent microspheres for absolute nuclei counts. The assay was applied to TK6 cells and 67 diverse reference chemicals that served as a training set. Exposure was for 24 hrs in 96-well plates, and unless precipitation or foreknowledge about cytotoxicity suggested otherwise, the highest concentration was 1 mM. At 4- and 24-hrs aliquots were removed and added to microtiter plates containing the reagent mix. Following a brief incubation period robotic sampling facilitated walk-away data acquisition. Univariate analyses identified biomarkers and time points that were valuable for classifying agents into one of three groups: clastogenic, aneugenic, or non-genotoxic. These mode of action predictions were optimized with a forward-stepping process that considered Wald test p-values, receiver operator characteristic curves, and pseudo R(2) values, among others. A particularly high performing multinomial logistic regression model was comprised of four factors: 4 hr γH2AX and phospho-histone H3 values, and 24 hr p53 and polyploidy values. For the training set chemicals, the four-factor model resulted in 94% concordance with our a priori classifications. Cross validation occurred via a leave-one-out approach, and in this case 91% concordance was observed. A test set of 17 chemicals that were not used to construct the model were evaluated, some of which utilized a short-term treatment in the presence of a metabolic activation system, and in 16 cases mode of action was correctly predicted. These initial results are encouraging as they suggest a machine learning strategy can be used to rapidly and reliably predict new chemicals

  13. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    PubMed

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  14. Use of multiplex polymerase chain reaction-based assay to conduct epidemiological studies on bovine hemoparasites in Mexico.

    PubMed

    Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M

    1993-01-01

    A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.

  15. Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach.

    PubMed

    Liu, Dandan; Ji, Juan; Ndongwe, Tanya P; Michailidis, Eleftherios; Rice, Charles M; Ralston, Robert; Sarafianos, Stefan G

    2015-01-01

    While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Digital microfluidic platform for multiplexing enzyme assays: implications for lysosomal storage disease screening in newborns.

    PubMed

    Sista, Ramakrishna S; Eckhardt, Allen E; Wang, Tong; Graham, Carrie; Rouse, Jeremy L; Norton, Scott M; Srinivasan, Vijay; Pollack, Michael G; Tolun, Adviye A; Bali, Deeksha; Millington, David S; Pamula, Vamsee K

    2011-10-01

    Newborn screening for lysosomal storage diseases (LSDs) has been gaining considerable interest owing to the availability of enzyme replacement therapies. We present a digital microfluidic platform to perform rapid, multiplexed enzymatic analysis of acid α-glucosidase (GAA) and acid α-galactosidase to screen for Pompe and Fabry disorders. The results were compared with those obtained using standard fluorometric methods. We performed bench-based, fluorometric enzymatic analysis on 60 deidentified newborn dried blood spots (DBSs), plus 10 Pompe-affected and 11 Fabry-affected samples, at Duke Biochemical Genetics Laboratory using a 3-mm punch for each assay and an incubation time of 20 h. We used a digital microfluidic platform to automate fluorometric enzymatic assays at Advanced Liquid Logic Inc. using extract from a single punch for both assays, with an incubation time of 6 h. Assays were also performed with an incubation time of 1 h. Assay results were generally comparable, although mean enzymatic activity for GAA using microfluidics was approximately 3 times higher than that obtained using bench-based methods, which could be attributed to higher substrate concentration. Clear separation was observed between the normal and affected samples at both 6- and 1-h incubation times using digital microfluidics. A digital microfluidic platform compared favorably with a clinical reference laboratory to perform enzymatic analysis in DBSs for Pompe and Fabry disorders. This platform presents a new technology for a newborn screening laboratory to screen LSDs by fully automating all the liquid-handling operations in an inexpensive system, providing rapid results.

  17. Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis

    PubMed Central

    Carver-Brown, Rachel K.; Reis, Arthur H.; Rice, Lisa M.; Czajka, John W.; Wangh, Lawrence J.

    2012-01-01

    Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis. PMID:23326668

  18. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...

  19. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    PubMed

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  20. A multiplex PCR mini-barcode assay to identify processed shark products in the global trade.

    PubMed

    Cardeñosa, Diego; Fields, Andrew; Abercrombie, Debra; Feldheim, Kevin; Shea, Stanley K H; Chapman, Demian D

    2017-01-01

    Protecting sharks from overexploitation has become global priority after widespread population declines have occurred. Tracking catches and trade on a species-specific basis has proven challenging, in part due to difficulties in identifying processed shark products such as fins, meat, and liver oil. This has hindered efforts to implement regulations aimed at promoting sustainable use of commercially important species and protection of imperiled species. Genetic approaches to identify shark products exist but are typically based on sequencing or amplifying large DNA regions and may fail to work on heavily processed products in which DNA is degraded. Here, we describe a novel multiplex PCR mini-barcode assay based on two short fragments of the cytochrome oxidase I (COI) gene. This assay can identify to species all sharks currently listed on the Convention of International Trade of Endangered Species (CITES) and most shark species present in the international trade. It achieves species diagnosis based on a single PCR and one to two downstream DNA sequencing reactions. The assay is capable of identifying highly processed shark products including fins, cooked shark fin soup, and skin-care products containing liver oil. This is a straightforward and reliable identification method for data collection and enforcement of regulations implemented for certain species at all governance levels.

  1. A multiplex PCR mini-barcode assay to identify processed shark products in the global trade

    PubMed Central

    Fields, Andrew; Abercrombie, Debra; Feldheim, Kevin; Shea, Stanley K. H.; Chapman, Demian D.

    2017-01-01

    Protecting sharks from overexploitation has become global priority after widespread population declines have occurred. Tracking catches and trade on a species-specific basis has proven challenging, in part due to difficulties in identifying processed shark products such as fins, meat, and liver oil. This has hindered efforts to implement regulations aimed at promoting sustainable use of commercially important species and protection of imperiled species. Genetic approaches to identify shark products exist but are typically based on sequencing or amplifying large DNA regions and may fail to work on heavily processed products in which DNA is degraded. Here, we describe a novel multiplex PCR mini-barcode assay based on two short fragments of the cytochrome oxidase I (COI) gene. This assay can identify to species all sharks currently listed on the Convention of International Trade of Endangered Species (CITES) and most shark species present in the international trade. It achieves species diagnosis based on a single PCR and one to two downstream DNA sequencing reactions. The assay is capable of identifying highly processed shark products including fins, cooked shark fin soup, and skin-care products containing liver oil. This is a straightforward and reliable identification method for data collection and enforcement of regulations implemented for certain species at all governance levels. PMID:29020095

  2. Quantitative Tracking of Combinatorially Engineered Populations with Multiplexed Binary Assemblies.

    PubMed

    Zeitoun, Ramsey I; Pines, Gur; Grau, Willliam C; Gill, Ryan T

    2017-04-21

    Advances in synthetic biology and genomics have enabled full-scale genome engineering efforts on laboratory time scales. However, the absence of sufficient approaches for mapping engineered genomes at system-wide scales onto performance has limited the adoption of more sophisticated algorithms for engineering complex biological systems. Here we report on the development and application of a robust approach to quantitatively map combinatorially engineered populations at scales up to several dozen target sites. This approach works by assembling genome engineered sites with cell-specific barcodes into a format compatible with high-throughput sequencing technologies. This approach, called barcoded-TRACE (bTRACE) was applied to assess E. coli populations engineered by recursive multiplex recombineering across both 6-target sites and 31-target sites. The 31-target library was then tracked throughout growth selections in the presence and absence of isopentenol (a potential next-generation biofuel). We also use the resolution of bTRACE to compare the influence of technical and biological noise on genome engineering efforts.

  3. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    DOE PAGES

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  4. A TaqMan-Based Multiplex qPCR Assay and DNA Extraction Method for Phylotype IIB Sequevars 1&2 (Select Agent) Strains of Ralstonia solanacearum

    PubMed Central

    Stulberg, Michael J.; Huang, Qi

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354

  5. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  6. Real-Time, Fast Neutron Coincidence Assay of Plutonium With a 4-Channel Multiplexed Analyzer and Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.

    2014-06-01

    The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.

  7. Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants.

    PubMed

    Berdichevets, Iryna N; Shimshilashvili, Hristina R; Gerasymenko, Iryna M; Sindarovska, Yana R; Sheludko, Yuriy V; Goldenkova-Pavlova, Irina V

    2010-07-01

    Thermostable lichenase encoded by licB gene of Clostridium thermocellum can be used as a reporter protein in plant, bacterial, yeast, and mammalian cells. It has important advantages of high sensitivity and specificity in qualitative and quantitative assays. Deletion variants of LicB (e.g., LicBM3) retain its enzymatic activity and thermostability and can be expressed in translational fusion with target proteins without compromising with their properties. Fusion with the lichenase reporter is especially convenient for the heterologous expression of proteins whose analysis is difficult or compromised by host enzyme activities, as it is in case of fatty acid desaturases occurring in all groups of organisms. Recombinant desaturase-lichenase genes can be used for creating genetically modified (GM) plants with improved chill tolerance. Development of an analytical method for detection of fused desaturase-lichenase transgenes is necessary both for production of GM plants and for their certification. Here, we report a multiplex polymerase chain reaction method for detection of desA and desC desaturase genes of cyanobacteria Synechocystis sp. PCC6803 and Synechococcus vulcanus, respectively, fused to licBM3 reporter in GM plants.

  8. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-02

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.

  9. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells.

    PubMed

    Tewson, Paul H; Quinn, Anne Marie; Hughes, Thomas E

    2013-08-01

    There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.

  10. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    PubMed

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.

  11. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay

    PubMed Central

    Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel

    2013-01-01

    The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248

  12. Data transformation methods for multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  13. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Cancer.gov

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  14. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S M; Danganan, L; Tammero, L

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnosticmore » test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis

  15. A novel pooled-sample multiplex luminex assay for high-throughput measurement of relative telomere length.

    PubMed

    Jasmine, Farzana; Shinkle, Justin; Sabarinathan, Mekala; Ahsan, Habibul; Pierce, Brandon L; Kibriya, Muhammad G

    2018-03-12

    Relative telomere length (RTL) is a potential biomarker of aging and risk for chronic disease. Previously, we developed a probe-based RTL assay on Luminex platform, where probes for Telomere (T) and reference gene (R) for a given DNA sample were tested in a single well. Here, we describe a method of pooling multiple samples in one well to increase the throughput and cost-effectiveness. We used four different microbeads for the same T-probe and four different microbeads for the same R-probe. Each pair of probe sets were hybridized to DNA in separate plates and then pooled in a single plate for all the subsequent steps. We used DNA samples from 60 independent individuals and repeated in multiple batches to test the precision. The precision was good to excellent with Intraclass correlation coefficient (ICC) of 0.908 (95% CI 0.856-0.942). More than 67% of the variation in the RTL could be explained by sample-to-sample variation; less than 0.1% variation was due to batch-to-batch variation and 0.3% variation was explained by bead-to-bead variation. We increased the throughput of RTL Luminex assay from 60 to 240 samples per run. The new assay was validated against the original Luminex assay without pooling (r = 0.79, P = 1.44 × 10 -15 ). In an independent set of samples (n = 550), the new assay showed a negative correlation of RTL with age (r = -0.41), a result providing external validation for the method. We describe a novel high throughput pooled-sample multiplex Luminex assay for RTL with good to excellent precision suitable for large-scale studies. © 2018 Wiley Periodicals, Inc.

  16. Conversion of a Capture ELISA to a Luminex xMAP Assay using a Multiplex Antibody Screening Method

    PubMed Central

    Baker, Harold N.; Murphy, Robin; Lopez, Erica; Garcia, Carlos

    2012-01-01

    The enzyme-linked immunosorbent assay (ELISA) has long been the primary tool for detection of analytes of interest in biological samples for both life science research and clinical diagnostics. However, ELISA has limitations. It is typically performed in a 96-well microplate, and the wells are coated with capture antibody, requiring a relatively large amount of sample to capture an antigen of interest . The large surface area of the wells and the hydrophobic binding of capture antibody can also lead to non-specific binding and increased background. Additionally, most ELISAs rely upon enzyme-mediated amplification of signal in order to achieve reasonable sensitivity. Such amplification is not always linear and can thus skew results. In the past 15 years, a new technology has emerged that offers the benefits of the ELISA, but also enables higher throughput, increased flexibility, reduced sample volume, and lower cost, with a similar workflow 1, 2. Luminex xMAP Technology is a microsphere (bead) array platform enabling both monoplex and multiplex assays that can be applied to both protein and nucleic acid applications 3-5. The beads have the capture antibody covalently immobilized on a smaller surface area, requiring less capture antibody and smaller sample volumes, compared to ELISA, and non-specific binding is significantly reduced. Smaller sample volumes are important when working with limiting samples such as cerebrospinal fluid, synovial fluid, etc. 6. Multiplexing the assay further reduces sample volume requirements, enabling multiple results from a single sample. Recent improvements by Luminex include: the new MAGPIX system, a smaller, less expensive, easier-to-use analyzer; Low-Concentration Magnetic MagPlex Microspheres which eliminate the need for expensive filter plates and come in a working concentration better suited for assay development and low-throughput applications; and the xMAP Antibody Coupling (AbC) Kit, which includes a protocol, reagents, and

  17. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  18. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for Rapid Diagnosis of Sex Chromosome Aneuploidies

    PubMed Central

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied. PMID:25207978

  19. Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori.

    PubMed

    Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E

    1999-03-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  20. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    PubMed

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory

  1. High Throughput Multiplex PCR and Probe-based Detection with Luminex Beads for Seven Intestinal Parasites

    PubMed Central

    Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.

    2011-01-01

    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910

  2. Pathogen Identification by Multiplex LightMix Real-Time PCR Assay in Patients with Meningitis and Culture-Negative Cerebrospinal Fluid Specimens

    PubMed Central

    Wagner, Karoline; Springer, Burkard; Pires, Valeria P.

    2017-01-01

    ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781

  3. Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser.

    PubMed

    Li, Meng; Xie, Zhixun; Xie, Zhiqin; Liu, Jiabo; Xie, Liji; Deng, Xianwen; Luo, Sisi; Fan, Qing; Huang, Li; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng

    2018-04-18

    Recent studies have demonstrated that at least eight subtypes of avian influenza virus (AIV) can infect humans, including H1, H2, H3, H5, H6, H7, H9 and H10. A GeXP analyser-based multiplex reverse transcription (RT)-PCR (GeXP-multiplex RT-PCR) assay was developed in our recent studies to simultaneously detect these eight AIV subtypes using the haemagglutinin (HA) gene. The assay consists of chimeric primer-based PCR amplification with fluorescent labelling and capillary electrophoresis separation. RNA was extracted from chick embryo allantoic fluid or liquid cultures of viral isolates. In addition, RNA synthesised via in vitro transcription was used to determine the specificity and sensitivity of the assay. After selecting the primer pairs, their concentrations and GeXP-multiplex RT-PCR conditions were optimised. The established GeXP-multiplex RT-PCR assay can detect as few as 100 copies of premixed RNA templates. In the present study, 120 clinical specimens collected from domestic poultry at live bird markets and from wild birds were used to evaluate the performance of the assay. The GeXP-multiplex RT-PCR assay specificity was the same as that of conventional RT-PCR. Thus, the GeXP-multiplex RT-PCR assay is a rapid and relatively high-throughput method for detecting and identifying eight AIV subtypes that may infect humans.

  4. Preliminary multiplex microarray IgG immunoassay for the diagnosis of toxoplasmosis and rubella.

    PubMed

    Baschirotto, Priscila T; Krieger, Marco A; Foti, Leonardo

    2017-06-01

    During pregnancy, toxoplasmosis and rubella can cause serious damage to the mother and the foetus through vertical transmission. Early diagnosis enables implementation of health measures aimed at preventing vertical transmission and minimising damage caused by these diseases. Here, we report the development of a multiplex assay for simultaneous detection of IgG antibodies produced during toxoplasmosis and rubella infection. This assay is based on xMap technology. Initially, by singleplex assays, we evaluated the following antigens: one Toxoplasma gondii lysate; two antigenic extracts of T. gondii (TOX8131 and TOX8122); fragments of T. gondii antigens [SAG-1 (amino acids 45-198), GRA-7 (24-100), GRA-1 (57-149), ROP-4, and MIC-3 (234-306)]; two chimeric antigens composed of fragments of SAG-1, GRA-7, and P35 (CTOX and CTOXH); and fragments of Rubella virus antigens [E-1 (157-176, 213-239, 374-390), E-2 (31-105), and C (1-123)]. A multiplex assay to simultaneously diagnose toxoplasmosis and rubella was designed with the best-performing antigens in singleplex and multiplex assays, which included CTOXH, T. gondii lysate, TOX8131, E-1, and E-2. The multiplex assay showed 100% sensitivity and specificity for anti-T. gondii IgG detection and 95.6% sensitivity and 100% specificity for anti-R. virus IgG detection. We found that, despite the difficulties related to developing multiplex systems, different types of antigens (extracts and recombinant proteins) can be used to develop high-performance diagnostic tests. The assay developed is suitable to screen for prior T. gondii and R. virus infections, because it is a rapid, high-throughput, low-cost alternative to the current standard diagnostic tools, which require multiple individual tests.

  5. An analytical approach to reduce between-plate variation in multiplex assays that measure antibodies to Plasmodium falciparum antigens.

    PubMed

    Fang, Rui; Wey, Andrew; Bobbili, Naveen K; Leke, Rose F G; Taylor, Diane Wallace; Chen, John J

    2017-07-17

    Antibodies play an important role in immunity to malaria. Recent studies show that antibodies to multiple antigens, as well as, the overall breadth of the response are associated with protection from malaria. Yet, the variability and reliability of antibody measurements against a combination of malarial antigens using multiplex assays have not been well characterized. A normalization procedure for reducing between-plate variation using replicates of pooled positive and negative controls was investigated. Sixty test samples (30 from malaria-positive and 30 malaria-negative individuals), together with five pooled positive-controls and two pooled negative-controls, were screened for antibody levels to 9 malarial antigens, including merozoite antigens (AMA1, EBA175, MSP1, MSP2, MSP3, MSP11, Pf41), sporozoite CSP, and pregnancy-associated VAR2CSA. The antibody levels were measured in triplicate on each of 3 plates, and the experiments were replicated on two different days by the same technician. The performance of the proposed normalization procedure was evaluated with the pooled controls for the test samples on both the linear and natural-log scales. Compared with data on the linear scale, the natural-log transformed data were less skewed and reduced the mean-variance relationship. The proposed normalization procedure using pooled controls on the natural-log scale significantly reduced between-plate variation. For malaria-related research that measure antibodies to multiple antigens with multiplex assays, the natural-log transformation is recommended for data analysis and use of the normalization procedure with multiple pooled controls can improve the precision of antibody measurements.

  6. A novel multiplex real-time PCR assay for the detection and quantification of HPV16/18 and HSV1/2 in cervical cancer screening.

    PubMed

    Zhao, Youyun; Cao, Xuan; Tang, Jingfeng; Zhou, Li; Gao, Yinglin; Wang, Jiangping; Zheng, Yi; Yin, Shanshan; Wang, Yefu

    2012-04-01

    Infection with human papillomavirus (HPV), particularly HPV16 and HPV18, is the main cause of invasive cervical cancer, although other factors such as herpes simplex virus (HSV) may act in conjunction with HPV in this context. To explore the possibility of developing a system for rapid diagnosis and clinical screening of cervical cancer, we developed a multiplex real-time PCR assay that can simultaneously detect and quantify HPV16/18 and HSV1/2. To evaluate its possibilities and practical uses, 177 samples collected from patients with suspected HPV and HSV infection in exfoliated cervical cells, genital herpes or labial herpes were tested by multiplex real-time PCR and compared with results obtained by DNA sequencing. Each virus was detected over a range from 1.0 × 10(1) to 1.0 × 10(7) copies/reaction. The clinical sensitivity was 100% for HPV16/18 and HSV1/2. The clinical specificity was 97.1% for HPV16, 98.1% for HPV18, 97.0% for HSV1 and 96.0% for HSV2. The kappa value was 0.96 for HPV16, 0.92 for HPV18, 0.94 for HSV1 and 0.93 for HSV2, when DNA sequencing was used as the reference standard. In summary, this novel multiplex real-time PCR allows the rapid and specific detection of HPV16/18 and HSV1/2, as well as coinfection with HPV and HSV, in clinical samples. In the future, this multiplex real-time PCR assay will assist in cervical cancer screening, viral treatment evaluation and epidemiological studies in which high throughput analysis is required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample

    PubMed Central

    2014-01-01

    Background Inflammatory mediators can serve as biomarkers for the monitoring of the disease progression or prognosis in many conditions. In the present study we introduce an adaptation of a membrane-based technique in which the level of up to 40 cytokines and chemokines can be determined in both human and rodent blood in a semi-quantitative way. The planar assay was modified using the LI-COR (R) detection system (fluorescence based) rather than chemiluminescence and semi-quantitative outcomes were achieved by normalizing the outcomes using the automated exposure settings of the Odyssey readout device. The results were compared to the gold standard assay, namely ELISA. Results The improved planar assay allowed the detection of a considerably higher number of analytes (n = 30 and n = 5 for fluorescent and chemiluminescent detection, respectively). The improved planar method showed high sensitivity up to 17 pg/ml and a linear correlation of the normalized fluorescence intensity with the results from the ELISA (r = 0.91). Conclusions The results show that the membrane-based technique is a semi-quantitative assay that correlates satisfactorily to the gold standard when enhanced by the use of fluorescence and subsequent semi-quantitative analysis. This promising technique can be used to investigate inflammatory profiles in multiple conditions, particularly in studies with constraints in sample sizes and/or budget. PMID:25022797

  8. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles.

    PubMed

    Lee, Jong-Hwan; Seo, Hyuk Seong; Kwon, Jung-Hyuk; Kim, Hee-Tae; Kwon, Koo Chul; Sim, Sang Jun; Cha, Young Joo; Lee, Jeewon

    2015-07-15

    Lateral flow assay (LFA) is an attractive method for rapid, simple, and cost-effective point of care diagnosis. For LFA-based multiplex diagnosis of three viral intractable diseases (acquired immune deficiency syndrome and hepatitis C and A), here we developed proteinticle-based 7 different 3D probes that display different viral antigens on their surface, which were synthesized in Escherichia coli by self-assembly of human ferritin heavy chain that was already engineered by genetically linking viral antigens to its C-terminus. Each of the three test lines on LFA strip contains the proteinticle probes to detect disease-specific anti-viral antibodies. Compared to peptide probes, the proteinticle probes were evidently more sensitive, and the proteinticle probe-based LFA successfully diagnosed all the 20 patient sera per each disease without a false negative signal, whereas the diagnostic sensitivities in the peptide probe-based LFAs were 65-90%. Duplex and triplex assays performed with randomly mixed patient sera gave only true positive signals for all the 20 serum mixtures without any false positive signals, indicating 100% sensitivity and 100% specificity. It seems that on the proteinticle surface the antigenic peptides have homogeneous orientation and conformation without inter-peptide clustering and hence lead to the enhanced diagnostic performance with solving the problems of traditional diagnostic probes. Although the multiplex diagnosis of three viral diseases above was demonstrated as proof-of-concept here, the proposed LFA system can be applied to multiplex point of care diagnosis of other intractable diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  10. Multiplex Sequence Analysis Demonstrates the Competitive Growth Advantage of the A-to-G Mutants of Clarithromycin-Resistant Helicobacter pylori

    PubMed Central

    Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.

    1999-01-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates. PMID:10049289

  11. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  12. Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.

    PubMed

    Li, R; Kast, J

    2017-01-01

    Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.

  13. Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples

    PubMed Central

    Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.

    2013-01-01

    Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002

  14. Qualis-SIS: automated standard curve generation and quality assessment for multiplexed targeted quantitative proteomic experiments with labeled standards.

    PubMed

    Mohammed, Yassene; Percy, Andrew J; Chambers, Andrew G; Borchers, Christoph H

    2015-02-06

    Multiplexed targeted quantitative proteomics typically utilizes multiple reaction monitoring and allows the optimized quantification of a large number of proteins. One challenge, however, is the large amount of data that needs to be reviewed, analyzed, and interpreted. Different vendors provide software for their instruments, which determine the recorded responses of the heavy and endogenous peptides and perform the response-curve integration. Bringing multiplexed data together and generating standard curves is often an off-line step accomplished, for example, with spreadsheet software. This can be laborious, as it requires determining the concentration levels that meet the required accuracy and precision criteria in an iterative process. We present here a computer program, Qualis-SIS, that generates standard curves from multiplexed MRM experiments and determines analyte concentrations in biological samples. Multiple level-removal algorithms and acceptance criteria for concentration levels are implemented. When used to apply the standard curve to new samples, the software flags each measurement according to its quality. From the user's perspective, the data processing is instantaneous due to the reactivity paradigm used, and the user can download the results of the stepwise calculations for further processing, if necessary. This allows for more consistent data analysis and can dramatically accelerate the downstream data analysis.

  15. Host factors associated with serologic inflammatory markers assessed using multiplex assays

    PubMed Central

    McKay, Heather S.; Bream, Jay H.; Margolick, Joseph B.; Martínez-Maza, Otoniel; Phair, John P.; Rinaldo, Charles R.; Abraham, Alison G.; Jacobson, Lisa P.

    2016-01-01

    Chronic systemic inflammation contributes to the development of adverse health conditions, yet the influence of fixed and modifiable risk factors on many serologic biomarkers of inflammation remains largely unknown. Serum concentrations of twenty-three biomarkers, including C-reactive protein (CRP), cytokines (CXCL11, CXCL8, CXCL10, CCL2, CCL13, CCL4, CCL17, CXCL13, IL-10, IL-12p70, IL-6, TNF-α, IL-2, IFN-γ, IL-1β, GM-CSF, BAFF), and soluble immune receptors (sCD14, sIL-2Rα, sCD27, sgp130, sTNF-R2) were measured longitudinally using multiplexed immunometric assays in 250 HIV-uninfected men followed in the Multicenter AIDS Cohort Study (1984–2009). Generalized gamma regression was used to determine the statistical significance of factors associated with each biomarker. After accounting for age, race, and education, and for analysis of multiple biomarkers, higher concentrations of specific individual biomarkers were significantly (P<0.002) associated with hypertension, obesity, hepatitis C infection, stimulant use, and diabetes and lower concentrations with hypercholesterolemia. These associations should be taken into account in epidemiological studies of these biomarkers, and may provide potential targets for disease prevention and treatment. PMID:27295613

  16. Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant.

    PubMed

    Lash, Gendie E; Scaife, Paula J; Innes, Barbara A; Otun, Harry A; Robson, Steven C; Searle, Roger F; Bulmer, Judith N

    2006-02-20

    Multiplex cytokine analysis technologies have become readily available in the last five years. Two main formats exist: multiplex sandwich ELISA and bead based assays. While these have each been compared to individual ELISAs, there has been no direct comparison between the two formats. We report here the comparison of two multiplex sandwich ELISA procedures (FAST Quant and SearchLight) and a bead based assay (UpState Luminex). All three kits differed from each other for different analytes and there was no clear pattern of one system giving systematically different results than another for any analyte studied. We suggest that each system has merits and several factors including range of analytes available, prospect of development of new analytes, dynamic range of the assay, sensitivity of the assay, cost of equipment, cost of consumables, ease of use and ease of data analysis need to be considered when choosing a system for use. We also suggest that results obtained from different systems cannot be combined.

  17. Quantitative Assay of Pyrazofurin a New Antiviral, Antitumor Antibiotic1

    PubMed Central

    Westhead, J. E.; Price, H. D.

    1974-01-01

    Pyrazofurin, a carbon-linked nucleoside, has been previously reported to possess antiviral and antitumor activity. The antagonistic effect of pyrazofurin against Neurospora crassa has been utilized to develop a quantitative assay for the compound. PMID:4275616

  18. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  19. Quantitative phenotyping via deep barcode sequencing

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J.; Chee, Mark; Roth, Frederick P.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or “Bar-seq,” outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that ∼20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene–environment interactions on a genome-wide scale. PMID:19622793

  20. Multiplexed quantitative real-time PCR to detect 22q11.2 deletion in patients with congenital heart disease

    PubMed Central

    Mahnke, Donna K.; Larson, Joshua M.; Ghanta, Sujana; Feng, Ying; Simpson, Pippa M.; Broeckel, Ulrich; Duffy, Kelly; Tweddell, James S.; Grossman, William J.; Routes, John M.; Mitchell, Michael E.

    2010-01-01

    22q11.2 Deletion syndrome (22q11.2 DS) [DiGeorge syndrome type 1 (DGS1)] occurs in ∼1:3,000 live births; 75% of children with DGS1 have severe congenital heart disease requiring early intervention. The gold standard for detection of DGS1 is fluorescence in situ hybridization (FISH) with a probe at the TUPLE1 gene. However, FISH is costly and is typically ordered in conjunction with a karyotype analysis that takes several days. Therefore, FISH is underutilized and the diagnosis of 22q11.2 DS is frequently delayed, often resulting in profound clinical consequences. Our goal was to determine whether multiplexed, quantitative real-time PCR (MQPCR) could be used to detect the haploinsufficiency characteristic of 22q11.2 DS. A retrospective blinded study was performed on 382 subjects who had undergone congenital heart surgery. MQPCR was performed with a probe localized to the TBX1 gene on human chromosome 22, a gene typically deleted in 22q11.2 DS. Cycle threshold (Ct) was used to calculate the relative gene copy number (rGCN). Confirmation analysis was performed with the Affymetrix 6.0 Genome-Wide SNP Array. With MQPCR, 361 subjects were identified as nondeleted with an rGCN near 1.0 and 21 subjects were identified as deleted with an rGCN near 0.5, indicative of a hemizygous deletion. The sensitivity (21/21) and specificity (361/361) of MQPCR to detect 22q11.2 deletions was 100% at an rGCN value drawn at 0.7. One of 21 subjects with a prior clinical (not genetically confirmed) DGS1 diagnosis was found not to carry the deletion, while another subject, not previously identified as DGS1, was detected as deleted and subsequently confirmed via microarray. The MQPCR assay is a rapid, inexpensive, sensitive, and specific assay that can be used to screen for 22q11.2 deletion syndrome. The assay is readily adaptable to high throughput. PMID:20551144

  1. Multiplexing 200 spatial modes with a single hologram

    NASA Astrophysics Data System (ADS)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  2. Shape-coded silica nanotubes for multiplexed bioassay: rapid and reliable magnetic decoding protocols

    PubMed Central

    He, Bo; Kim, Sung Kyoung; Son, Sang Jun; Lee, Sang Bok

    2010-01-01

    Aims The recent development of 1D barcode arrays has proved their capabilities to be applicable to highly multiplexed bioassays. This article introduces two magnetic decoding protocols for suspension arrays of shape-coded silica nanotubes to process multiplexed assays rapidly and easily, which will benefit the minimization and automation of the arrays. Methods In the first protocol, the magnetic nanocrystals are incorporated into the inner voids of barcoded silica nanotubes in order to give the nanotubes magnetic properties. The second protocol is performed by trapping the barcoded silica nanotubes onto streptavidin-modified magnetic beads. Results The rapid and easy decoding process was demonstrated by applying the above two protocols to multiplexed assays, resulting in high selectivity. Furthermore, the magnetic bead-trapped barcode nanotubes provided a great opportunity to exclude the use of dye molecules in multiplexed assays by using barcode nanotubes as signals. Conclusion The rapid and easy manipulation of encoded carriers using magnetic properties could be used to develop promising suspension arrays for portable bioassays. PMID:20025466

  3. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  4. Colour-barcoded magnetic microparticles for multiplexed bioassays.

    PubMed

    Lee, Howon; Kim, Junhoi; Kim, Hyoki; Kim, Jiyun; Kwon, Sunghoon

    2010-09-01

    Encoded particles have a demonstrated value for multiplexed high-throughput bioassays such as drug discovery and clinical diagnostics. In diverse samples, the ability to use a large number of distinct identification codes on assay particles is important to increase throughput. Proper handling schemes are also needed to readout these codes on free-floating probe microparticles. Here we create vivid, free-floating structural coloured particles with multi-axis rotational control using a colour-tunable magnetic material and a new printing method. Our colour-barcoded magnetic microparticles offer a coding capacity easily into the billions with distinct magnetic handling capabilities including active positioning for code readouts and active stirring for improved reaction kinetics in microscale environments. A DNA hybridization assay is done using the colour-barcoded magnetic microparticles to demonstrate multiplexing capabilities.

  5. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    PubMed

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of <12%. Using isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex, >4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  6. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  7. The production of KIR-Fc fusion proteins and their use in a multiplex HLA class I binding assay.

    PubMed

    Hilton, Hugo G; Moesta, Achim K; Guethlein, Lisbeth A; Blokhuis, Jeroen; Parham, Peter; Norman, Paul J

    2015-10-01

    Soluble recombinant proteins that comprise the extracellular part of a surface expressed receptor attached to the Fc region of an IgG antibody have facilitated the determination of ligand specificity for an array of immune system receptors. Among such receptors is the family of killer cell immunoglobulin-like receptors (KIR) that recognize HLA class I ligands. These receptors, expressed on natural killer (NK) cells and T cells, play important roles in both immune defense and placental development in early pregnancy. Here we describe a method for the production of two domain KIR-Fc fusion proteins using baculovirus infected insect cells. This method is more scalable than traditional mammalian cell expression systems and produces efficiently folded proteins that carry posttranslational modifications found in native KIR. We also describe a multiplex binding assay using the Luminex platform that determines the avidity and specificity of two domain KIR-Fc for a panel of microbeads, each coated with one of 97 HLA class I allotypes. This assay is simple to perform, and represents a major improvement over the assays used previously, which were limited in the number of KIR and HLA class I combinations that could be assayed at any one time. The results obtained from this assay can be used to predict the response of NK cell and T cells when their KIR recognize HLA class I. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach.

    PubMed

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O'Brien, Mary; Turner, Nicholas C; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

  9. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach

    PubMed Central

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J.; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O’Brien, Mary; Turner, Nicholas C.; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma. PMID:26413866

  10. Development of a Multiplex Real-Time PCR Assay with an Internal Amplification Control for the Detection of Total and Pathogenic Vibrio parahaemolyticus Bacteria in Oysters▿

    PubMed Central

    Nordstrom, Jessica L.; Vickery, Michael C. L.; Blackstone, George M.; Murray, Shelley L.; DePaola, Angelo

    2007-01-01

    Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus. PMID:17644647

  11. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-01-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. PMID:27044566

  12. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection.

    PubMed

    Machado, Jessica M D; Soares, Ruben R G; Chu, Virginia; Conde, João P

    2018-01-15

    The field of microfluidics holds great promise for the development of simple and portable lab-on-a-chip systems. The use of capillarity as a means of fluidic manipulation in lab-on-a-chip systems can potentially reduce the complexity of the instrumentation and allow the development of user-friendly devices for point-of-need analyses. In this work, a PDMS microchannel-based, colorimetric, autonomous capillary chip provides a multiplexed and semi-quantitative immunodetection assay. Results are acquired using a standard smartphone camera and analyzed with a simple gray scale quantification procedure. The performance of this device was tested for the simultaneous detection of the mycotoxins ochratoxin A (OTA), aflatoxin B1 (AFB1) and deoxynivalenol (DON) which are strictly regulated food contaminants with severe detrimental effects on human and animal health. The multiplexed assay was performed approximately within 10min and the achieved sensitivities of<40, 0.1-0.2 and<10ng/mL for OTA, AFB1 and DON, respectively, fall within the majority of currently enforced regulatory and/or recommended limits. Furthermore, to assess the potential of the device to analyze real samples, the immunoassay was successfully validated for these 3 mycotoxins in a corn-based feed sample after a simple sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rapid and Accurate Diagnosis of Acute Pyogenic Meningitis Due to Streptococcus Pneumoniae, Haemophilus influenzae Type b and Neisseria meningitidis Using A Multiplex PCR Assay.

    PubMed

    Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan

    2017-09-01

    Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.

  14. Quantitative Fissile Assay In Used Fuel Using LSDS System

    NASA Astrophysics Data System (ADS)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  15. DNA Meter: Energy Tunable, Quantitative Hybridization Assay

    PubMed Central

    Braunlin, William; Völker, Jens; Plum, G. Eric; Breslauer, Kenneth J.

    2015-01-01

    We describe a novel hybridization assay that employs a unique class of energy tunable, bulge loop-containing competitor strands (C*) that hybridize to a probe strand (P). Such initial “pre-binding” of a probe strand modulates its effective “availability” for hybridizing to a target site (T). More generally, the assay described here is based on competitive binding equilibria for a common probe strand (P) between such tunable competitor strands (C*) and a target strand (T). We demonstrate that loop variable, energy tunable families of C*P complexes exhibit enhanced discrimination between targets and mismatched targets, thereby reducing false positives/negatives. We refer to a C*P complex between a C* competitor single strand and the probe strand as a “tuning fork,” since the C* strand exhibits branch points (forks) at the duplex-bulge interfaces within the complex. By varying the loop to create families of such “tuning forks,” one can construct C*P “energy ladders” capable of resolving small differences within the target that may be of biological/functional consequence. The methodology further allows quantification of target strand concentrations, a determination heretofore not readily available by conventional hybridization assays. The dual ability of this tunable assay to discriminate and quantitate targets provides the basis for developing a technology we refer to as a “DNA Meter.” Here we present data that establish proof-of-principle for an in solution version of such a DNA Meter. We envision future applications of this tunable assay that incorporate surface bound/spatially resolved DNA arrays to yield enhanced discrimination and sensitivity. PMID:23529692

  16. A semi-automated multiplex high-throughput assay for measuring IgG antibodies against Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) domains in small volumes of plasma.

    PubMed

    Cham, Gerald K K; Kurtis, Jonathan; Lusingu, John; Theander, Thor G; Jensen, Anja T R; Turner, Louise

    2008-06-12

    The level of antibodies against PfEMP1 is routinely quantified by the conventional microtitre enzyme-linked immunosorbent assay (ELISA). However, ELISA only measures one analyte at a time and requires a relatively large plasma volume if the complete antibody profile of the sample is to be obtained. Furthermore, assay-to-assay variation and the problem of storage of antigen can influence ELISA results. The bead-based assay described here uses the BioPlex100 (BioRad, Hercules, CA, USA) system which can quantify multiple antibodies simultaneously in a small plasma volume. A total of twenty nine PfEMP1 domains were PCR amplified from 3D7 genomic DNA, expressed in the Baculovirus system and purified by metal-affinity chromatography. The antibody reactivity level to the recombinant PfEMP1 proteins in human hyper-immune plasma was measured by ELISA. In parallel, these recombinant PfEMP1 proteins were covalently coupled onto beads each having its own unique detection signal and the human hyper-immune plasma reactivity was detected for each individual protein using a BioPlex100 system. Protein-coupled beads were analysed at two time points seven months apart, before and after lyophilization and the results compared to determine the effect of storage and lyophilization respectively on the beads. Multiplexed protein-coupled beads from twenty eight unique bead populations were evaluated on the BioPlex100 system against pooled human hyper-immune plasma before and after lyophilization. The bead-based assay was sensitive, accurate and reproducible. Four recombinant PfEMP1 proteins C17, D5, D9 and D12, selected on the basis that they showed a spread of median fluorescent intensity (MFI) values from low to high when analysed by the bead-based assay were analysed by ELISA and the results from both analyses were highly correlated. The Spearman's rank correlation coefficients (Rho) were > or = 0.86, (P < 0.0001) for all comparisons. Bead-based assays gave similar results regardless of

  17. A novel multiplex pyrosequencing assay for genotyping functionally relevant CTLA-4 polymorphisms: potential applications in autoimmunity and cancer.

    PubMed

    Banelli, Barbara; Morabito, Anna; Laurent, Stefania; Piccioli, Patrizia; Dozin, Beatrice; Ghio, Massimo; Ascierto, Paolo Antonio; Monteghirfo, Stefano; Marasco, Antonella; Ottaviano, Vincenzo; Queirolo, Paola; Romani, Massimo; Pistillo, Maria Pia

    2014-08-01

    CTLA-4 expression/function can be affected by single nucleotide polymorphisms (SNPs) of CTLA-4 gene, which have been widely associated with susceptibility or progression to autoimmune diseases and cancer development. In this study, we analyzed six CTLA-4 SNPs (-1661A>G, -1577G>A, -658C>T, -319C>T, +49A>G, CT60G>A) in 197 DNA samples from 43 B-lymphoblastoid cell lines (B-LCLs), 40 systemic sclerosis (SSc) patients, 14 pre-analyzed melanoma patients and 100 Italian healthy subjects. Genotyping of -1661A>G, -1577G>A, -658C>T and CT60G>A was performed by newly developed multiplex pyrosequencing (PSQ) assays, whereas -319C>T and +49A>G by T-ARMS PCR and direct sequencing. Genotype/allele frequency were analyzed using χ(2) or Fisher exact test. Our study provides the first multiplex PSQ method that allows simultaneous genotyping of two CTLA-4 SNP pairs (i.e. -1661A>G/-658C>T and -1577G>A/CT60G>A) by two multiplex PSQ reactions. Herein, we show the CTLA-4 genotype distribution in the B-LCLs providing the first and best characterized cell line panel typed for functionally relevant CTLA-4 SNPs. We also report the significant association of the -1661A/G genotype, -1661 & -319 AC-GT diplotype and -319 & CT60 TG haplotype with susceptibility to SSc without Hashimoto's thyroiditis occurrence. Furthermore, we confirmed previous genotyping data referred to melanoma patients and provided new genotyping data for Italian healthy subjects. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    PubMed

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  19. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  20. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients.

    PubMed

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-08-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.

  1. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients

    PubMed Central

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-01-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell-free DNA (cfDNA) extracted from the plasma of advanced non-small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) -sensitive (19DEL, L858R) and TKI-resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR-TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra-sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR-TKI decision-making for advanced NSCLC patients. PMID:29067441

  2. Simultaneous use of multiplex ligation-dependent probe amplification assay and flow cytometric DNA ploidy analysis in patients with acute leukemia.

    PubMed

    Reyes-Núñez, Virginia; Galo-Hooker, Evelyn; Pérez-Romano, Beatriz; Duque, Ricardo E; Ruiz-Arguelles, Alejandro; Garcés-Eisele, Javier

    2018-01-01

    The aim of this work was to simultaneously use multiplex ligation-dependent probe amplification (MLPA) assay and flow cytometric DNA ploidy analysis (FPA) to detect aneuploidy in patients with newly diagnosed acute leukemia. MLPA assay and propidium iodide FPA were used to test samples from 53 consecutive patients with newly diagnosed acute leukemia referred to our laboratory for immunophenotyping. Results were compared by nonparametric statistics. The combined use of both methods significantly increased the rate of detection of aneuploidy as compared to that obtained by each method alone. The limitations of one method are somehow countervailed by the other and vice versa. MPLA and FPA yield different yet complementary information concerning aneuploidy in acute leukemia. The simultaneous use of both methods might be recommended in the clinical setting. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  3. A quantitative assay measuring the function of lipase maturation factor 1

    PubMed Central

    Yin, Fen; Doolittle, Mark H.; Péterfy, Miklós

    2009-01-01

    Newly synthesized lipoprotein lipase (LPL) and related members of the lipase gene family require an endoplasmic reticulum maturation factor for attainment of enzyme activity. This factor has been identified as lipase maturation factor 1 (Lmf1), and mutations affecting its function and/or expression result in combined lipase deficiency (cld) and hypertriglyceridemia. To assess the functional impact of Lmf1 sequence variations, both naturally occurring and induced, we report the development of a cell-based assay using LPL activity as a quantitative reporter of Lmf1 function. The assay uses a cell line homozygous for the cld mutation, which renders endogenous Lmf1 nonfunctional. LPL transfected into the mutant cld cell line fails to attain activity; however, cotransfection of LPL with wild-type Lmf1 restores its ability to support normal lipase maturation. In this report, we describe optimized conditions that ensure the detection of a complete range of Lmf1 function (full, partial, or complete loss of function) using LPL activity as the quantitative reporter. To illustrate the dynamic range of the assay, we tested several novel mutations in mouse Lmf1. Our results demonstrate the ability of the assay to detect and analyze Lmf1 mutations having a wide range of effects on Lmf1 function and protein expression. PMID:19471043

  4. The Microwave SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the

  5. A novel one-step real-time multiplex PCR assay to detect Streptococcus agalactiae presence and serotypes Ia, Ib, and III.

    PubMed

    Furfaro, Lucy L; Chang, Barbara J; Payne, Matthew S

    2017-09-01

    Streptococcus agalactiae is the leading cause of early-onset neonatal sepsis. Culture-based screening methods lack the sensitivity of molecular assays and do not indicate serotype; a potentially important virulence marker. We aimed to develop a multiplex PCR to detect S. agalactiae while simultaneously identifying serotypes Ia, Ib, and III; commonly associated with infant disease. Primers were designed to target S. agalactiae serotype-specific cps genes and the dltS gene. The assay was validated with 512 vaginal specimens from pregnant women. 112 (21.9%) were dltS positive, with 14.3%, 0.9%, and 6.3% of these identified as cps Ia, Ib, and III, respectively. Our assay is a specific and sensitive method to simultaneously detect S. agalactiae and serotypes Ia, Ib, and III in a single step. It is of high significance for clinical diagnostic applications and also provides epidemiological data on serotype, information that may be important for vaccine development and other targeted non-antibiotic therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays.

    PubMed

    Li, Tianhong; Maus, Martin K H; Desai, Sonal J; Beckett, Laurel A; Stephens, Craig; Huang, Eric; Hsiang, Jack; Zeger, Gary; Danenberg, Kathleen D; Astrow, Stephanie H; Gandara, David R

    2014-01-01

    The objective of this study was to identify and characterize echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase fusion (EML4-ALK+) cancers by variant-specific, quantitative reverse transcription polymerase chain reaction (RT-PCR) assays in a large cohort of North American non-small-cell lung cancer (NSCLC) patients. We developed a panel of single and multiplex RT-PCR assays suitable for rapid and accurate detection of the eight most common EML4-ALK+ variants and ALK gene expression in archival formalin-fixed, paraffin-embedded NSCLC specimens. EGFR and KRAS genotyping and thymidylate synthase RNA level by RT-PCR assays were available in a subset of patients. Between December 2009 and September 2012, 7344 NSCLC specimens were tested. An EML4-ALK+ transcript was detected in 200 cases (2.7%), including 109 V1 (54.5%), 20 V2 (10.0%), 68 V3 (34.0%), and three V5a (1.5%) variants. Median age was 54.5 years (range, 23-89), and 104 patients (52.0%) were women. The great majority (n=188, 94.0%) of EML4-ALK+ NSCLC tumors had adenocarcinoma histology. ALK expression level varied significantly among different EML4-ALK+ variants and individual tumors. Only one case each of concurrent EGFR or KRAS mutation was detected. The median thymidylate synthase RNA level from 85 EML4-ALK+ cancers was significantly lower compared with that of EML4-ALK-negative lung adenocarcinomas (2.02 versus 3.29, respectively, p<0.001). This panel of variant-specific, quantitative RT-PCR assays detects common EML4-ALK+ variants as well as ALK gene expression level in archival formalin-fixed paraffin-embedded NSCLC specimens. These RT-PCR assays may be useful as an adjunct to the standard fluorescence in situ hybridization assay to better understand biologic variability and response patterns to anaplastic lymphoma kinase inhibitors.

  7. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    PubMed

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  8. Detection and measurement of surface contamination by multiple antineoplastic drugs using multiplex bead assay

    PubMed Central

    Smith, Jerome P; Sammons, Deborah L; Robertson, Shirley A; Pretty, Jack; Debord, D Gayle; Connor, Thomas H; Snawder, John

    2015-01-01

    Objectives Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive. Since immunochemical methods may be cheaper and faster than instrumental methods, we wanted to explore their use for routine drug residue detection for preventing worker exposure. Methods In this study we examined the feasibility of using fluorescence covalent microbead immunosorbent assay (FCMIA) for simultaneous detection and semi-quantitative measurement of three antineoplastic drugs (5-fluorouracil, paclitaxel, and doxorubicin). The concentration ranges for the assay were 0–1000 ng/ml for 5-fluorouracil, 0–100 ng/ml for paclitaxel, and 0–2 ng/ml for doxorubicin. The surface sampling technique involved wiping a loaded surface with a swab wetted with wash buffer, extracting the swab in storage/blocking buffer, and measuring drugs in the extract using FCMIA. Results There was no significant cross reactivity between these drugs at the ranges studied indicated by a lack of response in the assay to cross analytes. The limit of detection (LOD) for 5-fluorouracil on the surface studied was 0.93 ng/cm2 with a limit of quantitation (LOQ) of 2.8 ng/cm2, the LOD for paclitaxel was 0.57 ng/cm2 with an LOQ of 2.06 ng/cm2, and the LOD for doxorubicin was 0.0036 ng/cm2 with an LOQ of 0.013 ng/cm2. Conclusion The use of FCMIA with a simple sampling technique has potential for low cost simultaneous detection and semi-quantitative measurement of surface contamination from multiple antineoplastic drugs. PMID:25293722

  9. A novel multiplex real-time PCR assay for the concurrent detection of hepatitis A, B and C viruses in patients with acute hepatitis.

    PubMed

    Park, Yongjung; Kim, Beom Seok; Choi, Kyu Hun; Shin, Dong Ho; Lee, Mi Jung; Cho, Yonggeun; Kim, Hyon-Suk

    2012-01-01

    A novel multiplex real-time PCR assay for concurrent detection of hepatitis viruses was evaluated for its clinical performance in screening patients with acute hepatitis. A total of 648 serum samples were collected from patients with acute symptoms of hepatitis. Concurrent detection of nucleic acids of HAV, HBV and HCV was performed using the Magicplex™ HepaTrio Real-time Detection test. Serum nucleic acid levels of HBV and HCV were also quantified by the Cobas® AmpliPrep/Cobas® TaqMan® (CAP/CTM) HBV and HCV tests. Patients' medical records were also reviewed. Concordance rates between the results from the HepaTrio and the CAP/CTM tests for the detection of HBV and HCV were 94.9% (k = 0.88) and 99.2% (k = 0.98), respectively. The cycle threshold values with the HepaTrio test were also correlated well with the levels of HBV DNA (r = -0.9230) and HCV RNA (r = -0.8458). The sensitivity and specificity of the HepaTrio test were 93.8% and 98.2%, respectively, for detecting HBV infection, and 99.1% and 100.0%, respectively, for HCV infection. For the HepaTrio test, 21 (3.2%) cases were positive for both HBV and HCV. Among the positive cases, 6 (0.9%) were true coinfections. This test also detected 18 (2.8%) HAV positives. The HepaTrio test demonstrated good clinical performance and produced results that agreed well with those of the CAP/CTM assays, especially for the detection of HCV. This assay was also able to detect HAV RNA from anti-HAV IgM-positive individuals. Therefore, this new multiplex PCR assay could be useful for the concurrent detection of the three hepatitis viruses.

  10. A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam

    PubMed Central

    Frankham, Greta J.; McEwing, Ross; The, Dang Tat; Hogg, Carolyn J.; Lo, Nathan; Johnson, Rebecca N.

    2018-01-01

    Rhinoceros (rhinos) have suffered a dramatic increase in poaching over the past decade due to the growing demand for rhino horn products in Asia. One way to reverse this trend is to enhance enforcement and intelligence gathering tools used for species identification of horns, in particular making them fast, inexpensive and accurate. Traditionally, species identification tests are based on DNA sequence data, which, depending on laboratory resources, can be either time or cost prohibitive. This study presents a rapid rhino species identification test, utilizing species-specific primers within the cytochrome b gene multiplexed in a single reaction, with a presumptive species identification based on the length of the resultant amplicon. This multiplex PCR assay can provide a presumptive species identification result in less than 24 hours. Sequence-based definitive testing can be conducted if/when required (e.g. court purposes). This work also presents an actual casework scenario in which the presumptive test was successfully utlitised, in concert with sequence-based definitive testing. The test was carried out on seized suspected rhino horns tested at the Institute of Ecology and Biological Resources, the CITES mandated laboratory in Vietnam, a country that is known to be a major source of demand for rhino horns. This test represents the basis for which future ‘rapid species identification tests’ can be trialed. PMID:29902212

  11. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations.

    PubMed

    Aoki, Yoshinao; Hada, Yosuke; Suzuki, Shunji

    2013-02-01

    DNA-based diagnosis has become a common tool for the evaluation of fungicide resistance in obligate phytopathogenic fungus Plasmopara viticola. A multiplex allele-specific primer PCR assay has been developed for the rapid detection of fungicide resistance in P. viticola populations. With this assay, a glycine-to-alanine substitution at codon 143 of the P. viticola cytochrome b gene, which conferred QoI fungicide resistance, and a glycine-to-serine substitution at codon 1105 of the P. viticola cellulose synthase gene PvCesA3, which conferred CAA fungicide resistance, were detected simultaneously. It is suggested that the present assay is a reliable tool for the rapid and simultaneous detection of QoI and CAA fungicide resistance alleles in P. viticola populations. The assay required only 2 h from the sampling of symptoms to the detection of resistance alleles to both fungicides. Copyright © 2012 Society of Chemical Industry.

  12. ICP-MS analysis of lanthanide-doped nanoparticles: A quantitative and multiplexing approach to investigate biodistribution, blood clearance, and targeting

    NASA Astrophysics Data System (ADS)

    Crayton, Samuel

    The rapidly progressing field of nanotechnology promises to revolutionize healthcare in the 21st century, with applications in the prevention, diagnosis, and treatment of a wide range of diseases. However, before nanoparticulate agents can be brought into clinical use, they must first be developed, optimized, and evaluated in animal models. In the typical pre-clinical paradigm, almost all of the optimization is done at the in vitro level, with only a few select agents reaching the level of animal studies. Since only one experimental nanoparticle formulation can be investigated in a single animal, and in vivo experiments have relatively higher complexity, cost, and time requirements, it is not feasible to evaluate a very large number of agents at the in vivo stage. A major drawback of this approach, however, is that in vitro assays do not always accurately predict how a nanoparticle will perform in animal studies. Therefore, a method that allows many agents to be evaluated in a single animal subject would allow for much more efficient and predictive optimization of nanoparticles. We have found that by incorporating lanthanide tracer metals into nanoparticle formulations, we are successfully able to use inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively determine a nanoparticle's blood clearance kinetics, biodistribution, and tumor delivery. This approach was applied to evaluate both passive and active tumor targeting, as well as metabolically directed targeting of nanoparticles to low pH tumor microenvironments. Importantly, we found that these in vivo measurements could be made for many nanoparticle formulations simultaneously, in single animals, due to the high-order multiplexing capability of mass spectrometry. This approach allowed for efficient and reproducible comparison of performance between different nanoparticle formulations, by eliminating the effects of subject-to-subject variability. In the future, we envision that this "higher

  13. A Database of Reaction Monitoring Mass Spectrometry Assays for Elucidating Therapeutic Response in Cancer

    PubMed Central

    Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.

    2012-01-01

    Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910

  14. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays

    PubMed Central

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516

  15. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples.

    PubMed

    Didelot, Audrey; Kotsopoulos, Steve K; Lupo, Audrey; Pekin, Deniz; Li, Xinyu; Atochin, Ivan; Srinivasan, Preethi; Zhong, Qun; Olson, Jeff; Link, Darren R; Laurent-Puig, Pierre; Blons, Hélène; Hutchison, J Brian; Taly, Valerie

    2013-05-01

    Assessment of DNA integrity and quantity remains a bottleneck for high-throughput molecular genotyping technologies, including next-generation sequencing. In particular, DNA extracted from paraffin-embedded tissues, a major potential source of tumor DNA, varies widely in quality, leading to unpredictable sequencing data. We describe a picoliter droplet-based digital PCR method that enables simultaneous detection of DNA integrity and the quantity of amplifiable DNA. Using a multiplex assay, we detected 4 different target lengths (78, 159, 197, and 550 bp). Assays were validated with human genomic DNA fragmented to sizes of 170 bp to 3000 bp. The technique was validated with DNA quantities as low as 1 ng. We evaluated 12 DNA samples extracted from paraffin-embedded lung adenocarcinoma tissues. One sample contained no amplifiable DNA. The fractions of amplifiable DNA for the 11 other samples were between 0.05% and 10.1% for 78-bp fragments and ≤1% for longer fragments. Four samples were chosen for enrichment and next-generation sequencing. The quality of the sequencing data was in agreement with the results of the DNA-integrity test. Specifically, DNA with low integrity yielded sequencing results with lower levels of coverage and uniformity and had higher levels of false-positive variants. The development of DNA-quality assays will enable researchers to downselect samples or process more DNA to achieve reliable genome sequencing with the highest possible efficiency of cost and effort, as well as minimize the waste of precious samples. © 2013 American Association for Clinical Chemistry.

  16. Optimizing diffusion in multiplexes by maximizing layer dissimilarity

    NASA Astrophysics Data System (ADS)

    Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.

    2017-05-01

    Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.

  17. Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR

    PubMed Central

    Settanni, Luca; van Sinderen, Douwe; Rossi, Jone; Corsetti, Aldo

    2005-01-01

    A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies. PMID:15933001

  18. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  19. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia.

    PubMed

    Gago, Sara; Esteban, Cristina; Valero, Clara; Zaragoza, Oscar; Puig de la Bellacasa, Jorge; Buitrago, María José

    2014-04-01

    A molecular diagnostic technique based on real-time PCR was developed for the simultaneous detection of three of the most frequent causative agents of fungal opportunistic pneumonia in AIDS patients: Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii. This technique was tested in cultured strains and in clinical samples from HIV-positive patients. The methodology used involved species-specific molecular beacon probes targeted to the internal transcribed spacer regions of the rDNA. An internal control was also included in each assay. The multiplex real-time PCR assay was tested in 24 clinical strains and 43 clinical samples from AIDS patients with proven fungal infection. The technique developed showed high reproducibility (r(2) of >0.98) and specificity (100%). For H. capsulatum and Cryptococcus spp., the detection limits of the method were 20 and 2 fg of genomic DNA/20 μl reaction mixture, respectively, while for P. jirovecii the detection limit was 2.92 log10 copies/20 μl reaction mixture. The sensitivity in vitro was 100% for clinical strains and 90.7% for clinical samples. The assay was positive for 92.5% of the patients. For one of the patients with proven histoplasmosis, P. jirovecii was also detected in a bronchoalveolar lavage sample. No PCR inhibition was detected. This multiplex real-time PCR technique is fast, sensitive, and specific and may have clinical applications.

  20. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    PubMed Central

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-01-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510

  1. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    NASA Astrophysics Data System (ADS)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  2. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection.

    PubMed

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-14

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  3. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    PubMed

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    PubMed

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. © The American Society of Tropical Medicine and Hygiene.

  5. Development and Validation of a Laboratory-Developed Multiplex Real-Time PCR Assay on the BD Max System for Detection of Herpes Simplex Virus and Varicella-Zoster Virus DNA in Various Clinical Specimens.

    PubMed

    Pillet, Sylvie; Verhoeven, Paul O; Epercieux, Amélie; Bourlet, Thomas; Pozzetto, Bruno

    2015-06-01

    A multiplex real-time PCR (quantitative PCR [qPCR]) assay detecting herpes simplex virus (HSV) and varicella-zoster virus (VZV) DNA together with an internal control was developed on the BD Max platform combining automated DNA extraction and an open amplification procedure. Its performance was compared to those of PCR assays routinely used in the laboratory, namely, a laboratory-developed test for HSV DNA on the LightCycler instrument and a test using a commercial master mix for VZV DNA on the ABI7500fast system. Using a pool of negative cerebrospinal fluid (CSF) samples spiked with either calibrated controls for HSV-1 and VZV or dilutions of a clinical strain that was previously quantified for HSV-2, the empirical limit of detection of the BD Max assay was 195.65, 91.80, and 414.07 copies/ml for HSV-1, HSV-2, and VZV, respectively. All the samples from HSV and VZV DNA quality control panels (Quality Control for Molecular Diagnostics [QCMD], 2013, Glasgow, United Kingdom) were correctly identified by the BD Max assay. From 180 clinical specimens of various origins, 2 CSF samples were found invalid by the BD Max assay due to the absence of detection of the internal control; a concordance of 100% was observed between the BD Max assay and the corresponding routine tests. The BD Max assay detected the PCR signal 3 to 4 cycles earlier than did the routine methods. With results available within 2 h on a wide range of specimens, this sensitive and fully automated PCR assay exhibited the qualities required for detecting simultaneously HSV and VZV DNA on a routine basis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Evaluation of the Quantamatrix Multiplexed Assay Platform system for simultaneous detection of Mycobacterium tuberculosis and the rifampicin resistance gene using cultured mycobacteria.

    PubMed

    Wang, Hye-Young; Uh, Young; Kim, Seoyong; Shim, Tae-Sun; Lee, Hyeyoung

    2017-08-01

    The differentiation of Mycobacterium tuberculosis complex (MTBC) from non-tuberculous mycobacteria (NTM) is of primary importance for infection control and the selection of anti-tuberculosis drugs. Up to date data on rifampicin (RIF)-resistant tuberculosis (TB) is essential for the early management of multidrug-resistant TB. The aim of this study was to evaluate the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform, QMAP) for the rapid differentiation of 23 Mycobacterium species including MTBC and RIF-resistant strains. A total of 314 clinical Mycobacterium isolates cultured from respiratory specimens were used in this study. The sensitivity and specificity of the QMAP system for Mycobacterium species were 100% (95% CI 99.15-100%, p<0.0001) and 97.8% (95% CI 91.86-99.87%, p<0.0001), respectively. The results of conventional drug susceptibility testing and the QMAP Dual-ID assay were completely concordant for all clinical isolates (100%, 95% CI 98.56-100%). Out of 223 M. tuberculosis (MTB) isolates, 196 were pan-susceptible and 27 were resistant to RIF according to QMAP results. All of the mutations in the RIF resistance-determining region detected by the QMAP system were confirmed by rpoB sequence analysis and a REBA MTB-Rifa reverse blot hybridization assay. The majority of the mutations (n=26, 96.3%), including those missing wild-type probe signals, were located in three codons (529-534, 524-529, and 514-520), and 17 (65.4%) of these mutations were detected by three mutation probes (531TTG, 526TAC, and 516GTC). The entire QMAP system assay takes about 3h to complete, while results from the culture-based conventional method can take up to 48-72h. Although improvements to the QMAP system are needed for direct respiratory specimens, it may be useful for rapid screening, not only to identify and accurately discriminate MTBC from NTM, but also to identify RIF-resistant MTB strains in positive culture samples

  7. Evaluation of the new AmpliSens multiplex real-time PCR assay for simultaneous detection of Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, and Trichomonas vaginalis.

    PubMed

    Rumyantseva, Tatiana; Golparian, Daniel; Nilsson, Christian S; Johansson, Emma; Falk, My; Fredlund, Hans; Van Dam, Alje; Guschin, Alexander; Unemo, Magnus

    2015-10-01

    In this study, we performed an evaluation of the new CE-marked multiplex real-time AmpliSens N.gonorrhoeae/C.trachomatis/M.genitalium/T.vaginalis-MULTIPRIME-FRT PCR assay compared to APTIMA tests, i.e., APTIMA COMBO 2 assay, APTIMA Trichomonas vaginalis assay (FDA-approved), and two different APTIMA Mycoplasma genitalium assays (research use only; one of them only used for discrepancy analysis). Vaginal swabs (n = 209) and first-void urine (FVU) specimens from females (n = 498) and males (n = 554), consecutive attendees (n = 1261) at a dermatovenerological clinic in Sweden, were examined. The sensitivity of the AmpliSens PCR assay for detection of C. trachomatis (6.3% prevalence), M. genitalium (5.7% prevalence), N. gonorrhoeae (0.3% prevalence), and T. vaginalis (0.08% prevalence) was 97.5% (95% confidence interval (CI): 91.2-99.6%), 81.9% (95% CI: 70.7-89.7%), 100% (95% CI: 40.2-100%) and 100% (95% CI: 16.5-100%), respectively. The specificity of the AmpliSens PCR assay was 100% (95% CI: 99.6-100%) for all agents. The analytical sensitivity and specificity for N. gonorrhoeae detection was excellent, i.e., 55 international gonococcal strains detected and 135 isolates of 13 non-gonococcal Neisseria species were negative. In conclusion, the multiplex real-time AmpliSens N.gonorrhoeae/C.trachomatis/M.genitalium/T.vaginalis-MULTIPRIME-FRT PCR assay demonstrated high sensitivity and excellent specificity for the detection of C. trachomatis, N. gonorrhoeae, and T. vaginalis, and excellent specificity but suboptimal sensitivity for M. genitalium detection. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  8. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  10. Species-specific multiplex PCR for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somni infection in rams.

    PubMed

    Moustacas, Valéria S; Silva, Teane M A; Costa, Luciana F; Xavier, Mariana N; Carvalho, Custódio A; Costa, Érica A; Paixão, Tatiane A; Santos, Renato L

    2013-03-21

    Infectious ovine epididymitis results in substantial economic losses worldwide due to reproductive failure and culling of breeders. The most common causative agents of these infections are Brucella ovis, Actinobacillus seminis, and Histophilus somni. The aim of this study was to develop a multiplex PCR assay for simultaneous detection of Brucella ovis, Actinobacillus seminis, and Histophilus somni with species-specific primers applied to biological samples for molecular diagnosis of these infections. The multiplex assay was capable of detecting B. ovis, A. seminis, and H. somni DNA simultaneously from genomic bacterial DNA samples and pool of semen samples from experimentally infected rams. The method was highly specific since it did not amplify DNA from other bacterial species that can potentially cause epididymitis in rams as well as species phylogenetically related to B. ovis. All negative control samples were negative in PCR multiplex assay. Urine can be used as an alternative to semen samples. The species-specific multiplex PCR assay developed in this study can be successfully used for the detection of three of the most common bacterial causes of ovine epididymitis.

  11. [Clinical evaluation of a novel HBsAg quantitative assay].

    PubMed

    Takagi, Kazumi; Tanaka, Yasuhito; Naganuma, Hatsue; Hiramatsu, Kumiko; Iida, Takayasu; Takasaka, Yoshimitsu; Mizokami, Masashi

    2007-07-01

    The clinical implication of the hepatitis B surface antigen (HBsAg) concentrations in HBV-infected individuals remains unclear. The aim of this study was to evaluate a novel fully automated Chemiluminescence Enzyme Immunoassay (Sysmex HBsAg quantitative assay) by comparative measurements of the reference serum samples versus two independent commercial assays (Lumipulse f or Architect HBsAg QT). Furthermore, clinical usefulness was assessed for monitoring of the serum HBsAg levels during antiviral therapy. A dilution test using 5 reference-serum samples showed linear correlation curve in range from 0.03 to 2,360 IU/ml. The HBsAg was measured in total of 400 serum samples and 99.8% had consistent results between Sysmex and Lumipulse f. Additionally, a positive linear correlation was observed between Sysmex and Architect. To compare the Architect and Sysmex, both methods were applied to quantify the HBsAg in serum samples with different HBV genotypes/subgenotypes, as well as in serum contained HBV vaccine escape mutants (126S, 145R). Correlation between the methods was observed in results for escape mutants and common genotypes (A, B, C) in Japan. Observed during lamivudine therapy, an increase in HBsAg and HBV DNA concentrations preceded the aminotransferase (ALT) elevation associated with drug-resistant HBV variant emergence (breakthrough hepatitis). In conclusion, reliability of the Sysmex HBsAg quantitative assay was confirmed for all HBV genetic variants common in Japan. Monitoring of serum HBsAg concentrations in addition to HBV DNA quantification, is helpful in evaluation of the response to lamivudine treatment and diagnosis of the breakthrough hepatitis.

  12. Evaluation of the Roche LightMix Gastro parasites multiplex PCR assay detecting Giardia duodenalis, Entamoeba histolytica, cryptosporidia, Dientamoeba fragilis, and Blastocystis hominis.

    PubMed

    Friesen, J; Fuhrmann, J; Kietzmann, H; Tannich, E; Müller, M; Ignatius, R

    2018-03-23

    Multiplex PCR assays offer highly sensitive and specific tools for the detection of enteric pathogens. This prospective study aimed at comparing the novel Roche LightMix Modular Assay Gastro Parasites (LMAGP) detecting Giardia duodenalis, Entamoeba histolytica, Cryptosporidium spp., Blastocystishominis, and Dientamoebafragilis with routine laboratory procedures. Stool specimens (n = 1062 from 1009 patients) were consecutively examined by LMAGP, R-Biopharm Ridascreen enzyme immunoassays (EIAs) detecting G. duodenalis or E. histolytica/dispar, and microscopy of wet mounts. Discrepant results were analysed by in-house PCR. D. fragilis or B. hominis were detected by LMAGP in 131 (14.4%) and 179 (19.9%; 16 samples positive by microscopy; p < 0.0001) of 909 samples, respectively. Of 918 samples analysed for Cryptosporidium spp., six were positive by LMAGP (three could be confirmed by Kinyoun staining and one by in-house PCR). G. duodenalis was detected by LMAGP, EIA, or microscopy in 20, 16, or 9 of 1039 stool samples, respectively; all four samples missed by EIA were confirmed by in-house PCR. In total, 938 stool samples were analysed for E. histolytica/dispar. Nine of ten EIA-positive samples were negative by LMAGP but positive by in-house PCR for E. dispar. One E. histolytica infection (positive by both LMAGP and in-house PCR) was missed by EIA and microscopy. Parasites only detected by microscopy included Enterobius vermicularis eggs (n = 3) and apathogenic amoebae (n = 27). The data call for routine use of multiplex PCR assays for the detection of enteric protozoan parasites in laboratory diagnostics. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Multiplexed Imaging of Protein Phosphorylation on Membranes Based on Ti(IV) Functionalized Nanopolymers.

    PubMed

    Iliuk, Anton; Li, Li; Melesse, Michael; Hall, Mark C; Tao, W Andy

    2016-05-17

    Accurate protein phosphorylation analysis reveals dynamic cellular signaling events not evident from protein expression levels. The most dominant biochemical assay, western blotting, suffers from the inadequate availability and poor quality of phospho-specific antibodies for phosphorylated proteins. Furthermore, multiplexed assays based on antibodies are limited by steric interference between the antibodies. Here we introduce a multifunctionalized nanopolymer for the universal detection of phosphoproteins that, in combination with regular antibodies, allows multiplexed imaging and accurate determination of protein phosphorylation on membranes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A multiplex PCR for detection of Listeria monocytogenes and its lineages.

    PubMed

    Rawool, Deepak B; Doijad, Swapnil P; Poharkar, Krupali V; Negi, Mamta; Kale, Satyajit B; Malik, S V S; Kurkure, Nitin V; Chakraborty, Trinad; Barbuddhe, Sukhadeo B

    2016-11-01

    A novel multiplex PCR assay was developed to identify genus Listeria, and discriminate Listeria monocytogenes and its major lineages (LI, LII, LIII). This assay is a rapid and inexpensive subtyping method for screening and characterization of L. monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solid-phase proximity ligation assays for individual or parallel protein analyses with readout via real-time PCR or sequencing.

    PubMed

    Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros

    2013-06-01

    Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.

  16. A universal array-based multiplexed test for cystic fibrosis carrier screening.

    PubMed

    Amos, Jean A; Bridge-Cook, Philippa; Ponek, Victor; Jarvis, Michael R

    2006-01-01

    Cystic fibrosis is a multisystem autosomal recessive disorder with high carrier frequencies in caucasians and significant, but lower, carrier frequencies in other ethnicities. Based on technology that allows high detection of mutations in caucasians and significant detection in other ethnic groups, the American College of Medical Genetics (ACMG) and American College of Obstetricians and Gynecologists (ACOG) have recommended pan-ethnic cystic fibrosis carrier screening for all reproductive couples. This paper discusses carrier screening using the Tag-It multiplex mutation platform and the Cystic Fibrosis Mutation Detection Kit. The Tag-It cystic fibrosis assay is a multiplexed genotyping assay that detects a panel of 40 cystic fibrosis transmembrane conductance regulator mutations including the 23 mutations recommended by the ACMG and ACOG for population screening. A total of 16 additional mutations detected by the Tag-It cystic fibrosis assay may also be common. The assay method is described in detail, and its performance in a genetics reference laboratory performing high-volume cystic fibrosis carrier screening is assessed.

  17. Multiplexed Western Blotting Using Microchip Electrophoresis.

    PubMed

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  18. A nested multiplex polymerase chain reaction assay for the differential identification of three zooanthroponotic chlamydial strains in porcine swab samples.

    PubMed

    Li, Yingguo; Wang, Yu; Nie, Fuping; Xiao, Jinwen; Wang, Guoming; Yuan, Ling; Li, Zhengguo

    2011-07-01

    Porcine chlamydial infection is an enzootic infectious disease caused by multiple members of the family Chlamydiaceae (e.g. Chlamydophila abortus, Chlamydia suis, and Chlamydophila pneumoniae). Rapid and accurate differentiation of these pathogens is critical in the control and prevention of disease. The aim of the current study was to develop a nested multiplex polymerase chain reaction (nmPCR) assay to simultaneously detect the 3 chlamydial pathogens in clinical samples. In the first round of the nmPCR, 1 pair of family-specific primers were used to amplify the 1,100 base pair (bp) fragment of chlamydial ompA gene. In the second round of the nmPCR, 4 inner primers were designed for Ch. abortus, C. suis, and Ch. pneumoniae. Each pathogen produced a specific amplicon with a size of 340 bp, 526 bp, and 267 bp respectively. The assay was sensitive and specific for detecting target pathogens in both cell cultures and clinical specimens. The results, incorporated with the improved rapid DNA extraction protocol, suggest that the nmPCR could be a promising assay for differential identification of different chlamydial strains in pigs.

  19. A novel multiplex poliovirus binding inhibition assay applicable for large serosurveillance and vaccine studies, without the use of live poliovirus.

    PubMed

    Schepp, Rutger M; Berbers, Guy A M; Ferreira, José A; Reimerink, Johan H; van der Klis, Fiona R

    2017-03-01

    Large-scale serosurveillance or vaccine studies for poliovirus using the "gold standard" WHO neutralisation test (NT) are very laborious and time consuming. With the polio eradication at hand and with the removal of live attenuated Sabin strains from the oral poliovirus vaccine (OPV), starting with type 2 (as of April 2016), laboratories will need to conform to much more stringent laboratory biosafety regulations when handling live poliovirus strains. In this study, a poliovirus binding inhibition multiplex immunoassay (polio MIA) using inactivated poliovirus vaccine (IPV-Salk) was developed for simultaneous quantification of serum antibodies directed to all three poliovirus types. Our assay shows a good correlation with the NT and an excellent correlation with the ELISA-based binding inhibition assay (POBI). The assay is highly type-specific and reproducible. Additionally, serum sample throughput increases about fivefold relative to NT and POBI and the amount of serum needed is reduced by more than 90%. In conclusion, the polio MIA can be used as a safe and high throughput application, especially for large-scale surveillance and vaccine studies, reducing laboratory time and serum amounts needed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Development of a bead-based multiplexed assay for simultaneous quantification of five bovine cytokines by flow cytometry.

    PubMed

    Rodrigues, Valérie; Baudier, Jean Baptiste; Chantal, Isabelle

    2017-09-01

    Quantifying cytokines is extremely important in studies of host-pathogen interactions. Multiplex assays are commercially available but only for human and mouse cytokines. Here a method for the simultaneous quantification of five important bovine cytokines IFNγ, IL-4, IL-10, IL-12, and TNFα in cell culture supernatants, using flow cytometry was reported. Functional beads from BD Biosciences expressing specific APC intensity were used. Commercially available antibodies against bovine cytokines were covalently coupled to beads as capture antibodies. Fixed recombinant cytokines were revealed with a second monoclonal antibody coupled with biotin, then revealed with streptavidin-PE. This complex was analyzed using a standard flow cytometer. Experiments were performed to check no cross reactions had occurred. The limits of detection ranged between 0.08 and 0.4 ng/ml depending on the cytokine, and the linearity between the lower and higher limits was remarkable (R 2  > 99.8%). Finally, native cytokines from cell culture supernatants were tested. Results were compared using the standard ELISA test and showed that concentrations of native cytokine in cell culture supernatants were comparable with the two methods, with a wider dynamic range using beads and flow cytometry than with ELISA assays. Bovine IFNγ, IL-4, IL-10, IL-12, and TNFα in culture supernatants can be now simultaneously detected in a single assay, using a standard flow cytometer for both basic and high-throughput analyses. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  1. Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses

    PubMed Central

    Chen, Kun; Wu, Tao; Wei, Haoyun; Zhou, Tian; Li, Yan

    2016-01-01

    Coherent anti-Stokes Raman microscopy (CARS) is a quantitative, chemically specific, and label-free optical imaging technique for studying inhomogeneous systems. However, the complicating influence of the nonresonant response on the CARS signal severely limits its sensitivity and specificity and especially limits the extent to which CARS microscopy has been used as a fully quantitative imaging technique. On the basis of spectral focusing mechanism, we establish a dual-soliton Stokes based CARS microspectroscopy and microscopy scheme capable of quantifying the spatial information of densities and chemical composition within inhomogeneous samples, using a single fiber laser. Dual-soliton Stokes scheme not only removes the nonresonant background but also allows robust acquisition of multiple characteristic vibrational frequencies. This all-fiber based laser source can cover the entire fingerprint (800-2200 cm−1) region with a spectral resolution of 15 cm−1. We demonstrate that quantitative degree determination of lipid-chain unsaturation in the fatty acids mixture can be achieved by the characterization of C = C stretching and CH2 deformation vibrations. For microscopy purposes, we show that the spatially inhomogeneous distribution of lipid droplets can be further quantitatively visualized using this quantified degree of lipid unsaturation in the acyl chain for contrast in the hyperspectral CARS images. The combination of compact excitation source and background-free capability to facilitate extraction of quantitative composition information with multiplex spectral peaks will enable wider applications of quantitative chemical imaging in studying biological and material systems. PMID:27867704

  2. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay.

    PubMed

    Hendricks, D A; Stowe, B J; Hoo, B S; Kolberg, J; Irvine, B D; Neuwald, P D; Urdea, M S; Perrillo, R P

    1995-11-01

    The aim of this study was to establish the performance characteristics of a nonradioisotopic branched DNA (bDNA) signal amplification assay for quantitation of hepatitis B virus (HBV) DNA in human serum. Quantitation was determined from a standard curve and expressed as HBV DNA equivalents/mL (Eq/mL; 285,000 Eq = 1 pg of double stranded HBV DNA). The bDNA assay exhibited a nearly four log dynamic range of quantitation and an analytical detection limit of approximately 100,000 Eq/mL. To ensure a specificity of 99.7%, the quantitation limit was set at 700,000 Eq/mL. The interassay percent coefficient of variance for quantification values ranged from 10% to 15% when performed by novice users with different sets of reagents. Using the bDNA assay, HBV DNA was detected in 94% to 100% of hepatitis B e antigen-positive specimens and 27% to 31% of hepatitis B e antigen-negative specimens from chronic HBV-infected patients. The bDNA assay may be useful as a prognostic and therapy monitoring tool for the management of HBV-infected patients undergoing antiviral treatment.

  3. A lateral electrophoretic flow diagnostic assay

    PubMed Central

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E.; Neira, Hector D.; Fletcher, Daniel A.

    2015-01-01

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings. PMID:25608872

  4. Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels.

    PubMed

    Arnold, Benjamin F; van der Laan, Mark J; Hubbard, Alan E; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L; Moss, Delynn M; Nutman, Thomas B; Priest, Jeffrey W; Lammie, Patrick J

    2017-05-01

    Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman's rho = 0.75). In

  5. Centrifugal Microfluidic Platform for Rapid, Multiplexed Detection of TB and HIV Biomarkers in Whole Blood Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinov, Julia; Moen, Scott T.; Berry, Gregory J.

    Infection with Mycobacterium Tuberculosis represents a significant threat to people with immune disorders, such as HIV-positive individuals, and can result in significant health complications or death if not diagnosed and treated early. We present a centrifugal microfluidic platform for multiplexed detection of tuberculosis and HIV biomarkers in human whole blood with minimal sample preparation and a sample-to-answer time of 30 minutes. This multiplexed assay was developed for the detection of two M.tuberculosis secreted proteins, whose secretion represents an active and ongoing infection, as well as detection of HIV p24 protein and human anti-p24 antibodies. The limit of detection for thismore » multiplex assay is in the pg/mL range for both HIV and M.tuberculosis proteins, making this assay potentially useful in the clinical diagnosis of both HIV and Tuberculosis proteins indicative of active infection. Antigen detection for the HIV assay sensitivity was 89%, the specificity 85%. Serological detection had 100% sensitivity and specificity for the limited sample pool. The centrifugal microfluidic platform presented here offers the potential for a portable, fast and inexpensive multiplexed diagnostic device that can be used in resource-limited settings for diagnosis of TB and HIV.« less

  6. Centrifugal Microfluidic Platform for Rapid, Multiplexed Detection of TB and HIV Biomarkers in Whole Blood Samples

    DOE PAGES

    Litvinov, Julia; Moen, Scott T.; Berry, Gregory J.; ...

    2017-05-30

    Infection with Mycobacterium Tuberculosis represents a significant threat to people with immune disorders, such as HIV-positive individuals, and can result in significant health complications or death if not diagnosed and treated early. We present a centrifugal microfluidic platform for multiplexed detection of tuberculosis and HIV biomarkers in human whole blood with minimal sample preparation and a sample-to-answer time of 30 minutes. This multiplexed assay was developed for the detection of two M.tuberculosis secreted proteins, whose secretion represents an active and ongoing infection, as well as detection of HIV p24 protein and human anti-p24 antibodies. The limit of detection for thismore » multiplex assay is in the pg/mL range for both HIV and M.tuberculosis proteins, making this assay potentially useful in the clinical diagnosis of both HIV and Tuberculosis proteins indicative of active infection. Antigen detection for the HIV assay sensitivity was 89%, the specificity 85%. Serological detection had 100% sensitivity and specificity for the limited sample pool. The centrifugal microfluidic platform presented here offers the potential for a portable, fast and inexpensive multiplexed diagnostic device that can be used in resource-limited settings for diagnosis of TB and HIV.« less

  7. A multiplex real-time PCR assay for the identification and differentiation of Salmonella enterica serovar Typhimurium and monophasic serovar 4,[5],12:i:-.

    PubMed

    Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat

    2013-08-16

    Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that

  8. The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

    PubMed Central

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-01-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded. PMID:25506306

  9. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections

    PubMed Central

    Gadsby, N.J.; McHugh, M.P.; Russell, C.D.; Mark, H.; Conway Morris, A.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E.

    2015-01-01

    The frequent lack of a positive and timely microbiological diagnosis in patients with lower respiratory tract infection (LRTI) is an important obstacle to antimicrobial stewardship. Patients are typically prescribed broad-spectrum empirical antibiotics while microbiology results are awaited, but, because these are often slow, negative, or inconclusive, de-escalation to narrow-spectrum agents rarely occurs in clinical practice. The aim of this study was to develop and evaluate two multiplex real-time PCR assays for the sensitive detection and accurate quantification of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We found that all eight bacterial targets could be reliably quantified from sputum specimens down to a concentration of 100 CFUs/reaction (8333 CFUs/mL). Furthermore, all 249 positive control isolates were correctly detected with our assay, demonstrating effectiveness on both reference strains and local clinical isolates. The specificity was 98% on a panel of nearly 100 negative control isolates. Bacterial load was quantified accurately when three bacterial targets were present in mixtures of varying concentrations, mimicking likely clinical scenarios in LRTI. Concordance with culture was 100% for culture-positive sputum specimens, and 90% for bronchoalveolar lavage fluid specimens, and additional culture-negative bacterial infections were detected and quantified. In conclusion, a quantitative molecular test for eight key bacterial causes of LRTI has the potential to provide a more sensitive decision-making tool, closer to the time-point of patient admission than current standard methods. This should facilitate de-escalation from broad-spectrum to narrow-spectrum antibiotics, substantially improving patient management and supporting efforts to curtail inappropriate antibiotic use. PMID:25980353

  10. Multiplexed microimmunoassays on a digital versatile disk.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis A; Arnandis-Chover, Tania; Puchades, Rosa; Maquieira, Angel

    2009-07-15

    Multiplexed microimmunoassays for five critical compounds were developed using a digital versatile disk (DVD) as an analytical support and detecting technology. To this end, coating conjugates were adsorbed on the polycarbonate face of the disk; a pool of specific antibodies, gold labeled secondary antibodies, and silver amplification were addressed for developing the assays. The detection principle is based on the capture of attenuated analog signals with the disk drive that were proportional to optical density of the immunoreaction product. The multiplexed assay achieved detection limits (IC10) of 0.06, 0.25, 0.37, 0.16, and 0.10 microg/L, sensitivities of (IC50) 0.54, 1.54, 2.62, 2.02, and 5.9 microg/L, and dynamic ranges of 2 orders of magnitude for atrazine, chlorpyrifos, metolachlor, sulfathiazole, and tetracycline, respectively. The features of the methodology were verified by analyzing natural waters and compared with reference chromatographic methods, showing its potential for high-throughput multiplexed screening applications. Analytes of different chemical nature (pesticides and antibiotics) were directly quantified without sample treatment or preconcentration in a total time of 30 min with similar sensitivity and selectivity to the ELISA plate format using the same immunoreagents. The multianalyte capabilities of immunoassaying methods developed with digital disk and drive demonstrated the competitiveness to quantify targets that require different sample treatment and instrumentation by chromatographic methods.

  11. Validation of a multiplex electrochemiluminescent immunoassay platform in human and mouse samples

    PubMed Central

    Bastarache, J.A.; Koyama, T.; Wickersham, N.E; Ware, L.B.

    2014-01-01

    Despite the widespread use of multiplex immunoassays, there are very few scientific reports that test the accuracy and reliability of a platform prior to publication of experimental data. Our laboratory has previously demonstrated the need for new assay platform validation prior to use of biologic samples from large studies in order to optimize sample handling and assay performance. In this study, our goal was to test the accuracy and reproducibility of an electrochemiluminescent multiplex immunoassay platform (Meso Scale Discovery, MSD®) and compare this platform to validated, singleplex immunoassays (R&D Systems®) using actual study subject (human plasma and mouse bronchoalveolar lavage fluid (BALF) and plasma) samples. We found that the MSD platform performed well on intra- and inter-assay comparisons, spike and recovery and cross-platform comparisons. The mean intra-assay CV% and range for MSD was 3.49 (0.0-10.4) for IL-6 and 2.04 (0.1-7.9) for IL-8. The correlation between values for identical samples measured on both MSD and R&D was R=0.97 for both analytes. The mouse MSD assay had a broader range of CV% with means ranging from 9.5-28.5 depending on the analyte. The range of mean CV% was similar for single plex ELISAs at 4.3-23.7 depending on the analyte. Regardless of species or sample type, CV% was more variable at lower protein concentrations. In conclusion, we validated a multiplex electrochemiluminscent assay system and found that it has superior test characteristics in human plasma compared to mouse BALF and plasma. Both human and MSD assays compared favorably to well-validated singleplex ELISA's PMID:24768796

  12. Porous Silicon Antibody Microarrays for Quantitative Analysis: Measurement of Free and Total PSA in Clinical Plasma Samples

    PubMed Central

    Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas

    2014-01-01

    The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878

  13. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  14. Species-specific multiplex PCR for the diagnosis of Brucella ovis, Actinobacillus seminis, and Histophilus somni infection in rams

    PubMed Central

    2013-01-01

    Background Infectious ovine epididymitis results in substantial economic losses worldwide due to reproductive failure and culling of breeders. The most common causative agents of these infections are Brucella ovis, Actinobacillus seminis, and Histophilus somni. The aim of this study was to develop a multiplex PCR assay for simultaneous detection of Brucella ovis, Actinobacillus seminis, and Histophilus somni with species-specific primers applied to biological samples for molecular diagnosis of these infections. Results The multiplex assay was capable of detecting B. ovis, A. seminis, and H. somni DNA simultaneously from genomic bacterial DNA samples and pool of semen samples from experimentally infected rams. The method was highly specific since it did not amplify DNA from other bacterial species that can potentially cause epididymitis in rams as well as species phylogenetically related to B. ovis. All negative control samples were negative in PCR multiplex assay. Urine can be used as an alternative to semen samples. Conclusions The species-specific multiplex PCR assay developed in this study can be successfully used for the detection of three of the most common bacterial causes of ovine epididymitis. PMID:23514236

  15. Development of a highly-sensitive multi-plex assay using monoclonal antibodies for the simultaneous measurement of kappa and lambda immunoglobulin free light chains in serum and urine.

    PubMed

    Campbell, John P; Cobbold, Mark; Wang, Yanyun; Goodall, Margaret; Bonney, Sarah L; Chamba, Anita; Birtwistle, Jane; Plant, Timothy; Afzal, Zaheer; Jefferis, Roy; Drayson, Mark T

    2013-05-31

    Monoclonal κ and λ immunoglobulin free light chain (FLC) paraproteins in serum and urine are important markers in the diagnosis and monitoring of B cell dyscrasias. Current nephelometric and turbidimetric methods that use sheep polyclonal antisera to quantify serum FLC have a number of well-observed limitations. In this report, we describe an improved method using specific mouse anti-human FLC monoclonal antibodies (mAbs). Anti-κ and anti-λ FLC mAbs were, separately, covalently coupled to polystyrene Xmap® beads and assayed, simultaneously, in a multi-plex format by Luminex® (mAb assay). The mAbs displayed no cross-reactivity to bound LC, the alternate LC type, or other human proteins and had improved sensitivity and specificity over immunofixation electrophoresis (IFE) and Freelite™. The assay gives good linearity and sensitivity (<1 mg/L), and the competitive inhibition format gave a broad calibration curve up to 437.5 mg/L and prevented anomalous results for samples in antigen excess i.e. high FLC levels. The mAbs displayed good concordance with Freelite™ for the quantitation of normal polyclonal FLC in plasma from healthy donors (n=249). The mAb assay identified all monoclonal FLC in serum from consecutive patient samples (n=1000; 50.1% with monoclonal paraprotein by serum IFE), and all FLC in a large cohort of urine samples tested for Bence Jones proteins (n=13090; 22.8% with monoclonal κ, 9.0% with monoclonal λ, and 0.8% with poly LC detected by urine IFE). Importantly this shows that the mAbs are at least close to the ideal of detecting FLC from all patients and neoplastic plasma cell clones. Given the overall effectiveness of the anti-FLC mAbs, further clinical validation is now warranted on serial samples from a range of patients with B cell disorders. Use of these mAbs on other assay platforms should also be investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience.

    PubMed

    Nielsen, Alex Christian Yde; Böttiger, Blenda; Midgley, Sofie Elisabeth; Nielsen, Lars Peter

    2013-11-01

    As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay. The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses in 171 (8%) and 66 (3%) of the samples, respectively. 180 of the positive samples could be genotyped by PCR and sequencing and the most common genotypes found were human parechovirus type 3, echovirus 9, enterovirus 71, Coxsackievirus A16, and echovirus 25. During 2009 in Denmark, both enterovirus and human parechovirus type 3 had a similar seasonal pattern with a peak during the summer and autumn. Human parechovirus type 3 was almost invariably found in children less than 4 months of age. In conclusion, a multiplex assay was developed allowing simultaneous detection of 2 viruses, which can cause similar clinical symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Analytical validation of quantitative immunohistochemical assays of tumor infiltrating lymphocyte biomarkers.

    PubMed

    Singh, U; Cui, Y; Dimaano, N; Mehta, S; Pruitt, S K; Yearley, J; Laterza, O F; Juco, J W; Dogdas, B

    2018-06-04

    Tumor infiltrating lymphocytes (TIL), especially T-cells, have both prognostic and therapeutic applications. The presence of CD8+ effector T-cells and the ratio of CD8+ cells to FOXP3+ regulatory T-cells have been used as biomarkers of disease prognosis to predict response to various immunotherapies. Blocking the interaction between inhibitory receptors on T-cells and their ligands with therapeutic antibodies including atezolizumab, nivolumab, pembrolizumab and tremelimumab increases the immune response against cancer cells and has shown significant improvement in clinical benefits and survival in several different tumor types. The improved clinical outcome is presumed to be associated with a higher tumor infiltration; therefore, it is thought that more accurate methods for measuring the amount of TIL could assist prognosis and predict treatment response. We have developed and validated quantitative immunohistochemistry (IHC) assays for CD3, CD8 and FOXP3 for immunophenotyping T-lymphocytes in tumor tissue. Various types of formalin fixed, paraffin embedded (FFPE) tumor tissues were immunolabeled with anti-CD3, anti-CD8 and anti-FOXP3 antibodies using an IHC autostainer. The tumor area of stained tissues, including the invasive margin of the tumor, was scored by a pathologist (visual scoring) and by computer-based quantitative image analysis. Two image analysis scores were obtained for the staining of each biomarker: the percent positive cells in the tumor area and positive cells/mm 2 tumor area. Comparison of visual vs. image analysis scoring methods using regression analysis showed high correlation and indicated that quantitative image analysis can be used to score the number of positive cells in IHC stained slides. To demonstrate that the IHC assays produce consistent results in normal daily testing, we evaluated the specificity, sensitivity and reproducibility of the IHC assays using both visual and image analysis scoring methods. We found that CD3, CD8 and

  18. Modified telomeric repeat amplification protocol: a quantitative radioactive assay for telomerase without using electrophoresis.

    PubMed

    Szatmari, I; Tókés, S; Dunn, C B; Bardos, T J; Aradi, J

    2000-06-15

    A polymerase chain reaction (PCR)-based radioactive telomerase assay was developed in our laboratory which is quantitative and does not require electrophoretic evaluation (designated as TP-TRAP; it utilizes two reverse primers). The main steps of the assay include (1) extension of a 20-mer oligonucleotide substrate (MTS) by telomerase, (2) amplification of the telomerase products in the presence of [(3)H]dTTP using the substrate oligonucleotide and two reverse primers (RPC3, 38 mer; RP, 20 mer), (3) isolation of the amplified radioactive dsDNA by precipitation and filtration, (4) determination of the radioactivity of the acid-insoluble DNA. The length of the telomerase products does not increase on amplification. This valuable feature of the assay is achieved by utilization of the two reverse primers and a highly specific PCR protocol. The assay is linear, accurate, and suitable for cell-biological studies where slight quantitative differences in telomerase activity must be detected. The assay is also suitable for screening and characterization of telomerase inhibitors, as shown with a chemically modified oligonucleotide reverse transcriptase inhibitor [(s(4)dU)(35)]. Copyright 2000 Academic Press.

  19. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    PubMed

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp.

    PubMed

    Criado-Fornelio, A; Buling, A; Cunha-Filho, N A; Ruas, J L; Farias, N A R; Rey-Valeiron, C; Pingret, J L; Etievant, M; Barba-Carretero, J C

    2007-12-25

    With the aim to improve current molecular diagnostic techniques of Hepatozoon sp. in carnivore mammals, we developed a quantitative PCR (qPCR) assay with SYBR Green I((R)). The method, consisting of amplification of a 235bp fragment of the 18S rRNA gene, is able to detect at least 0.1fg of parasite DNA. Reproducible quantitative results were obtained over a range of 0.1ng-0.1fg of Hepatozoon sp. DNA. To assess the performance of the qPCR assay, DNA samples from dogs (140) and cats (50) were tested with either standard PCR or qPCR. Positive samples were always confirmed by partial sequencing of the 18S rRNA gene. Quantitative PCR was 15.8% more sensitive than standard PCR to detect H. canis in dogs. In cats, no infections were detected by standard PCR, compared to two positives by qPCR (which were infected by H. canis as shown by sequencing).

  1. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    USDA-ARS?s Scientific Manuscript database

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  2. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  3. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  4. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    PubMed

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evaluating Kinase ATP Uptake and Tyrosine Phosphorylation using Multiplexed Quantification of Chemically Labeled and Post-Translationally Modified Peptides

    PubMed Central

    Fang, Bin; Hoffman, Melissa A.; Mirza, Abu-Sayeef; Mishall, Katie M.; Li, Jiannong; Peterman, Scott M.; Smalley, Keiran S. M.; Shain, Kenneth H.; Weinberger, Paul M.; Wu, Jie; Rix, Uwe; Haura, Eric B.; Koomen, John M.

    2015-01-01

    Cancer biologists and other healthcare researchers face an increasing challenge in addressing the molecular complexity of disease. Biomarker measurement tools and techniques now contribute to both basic science and translational research. In particular, liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for multiplexed measurements of protein biomarkers has emerged as a versatile tool for systems biology. Assays can be developed for specific peptides that report on protein expression, mutation, or post-translational modification; discovery proteomics data rapidly translated into multiplexed quantitative approaches. Complementary advances in affinity purification enrich classes of enzymes or peptides representing post-translationally modified or chemically labeled substrates. Here, we illustrate the process for the relative quantification of hundreds of peptides in a single LC-MRM experiment. Desthiobiotinylated peptides produced by activity-based protein profiling (ABPP) using ATP probes and tyrosine-phosphorylated peptides are used as examples. These targeted quantification panels can be applied to further understand the biology of human disease. PMID:25782629

  6. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    PubMed Central

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  7. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  8. A multiplex real-time polymerase chain reaction assay differentiates between Bolbphorus damnificus and Bolbophorus type II sp

    USDA-ARS?s Scientific Manuscript database

    A duplex quantitative real-time polymerase chain reaction (qPCR) assay was developed to differentiate between Bolbophorus damnificus and Bolbophorus type II species cercariae. Both trematode species are prevalent throughout the commercial catfish industry,.as both infect the ram’s horn snail, Plano...

  9. Novel multiplex qualitative detection using universal primer-multiplex-PCR combined with pyrosequencing.

    PubMed

    Shang, Ying; Xu, Wentao; Wang, Yong; Xu, Yuancong; Huang, Kunlun

    2017-12-15

    This study described a novel multiplex qualitative detection method using pyrosequencing. Based on the principle of the universal primer-multiplex-PCR, only one sequencing primer was employed to realize the detection of the multiple targets. Samples containing three genetically modified (GM) crops in different proportions were used to validate the method. The dNTP dispensing order was designed based on the product sequences. Only 12 rounds (ATCTGATCGACT) of dNTPs addition and, often, as few as three rounds (CAT) under ideal conditions, were required to detect the GM events qualitatively, and sensitivity was as low as 1% of a mixture. However, when considering a mixture, calculating signal values allowed the proportion of each GM to be estimated. Based on these results, we concluded that our novel method not only realized detection but also allowed semi-quantitative detection of individual events. Copyright © 2017. Published by Elsevier Ltd.

  10. A high-throughput mass spectrometry assay to simultaneously measure intact insulin and C-peptide.

    PubMed

    Taylor, Steven W; Clarke, Nigel J; Chen, Zhaohui; McPhaul, Michael J

    2016-04-01

    Measurements of fasting levels of insulin and C-peptide are useful in documenting insulin resistance and may help predict development of diabetes mellitus. However, the specific insulin and C-peptide levels associated with specific degrees of insulin resistance have not been defined, owing to marked variability among immunoassays and lack of standardization. Herein, we describe a multiplexed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for intact insulin and C-peptide. Insulin and C-peptide were enriched from patient sera using monoclonal antibodies immobilized on magnetic beads and processed on a robotic liquid handler. Eluted peptides were analyzed by LC-MS/MS. Bovine insulin and a stable isotopically-labeled (13C/15N) C-peptide were utilized as internal standards. The assay had an analytical measurement range of 3 to 320 μIU/ml (18 to 1920 pmol/l) for insulin and 0.11 to 27.2 ng/ml (36 to 9006 pmol/l) for C-peptide. Intra- and inter-day assay variation was less than 11% for both peptides. Of the 5 insulin analogs commonly prescribed to treat diabetes, only the recombinant drug insulin lispro caused significant interference for the determination of endogenous insulin. There were no observed interferences for C-peptide. We developed and validated a high-throughput, quantitative, multiplexed LC-MS/MS assay for intact insulin and C-peptide. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Validating multiplexes for use in conjunction with modern interpretation strategies.

    PubMed

    Taylor, Duncan; Bright, Jo-Anne; McGoven, Catherine; Hefford, Christopher; Kalafut, Tim; Buckleton, John

    2016-01-01

    In response to requests from the forensic community, commercial companies are generating larger, more sensitive, and more discriminating STR multiplexes. These multiplexes are now applied to a wider range of samples including complex multi-person mixtures. In parallel there is an overdue reappraisal of profile interpretation methodology. Aspects of this reappraisal include 1. The need for a quantitative understanding of allele and stutter peak heights and their variability, 2. An interest in reassessing the utility of smaller peaks below the often used analytical threshold, 3. A need to understand not just the occurrence of peak drop-in but also the height distribution of such peaks, and 4. A need to understand the limitations of the multiplex-interpretation strategy pair implemented. In this work we present a full scheme for validation of a new multiplex that is suitable for informing modern interpretation practice. We predominantly use GlobalFiler™ as an example multiplex but we suggest that the aspects investigated here are fundamental to introducing any multiplex in the modern interpretation environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Development and Validation of a Multiplex PCR for Detection of Scedosporium spp. in Respiratory Tract Specimens from Patients with Cystic Fibrosis▿

    PubMed Central

    Harun, Azian; Blyth, Christopher C.; Gilgado, Felix; Middleton, Peter; Chen, Sharon C.-A.; Meyer, Wieland

    2011-01-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens. PMID:21325557

  13. Development and validation of a multiplex PCR for detection of Scedosporium spp. in respiratory tract specimens from patients with cystic fibrosis.

    PubMed

    Harun, Azian; Blyth, Christopher C; Gilgado, Felix; Middleton, Peter; Chen, Sharon C-A; Meyer, Wieland

    2011-04-01

    The emergence of Scedosporium infections in diverse groups of individuals, which are often treatment refractory, warrants timely and accurate laboratory diagnosis. Species- or group-specific primers based on internal transcribed spacer (ITS) sequence polymorphisms were designed for Scedosporium aurantiacum, Scedosporium dehoogii, Scedosporium prolificans, Pseudallescheria boydii species complex (former clade 5)/Pseudallescheria apiosperma (formerly classified as S. apiospermum sensu lato) and Pseudallescheria minutispora. Primers for S. aurantiacum, S. prolificans, and P. boydii species complex/P. apiosperma were incorporated into a multiplex PCR assay for the detection and identification of the three major clinically important Scedosporium species and validated using sputum specimens collected from patients seen at a major Australian cystic fibrosis clinic. The multiplex PCR assay showed 100% specificity in identifying the three major clinically relevant Scedosporium species from pure culture. When evaluated using DNA extracts from sputa, sensitivity and specificity of the multiplex PCR assay were 62.1% and 97.2%, respectively. This highly species-specific multiplex PCR assay offers a rapid and simple method of detection of the most clinically important Scedosporium species in respiratory tract specimens.

  14. Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal.

    PubMed

    Bluhm, B H; Flaherty, J E; Cousin, M A; Woloshuk, C P

    2002-12-01

    The genus Fusarium comprises a diverse group of fungi including several species that produce mycotoxins in food commodities. In this study, a multiplex polymerase chain reaction (PCR) assay was developed for the group-specific detection of fumonisin-producing and trichothecene-producing species of Fusarium. Primers for genus-level recognition of Fusarium spp. were designed from the internal transcribed spacer regions (ITS1 and ITS2) of rDNA. Primers for group-specific detection were designed from the TRI6 gene involved in trichothecene biosynthesis and the FUM5 gene involved in fumonisin biosynthesis. Primer specificity was determined by testing for cross-reactivity against purified genomic DNA from 43 fungal species representing 14 genera, including 9 Aspergillus spp., 9 Fusarium spp., and 10 Penicillium spp. With purified genomic DNA as a template, genus-specific recognition was observed at 10 pg per reaction; group-specific recognition occurred at 100 pg of template per reaction for the trichothecene producer Fusarium graminearum and at 1 ng of template per reaction for the fumonisin producer Fusarium verticillioides. For the application of the PCR assay, a protocol was developed to isolate fungal DNA from cornmeal. The detection of F. graminearum and its differentiation from F. verticillioides were accomplished prior to visible fungal growth at <10(5) CFU/g of cornmeal. This level of detection is comparable to those of other methods such as enzyme-linked immunosorbent assay, and the assay described here can be used in the food industry's effort to monitor quality and safety.

  15. Simplified Quantitative Assay System for Measuring Activities of Drugs against Intracellular Legionella pneumophila

    PubMed Central

    Higa, Futoshi; Kusano, Nobuchika; Tateyama, Masao; Shinzato, Takashi; Arakaki, Noriko; Kawakami, Kazuyoshi; Saito, Atsushi

    1998-01-01

    We developed a new simple assay for the quantitation of the activities of drugs against intracellular Legionella pneumophila. The cells of a murine macrophage-like cell line (J774.1 cells) allowed the intracellular growth and replication of the bacteria, which ultimately resulted in cell death. The infected J774.1 cell monolayers in 96-well microplates were first treated with antibiotics and were further cultured for 72 h. The number of viable J774.1 cells in each well was quantified by a colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and an enzyme-linked immunosorbent assay reader. The number of growing bacteria in each well was also determined by counting the numbers of CFU on buffered charcoal yeast extract-α agar plates. Viable J774.1 cell counts, determined by the colorimetric assay, were inversely proportional to the number of intracellular replicating bacteria. The minimum extracellular concentrations (MIECs) of 24 antibiotics causing inhibition of intracellular growth of L. pneumophila were determined by the colorimetric assay system. The MIECs of beta-lactams and aminoglycosides were markedly higher than the MICs in buffered yeast extract-α broth. The MIECs of macrolides, fluoroquinolones, rifampin, and minocycline were similar to the respective MICs. According to their intracellular activities, clarithromycin and sparfloxacin were the most potent among the macrolides or fluoroquinolones tested in this study. Our results indicated that the MTT assay system allows comparative and quantitative evaluations of the intracellular activities of antibiotics and efficient processing of a large number of samples. PMID:9574712

  16. Automated wholeslide analysis of multiplex-brightfield IHC images for cancer cells and carcinoma-associated fibroblasts

    NASA Astrophysics Data System (ADS)

    Lorsakul, Auranuch; Andersson, Emilia; Vega Harring, Suzana; Sade, Hadassah; Grimm, Oliver; Bredno, Joerg

    2017-03-01

    Multiplex-brightfield immunohistochemistry (IHC) staining and quantitative measurement of multiple biomarkers can support therapeutic targeting of carcinoma-associated fibroblasts (CAF). This paper presents an automated digitalpathology solution to simultaneously analyze multiple biomarker expressions within a single tissue section stained with an IHC duplex assay. Our method was verified against ground truth provided by expert pathologists. In the first stage, the automated method quantified epithelial-carcinoma cells expressing cytokeratin (CK) using robust nucleus detection and supervised cell-by-cell classification algorithms with a combination of nucleus and contextual features. Using fibroblast activation protein (FAP) as biomarker for CAFs, the algorithm was trained, based on ground truth obtained from pathologists, to automatically identify tumor-associated stroma using a supervised-generation rule. The algorithm reported distance to nearest neighbor in the populations of tumor cells and activated-stromal fibroblasts as a wholeslide measure of spatial relationships. A total of 45 slides from six indications (breast, pancreatic, colorectal, lung, ovarian, and head-and-neck cancers) were included for training and verification. CK-positive cells detected by the algorithm were verified by a pathologist with good agreement (R2=0.98) to ground-truth count. For the area occupied by FAP-positive cells, the inter-observer agreement between two sets of ground-truth measurements was R2=0.93 whereas the algorithm reproduced the pathologists' areas with R2=0.96. The proposed methodology enables automated image analysis to measure spatial relationships of cells stained in an IHC-multiplex assay. Our proof-of-concept results show an automated algorithm can be trained to reproduce the expert assessment and provide quantitative readouts that potentially support a cutoff determination in hypothesis testing related to CAF-targeting-therapy decisions.

  17. Development and potential applications of microarrays based on fluorescent nanocrystal-encoded beads for multiplexed cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Brazhnik, Kristina; Grinevich, Regina; Efimov, Anton E.; Nabiev, Igor; Sukhanova, Alyona

    2014-05-01

    Advanced multiplexed assays have recently become an indispensable tool for clinical diagnostics. These techniques provide simultaneous quantitative determination of multiple biomolecules in a single sample quickly and accurately. The development of multiplex suspension arrays is currently of particular interest for clinical applications. Optical encoding of microparticles is the most available and easy-to-use technique. This technology uses fluorophores incorporated into microbeads to obtain individual optical codes. Fluorophore-encoded beads can be rapidly analyzed using classical flow cytometry or microfluidic techniques. We have developed a new generation of highly sensitive and specific diagnostic systems for detection of cancer antigens in human serum samples based on microbeads encoded with fluorescent quantum dots (QDs). The designed suspension microarray system was validated for quantitative detection of (1) free and total prostate specific antigen (PSA) in the serum of patients with prostate cancer and (2) carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA 15-3) in the serum of patients with breast cancer. The serum samples from healthy donors were used as a control. The antigen detection is based on the formation of an immune complex of a specific capture antibody (Ab), a target antigen (Ag), and a detector Ab on the surface of the encoded particles. The capture Ab is bound to the polymer shell of microbeads via an adapter molecule, for example, protein A. Protein A binds a monoclonal Ab in a highly oriented manner due to specific interaction with the Fc-region of the Ab molecule. Each antigen can be recognized and detected due to a specific microbead population carrying the unique fluorescent code. 100 and 231 serum samples from patients with different stages of prostate cancer and breast cancer, respectively, and those from healthy donors were examined using the designed suspension system. The data were validated by comparing with the results of

  18. Automated methods for multiplexed pathogen detection.

    PubMed

    Straub, Timothy M; Dockendorff, Brian P; Quiñonez-Díaz, Maria D; Valdez, Catherine O; Shutthanandan, Janani I; Tarasevich, Barbara J; Grate, Jay W; Bruckner-Lea, Cynthia J

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However

  19. Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV.

    PubMed

    Brown, Eric P; Weiner, Joshua A; Lin, Shu; Natarajan, Harini; Normandin, Erica; Barouch, Dan H; Alter, Galit; Sarzotti-Kelsoe, Marcella; Ackerman, Margaret E

    2018-04-01

    The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction.

    PubMed

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-10-01

    This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

  1. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction

    PubMed Central

    Kim, Ji Yeun; Lee, Jung-Lim

    2014-01-01

    Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974

  2. PrimerSuite: A High-Throughput Web-Based Primer Design Program for Multiplex Bisulfite PCR.

    PubMed

    Lu, Jennifer; Johnston, Andrew; Berichon, Philippe; Ru, Ke-Lin; Korbie, Darren; Trau, Matt

    2017-01-24

    The analysis of DNA methylation at CpG dinucleotides has become a major research focus due to its regulatory role in numerous biological processes, but the requisite need for assays which amplify bisulfite-converted DNA represents a major bottleneck due to the unique design constraints imposed on bisulfite-PCR primers. Moreover, a review of the literature indicated no available software solutions which accommodated both high-throughput primer design, support for multiplex amplification assays, and primer-dimer prediction. In response, the tri-modular software package PrimerSuite was developed to support bisulfite multiplex PCR applications. This software was constructed to (i) design bisulfite primers against multiple regions simultaneously (PrimerSuite), (ii) screen for primer-primer dimerizing artefacts (PrimerDimer), and (iii) support multiplex PCR assays (PrimerPlex). Moreover, a major focus in the development of this software package was the emphasis on extensive empirical validation, and over 1300 unique primer pairs have been successfully designed and screened, with over 94% of them producing amplicons of the expected size, and an average mapping efficiency of 93% when screened using bisulfite multiplex resequencing. The potential use of the software in other bisulfite-based applications such as methylation-specific PCR is under consideration for future updates. This resource is freely available for use at PrimerSuite website (www.primer-suite.com).

  3. Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers.

    PubMed

    Han, Bomie; Higgs, Richard E

    2008-09-01

    High-throughput HPLC-mass spectrometry (HPLC-MS) is routinely used to profile biological samples for potential protein markers of disease, drug efficacy and toxicity. The discovery technology has advanced to the point where translating hypotheses from proteomic profiling studies into clinical use is the bottleneck to realizing the full potential of these approaches. The first step in this translation is the development and analytical validation of a higher throughput assay with improved sensitivity and selectivity relative to typical profiling assays. Multiple reaction monitoring (MRM) assays are an attractive approach for this stage of biomarker development given their improved sensitivity and specificity, the speed at which the assays can be developed and the quantitative nature of the assay. While the profiling assays are performed with ion trap mass spectrometers, MRM assays are traditionally developed in quadrupole-based mass spectrometers. Development of MRM assays from the same instrument used in the profiling analysis enables a seamless and rapid transition from hypothesis generation to validation. This report provides guidelines for rapidly developing an MRM assay using the same mass spectrometry platform used for profiling experiments (typically ion traps) and reviews methodological and analytical validation considerations. The analytical validation guidelines presented are drawn from existing practices on immunological assays and are applicable to any mass spectrometry platform technology.

  4. Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models.

    PubMed

    Ku, Hyung-Keun; Lim, Hyuk-Min; Oh, Kyong-Hwa; Yang, Hyo-Jin; Jeong, Ji-Seon; Kim, Sook-Kyung

    2013-03-01

    The Bradford assay is a simple method for protein quantitation, but variation in the results between proteins is a matter of concern. In this study, we compared and normalized quantitative values from two models for protein quantitation, where the residues in the protein that bind to anionic Coomassie Brilliant Blue G-250 comprise either Arg and Lys (Method 1, M1) or Arg, Lys, and His (Method 2, M2). Use of the M2 model yielded much more consistent quantitation values compared with use of the M1 model, which exhibited marked overestimations against protein standards. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  6. Quantitative polarized light microscopy using spectral multiplexing interferometry.

    PubMed

    Li, Chengshuai; Zhu, Yizheng

    2015-06-01

    We propose an interferometric spectral multiplexing method for measuring birefringent specimens with simple configuration and high sensitivity. The retardation and orientation of sample birefringence are simultaneously encoded onto two spectral carrier waves, generated interferometrically by a birefringent crystal through polarization mixing. A single interference spectrum hence contains sufficient information for birefringence determination, eliminating the need for mechanical rotation or electrical modulation. The technique is analyzed theoretically and validated experimentally on cellulose film. System simplicity permits the possibility of mitigating system birefringence background. Further analysis demonstrates the technique's exquisite sensitivity as high as ∼20  pm for retardation measurement.

  7. Nanoparticle Enhancement Cascade for Sensitive Multiplex Measurements of Biomarkers in Complex Fluids with Surface Plasmon Resonance Imaging.

    PubMed

    Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel

    2018-06-05

    There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.

  8. Exploring target-specific primer extension in combination with a bead-based suspension array for multiplexed detection and typing using Streptococcus suis as a model pathogen

    PubMed Central

    van der Wal, Fimme J.; Achterberg, René P.; van Solt-Smits, Conny; Bergervoet, Jan H. W.; de Weerdt, Marjanne; Wisselink, Henk J.

    2017-01-01

    We investigated the feasibility of an assay based on target-specific primer extension, combined with a suspension array, for the multiplexed detection and typing of a veterinary pathogen in animal samples, using Streptococcus suis as a model pathogen. A procedure was established for simultaneous detection of 6 S. suis targets in pig tonsil samples (i.e., 4 genes associated with serotype 1, 2, 7, or 9, the generic S. suis glutamate dehydrogenase gene [gdh], and the gene encoding the extracellular protein factor [epf]). The procedure was set up as a combination of protocols: DNA isolation from porcine tonsils, a multiplex PCR, a multiplex target-specific primer extension, and finally a suspension array as the readout. The resulting assay was compared with a panel of conventional PCR assays. The proposed multiplex assay can correctly identify the serotype of isolates and is capable of simultaneous detection of multiple targets in porcine tonsillar samples. The assay is not as sensitive as the current conventional PCR assays, but with the correct sampling strategy, the assay can be useful for screening pig herds to establish which S. suis serotypes are circulating in a pig population. PMID:28980519

  9. Multiplexed Anti-Toxoplasma IgG, IgM, and IgA Assay on Plasmonic Gold Chips: towards Making Mass Screening Possible with Dye Test Precision

    PubMed Central

    Li, Xiaoyang; Pomares, Christelle; Gonfrier, Géraldine; Koh, Byumseok; Zhu, Shoujun; Gong, Ming

    2016-01-01

    Toxoplasmosis is an infection caused by the protozoan parasite Toxoplasma gondii that can lead to severe sequelae in the fetus during pregnancy. Definitive serologic diagnosis of the infection during gestation is made mostly by detecting T. gondii-specific antibodies, including IgG and IgM, individually in a single serum sample by using commercially available kits. The IgA test is used by some laboratories as an additional marker of acute infection. Most of the commercial tests have failed to reach 100% correlation with the reference method, the Sabin-Feldman dye test for the detection of Toxoplasma IgG antibodies. For Toxoplasma IgM and IgA antibodies, there is no reference method and their evaluation is done by comparing the results of one assay to those of another. There is a need for multiplexed assay platforms, as the serological diagnosis of T. gondii infection does not rely on the detection of a single Ig subtype. Here we describe the development of a plasmonic gold chip with vast fluorescence enhancement in the near-infrared region for simultaneous detection of IgG, IgM, and IgA antibodies against T. gondii in an ∼1-μl serum or whole-blood sample. When 168 samples were tested on this platform, IgG antibody detection sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were all 100%. IgM antibody detection achieved 97.6% sensitivity and 96.9% specificity with a 90.9% PPV and a 99.2% NPV. Thus, the nanoscience-based plasmonic gold platform enables a high-performance, low-cost, multiplexed assay requiring ultrasmall blood volumes, paving the way for the implementation of universal screening for toxoplasmosis infection during gestation. PMID:27008879

  10. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    PubMed

    Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and

  11. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station

    PubMed Central

    Boone, Travis D.; Tran, Luan; Blaber, Elizabeth A.; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T.; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J.; Rubins, Kathleen; Sgarlato, Gregory D.; Talavera, Rafael O.; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S.; Schonfeld, Julie

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and

  12. Development and Application of a Multiplex Real-Time PCR Assay as an Indicator of Potential Allergenicity in Citrus Fruits.

    PubMed

    Wu, Jinlong; Chen, Lin; Lin, Dingbo; Ma, Zhaocheng; Deng, Xiuxin

    2016-11-30

    The effects of tissue type, harvest maturity, and genetic factors on the expression of genes that related to citrus fruit allergies remain poorly understood. In the present study, a multiplex real-time PCR assay was developed to monitor the expression of citrus allergen genes individually with the advantages of much fewer sample requirements and simultaneously multiple target genes detection. Gene specific primer pairs and Taqman probes of three citrus allergen genes Cit s 1.01, Cit s 2.01, and Cit s 3.01 and the house-keeping gene β-actin were designed based on gene sequence differences. The PCR results showed that differential expression patterns were found during the ripening process. The expression levels of Cit s 3.01 were much higher than those of Cit s 1.01 and Cit s 2.01 in both peel and pulp tissues among 10 citrus cultivars. Data suggested that Kao Phuang Pummelo could be safely consumed with a potential low risk in allergenicity. Considering that assessing allergenicity is one of the tests in food safety, this assay might also facilitate the breeding and production of "allergy-friendly" citrus fruits.

  13. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    PubMed Central

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  14. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  15. Protein immobilization techniques for microfluidic assays

    PubMed Central

    Kim, Dohyun; Herr, Amy E.

    2013-01-01

    Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization. PMID:24003344

  16. Multiplexed Molecular Diagnostics for Respiratory, Gastrointestinal, and Central Nervous System Infections.

    PubMed

    Hanson, Kimberly E; Couturier, Marc Roger

    2016-11-15

    The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology laboratories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Administration-approved multiplex panels target multiple different organisms simultaneously and can identify the most common pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test characteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses potential utilization of these new tests in clinical practice. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Evaluation of the Abbott RealTime HCV assay for quantitative detection of hepatitis C virus RNA.

    PubMed

    Michelin, Birgit D A; Muller, Zsofia; Stelzl, Evelyn; Marth, Egon; Kessler, Harald H

    2007-02-01

    The Abbott RealTime HCV assay for quantitative detection of HCV RNA has recently been introduced. In this study, the performance of the Abbott RealTime HCV assay was evaluated and compared to the COBAS AmpliPrep/COBAS TaqMan HCV test. Accuracy, linearity, interassay and intra-assay variations were determined, and a total of 243 routine clinical samples were investigated. When accuracy of the new assay was tested, the majority of results were found to be within +/-0.5 log(10) unit of the results obtained by reference laboratories. Determination of linearity resulted in a quasilinear curve up to 1.0 x 10(6)IU/ml. The interassay variation ranged from 15% to 32%, and the intra-assay variation ranged from 5% to 8%. When clinical samples were tested by the Abbott RealTime HCV assay and the results were compared with those obtained by the COBAS AmpliPrep/COBAS TaqMan HCV test, the results for 93% of all samples with positive results by both tests were found to be within +/-1.0 log(10) unit. The viral loads for all patients measured by the Abbott and Roche assays showed a high correlation (R(2)=0.93); quantitative results obtained by the Abbott assay were found to be lower than those obtained by the Roche assay. The Abbott RealTime HCV assay proved to be suitable for use in the routine diagnostic laboratory. The time to results was similar for both of the assays.

  18. Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels

    PubMed Central

    van der Laan, Mark J.; Hubbard, Alan E.; Steel, Cathy; Kubofcik, Joseph; Hamlin, Katy L.; Moss, Delynn M.; Nutman, Thomas B.; Priest, Jeffrey W.; Lammie, Patrick J.

    2017-01-01

    Background Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. Methods/Principal findings We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P

  19. A quantitative evaluation of cell migration by the phagokinetic track motility assay.

    PubMed

    Nogalski, Maciej T; Chan, Gary C T; Stevenson, Emily V; Collins-McMillen, Donna K; Yurochko, Andrew D

    2012-12-04

    Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14

  20. Development of a multiplex PCR assay for the detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cepacia complex.

    PubMed

    Zakharova, Irina; Teteryatnikova, Natalya; Toporkov, Andrey; Viktorov, Dmitry

    2017-10-01

    Two species of Burkholderia pseudomallei complex (Bpc), B. pseudomallei and B. mallei, can cause severe life-threatening infections. Rapidly discerning individual species within the group and separating them from other opportunistic pathogens of the Burkholderia cepacia complex (Bcc) is essential to establish a correct diagnosis and for epidemiological surveillance. In this study, a multiplex PCR assay based on the detection of an individual set of chromosomal beta-lactamase genes for single-step identification and differentiation of B. pseudomallei, B. mallei, B. thailandensis, and Bcc was developed. Two pairs of primers specific to a distinct class of B metallo-beta-lactamase genes and a pair of primers specific to the oxacillin-hydrolyzing class D beta-lactamase gene were demonstrated to successfully discriminate species within Bpc and from Bcc. The assay sensitivity was 9561 genomic equivalents (GE) for B. pseudomallei, 7827 GE for B. mallei, 8749 GE for B. thailandensis and 6023 GE for B. cepacia. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Species-Specific Serological Detection for Schistosomiasis by Serine Protease Inhibitor (SERPIN) in Multiplex Assay.

    PubMed

    Tanigawa, Chihiro; Fujii, Yoshito; Miura, Masashi; Nzou, Samson Muuo; Mwangi, Anne Wanjiru; Nagi, Sachiyo; Hamano, Shinjiro; Njenga, Sammy M; Mbanefo, Evaristus Chibunna; Hirayama, Kenji; Mwau, Matilu; Kaneko, Satoshi

    2015-01-01

    Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance. Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman's rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006). Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system.

  2. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    PubMed

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Development and Demonstration of a Multiplexed Magnetic Tweezers Assay

    NASA Astrophysics Data System (ADS)

    Johnson, Keith Charles

    This dissertation is concerned with the methods and applications of single molecule force spectroscopy. In the introduction, the traditional single molecule force spectroscopy instruments are introduced and the advantages and drawbacks of each are discussed. The first chapter is a review of methods to ensure that biomolecular bond lifetime parameter estimations are not contaminated by multiple bond data. This review culminates in an examination of the literature on the strength of the bond between biotin and streptavidin and finds that by filtering the numerous publications for those that clearly demonstrate specific single bond behavior, there is a consensus of the bond strength and kinetic parameters. The second chapter of the dissertation discusses the capabilities of a magnetic tweezer assay, which combines massive multiplexing, precision bead tracking, and bi-directional force control into a flexible and stabile platform for examining single molecule behavior. Using a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads, I demonstrate the instrument by examining the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli (E. coli) bacteria, and see similar results to previous studies. Chapter 3 is a study of the lifetime of the activated FimH-mannose bond under various force conditions using the previously described magnetic tweezer. The bond is found to be extremely long-lived at forces less than 30 pN, with an average lifetime > 1000 times longer than the biotin-streptavidin bond, making it one of the strongest non-covalent interactions known in nature. Furthermore, the average lifetime of the bond is similar between 9 and 30 pN of force, suggesting a force range at which the lifetime is force-independent, demonstrating ideal bond behavior for the first time in a natural system. It is hypothesized that the long lifetime and ideal behavior is due to a gateway that locks mannose

  4. Multiplexed operation of a micromachined ultrasonic droplet ejector array.

    PubMed

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2007-10-01

    A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.

  5. Multiplex detection of protein-protein interactions using a next generation luciferase reporter.

    PubMed

    Verhoef, Lisette G G C; Mattioli, Michela; Ricci, Fernanda; Li, Yao-Cheng; Wade, Mark

    2016-02-01

    Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs). This is since split luciferase offers a greater signal:noise ratio and, unlike split FPs, the PPI can be reversed upon small molecule treatment. While multiplexed PPI assays using luciferase have been reported, they suffer from low signal:noise and require fairly complex spectral deconvolution during analysis. Furthermore, the luciferase enzymes used are large, which limits the range of PPIs that can be interrogated due to steric hindrance from the split luciferase fragments. Here, we report a multiplexed PPI assay based on split luciferases from Photinus pyralis (firefly luciferase, FLUC) and the deep-sea shrimp, Oplophorus gracilirostris (NanoLuc, NLUC). Specifically, we show that the binding of the p53 tumor suppressor to its two major negative regulators, MDM2 and MDM4, can be simultaneously measured within the same sample, without the requirement for complex filters or deconvolution. We provide chemical and genetic validation of this system using MDM2-targeted small molecules and mutagenesis, respectively. Combined with the superior signal:noise and smaller size of split NanoLuc, this multiplexed PPI assay format can be exploited to study the induction or disruption of pairwise interactions that are prominent in many cell signaling pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Simultaneous identification of 36 mutations in KRAS codons 61and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit

    PubMed Central

    2013-01-01

    Background Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction. Methods Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status. Results In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1–9.2), 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7); median OS was 13.8 months (9.2–18.4), 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11–0.44; P < 0.0001; OS: 95% CI, 0.15–0.61; P < 0.0001). Conclusions Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS

  7. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    PubMed

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was <1000 copies/ml for HIV-1 and <500 copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  8. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  9. Kinetics of Poliovirus Shedding following Oral Vaccination as Measured by Quantitative Reverse Transcription-PCR versus Culture

    PubMed Central

    Begum, Sharmin; Uddin, Md Jashim; Platts-Mills, James A.; Liu, Jie; Kirkpatrick, Beth D.; Chowdhury, Anwarul H.; Jamil, Khondoker M.; Haque, Rashidul; Petri, William A.; Houpt, Eric R.

    2014-01-01

    Amid polio eradication efforts, detection of oral polio vaccine (OPV) virus in stool samples can provide information about rates of mucosal immunity and allow estimation of the poliovirus reservoir. We developed a multiplex one-step quantitative reverse transcription-PCR (qRT-PCR) assay for detection of OPV Sabin strains 1, 2, and 3 directly in stool samples with an external control to normalize samples for viral quantity and compared its performance with that of viral culture. We applied the assay to samples from infants in Dhaka, Bangladesh, after the administration of trivalent OPV (tOPV) at weeks 14 and 52 of life (on days 0 [pre-OPV], +4, +11, +18, and +25 relative to vaccination). When 1,350 stool samples were tested, the sensitivity and specificity of the quantitative PCR (qPCR) assay were 89 and 91% compared with culture. A quantitative relationship between culture+/qPCR+ and culture−/qPCR+ stool samples was observed. The kinetics of shedding revealed by qPCR and culture were similar. qPCR quantitative cutoffs based on the day +11 or +18 stool samples could be used to identify the culture-positive shedders, as well as the long-duration or high-frequency shedders. Interestingly, qPCR revealed that a small minority (7%) of infants contributed the vast majority (93 to 100%) of the total estimated viral excretion across all subtypes at each time point. This qPCR assay for OPV can simply and quantitatively detect all three Sabin strains directly in stool samples to approximate shedding both qualitatively and quantitatively. PMID:25378579

  10. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reindl, W.; Deng, K.; Gladden, J.M.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation ofmore » the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.« less

  11. Evaluation of the Aptima HIV-1 Quant Dx Assay for HIV-1 RNA Quantitation in Different Biological Specimen Types

    PubMed Central

    Yek, Christina; Massanella, Marta; Peling, Tashi; Lednovich, Kristen; Nair, Sangeetha V.; Worlock, Andrew; Vargas, Milenka; Gianella, Sara; Ellis, Ronald J.; Strain, Matthew C.; Busch, Michael P.; Nugent, C. Thomas

    2017-01-01

    ABSTRACT The search for a cure for HIV infection has highlighted the need for increasingly sensitive and precise assays to measure viral burden in various tissues and body fluids. We describe the application of a standardized assay for HIV-1 RNA in multiple specimen types. The fully automated Aptima HIV-1 Quant Dx assay (Aptima assay) is FDA cleared for blood plasma HIV-1 RNA quantitation. In this study, the Aptima assay was applied for the quantitation of HIV RNA in peripheral blood mononuclear cells (PBMCs; n = 72), seminal plasma (n = 20), cerebrospinal fluid (CSF; n = 36), dried blood spots (DBS; n = 104), and dried plasma spots (DPS; n = 104). The Aptima assay was equivalent to or better than commercial assays or validated in-house assays for the quantitation of HIV RNA in CSF and seminal plasma. For PBMC specimens, the sensitivity of the Aptima assay in the detection of HIV RNA decayed as background uninfected PBMC counts increased; proteinase K treatment demonstrated some benefit in restoring signal at higher levels of background PBMCs. Finally, the Aptima assay yielded 100% detection rates of DBS in participants with plasma HIV RNA levels of ≥35 copies/ml and 100% detection rates of DPS in participants with plasma HIV RNA levels of ≥394 copies/ml. The Aptima assay can be applied to a variety of specimens from HIV-infected subjects to measure HIV RNA for studies of viral persistence and cure strategies. It can also detect HIV in dried blood and plasma specimens, which may be of benefit in resource-limited settings. PMID:28592548

  12. Evaluation of the Aptima HIV-1 Quant Dx Assay for HIV-1 RNA Quantitation in Different Biological Specimen Types.

    PubMed

    Yek, Christina; Massanella, Marta; Peling, Tashi; Lednovich, Kristen; Nair, Sangeetha V; Worlock, Andrew; Vargas, Milenka; Gianella, Sara; Ellis, Ronald J; Strain, Matthew C; Busch, Michael P; Nugent, C Thomas; Richman, Douglas D

    2017-08-01

    The search for a cure for HIV infection has highlighted the need for increasingly sensitive and precise assays to measure viral burden in various tissues and body fluids. We describe the application of a standardized assay for HIV-1 RNA in multiple specimen types. The fully automated Aptima HIV-1 Quant Dx assay (Aptima assay) is FDA cleared for blood plasma HIV-1 RNA quantitation. In this study, the Aptima assay was applied for the quantitation of HIV RNA in peripheral blood mononuclear cells (PBMCs; n = 72), seminal plasma ( n = 20), cerebrospinal fluid (CSF; n = 36), dried blood spots (DBS; n = 104), and dried plasma spots (DPS; n = 104). The Aptima assay was equivalent to or better than commercial assays or validated in-house assays for the quantitation of HIV RNA in CSF and seminal plasma. For PBMC specimens, the sensitivity of the Aptima assay in the detection of HIV RNA decayed as background uninfected PBMC counts increased; proteinase K treatment demonstrated some benefit in restoring signal at higher levels of background PBMCs. Finally, the Aptima assay yielded 100% detection rates of DBS in participants with plasma HIV RNA levels of ≥35 copies/ml and 100% detection rates of DPS in participants with plasma HIV RNA levels of ≥394 copies/ml. The Aptima assay can be applied to a variety of specimens from HIV-infected subjects to measure HIV RNA for studies of viral persistence and cure strategies. It can also detect HIV in dried blood and plasma specimens, which may be of benefit in resource-limited settings.

  13. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses.

    PubMed

    Li, Jia; Macdonald, Joanne

    2016-09-15

    Lateral flow biosensors are a leading technology in point-of-care diagnostics due to their simplicity, rapidness and low cost. Their primacy in this arena continues through technological breakthroughs such as multiplexing: the detection of more than one biomarker in a single assay. Multiplexing capacity is critical for improving diagnostic efficiency, enhancing the diagnostic precision for specific diseases and reducing diagnostic cost. Here we review, for the first time, the various types and strategies employed for creating multiplexed lateral flow biosensors. These are classified into four main categories in terms of specific application or multiplexing level, namely linear, parameter, spatial and conceptual. We describe the practical applications and implications for each approach and compare their advantages and disadvantages. Importantly, multiplexing is still subject to limitations of the traditional lateral flow biosensor, such as sensitivity and specificity. However, by pushing the limitations of the traditional medium into the multiplex arena, several technological breakthroughs are emerging with novel solutions that further expand the utility of lateral flow biosensing for point-of-care applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Multiplex Immunoassay Using the Guthrie Specimen to Detect T-Cell Deficiencies Including Severe Combined Immunodeficiency Disease

    PubMed Central

    Janik, David K.; Lindau-Shepard, Barbara; Comeau, Anne Marie; Pass, Kenneth A.

    2011-01-01

    BACKGROUND Severe combined immunodeficiency (SCID) fulfills many of the requirements for addition to a newborn screening panel. Two newborn screening SCID pilot studies are now underway using the T-cell receptor excision circle (TREC) assay, a molecular technique. Here we describe an immunoassay with CD3 as a marker for T cells and CD45 as a marker for total leukocytes that can be used with the Guthrie specimen. METHODS The multiplexing capabilities of the Luminex platform were used. Antibody pairs were used to capture and detect CD3 and CD45 from a single 3-mm punch of the Guthrie specimen. The assay for each bio-marker was developed separately in identical buffers and then combined to create a multiplex assay. RESULTS Using calibrators made from known amounts of leukocytes, a detection limit of 0.25 × 106 cells/mL for CD3 and 0.125 × 106 cells/mL for CD45 was obtained. Affinity tests showed no cross-reactivity between the antibodies to CD3 and CD45. The multiplex assay was validated against 8 coded specimens of known clinical status and linked to results from the TREC assay that had identified them. All were correctly identified by the CD345 assay. CONCLUSIONS The performance parameters of the CD345 assay met the performance characteristics generally accepted for immunoassays. Our assay classifications of positive specimens concur with previous TREC results. This CD345 assay warrants evaluation as a viable alternative or complement to the TREC assay as a primary screening tool for detecting T-cell immunodeficiencies, including SCID, in Guthrie specimens. PMID:20660143

  15. Multiplex detection of pathogen biomarkers in human blood, serum, and saliva using silicon photonic microring resonators

    NASA Astrophysics Data System (ADS)

    Estrada, I. A.; Burlingame, R. W.; Wang, A. P.; Chawla, K.; Grove, T.; Wang, J.; Southern, S. O.; Iqbal, M.; Gunn, L. C.; Gleeson, M. A.

    2015-05-01

    Genalyte has developed a multiplex silicon photonic chip diagnostics platform (MaverickTM) for rapid detection of up to 32 biological analytes from a drop of sample in just 10 to 20 minutes. The chips are manufactured with waveguides adjacent to ring resonators, and probed with a continuously variable wavelength laser. A shift in the resonant wavelength as mass binds above the ring resonators is measured and is directly proportional to the amount of bound macromolecules. We present here the ability to multiplex the detection of hemorrhagic fever antigens in whole blood, serum, and saliva in a 16 minute assay. Our proof of concept testing of a multiplex antigencapture chip has the ability to detect Zaire Ebola (ZEBOV) recombinant soluble glycoprotein (rsGP), Marburg virus (MARV) Angola recombinant glycoprotein (rGP) and dengue nonstructural protein I (NS1). In parallel, detection of 2 malaria antigens has proven successful, but has yet to be incorporated into multiplex with the others. Each assay performs with sensitivity ranging from 1.6 ng/ml to 39 ng/ml depending on the antigen detected, and with minimal cross-reactivity.

  16. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  17. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  18. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  19. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    PubMed

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  20. Development of a multiplex serological assay reveals a worldwide distribution of murine astrovirus infections in laboratory mice.

    PubMed

    Schmidt, Katja; Butt, Julia; Mauter, Petra; Vogel, Klaus; Erles-Kemna, Andrea; Pawlita, Michael; Nicklas, Werner

    2017-01-01

    Laboratory mice play a tremendous role in biomedical research in studies on immunology, infection, cancer and therapy. In the course of standardization of mice used in animal experiments, health monitoring constitutes an important instrument towards microbiological standardization. Infections with murine astroviruses (MuAstV) were only recently discovered and are, therefore, still relatively unknown in laboratory animal science. In rodent health monitoring viral infections within a population are commonly assessed in terms of specific antibodies by serological testing, as active infection and excretion of virus is often temporary and can easily be missed. So far only ongoing infections with astroviruses can be detected by PCR. The objective of this work was the development of a sensitive and specific MuAstV multiplex serological assay with a high-throughput capability to be used in routine testing of laboratory mice. Four different MuAstV proteins were recombinantly expressed and used as antigens. The best reacting antigen, the capsid spike protein VP27, was selected and tested with a panel of 400 sera of mice from units with a known MuAstV status. Assay sensitivity and specificity resulted in 98.5% and 100%, respectively, compared to RT-PCR results. Eventually this assay was used to test 5529 serum samples in total, during routine diagnostics at the German Cancer Research Center (DKFZ) in Heidelberg between 2015 and 2017. High sero-prevalence rates of up to 98% were detected in units with open cages indicating that the virus is highly infectious and circulates within these populations virtually infecting all animals regardless of the mouse strain. In addition, data collected from 312 mice purchased from commercial breeders and from 661 mice from 58 research institutes in 15 countries worldwide allowed the conclusion that MuAstV is widespread in contemporary laboratory mouse populations.

  1. Automated Methods for Multiplexed Pathogen Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cyclermore » where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities

  2. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    PubMed

    Watanabe, S; Melzer, M J

    2017-04-01

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A comparison of sperm agglutination and immobilization assays with a quantitative ELISA for anti-sperm antibody in serum.

    PubMed

    Lynch, D M; Leali, B A; Howe, S E

    1986-08-01

    An enzyme-linked immunosorbent assay (ELISA) that quantitates antisperm antibody in serum was compared with standard sperm agglutination and immobilization assays with the use of sera from 40 normal and 292 subfertile individuals. Quantitation of the assay was accomplished by standardizing assay parameters, including the incorporation of a standard reference curve, the number of whole target sperm, the optimal dilution of serum, the selection of microtiter plate, and the time and temperatures involved in the adsorption and incubation phases. With this method, the level of antisperm antibody binding to target sperm in 40 normal fertile individuals was found to be 2.3 (+/- 1.1 standard deviation [SD]) fg immunoglobulin (Ig)/sperm. An increased mean level of 7.4 +/- 3.7 fg Ig/sperm was determined in 84 infertile patients with positive agglutination and/or immobilization tests. In 208 individuals with negative agglutination and immobilization tests the mean concentration of antisperm antibody was 2.5 +/- 1.3 fg Ig/sperm. Postvasectomy patients assayed by this method had a mean Ig binding value of 7.1 +/- 2.4 fg Ig/sperm. The infertile group with positive agglutination and/or immobilization tests had a significantly higher mean antisperm antibody level than the normal fertile group, according to the Student's t-test for independent samples (P less than 0.001). This indirect serum-based assay reproducibly quantitates antisperm antibody binding to whole target sperm, suggests the normal and abnormal levels of antisperm antibody, and correlates with standard functional assays.

  4. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis

    PubMed Central

    2010-01-01

    Background Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. Results The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 105 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. Conclusions The

  5. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Korsgaard, Jens; Blomberg, Jonas; Welinder-Olsson, Christina; Herrmann, Björn

    2010-12-03

    Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 10⁵ genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively.In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. The PCR provides increased

  6. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity.

    PubMed

    Jayaraman, Dhileepkumar; Richards, Alicia L; Westphall, Michael S; Coon, Joshua J; Ané, Jean-Michel

    2017-06-01

    Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR.

    PubMed

    Hughesman, Curtis B; Lu, X J David; Liu, Kelly Y P; Zhu, Yuqi; Towle, Rebecca M; Haynes, Charles; Poh, Catherine F

    2017-09-19

    Copy number alterations (CNAs), a common genomic event during carcinogenesis, are known to affect a large fraction of the genome. Common recurrent gains or losses of specific chromosomal regions occur at frequencies that they may be considered distinctive features of tumoral cells. Here we introduce a novel multiplexed droplet digital PCR (ddPCR) assay capable of detecting recurrent CNAs that drive tumorigenesis of oral squamous cell carcinoma. Applied to DNA extracted from oral cell lines and clinical samples of various disease stages, we found good agreement between CNAs detected by our ddPCR assay with those previously reported using comparative genomic hybridization or single nucleotide polymorphism arrays. Furthermore, we demonstrate that the ability to target specific locations of the genome permits detection of clinically relevant oncogenic events such as small, submicroscopic homozygous deletions. Additional capabilities of the multiplexed ddPCR assay include the ability to infer ploidy level, quantify the change in copy number of target loci with high-level gains, and simultaneously assess the status and viral load for high-risk human papillomavirus types 16 and 18. This novel multiplexed ddPCR assay therefore may have clinical value in differentiating between benign oral lesions from those that are at risk of progressing to oral cancer.

  8. Simultaneous Detection of Rift Valley Fever, Bluetongue, Rinderpest, and Peste des Petits Ruminants Viruses by a Single-Tube Multiplex Reverse Transcriptase-PCR Assay Using a Dual-Priming Oligonucleotide System▿

    PubMed Central

    Yeh, Jung-Yong; Lee, Ji-Hye; Seo, Hyun-Ji; Park, Jee-Yong; Moon, Jin-San; Cho, In-Soo; Choi, In-Soo; Park, Seung-Yong; Song, Chang-Seon; Lee, Joong-Bok

    2011-01-01

    The aim of this study was to develop a highly sensitive and specific one-step multiplex reverse transcriptase PCR assay for the simultaneous and differential detection of Rift Valley Fever virus (RVFV), bluetongue virus (BTV), rinderpest virus (RPV), and Peste des petits ruminants virus (PPRV). These viruses cause mucosal lesions in cattle, sheep, and goats, and they are difficult to differentiate from one another based solely on their clinical presentation in suspected disease cases. In this study, we developed a multiplex reverse transcriptase PCR to detect these viruses using a novel dual-priming oligonucleotide (DPO). The DPO contains two separate priming regions joined by a polydeoxyinosine linker, which blocks extension of nonspecifically primed templates and consistently allows high PCR specificity even under less-than-optimal PCR conditions. A total of 19 DPO primers were designed to detect and discriminate between RVFV, BTV, RPV, and PPRV by the generation of 205-, 440-, 115-, and 243-bp cDNA products, respectively. The multiplex reverse transcriptase PCR described here enables the early diagnosis of these four viruses and may also be useful as part of a testing regime for cattle, sheep, or goats exhibiting similar clinical signs, including mucosal lesions. PMID:21307219

  9. Multiplex serology of paraneoplastic antineuronal antibodies.

    PubMed

    Maat, Peter; Brouwer, Eric; Hulsenboom, Esther; VanDuijn, Martijn; Schreurs, Marco W J; Hooijkaas, Herbert; Smitt, Peter A E Sillevis

    2013-05-31

    Paraneoplastic neurological syndromes (PNS) are devastating neurological disorders secondary to cancer, associated with onconeural autoantibodies. Such antibodies are directed against neuronal antigens aberrantly expressed by the tumor. The detection of onconeural antibodies in a patient is extremely important in diagnosing a neurological syndrome as paraneoplastic (70% is not yet known to have cancer) and in directing the search for the underlying neoplasm. At present six onconeural antibodies are considered 'well characterized' and recognize the antigens HuD, CDR62 (Yo), amphiphysin, CRMP-5 (CV2), NOVA-1 (Ri), and Ma2. The gold standard of detection is the characteristic immunohistochemical staining pattern on brain tissue sections combined with confirmation by immunoblotting using recombinant purified proteins. Since all six onconeural antibodies are usually analyzed simultaneously and objective cut-off values for these analyses are warranted, we developed a multiplex assay based on Luminex technology. Reaction of serial dilutions of six onconeural standard sera with microsphere-bound antigens showed lower limits of detection than with Western blotting. Using the six standard sera at a dilution of 1:200, the average within-run coefficient of variation (CV) was 4% (range 1.9-7.3%). The average between-run within-day CV was 5.1% (range 2.9-6.7%) while the average between-day CV was 8.1% (range 2.8-11.6%). The shelf-life of the antigen coupled microspheres was at least two months. The sensitivity of the multiplex assay ranged from 83% (Ri) to 100% (Yo, amphiphysin, CV2) and the specificity from 96% (CV2) to 100% (Ri). In conclusion, Luminex-based multiplex serology is highly reproducible with high sensitivity and specificity for the detection of onconeural antibodies. Conventional immunoblotting for diagnosis of onconeural antibodies in the setting of a routine laboratory may be replaced by this novel, robust technology. Copyright © 2013 Elsevier B.V. All rights

  10. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator.

    PubMed

    Thiessen, Lindsey D; Neill, Tara M; Mahaffee, Walter F

    2018-01-01

    Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a loop-mediated isothermal amplification (LAMP) assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-conducted assays due to the difficulty in perceiving the magnesium pyrophosphate precipitate at low DNA concentrations. A quantitative LAMP (qLAMP) assay using a fluorescence resonance energy transfer-based probe was assessed by grape growers in the Willamette Valley of Oregon. Custom impaction spore samplers were placed at a research vineyard and six commercial vineyard locations, and were tested bi-weekly by the lab and by growers. Grower-conducted qLAMP assays used a beta-version of the Smart-DART handheld LAMP reaction devices (Diagenetix, Inc., Honolulu, HI, USA), connected to Android 4.4 enabled, Bluetooth-capable Nexus 7 tablets for output. Quantification by a quantitative PCR assay was assumed correct to compare the lab and grower qLAMP assay quantification. Growers were able to conduct and interpret qLAMP results; however, the Erysiphe necator inoculum quantification was unreliable using the beta-Smart-DART devices. The qLAMP assay developed was sensitive to one spore in early testing of the assay, but decreased to >20 spores by the end of the trial. The qLAMP assay is not likely a suitable management tool for grape powdery mildew due to losses in sensitivity and decreasing costs and portability for other, more reliable molecular tools.

  11. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.

    PubMed

    Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua

    2018-06-13

    Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.

  12. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    PubMed

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of a multiplex RT-PCR assay for the identification of recombination types at different genomic regions of vaccine-derived polioviruses.

    PubMed

    Dimitriou, T G; Kyriakopoulou, Z; Tsakogiannis, D; Fikatas, A; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P

    2016-08-01

    Polioviruses (PVs) are the causal agents of acute paralytic poliomyelitis. Since the 1960s, poliomyelitis has been effectively controlled by the use of two vaccines containing all three serotypes of PVs, the inactivated poliovirus vaccine and the live attenuated oral poliovirus vaccine (OPV). Despite the success of OPV in polio eradication programme, a significant disadvantage was revealed: the emergence of vaccine-associated paralytic poliomyelitis (VAPP). VAPP is the result of accumulated mutations and putative recombination events located at the genome of attenuated vaccine Sabin strains. In the present study, ten Sabin isolates derived from OPV vaccinees and environmental samples were studied in order to identify recombination types located from VP1 to 3D genomic regions of virus genome. The experimental procedure that was followed was virus RNA extraction, reverse transcription to convert the virus genome into cDNA, PCR and multiplex-PCR using specific designed primers able to localize and identify each recombination following agarose gel electrophoresis. This multiplex RT-PCR assay allows for the immediate detection and identification of multiple recombination types located at the viral genome of OPV derivatives. After the eradication of wild PVs, the remaining sources of poliovirus infection worldwide would be the OPV derivatives. As a consequence, the immediate detection and molecular characterization of recombinant derivatives are important to avoid epidemics due to the circulation of neurovirulent viral strains.

  14. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay.

    PubMed

    Li, Ming; Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao; Barman, Ishan

    2015-07-01

    Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.

  15. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease.

    PubMed

    Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong

    2017-10-01

    Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. “Pathotyping” Multiplex PCR Assay for Haemophilus parasuis: a Tool for Prediction of Virulence

    PubMed Central

    Weinert, Lucy A.; Peters, Sarah E.; Wang, Jinhong; Hernandez-Garcia, Juan; Chaudhuri, Roy R.; Luan, Shi-Lu; Angen, Øystein; Aragon, Virginia; Williamson, Susanna M.; Rycroft, Andrew N.; Wren, Brendan W.; Maskell, Duncan J.; Tucker, Alexander W.

    2017-01-01

    ABSTRACT Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the “current standard” of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data. PMID:28615466

  17. Multiplexed operation of a micromachined ultrasonic droplet ejector array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2007-10-15

    A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less

  18. Multiplexed MRM-Based Protein Quantitation Using Two Different Stable Isotope-Labeled Peptide Isotopologues for Calibration.

    PubMed

    LeBlanc, André; Michaud, Sarah A; Percy, Andrew J; Hardie, Darryl B; Yang, Juncong; Sinclair, Nicholas J; Proudfoot, Jillaine I; Pistawka, Adam; Smith, Derek S; Borchers, Christoph H

    2017-07-07

    When quantifying endogenous plasma proteins for fundamental and biomedical research - as well as for clinical applications - precise, reproducible, and robust assays are required. Targeted detection of peptides in a bottom-up strategy is the most common and precise mass spectrometry-based quantitation approach when combined with the use of stable isotope-labeled peptides. However, when measuring protein in plasma, the unknown endogenous levels prevent the implementation of the best calibration strategies, since no blank matrix is available. Consequently, several alternative calibration strategies are employed by different laboratories. In this study, these methods were compared to a new approach using two different stable isotope-labeled standard (SIS) peptide isotopologues for each endogenous peptide to be quantified, enabling an external calibration curve as well as the quality control samples to be prepared in pooled human plasma without interference from endogenous peptides. This strategy improves the analytical performance of the assay and enables the accuracy of the assay to be monitored, which can also facilitate method development and validation.

  19. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  20. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  1. Preliminary Assessment of Microwave Readout Multiplexing Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less

  2. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  3. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  4. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR

    PubMed Central

    2010-01-01

    Background Human papillomaviruses (HPVs) remain a serious world health problem due to their association with anogenital/oral cancers and warts. While over 100 HPV types have been identified, a subset is associated with malignancy. HPV16 and 18 are the most prevalent oncogenic types, while HPV6 and 11 are most commonly responsible for anogenital warts. While other quantitative PCR (qPCR) assays detect oncogenic HPV, there is no single tube assay distinguishing the most frequent oncogenic types and the most common types found in warts. Results A Sybr Green-based qPCR assay was developed utilizing degenerate primers to the highly conserved HPV E1 theoretically detecting any HPV type. A single tube multiplex qPCR assay was also developed using type-specific primer pairs and TaqMan probes that allowed for detection and quantitation of HPV6,11,16,18. Each HPV type was detected over a range from 2 × 101 to 2 × 106copies/reaction providing a reliable method of quantitating type-specific HPV in 140 anogenital/cutaneous/oral benign and malignant specimens. 35 oncogenic and low risk alpha genus HPV types were detected. Concordance was detected in previously typed specimens. Comparisons to the gold standard detected an overall sensitivity of 89% (95% CI: 77% - 96%) and specificity of 90% (95%CI: 52% - 98%). Conclusion There was good agreement between the ability of the qPCR assays described here to identify HPV types in malignancies previously typed using standard methods. These novel qPCR assays will allow rapid detection and quantitation of HPVs to assess their role in viral pathogenesis. PMID:20723234

  5. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    PubMed

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Implementation and Evaluation of a Fully Automated Multiplex Real-Time PCR Assay on the BD Max Platform to Detect and Differentiate Herpesviridae from Cerebrospinal Fluids

    PubMed Central

    Köller, Thomas; Kurze, Daniel; Lange, Mirjam; Scherdin, Martin; Podbielski, Andreas; Warnke, Philipp

    2016-01-01

    A fully automated multiplex real-time PCR assay—including a sample process control and a plasmid based positive control—for the detection and differentiation of herpes simplex virus 1 (HSV1), herpes simplex virus 2 (HSV2) and varicella-zoster virus (VZV) from cerebrospinal fluids (CSF) was developed on the BD Max platform. Performance was compared to an established accredited multiplex real time PCR protocol utilizing the easyMAG and the LightCycler 480/II, both very common devices in viral molecular diagnostics. For clinical validation, 123 CSF specimens and 40 reference samples from national interlaboratory comparisons were examined with both methods, resulting in 97.6% and 100% concordance for CSF and reference samples, respectively. Utilizing the BD Max platform revealed sensitivities of 173 (CI 95%, 88–258) copies/ml for HSV1, 171 (CI 95%, 148–194) copies/ml for HSV2 and 84 (CI 95%, 5–163) copies/ml for VZV. Cross reactivity could be excluded by checking 25 common viral, bacterial and fungal human pathogens. Workflow analyses displayed shorter test duration as well as remarkable fewer and easier preparation steps with the potential to reduce error rates occurring when manually assessing patient samples. This protocol allows for a fully automated PCR assay on the BD Max platform for the simultaneously detection of herpesviridae from CSF specimens. Singular or multiple infections due to HSV1, HSV2 and VZV can reliably be differentiated with good sensitivities. Control parameters are included within the assay, thereby rendering its suitability for current quality management requirements. PMID:27092772

  7. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hydrogel droplet microarrays with trapped antibody-functionalized beads for multiplexed protein analysis.

    PubMed

    Li, Huiyan; Leulmi, Rym Feriel; Juncker, David

    2011-02-07

    Antibody microarrays are a powerful tool for rapid, multiplexed profiling of proteins. 3D microarray substrates have been developed to improve binding capacity, assay sensitivity, and mass transport, however, they often rely on photopolymers which are difficult to manufacture and have a small pore size that limits mass transport and demands long incubation time. Here, we present a novel 3D antibody microarray format based on the entrapment of antibody-coated microbeads within alginate droplets that were spotted onto a glass slide using an inkjet. Owing to the low concentration of alginate used, the gels were highly porous to proteins, and together with the 3D architecture helped enhance mass transport during the assays. The spotting parameters were optimized for the attachment of the alginate to the substrate. Beads with 0.2 µm, 0.5 µm and 1 µm diameter were tested and 1 µm beads were selected based on their superior retention within the hydrogel. The beads were found to be distributed within the entire volume of the gel droplet using confocal microscopy. The assay time and the concentration of beads in the gels were investigated for maximal binding signal using one-step immunoassays. As a proof of concept, six proteins including cytokines (TNFα, IL-8 and MIP/CCL4), breast cancer biomarkers (CEA and HER2) and one cancer-related protein (ENG) were profiled in multiplex using sandwich assays down to pg mL(-1) concentrations with 1 h incubation without agitation in both buffer solutions and 10% serum. These results illustrate the potential of beads-in-gel microarrays for highly sensitive and multiplexed protein analysis.

  9. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay

    PubMed Central

    Tagliafierro, Teresa; Cucura, D. Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W. Ian

    2017-01-01

    ABSTRACT Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi, Babesia microti, and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis. Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area. PMID:28435891

  10. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay.

    PubMed

    Tokarz, Rafal; Tagliafierro, Teresa; Cucura, D Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W Ian

    2017-01-01

    Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia miyamotoi , Babesia microti , and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis . Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area.

  11. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  12. Sequential Multiplex Analyte Capturing for Phosphoprotein Profiling*

    PubMed Central

    Poetz, Oliver; Henzler, Tanja; Hartmann, Michael; Kazmaier, Cornelia; Templin, Markus F.; Herget, Thomas; Joos, Thomas O.

    2010-01-01

    Microarray-based sandwich immunoassays can simultaneously detect dozens of proteins. However, their use in quantifying large numbers of proteins is hampered by cross-reactivity and incompatibilities caused by the immunoassays themselves. Sequential multiplex analyte capturing addresses these problems by repeatedly probing the same sample with different sets of antibody-coated, magnetic suspension bead arrays. As a miniaturized immunoassay format, suspension bead array-based assays fulfill the criteria of the ambient analyte theory, and our experiments reveal that the analyte concentrations are not significantly changed. The value of sequential multiplex analyte capturing was demonstrated by probing tumor cell line lysates for the abundance of seven different receptor tyrosine kinases and their degree of phosphorylation and by measuring the complex phosphorylation pattern of the epidermal growth factor receptor in the same sample from the same cavity. PMID:20682761

  13. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells

    NASA Astrophysics Data System (ADS)

    Wu, Yafeng; Han, Jianyu; Xue, Peng; Xu, Rong; Kang, Yuejun

    2015-01-01

    MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression.MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of

  14. Detection and clearance of prostate cells subsequent to ultrasound-guided needle biopsy as determined by multiplex nested reverse transcription polymerase chain reaction assay.

    PubMed

    Price, D K; Clontz, D R; Woodard, W L; Kaufman, J S; Daniels, J M; Stolzenberg, S J; Teigland, C M

    1998-08-01

    To determine if circulating prostate cells are detectable subsequent to transrectal ultrasound (TRUS)-guided biopsy, and if so, whether cells remain in circulation for up to 4 weeks. Blood samples were drawn from 90 patients with elevated serum prostate-specific antigen (PSA) levels and/or abnormal digital rectal examination. Two samples were drawn from all patients immediately prior to TRUS and 30 minutes postbiopsy. Blood samples were also obtained 1 week postbiopsy from 83 patients, and 1 month postbiopsy from 61 patients. Multiplex nested reverse transcription polymerase chain reaction assay (RT-PCR) for PSA and prostate-specific membrane antigen (PSM) was performed on total ribonucleic acid (RNA) from each sample. Results were reported as positive if at least one of the targets was detected. Of 45 patients with biopsy-proven adenocarcinoma, 22 were RT-PCR positive prebiopsy and all remained positive 30 minutes postbiopsy. Of 23 patients with adenocarcinoma who were RT-PCR negative prebiopsy, 5 (22%) converted to positive 30 minutes postbiopsy (P < 0.001). Four of these 5 patients returned to negative after 1 week or 1 month. Of 45 patients without cancer at biopsy, 32 were RT-PCR negative prebiopsy and 6 (19%) converted to positive 30 minutes postbiopsy (P < 0.001). Although four of six available samples were still positive at 1 week, all four samples available 1 month postbiopsy were negative. Detection of circulating prostate cells subsequent to biopsy occurred in 11 of 55 (20%) previously RT-PCR negative patients, a proportion twice that reported in the literature. We attribute this higher proportion to the simultaneous detection of PSA and PSM mRNA in our multiplex assay. Conversion rates were similar in patients regardless of biopsy result. Testing of serial postbiopsy blood demonstrates clearing of these cells by 4 weeks in most patients.

  15. A novel approach for copy number variation analysis by combining multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Gao, Yonghui; Chen, Xiaoli; Wang, Jianhua; Shangguan, Shaofang; Dai, Yaohua; Zhang, Ting; Liu, Junling

    2013-06-20

    With the increasing interest in copy number variation as it pertains to human genomic variation, common phenotypes, and disease susceptibility, there is a pressing need for methods to accurately identify copy number. In this study, we developed a simple approach that combines multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for submicroscopic copy number variation detection. Two pairs of primers were used to simultaneously amplify query and endogenous control regions in the same reaction. Using a base extension reaction, the two amplicons were then distinguished and quantified in a mass spectrometry map. The peak ratio between the test region and the endogenous control region was manually calculated. The relative copy number could be determined by comparing the peak ratio between the test and control samples. This method generated a copy number measurement comparable to those produced by two other commonly used methods - multiplex ligation-dependent probe amplification and quantitative real-time PCR. Furthermore, it can discriminate a wide range of copy numbers. With a typical 384-format SpectroCHIP, at least six loci on 384 samples can be analyzed simultaneously in a hexaplex assay, making this assay adaptable for high throughput, and potentially applicable for large-scale association studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Multiplexed targeted proteomic assay to assess coagulation factor concentrations and thrombosis-associated cancer

    PubMed Central

    van Vlijmen, Bart J.; Yang, Juncong; Percy, Andrew J.

    2017-01-01

    The plasma levels of pro- and anticoagulant proteins are important markers for venous thrombosis (VT) risk and can be affected by both genetic and acquired factors, including cancer. Generally, these markers are measured using activity- or antibody-based assays. Targeted proteomics with stable-isotope–labeled internal standards has proven adept at the rapid, multiplex, and precise quantification of proteins in complex biological samples such as plasma. We used liquid chromatography coupled to multiple reaction monitoring (MRM) mass spectrometry to evaluate the concentrations of 31 coagulation- and fibrinolysis-related proteins in plasma from 25 healthy controls, 25 patients with VT, and 25 patients with VT who were also diagnosed with cancer. The concentration level of 1 to 3 proteotypic peptides per protein was determined, and all samples were previously characterized using traditional antibody- or activity-based methods. When comparing the conventional and the MRM strategies, the mean Pearson correlation for the 13 proteins (covered by 36 target peptides) shared between the 2 approaches was 0.77, indicating a good correlation. Additionally, MRM offers higher sensitivity (mean regression slope, 0.81), higher multiplicity in a single run, and good ability to leverage all measurements to discriminate groups using unsupervised clustering, which identified vitamin K antagonist users as well as patients with VT and cancer. The data collected using MRM show that the combination of coagulation factor levels yields signature information on VT and cancer, which was not obvious from a single measurement. These results encourage the further validation and investigation of MRM in profiling protein signature of disease. PMID:29296750

  17. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat

    USDA-ARS?s Scientific Manuscript database

    A rapid, sensitive and multiplexed imaging surface plasmon resonance (iSPR) biosensor assay was developed and validated for three Fusarium toxins, deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin. The iSPR assay was based on a competitive inhibition format with secondary antibodies (Ab2) conjug...

  18. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections

    PubMed Central

    Kishen, Ria E. B.; Kluth, David C.; Bellamy, Christopher O. C.

    2016-01-01

    The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367

  19. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers.

    PubMed

    Chen, Yi-Ting; Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-05-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers*

    PubMed Central

    Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-01-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. PMID:28235782

  1. Multiplex PCR for rapid detection of genes encoding class A carbapenemases.

    PubMed

    Hong, Sang Sook; Kim, Kyeongmi; Huh, Ji Young; Jung, Bochan; Kang, Myung Seo; Hong, Seong Geun

    2012-09-01

    In recent years, there have been increasing reports of KPC-producing Klebsiella pneumoniae in Korea. The modified Hodge test can be used as a phenotypic screening test for class A carbapenamase (CAC)-producing clinical isolates; however, it does not distinguish between carbapenemase types. The confirmation of type of CAC is important to ensure optimal therapy and to prevent transmission. This study applied a novel multiplex PCR assay to detect and differentiate CAC genes in a single reaction. Four primer pairs were designed to amplify fragments encoding 4 CAC families (SME, IMI/NMC-A, KPC, and GES). The multiplex PCR detected all genes tested for 4 CAC families that could be differentiated by fragment size according to gene type. This multiplex PCR offers a simple and useful approach for detecting and distinguishing CAC genes in carbapenem-resistant strains that are metallo-β-lactamase nonproducers.

  2. Novel Multiplex MethyLight Protocol for Detection of DNA Methylation in Patient Tissues and Bodily Fluids

    PubMed Central

    Olkhov-Mitsel, Ekaterina; Zdravic, Darko; Kron, Ken; van der Kwast, Theodorus; Fleshner, Neil; Bapat, Bharati

    2014-01-01

    Aberrant DNA methylation is a hallmark of cancer and is an important potential biomarker. Particularly, combined analysis of a panel of hypermethylated genes shows the most promising clinical performance. Herein, we developed, optimized and standardized a multiplex MethyLight assay to simultaneously detect hypermethylation of APC, HOXD3 and TGFB2 in DNA extracted from prostate cancer (PCa) cell lines, archival tissue specimens, and urine samples. We established that the assay is capable of discriminating between fully methylated and unmethylated alleles with 100% specificity and demonstrated the assay as highly accurate and reproducible as the singleplex approach. For proof of principle, we analyzed the methylation status of these genes in tissue and urine samples of PCa patients as well as PCa-free controls. These data show that the multiplex MethyLight assay offers a significant advantage when working with limited quantities of DNA and has potential applications in research and clinical settings. PMID:24651255

  3. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    PubMed Central

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990

  4. Rapid and simple method by combining FTA™ card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples.

    PubMed

    Kim, S A; Park, S H; Lee, S I; Ricke, S C

    2017-12-01

    The aim of this research was to optimize two multiplex polymerase chain reaction (PCR) assays that could simultaneously detect six non-O157 Shiga toxin-producing Escherichia coli (STEC) as well as the three virulence genes. We also investigated the potential of combining the FTA™ card-based DNA extraction with the multiplex PCR assays. Two multiplex PCR assays were optimized using six primer pairs for each non-O157 STEC serogroup and three primer pairs for virulence genes respectively. Each STEC strain specific primer pair only amplified 155, 238, 321, 438, 587 and 750 bp product for O26, O45, O103, O111, O121 and O145 respectively. Three virulence genes were successfully multiplexed: 375 bp for eae, 655 bp for stx1 and 477 bp for stx2. When two multiplex PCR assays were validated with ground beef samples, distinctive bands were also successfully produced. Since the two multiplex PCR examined here can be conducted under the same PCR conditions, the six non-O157 STEC and their virulence genes could be concurrently detected with one run on the thermocycler. In addition, all bands clearly appeared to be amplified by FTA card DNA extraction in the multiplex PCR assay from the ground beef sample, suggesting that an FTA card could be a viable sampling approach for rapid and simple DNA extraction to reduce time and labour and therefore may have practical use for the food industry. Two multiplex polymerase chain reaction (PCR) assays were optimized for discrimination of six non-O157 Shiga toxin-producing Escherichia coli (STEC) and identification of their major virulence genes within a single reaction, simultaneously. This study also determined the successful ability of the FTA™ card as an alternative to commercial DNA extraction method for conducting multiplex STEC PCR assays. The FTA™ card combined with multiplex PCR holds promise for the food industry by offering a simple and rapid DNA sample method for reducing time, cost and labour for detection of STEC in

  5. Simplified and Efficient Quantification of Low-abundance Proteins at Very High Multiplex via Targeted Mass Spectrometry*

    PubMed Central

    Burgess, Michael W.; Keshishian, Hasmik; Mani, D. R.; Gillette, Michael A.; Carr, Steven A.

    2014-01-01

    Liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS) of plasma that has been depleted of abundant proteins and fractionated at the peptide level into six to eight fractions is a proven method for quantifying proteins present at low nanogram-per-milliliter levels. A drawback of fraction-MRM is the increased analysis time due to the generation of multiple fractions per biological sample. We now report that the use of heated, long, fused silica columns (>30 cm) packed with 1.9 μm of packing material can reduce or eliminate the need for fractionation prior to LC-MRM-MS without a significant loss of sensitivity or precision relative to fraction-MRM. We empirically determined the optimal column length, temperature, gradient duration, and sample load for such assays and used these conditions to study detection sensitivity and assay precision. In addition to increased peak capacity, longer columns packed with smaller beads tolerated a 4- to 6-fold increase in analyte load without a loss of robustness or reproducibility. The longer columns also provided a 4-fold improvement in median limit-of-quantitation values with increased assay precision relative to the standard 12 cm columns packed with 3 μm material. Overall, the optimized chromatography provided an approximately 3-fold increase in analysis throughput with excellent robustness and less than a 2-fold reduction in quantitative sensitivity relative to fraction-MRM. The value of the system for increased multiplexing was demonstrated by the ability to configure an 800-plex MRM-MS assay, run in a single analysis, comprising 2400 transitions with retention time scheduling to monitor 400 unlabeled and heavy labeled peptide pairs. PMID:24522978

  6. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A single slide multiplex assay for the evaluation of classical Hodgkin lymphoma.

    PubMed

    Hollman-Hewgley, Denise; Lazare, Michael; Bordwell, Alex; Zebadua, Emily; Tripathi, Pinky; Ross, Alexander S; Fisher, Deanna; Adams, Alisha; Bouman, Derek; O'Malley, Dennis P; Weiss, Lawrence M

    2014-09-01

    Classical Hodgkin lymphoma can be diagnosed with confidence in the majority of cases, but there is a significant subset that remains a diagnostic challenge. The authors have investigated the utility of a novel hyperplexing technology, MultiOmyx™, which may be applied to stain with >60 antibodies on single tissue sections from formalin-fixed paraffin-embedded tissue as an aid to the diagnosis of classical Hodgkin lymphoma. The multiplexing protocol included CD30, CD15, PAX-5, CD20, CD79a, CD45, BOB.1, OCT-2, and CD3 antibodies. The technology showed a high degree of sensitivity, specificity, and precision. Comparison studies with routine hematoxylin and eosin and immunohistochemical assessment of hematopathology cases in which classical Hodgkin lymphoma was included in the differential diagnosis showed concordance in 54 of 56 cases, with the 2 discordant cases illustrating the potential of this multiplexed immunofluorescence technology to improve on traditional immunohistochemistry for classical Hodgkin lymphoma diagnosis. This technology is practical for routine diagnosis and may be particularly useful in cases in which the sample size is limited, few Hodgkin-like cells are present, or in CD30-positive lymphoma cases with difficult morphology. MultiOmyx may potentially benefit other areas of research and diagnostic pathology.

  8. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  9. SensiScreen® KRAS exon 2-sensitive simplex and multiplex real-time PCR-based assays for detection of KRAS exon 2 mutations

    PubMed Central

    Guldmann-Christensen, Mariann; Hauge Kyneb, Majbritt; Voogd, Kirsten; Andersen, Christina; Epistolio, Samantha; Merlo, Elisabetta; Yding Wolff, Tine; Hamilton-Dutoit, Stephen; Lorenzen, Jan; Christensen, Ulf Bech

    2017-01-01

    Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase’s proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25–1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods. PMID:28636636

  10. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  11. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  12. A simple competitive RT-PCR assay for quantitation of HIV-1 subtype B and non-B RNA in plasma.

    PubMed

    Hamatake, Makiko; Nishizawa, Masako; Yamamoto, Naoki; Kato, Shingo; Sugiura, Wataru

    2007-06-01

    An easy, inexpensive competitive RT-PCR assay for HIV-1 RNA quantitation was constructed. A 138-bp sequence in the HIV-1 gag p24 region was selected as the target and co-amplified with competitor RNA containing an internal 44-bp deletion. Quantitation of serial dilutions of control RNA samples prepared from the LAI isolate demonstrated a good linearity (R(2)=0.991) within the range between 10 and 250 copies/sample. The detection limit of the assay was determined to be 3.8 copies/sample by Probit analysis and corresponded to 110 copies/ml in plasma. The intra-assay CV value was 9.1%, and the inter-assay value was 25.9%. Both were comparable to those obtained with commercially available HIV-1 RNA quantitation kits. The correlation efficient for the results obtained in 47 plasma samples from HIV-1-infected individuals (subtype A in 1, subtype B in 25, subtype C in 4, subtype F in 1, and CRF01 AE in 16) with the competitive RT-PCR and Cobas Amplicor HIV-1 Monitor test v1.5 was 0.956 for subtype B and 0.947 for subtype non-B. The assay devised is a good alternative for monitoring antiretroviral therapy in resource-poor countries.

  13. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay.

    PubMed

    Cross, Kristen E; Mercante, Jeffrey W; Benitez, Alvaro J; Brown, Ellen W; Diaz, Maureen H; Winchell, Jonas M

    2016-07-01

    Legionnaires' disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80-90%), other species have also been reported to cause disease. However, little is known about Legionnaires' disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5'-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease. Published by Elsevier Inc.

  14. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  15. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples.

    PubMed

    Ogunremi, Dele; Nadin-Davis, Susan; Dupras, Andrée Ann; Márquez, Imelda Gálvan; Omidi, Katayoun; Pope, Louise; Devenish, John; Burke, Teresa; Allain, Ray; Leclair, Daniel

    2017-02-01

    A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.

  16. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    USGS Publications Warehouse

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  17. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    PubMed

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  18. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.

    2018-08-01

    Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.

  19. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review.

    PubMed

    Sponchiado, Graziela; Adam, Mônica Lucia; Silva, Caroline Dadalt; Soley, Bruna Silva; de Mello-Sampayo, Cristina; Cabrini, Daniela Almeida; Correr, Cassyano Januário; Otuki, Michel Fleith

    2016-02-03

    Medicinal plants are known to contain numerous biologically active compounds, and although they have proven pharmacological properties, they can cause harm, including DNA damage. Review the literature to evaluate the genotoxicity risk of medicinal plants, explore the genotoxicity assays most used and compare these to the current legal requirements. A quantitative systematic review of the literature, using the keywords "medicinal plants", "genotoxicity" and "mutagenicity", was undertakenQ to identify the types of assays most used to assess genotoxicity, and to evaluate the genotoxicity potential of medicinal plant extracts. The database searches retrieved 2289 records, 458 of which met the inclusion criteria. Evaluation of the selected articles showed a total of 24 different assays used for an assessment of medicinal plant extract genotoxicity. More than a quarter of those studies (28.4%) reported positive results for genotoxicity. This review demonstrates that a range of genotoxicity assay methods are used to evaluate the genotoxicity potential of medicinal plant extracts. The most used methods are those recommended by regulatory agencies. However, based on the current findings, in order to conduct a thorough study concerning the possible genotoxic effects of a medicinal plant, we indicate that it is important always to include bacterial and mammalian tests, with at least one in vivo assay. Also, these tests should be capable of detecting outcomes that include mutation induction, clastogenic and aneugenic effects, and structural chromosome abnormalities. In addition, the considerable rate of positive results detected in this analysis further supports the relevance of assessing the genotoxicity potential of medicinal plants. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis.

    PubMed

    Stack, Edward C; Wang, Chichung; Roman, Kristin A; Hoyt, Clifford C

    2014-11-01

    Tissue sections offer the opportunity to understand a patient's condition, to make better prognostic evaluations and to select optimum treatments, as evidenced by the place pathology holds today in clinical practice. Yet, there is a wealth of information locked up in a tissue section that is only partially accessed, due mainly to the limitations of tools and methods. Often tissues are assessed primarily based on visual analysis of one or two proteins, or 2-3 DNA or RNA molecules. Even while analysis is still based on visual perception, image analysis is starting to address the variability of human perception. This is in contrast to measuring characteristics that are substantially out of reach of human perception, such as parameters revealed through co-expression, spatial relationships, heterogeneity, and low abundance molecules. What is not routinely accessed is the information revealed through simultaneous detection of multiple markers, the spatial relationships among cells and tissue in disease, and the heterogeneity now understood to be critical to developing effective therapeutic strategies. Our purpose here is to review and assess methods for multiplexed, quantitative, image analysis based approaches, using new multicolor immunohistochemistry methods, automated multispectral slide imaging, and advanced trainable pattern recognition software. A key aspect of our approach is presenting imagery in a workflow that engages the pathologist to utilize the strengths of human perception and judgment, while significantly expanding the range of metrics collectable from tissue sections and also provide a level of consistency and precision needed to support the complexities of personalized medicine. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.