Sample records for quantitative multivariate analysis

  1. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    NASA Astrophysics Data System (ADS)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  2. Multivariate Quantitative Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  3. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  4. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.

  5. The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects

    ERIC Educational Resources Information Center

    Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle

    2011-01-01

    Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…

  6. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  7. Skype Synchronous Interaction Effectiveness in a Quantitative Management Science Course

    ERIC Educational Resources Information Center

    Strang, Kenneth David

    2012-01-01

    An experiment compared asynchronous versus synchronous instruction in an online quantitative course. Mann-Whitney U-tests, correlation, analysis of variance, t tests, and multivariate analysis of covariance (MANCOVA) were utilized to test the hypothesis that more high-quality online experiential learning interactions would increase grade.…

  8. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  9. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  10. Localization of genes involved in the metabolic syndrome using multivariate linkage analysis.

    PubMed

    Olswold, Curtis; de Andrade, Mariza

    2003-12-31

    There are no well accepted criteria for the diagnosis of the metabolic syndrome. However, the metabolic syndrome is identified clinically by the presence of three or more of these five variables: larger waist circumference, higher triglyceride levels, lower HDL-cholesterol concentrations, hypertension, and impaired fasting glucose. We use sets of two or three variables, which are available in the Framingham Heart Study data set, to localize genes responsible for this syndrome using multivariate quantitative linkage analysis. This analysis demonstrates the applicability of using multivariate linkage analysis and how its use increases the power to detect linkage when genes are involved in the same disease mechanism.

  11. Linkage Analysis of a Model Quantitative Trait in Humans: Finger Ridge Count Shows Significant Multivariate Linkage to 5q14.1

    PubMed Central

    Medland, Sarah E; Loesch, Danuta Z; Mdzewski, Bogdan; Zhu, Gu; Montgomery, Grant W; Martin, Nicholas G

    2007-01-01

    The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. PMID:17907812

  12. United States Marine Corps Basic Reconnaissance Course: Predictors of Success

    DTIC Science & Technology

    2017-03-01

    PAGE INTENTIONALLY LEFT BLANK 81 VI. CONCLUSIONS AND RECOMMENDATIONS A. CONCLUSIONS The objective of my research is to provide quantitative ...percent over the last three years, illustrating there is room for improvement. This study conducts a quantitative and qualitative analysis of the...criteria used to select candidates for the BRC. The research uses multi-variate logistic regression models and survival analysis to determine to what

  13. A systematic review of the relationship factor between women and health professionals within the multivariant analysis of maternal satisfaction.

    PubMed

    Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio

    2016-10-01

    personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  15. Predictive and mechanistic multivariate linear regression models for reaction development

    PubMed Central

    Santiago, Celine B.; Guo, Jing-Yao

    2018-01-01

    Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711

  16. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  17. Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S

    2016-03-01

    Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.

  18. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects.

    PubMed

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2016-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.

  19. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects

    PubMed Central

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2017-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. PMID:28167896

  20. Race and Older Mothers’ Differentiation: A Sequential Quantitative and Qualitative Analysis

    PubMed Central

    Sechrist, Jori; Suitor, J. Jill; Riffin, Catherine; Taylor-Watson, Kadari; Pillemer, Karl

    2011-01-01

    The goal of this paper is to demonstrate a process by which qualitative and quantitative approaches are combined to reveal patterns in the data that are unlikely to be detected and confirmed by either method alone. Specifically, we take a sequential approach to combining qualitative and quantitative data to explore race differences in how mothers differentiate among their adult children. We began with a standard multivariate analysis examining race differences in mothers’ differentiation among their adult children regarding emotional closeness and confiding. Finding no race differences in this analysis, we conducted an in-depth comparison of the Black and White mothers’ narratives to determine whether there were underlying patterns that we had been unable to detect in our first analysis. Using this method, we found that Black mothers were substantially more likely than White mothers to emphasize interpersonal relationships within the family when describing differences among their children. In our final step, we developed a measure of familism based on the qualitative data and conducted a multivariate analysis to confirm the patterns revealed by the in-depth comparison of the mother’s narratives. We conclude that using such a sequential mixed methods approach to data analysis has the potential to shed new light on complex family relations. PMID:21967639

  1. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  2. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  3. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    USGS Publications Warehouse

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  4. Agro-ecoregionalization of Iowa using multivariate geographical clustering

    Treesearch

    Carol L. Williams; William W. Hargrove; Matt Leibman; David E. James

    2008-01-01

    Agro-ecoregionalization is categorization of landscapes for use in crop suitability analysis, strategic agroeconomic development, risk analysis, and other purposes. Past agro-ecoregionalizations have been subjective, expert opinion driven, crop specific, and unsuitable for statistical extrapolation. Use of quantitative analytical methods provides an opportunity for...

  5. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    PubMed

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  7. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-06-05

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantitative image processing in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  9. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.

    PubMed

    Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz

    2017-03-01

    Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  11. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE PAGES

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  12. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  13. Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait

    PubMed Central

    Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.

    2003-01-01

    Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094

  14. [Influence of sample surface roughness on mathematical model of NIR quantitative analysis of wood density].

    PubMed

    Huang, An-Min; Fei, Ben-Hua; Jiang, Ze-Hui; Hse, Chung-Yun

    2007-09-01

    Near infrared spectroscopy is widely used as a quantitative method, and the main multivariate techniques consist of regression methods used to build prediction models, however, the accuracy of analysis results will be affected by many factors. In the present paper, the influence of different sample roughness on the mathematical model of NIR quantitative analysis of wood density was studied. The result of experiments showed that if the roughness of predicted samples was consistent with that of calibrated samples, the result was good, otherwise the error would be much higher. The roughness-mixed model was more flexible and adaptable to different sample roughness. The prediction ability of the roughness-mixed model was much better than that of the single-roughness model.

  15. Multivariate approach in popcorn genotypes using the Ward-MLM strategy: morpho-agronomic analysis and incidence of Fusarium spp.

    PubMed

    Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F

    2017-02-08

    The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.

  16. Avoiding hard chromatographic segmentation: A moving window approach for the automated resolution of gas chromatography-mass spectrometry-based metabolomics signals by multivariate methods.

    PubMed

    Domingo-Almenara, Xavier; Perera, Alexandre; Brezmes, Jesus

    2016-11-25

    Gas chromatography-mass spectrometry (GC-MS) produces large and complex datasets characterized by co-eluted compounds and at trace levels, and with a distinct compound ion-redundancy as a result of the high fragmentation by the electron impact ionization. Compounds in GC-MS can be resolved by taking advantage of the multivariate nature of GC-MS data by applying multivariate resolution methods. However, multivariate methods have to be applied in small regions of the chromatogram, and therefore chromatograms are segmented prior to the application of the algorithms. The automation of this segmentation process is a challenging task as it implies separating between informative data and noise from the chromatogram. This study demonstrates the capabilities of independent component analysis-orthogonal signal deconvolution (ICA-OSD) and multivariate curve resolution-alternating least squares (MCR-ALS) with an overlapping moving window implementation to avoid the typical hard chromatographic segmentation. Also, after being resolved, compounds are aligned across samples by an automated alignment algorithm. We evaluated the proposed methods through a quantitative analysis of GC-qTOF MS data from 25 serum samples. The quantitative performance of both moving window ICA-OSD and MCR-ALS-based implementations was compared with the quantification of 33 compounds by the XCMS package. Results shown that most of the R 2 coefficients of determination exhibited a high correlation (R 2 >0.90) in both ICA-OSD and MCR-ALS moving window-based approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multivariate Analysis As a Support for Diagnostic Flowcharts in Allergic Bronchopulmonary Aspergillosis: A Proof-of-Concept Study.

    PubMed

    Vitte, Joana; Ranque, Stéphane; Carsin, Ania; Gomez, Carine; Romain, Thomas; Cassagne, Carole; Gouitaa, Marion; Baravalle-Einaudi, Mélisande; Bel, Nathalie Stremler-Le; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Gaudart, Jean

    2017-01-01

    Molecular-based allergy diagnosis yields multiple biomarker datasets. The classical diagnostic score for allergic bronchopulmonary aspergillosis (ABPA), a severe disease usually occurring in asthmatic patients and people with cystic fibrosis, comprises succinct immunological criteria formulated in 1977: total IgE, anti- Aspergillus fumigatus ( Af ) IgE, anti- Af "precipitins," and anti- Af IgG. Progress achieved over the last four decades led to multiple IgE and IgG(4) Af biomarkers available with quantitative, standardized, molecular-level reports. These newly available biomarkers have not been included in the current diagnostic criteria, either individually or in algorithms, despite persistent underdiagnosis of ABPA. Large numbers of individual biomarkers may hinder their use in clinical practice. Conversely, multivariate analysis using new tools may bring about a better chance of less diagnostic mistakes. We report here a proof-of-concept work consisting of a three-step multivariate analysis of Af IgE, IgG, and IgG4 biomarkers through a combination of principal component analysis, hierarchical ascendant classification, and classification and regression tree multivariate analysis. The resulting diagnostic algorithms might show the way for novel criteria and improved diagnostic efficiency in Af -sensitized patients at risk for ABPA.

  18. Multivariate analysis, mass balance techniques, and statistical tests as tools in igneous petrology: application to the Sierra de las Cruces volcanic range (Mexican Volcanic Belt).

    PubMed

    Velasco-Tapia, Fernando

    2014-01-01

    Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).

  19. The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method

    NASA Astrophysics Data System (ADS)

    Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad

    2018-04-01

    Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.

  20. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    NASA Astrophysics Data System (ADS)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  1. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  2. Understanding the Relationship between School-Based Management, Emotional Intelligence and Performance of Religious Upper Secondary School Principals in Banten Province

    ERIC Educational Resources Information Center

    Muslihah, Oleh Eneng

    2015-01-01

    The research examines the correlation between the understanding of school-based management, emotional intelligences and headmaster performance. Data was collected, using quantitative methods. The statistical analysis used was the Pearson Correlation, and multivariate regression analysis. The results of this research suggest firstly that there is…

  3. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  4. Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model

    PubMed Central

    Chen, Gang; Adleman, Nancy E.; Saad, Ziad S.; Leibenluft, Ellen; Cox, RobertW.

    2014-01-01

    All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance–covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within- subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT)with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS. PMID:24954281

  5. Extraction, isolation, and purification of analytes from samples of marine origin--a multivariate task.

    PubMed

    Liguori, Lucia; Bjørsvik, Hans-René

    2012-12-01

    The development of a multivariate study for a quantitative analysis of six different polybrominated diphenyl ethers (PBDEs) in tissue of Atlantic Salmo salar L. is reported. An extraction, isolation, and purification process based on an accelerated solvent extraction system was designed, investigated, and optimized by means of statistical experimental design and multivariate data analysis and regression. An accompanying gas chromatography-mass spectrometry analytical method was developed for the identification and quantification of the analytes, BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154. These PBDEs have been used in commercial blends that were used as flame-retardants for a variety of materials, including electronic devices, synthetic polymers and textiles. The present study revealed that an extracting solvent mixture composed of hexane and CH₂Cl₂ (10:90) provided excellent recoveries of all of the six PBDEs studied herein. A somewhat lower polarity in the extracting solvent, hexane and CH₂Cl₂ (40:60) decreased the analyte %-recoveries, which still remain acceptable and satisfactory. The study demonstrates the necessity to perform an intimately investigation of the extraction and purification process in order to achieve quantitative isolation of the analytes from the specific matrix. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Bone Mass in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Calarge, Chadi A.; Schlechte, Janet A.

    2017-01-01

    To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…

  7. On Recruiting: A Multivariate Analysis of Marine Corps Recruiters and the Market

    DTIC Science & Technology

    Three recommendations result from this study. The quantitative recommendation developed in this thesis is to add approximately three missioned...canvassing recruiters per Recruiting Station, or 144 total, where the marginal cost of the 1,400 potentially gained contracts is the most economical manpower

  8. Multivariate Analysis, Mass Balance Techniques, and Statistical Tests as Tools in Igneous Petrology: Application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt)

    PubMed Central

    Velasco-Tapia, Fernando

    2014-01-01

    Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994

  9. Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables in genomic research.

    PubMed

    Graffelman, Jan; van Eeuwijk, Fred

    2005-12-01

    The scatter plot is a well known and easily applicable graphical tool to explore relationships between two quantitative variables. For the exploration of relations between multiple variables, generalisations of the scatter plot are useful. We present an overview of multivariate scatter plots focussing on the following situations. Firstly, we look at a scatter plot for portraying relations between quantitative variables within one data matrix. Secondly, we discuss a similar plot for the case of qualitative variables. Thirdly, we describe scatter plots for the relationships between two sets of variables where we focus on correlations. Finally, we treat plots of the relationships between multiple response and predictor variables, focussing on the matrix of regression coefficients. We will present both known and new results, where an important original contribution concerns a procedure for the inclusion of scales for the variables in multivariate scatter plots. We provide software for drawing such scales. We illustrate the construction and interpretation of the plots by means of examples on data collected in a genomic research program on taste in tomato.

  10. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    PubMed

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Applying quantitative adiposity feature analysis models to predict benefit of bevacizumab-based chemotherapy in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.

  12. Analysis of laser printer and photocopier toners by spectral properties and chemometrics

    NASA Astrophysics Data System (ADS)

    Verma, Neha; Kumar, Raj; Sharma, Vishal

    2018-05-01

    The use of printers to generate falsified documents has become a common practice in today's world. The examination and identification of the printed matter in the suspected documents (civil or criminal cases) may provide important information about the authenticity of the document. In the present study, a total number of 100 black toner samples both from laser printers and photocopiers were examined using diffuse reflectance UV-Vis Spectroscopy. The present research is divided into two parts; visual discrimination and discrimination by using multivariate analysis. A comparison between qualitative and quantitative analysis showed that multivariate analysis (Principal component analysis) provides 99.59%pair-wise discriminating power for laser printer toners while 99.84% pair-wise discriminating power for photocopier toners. The overall results obtained confirm the applicability of UV-Vis spectroscopy and chemometrics, in the nondestructive analysis of toner printed documents while enhancing their evidential value for forensic applications.

  13. Metabolomic Fingerprinting of Romaneschi Globe Artichokes by NMR Spectroscopy and Multivariate Data Analysis.

    PubMed

    de Falco, Bruna; Incerti, Guido; Pepe, Rosa; Amato, Mariana; Lanzotti, Virginia

    2016-09-01

    Globe artichoke (Cynara cardunculus L. var. scolymus L. Fiori) and cardoon (Cynara cardunculus L. var. altilis DC) are sources of nutraceuticals and bioactive compounds. To apply a NMR metabolomic fingerprinting approach to Cynara cardunculus heads to obtain simultaneous identification and quantitation of the major classes of organic compounds. The edible part of 14 Globe artichoke populations, belonging to the Romaneschi varietal group, were extracted to obtain apolar and polar organic extracts. The analysis was also extended to one species of cultivated cardoon for comparison. The (1) H-NMR of the extracts allowed simultaneous identification of the bioactive metabolites whose quantitation have been obtained by spectral integration followed by principal component analysis (PCA). Apolar organic extracts were mainly based on highly unsaturated long chain lipids. Polar organic extracts contained organic acids, amino acids, sugars (mainly inulin), caffeoyl derivatives (mainly cynarin), flavonoids, and terpenes. The level of nutraceuticals was found to be highest in the Italian landraces Bianco di Pertosa zia E and Natalina while cardoon showed the lowest content of all metabolites thus confirming the genetic distance between artichokes and cardoon. Metabolomic approach coupling NMR spectroscopy with multivariate data analysis allowed for a detailed metabolite profile of artichoke and cardoon varieties to be obtained. Relevant differences in the relative content of the metabolites were observed for the species analysed. This work is the first application of (1) H-NMR with multivariate statistics to provide a metabolomic fingerprinting of Cynara scolymus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Learning abilities and disabilities: generalist genes in early adolescence.

    PubMed

    Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert

    2009-01-01

    The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.

  15. Evolutionary Losses? The Growth of Graduate Programs at Undergraduate Colleges.

    ERIC Educational Resources Information Center

    McCormick, Alexander C.; Staklis, Sandra

    This study examined the addition and expansion of graduate programs at primarily undergraduate colleges. The primary approach of the study was quantitative, consisting of descriptive and multivariate analysis of master's degree programs at colleges that were classified in 1994 as Baccalaureate Colleges. Data came from the 1994 and 2000 Carnegie…

  16. Optimization of Interior Permanent Magnet Motor by Quality Engineering and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Okada, Yukihiro; Kawase, Yoshihiro

    This paper has described the method of optimization based on the finite element method. The quality engineering and the multivariable analysis are used as the optimization technique. This optimizing method consists of two steps. At Step.1, the influence of parameters for output is obtained quantitatively, at Step.2, the number of calculation by the FEM can be cut down. That is, the optimal combination of the design parameters, which satisfies the required characteristic, can be searched for efficiently. In addition, this method is applied to a design of IPM motor to reduce the torque ripple. The final shape can maintain average torque and cut down the torque ripple 65%. Furthermore, the amount of permanent magnets can be reduced.

  17. Lesion stiffness measured by shear-wave elastography: Preoperative predictor of the histologic underestimation of US-guided core needle breast biopsy.

    PubMed

    Park, Ah Young; Son, Eun Ju; Kim, Jeong-Ah; Han, Kyunghwa; Youk, Ji Hyun

    2015-12-01

    To determine whether lesion stiffness measured by shear-wave elastography (SWE) can be used to predict the histologic underestimation of ultrasound (US)-guided 14-gauge core needle biopsy (CNB) for breast masses. This retrospective study enrolled 99 breast masses from 93 patients, including 40 high-risk lesions and 59 ductal carcinoma in situ (DCIS), which were diagnosed by US-guided 14-gauge CNB. SWE was performed for all breast masses to measure quantitative elasticity values before US-guided CNB. To identify the preoperative factors associated with histologic underestimation, patients' age, symptoms, lesion size, B-mode US findings, and quantitative SWE parameters were compared according to the histologic upgrade after surgery using the chi-square test, Fisher's exact test, or independent t-test. The independent factors for predicting histologic upgrade were evaluated using multivariate logistic regression analysis. The underestimation rate was 28.3% (28/99) in total, 25.0% (10/40) in high-risk lesions, and 30.5% (18/59) in DCIS. All elasticity values of the upgrade group were significantly higher than those of the non-upgrade group (P<0.001). On multivariate analysis, the mean (Odds ratio [OR]=1.021, P=0.001), maximum (OR=1.015, P=0.008), and minimum (OR=1.028, P=0.001) elasticity values were independently associated with histologic underestimation. The patients' age, lesion size, and final assessment category on US of the upgrade group were higher than those of the non-upgrade group (P=0.046 for age; P=0.021 for lesion size; P=0.030 for US category), but these were not independent predictors of histologic underestimation on multivariate analysis. Breast lesion stiffness quantitatively measured by SWE could be helpful to predict the underestimation of malignancy in US-guided 14-gauge CNB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  19. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis.

    PubMed

    Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong

    2018-02-27

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  20. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    PubMed Central

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  1. Potential predictors of risk sexual behavior among private college students in Mekelle City, North Ethiopia.

    PubMed

    Gebresllasie, Fanna; Tsadik, Mache; Berhane, Eyoel

    2017-01-01

    Risk sexual practice among students from public universities/colleges is common in Ethiopia. However, little has been known about risk sexual behavior of students in private colleges where more students are potentially enrolled. Therefore, this study aimed to assess the magnitude of risky sexual behaviors and predictors among students of Private Colleges in Mekelle City. A mixed design of both quantitative and qualitative methods was used among 627 randomly selected students of private colleges from February to march 2013. Self administered questionnaire and focus group discussion was used to collect data. A thematic content analysis was used for the qualitative part. For the quantitative study, Univariate, Bivariate and multivariable analysis was made using SPSS version 16 statistical package and p value less than 0.05 was used as cut off point for a statistical significance. Among the total 590 respondents, 151 (29.1%) have ever had sex. Among the sexually active students, 30.5% reported having had multiple sexual partners and consistent condom use was nearly 39%. In multivariable logistic regression analysis, variables such as sex, age group, sex last twelve months and condom use last twelve months was found significantly associated with risky sexual behavior. The findings of qualitative and quantitative study showed consistency in presence of risk factors. Finding of this study showed sexual risk behaviors is high among private colleges such as multiple sexual partners and substance use. So that colleges should emphasis on promoting healthy sexual and reproductive health programs.

  2. Risk Factors for Chronic Subdural Hematoma Recurrence Identified Using Quantitative Computed Tomography Analysis of Hematoma Volume and Density.

    PubMed

    Stavrinou, Pantelis; Katsigiannis, Sotirios; Lee, Jong Hun; Hamisch, Christina; Krischek, Boris; Mpotsaris, Anastasios; Timmer, Marco; Goldbrunner, Roland

    2017-03-01

    Chronic subdural hematoma (CSDH), a common condition in elderly patients, presents a therapeutic challenge with recurrence rates of 33%. We aimed to identify specific prognostic factors for recurrence using quantitative analysis of hematoma volume and density. We retrospectively reviewed radiographic and clinical data of 227 CSDHs in 195 consecutive patients who underwent evacuation of the hematoma through a single burr hole, 2 burr holes, or a mini-craniotomy. To examine the relationship between hematoma recurrence and various clinical, radiologic, and surgical factors, we used quantitative image-based analysis to measure the hematoma and trapped air volumes and the hematoma densities. Recurrence of CSDH occurred in 35 patients (17.9%). Multivariate logistic regression analysis revealed that the percentage of hematoma drained and postoperative CSDH density were independent risk factors for recurrence. All 3 evacuation methods were equally effective in draining the hematoma (71.7% vs. 73.7% vs. 71.9%) without observable differences in postoperative air volume captured in the subdural space. Quantitative image analysis provided evidence that percentage of hematoma drained and postoperative CSDH density are independent prognostic factors for subdural hematoma recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas

    2014-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054

  4. Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity.

    PubMed

    Dinov, Ivo D; Christou, Nicolas

    2011-09-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.

  5. Quantitative fibrosis parameters highly predict esophageal-gastro varices in primary biliary cirrhosis.

    PubMed

    Wu, Q-M; Zhao, X-Y; You, H

    2016-01-01

    Esophageal-gastro Varices (EGV) may develop in any histological stages of primary biliary cirrhosis (PBC). We aim to establish and validate quantitative fibrosis (qFibrosis) parameters in portal, septal and fibrillar areas as ideal predictors of EGV in PBC patients. PBC patients with liver biopsy, esophagogastroscopy and Second Harmonic Generation (SHG)/Two-photon Excited Fluorescence (TPEF) microscopy images were retrospectively enrolled in this study. qFibrosis parameters in portal, septal and fibrillar areas were acquired by computer-assisted SHG/TPEF imaging system. Independent predictor was identified using multivariate logistic regression analysis. PBC patients with liver biopsy, esophagogastroscopy and Second Harmonic Generation (SHG)/Two-photon Excited Fluorescence (TPEF) microscopy images were retrospectively enrolled in this study. qFibrosis parameters in portal, septal and fibrillar areas were acquired by computer-assisted SHG/TPEF imaging system. Independent predictor was identified using multivariate logistic regression analysis. Among the forty-nine PBC patients with qFibrosis images, twenty-nine PBC patients with both esophagogastroscopy data and qFibrosis data were selected out for EGV prognosis analysis and 44.8% (13/29) of them had EGV. The qFibrosis parameters of collagen percentage and number of crosslink in fibrillar area, short/long/thin strings number and length/width of the strings in septa area were associated with EGV (p < 0.05). Multivariate logistic analysis showed that the collagen percentage in fibrillar area ≥ 3.6% was an independent factor to predict EGV (odds ratio 6.9; 95% confidence interval 1.6-27.4). The area under receiver operating characteristic (ROC), diagnostic sensitivity and specificity was 0.9, 100% and 75% respectively. Collagen percentage in Collagen percentage in the fibrillar area as an independent predictor can highly predict EGV in PBC patients.

  6. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    ERIC Educational Resources Information Center

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the…

  7. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations

    NASA Astrophysics Data System (ADS)

    Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen

    2014-10-01

    To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.

  8. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less

  9. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  10. Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

    DOE Data Explorer

    Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

    2014-08-01

    Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

  11. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  12. Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial.

    PubMed

    Peikert, Tobias; Duan, Fenghai; Rajagopalan, Srinivasan; Karwoski, Ronald A; Clay, Ryan; Robb, Richard A; Qin, Ziling; Sicks, JoRean; Bartholmai, Brian J; Maldonado, Fabien

    2018-01-01

    Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules. Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408). Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization in order to enhance the prediction accuracy and interpretability of the multivariate model. The bootstrapping method was then applied for the internal validation and the optimism-corrected AUC was reported for the final model. Eight of the originally considered 57 quantitative radiologic features were selected by LASSO multivariate modeling. These 8 features include variables capturing Location: vertical location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick), Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum shape index and Average shape index), and estimates of surface curvature (Average positive mean curvature and Minimum mean curvature), all with P<0.01. The optimism-corrected AUC for these 8 features is 0.939. Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule characterization appears extremely promising however independent external validation is needed.

  13. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial.

    PubMed

    Liu, Ting; Maurovich-Horvat, Pál; Mayrhofer, Thomas; Puchner, Stefan B; Lu, Michael T; Ghemigian, Khristine; Kitslaar, Pieter H; Broersen, Alexander; Pursnani, Amit; Hoffmann, Udo; Ferencik, Maros

    2018-02-01

    Semi-automated software can provide quantitative assessment of atherosclerotic plaques on coronary CT angiography (CTA). The relationship between established qualitative high-risk plaque features and quantitative plaque measurements has not been studied. We analyzed the association between quantitative plaque measurements and qualitative high-risk plaque features on coronary CTA. We included 260 patients with plaque who underwent coronary CTA in the Rule Out Myocardial Infarction/Ischemia Using Computer Assisted Tomography (ROMICAT) II trial. Quantitative plaque assessment and qualitative plaque characterization were performed on a per coronary segment basis. Quantitative coronary plaque measurements included plaque volume, plaque burden, remodeling index, and diameter stenosis. In qualitative analysis, high-risk plaque was present if positive remodeling, low CT attenuation plaque, napkin-ring sign or spotty calcium were detected. Univariable and multivariable logistic regression analyses were performed to assess the association between quantitative and qualitative high-risk plaque assessment. Among 888 segments with coronary plaque, high-risk plaque was present in 391 (44.0%) segments by qualitative analysis. In quantitative analysis, segments with high-risk plaque had higher total plaque volume, low CT attenuation plaque volume, plaque burden and remodeling index. Quantitatively assessed low CT attenuation plaque volume (odds ratio 1.12 per 1 mm 3 , 95% CI 1.04-1.21), positive remodeling (odds ratio 1.25 per 0.1, 95% CI 1.10-1.41) and plaque burden (odds ratio 1.53 per 0.1, 95% CI 1.08-2.16) were associated with high-risk plaque. Quantitative coronary plaque characteristics (low CT attenuation plaque volume, positive remodeling and plaque burden) measured by semi-automated software correlated with qualitative assessment of high-risk plaque features.

  14. Quantitative gene expression deregulation in mantle-cell lymphoma: correlation with clinical and biologic factors.

    PubMed

    Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan

    2007-07-01

    There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.

  15. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  16. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  17. A novel second-order standard addition analytical method based on data processing with multidimensional partial least-squares and residual bilinearization.

    PubMed

    Lozano, Valeria A; Ibañez, Gabriela A; Olivieri, Alejandro C

    2009-10-05

    In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.

  18. Quantitative methods for analysing cumulative effects on fish migration success: a review.

    PubMed

    Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G

    2012-07-01

    It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  19. Smoothing of the bivariate LOD score for non-normal quantitative traits.

    PubMed

    Buil, Alfonso; Dyer, Thomas D; Almasy, Laura; Blangero, John

    2005-12-30

    Variance component analysis provides an efficient method for performing linkage analysis for quantitative traits. However, type I error of variance components-based likelihood ratio testing may be affected when phenotypic data are non-normally distributed (especially with high values of kurtosis). This results in inflated LOD scores when the normality assumption does not hold. Even though different solutions have been proposed to deal with this problem with univariate phenotypes, little work has been done in the multivariate case. We present an empirical approach to adjust the inflated LOD scores obtained from a bivariate phenotype that violates the assumption of normality. Using the Collaborative Study on the Genetics of Alcoholism data available for the Genetic Analysis Workshop 14, we show how bivariate linkage analysis with leptokurtotic traits gives an inflated type I error. We perform a novel correction that achieves acceptable levels of type I error.

  20. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  1. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation.

    PubMed

    Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk

    2011-08-01

    A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.

  2. Chromatography methods and chemometrics for determination of milk fat adulterants

    NASA Astrophysics Data System (ADS)

    Trbović, D.; Petronijević, R.; Đorđević, V.

    2017-09-01

    Milk and milk-based products are among the leading food categories according to reported cases of food adulteration. Although many authentication problems exist in all areas of the food industry, adequate control methods are required to evaluate the authenticity of milk and milk products in the dairy industry. Moreover, gas chromatography (GC) analysis of triacylglycerols (TAGs) or fatty acid (FA) profiles of milk fat (MF) in combination with multivariate statistical data processing have been used to detect adulterations of milk and dairy products with foreign fats. The adulteration of milk and butter is a major issue for the dairy industry. The major adulterants of MF are vegetable oils (soybean, sunflower, groundnut, coconut, palm and peanut oil) and animal fat (cow tallow and pork lard). Multivariate analysis enables adulterated MF to be distinguished from authentic MF, while taking into account many analytical factors. Various multivariate analysis methods have been proposed to quantitatively detect levels of adulterant non-MFs, with multiple linear regression (MLR) seemingly the most suitable. There is a need for increased use of chemometric data analyses to detect adulterated MF in foods and for their expanded use in routine quality assurance testing.

  3. Investigation of associations between recurrence of major depressive disorder and spinal posture alignment: A quantitative cross-sectional study.

    PubMed

    Canales, Janette Z; Fiquer, Juliana T; Campos, Rodolfo N; Soeiro-de-Souza, Márcio Gerhardt; Moreno, Ricardo Alberto

    2017-02-01

    The aim of this study was to investigate associations between poor spinal posture and the recurrence of major depressive episodes and severity of symptoms in patients with major depressive disorder (MDD). This was a cross-sectional quantitative study of MDD patients. Outpatients were recruited from consecutive admissions at a mood disorders unit of a tertiary psychiatric hospital. Of 136 MDD patients, 72 (53 women, 19 men; mean age, 42.4±9.1years) met all the criteria and completed the study. Forty-one patients were classified with a recurrent episode (RE) of MDD and 31 with a single episode (SE). Quantitative assessments of postural deviations were made using photogrammetry, including kyphosis, shoulder protraction, and head inclination. The severity of depressive episodes was assessed using the Hamilton Depression Rating Scale. The diagnosis and classification of patients were performed according to DSM-IV-TR and SCID criteria. Multivariate analysis of variance indicated that the RE group had greater anterior head inclination (35.39; SD: 1.57), greater scapular abduction (1.69; SD: 0.93), and worse thoracic kyphosis (139.38; SD: 1.19) than the SE group (p<0.001 for all). Multivariate analysis of covariance showed an interaction between the severity of depressive symptoms and the degree of thoracic kyphosis (p=0.002). Recurrence of depressive episodes is associated with measures of postural misalignment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optical assay for biotechnology and clinical diagnosis.

    PubMed

    Moczko, Ewa; Cauchi, Michael; Turner, Claire; Meglinski, Igor; Piletsky, Sergey

    2011-08-01

    In this paper, we present an optical diagnostic assay consisting of a mixture of environmental-sensitive fluorescent dyes combined with multivariate data analysis for quantitative and qualitative examination of biological and clinical samples. The performance of the assay is based on the analysis of spectrum of the selected fluorescent dyes with the operational principle similar to electronic nose and electronic tongue systems. This approach has been successfully applied for monitoring of growing cell cultures and identification of gastrointestinal diseases in humans.

  5. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5- to 18-year-old Japanese children.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Hwang, Dea-Seok; Park, Soo-Byung; Son, Woo-Sung

    2015-11-01

    The purpose of this study was to establish multivariable regression models for the estimation of skeletal maturation status in Japanese boys and girls using the cone-beam computed tomography (CBCT)-based cervical vertebral maturation (CVM) assessment method and hand-wrist radiography. The analyzed sample consisted of hand-wrist radiographs and CBCT images from 47 boys and 57 girls. To quantitatively evaluate the correlation between the skeletal maturation status and measurement ratios, a CBCT-based CVM assessment method was applied to the second, third, and fourth cervical vertebrae. Pearson's correlation coefficient analysis and multivariable regression analysis were used to determine the ratios for each of the cervical vertebrae (p < 0.05). Four characteristic parameters ((OH2 + PH2)/W2, (OH2 + AH2)/W2, D2, AH3/W3), as independent variables, were used to build the multivariable regression models: for the Japanese boys, the skeletal maturation status according to the CBCT-based quantitative cervical vertebral maturation (QCVM) assessment was 5.90 + 99.11 × AH3/W3 - 14.88 × (OH2 + AH2)/W2 + 13.24 × D2; for the Japanese girls, it was 41.39 + 59.52 × AH3/W3 - 15.88 × (OH2 + PH2)/W2 + 10.93 × D2. The CBCT-generated CVM images proved very useful to the definition of the cervical vertebral body and the odontoid process. The newly developed CBCT-based QCVM assessment method showed a high correlation between the derived ratios from the second cervical vertebral body and odontoid process. There are high correlations between the skeletal maturation status and the ratios of the second cervical vertebra based on the remnant of dentocentral synchondrosis.

  6. Quantitative computed tomography versus spirometry in predicting air leak duration after major lung resection for cancer.

    PubMed

    Ueda, Kazuhiro; Kaneda, Yoshikazu; Sudo, Manabu; Mitsutaka, Jinbo; Li, Tao-Sheng; Suga, Kazuyoshi; Tanaka, Nobuyuki; Hamano, Kimikazu

    2005-11-01

    Emphysema is a well-known risk factor for developing air leak or persistent air leak after pulmonary resection. Although quantitative computed tomography (CT) and spirometry are used to diagnose emphysema, it remains controversial whether these tests are predictive of the duration of postoperative air leak. Sixty-two consecutive patients who were scheduled to undergo major lung resection for cancer were enrolled in this prospective study to define the best predictor of postoperative air leak duration. Preoperative factors analyzed included spirometric variables and area of emphysema (proportion of the low-attenuation area) that was quantified in a three-dimensional CT lung model. Chest tubes were removed the day after disappearance of the air leak, regardless of pleural drainage. Univariate and multivariate proportional hazards analyses were used to determine the influence of preoperative factors on chest tube time (air leak duration). By univariate analysis, site of resection (upper, lower), forced expiratory volume in 1 second, predicted postoperative forced expiratory volume in 1 second, and area of emphysema (< 1%, 1% to 10%, > 10%) were significant predictors of air leak duration. By multivariate analysis, site of resection and area of emphysema were the best independent determinants of air leak duration. The results were similar for patients with a smoking history (n = 40), but neither forced expiratory volume in 1 second nor predicted postoperative forced expiratory volume in 1 second were predictive of air leak duration. Quantitative CT is superior to spirometry in predicting air leak duration after major lung resection for cancer. Quantitative CT may aid in the identification of patients, particularly among those with a smoking history, requiring additional preventive procedures against air leak.

  7. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    PubMed

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  8. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  9. Fluorescent discrimination between traces of chemical warfare agents and their mimics.

    PubMed

    Díaz de Greñu, Borja; Moreno, Daniel; Torroba, Tomás; Berg, Alexander; Gunnars, Johan; Nilsson, Tobias; Nyman, Rasmus; Persson, Milton; Pettersson, Johannes; Eklind, Ida; Wästerby, Pär

    2014-03-19

    An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the in-the-field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds.

  10. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). Conclusion: Quantitative analysis identified novel {sup 18}F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.« less

  11. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings.

    PubMed

    Malaquias, José B; Ramalho, Francisco S; Dos S Dias, Carlos T; Brugger, Bruno P; S Lira, Aline Cristina; Wilcken, Carlos F; Pachú, Jéssica K S; Zanuncio, José C

    2017-02-09

    The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.

  12. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings

    PubMed Central

    Malaquias, José B.; Ramalho, Francisco S.; dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.

    2017-01-01

    The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied. PMID:28181503

  13. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings

    NASA Astrophysics Data System (ADS)

    Malaquias, José B.; Ramalho, Francisco S.; Dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.

    2017-02-01

    The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.

  14. Application of curve resolution algorithms in the study of drug photodegradation kinetics -- the example of moclobemide.

    PubMed

    Skibiński, Robert; Komsta, Łukasz

    2012-01-01

    The photodegradation of moclobemide was studied in methanolic media. Ultra-HPLC (UHPLC)/MS/MS analysis proved decomposition to 4-chlorobenzamide as a major degradation product and small amounts of Ro 16-3177 (4-chloro-N-[2-[(2-hydroxyethyl)amino] ethyl]benzamide) and 2-[(4-chlorobenzylidene)amino]-N-[2-ethoxyethenyl]ethenamine. The methanolic solution was investigated spectrophotometrically in the UV region, registering the spectra during 30 min of degradation. Using reference spectra and a multivariate chemometric method (multivariate curve resolution-alternating least squares), the spectra were resolved and concentration profiles were obtained. The obtained results were in good agreement with a quantitative approach, with UHPLC-diode array detection as the reference method.

  15. Sex hormones and quantitative ultrasound parameters at the heel in men and women from the general population.

    PubMed

    Pätzug, Konrad; Friedrich, Nele; Kische, Hanna; Hannemann, Anke; Völzke, Henry; Nauck, Matthias; Keevil, Brian G; Haring, Robin

    2017-12-01

    The present study investigates potential associations between liquid chromatography-mass spectrometry (LC-MS) measured sex hormones, dehydroepiandrosterone sulphate, sex hormone-binding globulin (SHBG) and bone ultrasound parameters at the heel in men and women from the general population. Data from 502 women and 425 men from the population-based Study of Health in Pomerania (SHIP-TREND) were used. Cross-sectional associations of sex hormones including testosterone (TT), calculated free testosterone (FT), dehydroepiandrosterone sulphate (DHEAS), androstenedione (ASD), estrone (E1) and SHBG with quantitative ultrasound (QUS) parameters at the heel, including broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (SI) were examined by analysis of variance (ANOVA) and multivariable quantile regression models. Multivariable regression analysis showed a sex-specific inverse association of DHEAS with SI in men (Beta per SI unit = - 3.08, standard error (SE) = 0.88), but not in women (Beta = - 0.01, SE = 2.09). Furthermore, FT was positively associated with BUA in men (Beta per BUA unit = 29.0, SE = 10.1). None of the other sex hormones (ASD, E1) or SHBG was associated with QUS parameters after multivariable adjustment. This cross-sectional population-based study revealed independent associations of DHEAS and FT with QUS parameters in men, suggesting a potential influence on male bone metabolism. The predictive role of DHEAS and FT as a marker for osteoporosis in men warrants further investigation in clinical trials and large-scale observational studies.

  16. Diffusion-weighted imaging of the prostate: should we use quantitative metrics to better characterize focal lesions originating in the peripheral zone?

    PubMed

    Pierre, Thibaut; Cornud, Francois; Colléter, Loïc; Beuvon, Frédéric; Foissac, Frantz; Delongchamps, Nicolas B; Legmann, Paul

    2018-05-01

    To compare inter-reader concordance and accuracy of qualitative diffusion-weighted (DW) PIRADSv2.0 score with those of quantitative DW-MRI for the diagnosis of peripheral zone prostate cancer. Two radiologists independently assigned a DW-MRI-PIRADS score to 92 PZ-foci, in 74 patients (64.3±5.6 years old; median PSA level: 8 ng/ml, normal DRE in 70 men). A standardised ADCmean and nine ADC-derived parameters were measured, including ADCratios with the whole-prostate (WP-ADCratio) or the mirror-PZ (mirror-ADCratio) as reference areas. Surgical histology and MRI-TRUS fusion-biopsy were the reference for tumours and benign foci, respectively. Inter-reader agreement was assessed by the Cohen-kappa-coefficient and the intraclass correlation coefficient (ICC). Univariate-multivariate regressions determined the most predictive factor for cancer. Fifty lesions were malignant. Inter-reader concordance was fair for qualitative assessment, but excellent for quantitative assessment for all quantitative variables. At univariate analysis, ADCmean, WP-ADCratio and WL-ADCmean performed equally, but significantly better than the mirror-ADCratio (p<0.001). At multivariate analysis, the only independent variable significantly associated with malignancy was the whole-prostate-ADCratio. At a cut-off value of 0.68, sensitivity was 94-90 % and specificity was 60-38 % for readers 1 and 2, respectively. The whole-prostate-ADCratio improved the qualitative inter-reader concordance and characterisation of focal PZ-lesions. • Inter-reader concordance of DW PI-RADSv2.0 score for PZ lesions was only fair. • Using a standardised ADCmean measurement and derived DW-quantitative parameters, concordance was excellent. • The whole-prostate ADCratio performed significantly better than the mirror-ADCratio for cancer detection. • At a cut-off of 0.68, sensitivity values of WP-ADCratio were 94-90 %. • The whole-prostate ADCratio may circumvent variations of ADC metrics across centres.

  17. On measures of association among genetic variables

    PubMed Central

    Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner

    2012-01-01

    Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500

  18. Multivariate analysis of variations in intrinsic foot musculature among hominoids.

    PubMed

    Oishi, Motoharu; Ogihara, Naomichi; Shimizu, Daisuke; Kikuchi, Yasuhiro; Endo, Hideki; Une, Yumi; Soeta, Satoshi; Amasaki, Hajime; Ichihara, Nobutsune

    2018-05-01

    Comparative analysis of the foot muscle architecture among extant great apes is important for understanding the evolution of the human foot and, hence, human habitual bipedal walking. However, to our knowledge, there is no previous report of a quantitative comparison of hominoid intrinsic foot muscle dimensions. In the present study, we quantitatively compared muscle dimensions of the hominoid foot by means of multivariate analysis. The foot muscle mass and physiological cross-sectional area (PCSA) of five chimpanzees, one bonobo, two gorillas, and six orangutans were obtained by our own dissections, and those of humans were taken from published accounts. The muscle mass and PCSA were respectively divided by the total mass and total PCSA of the intrinsic muscles of the entire foot for normalization. Variations in muscle architecture among human and extant great apes were quantified based on principal component analysis. Our results demonstrated that the muscle architecture of the orangutan was the most distinctive, having a larger first dorsal interosseous muscle and smaller abductor hallucis brevis muscle. On the other hand, the gorilla was found to be unique in having a larger abductor digiti minimi muscle. Humans were distinguished from extant great apes by a larger quadratus plantae muscle. The chimpanzee and the bonobo appeared to have very similar muscle architecture, with an intermediate position between the human and the orangutan. These differences (or similarities) in architecture of the intrinsic foot muscles among humans and great apes correspond well to the differences in phylogeny, positional behavior, and locomotion. © 2018 Anatomical Society.

  19. Classification of the medicinal plants of the genus Atractylodes using high-performance liquid chromatography with diode array and tandem mass spectrometry detection combined with multivariate statistical analysis.

    PubMed

    Cho, Hyun-Deok; Kim, Unyong; Suh, Joon Hyuk; Eom, Han Young; Kim, Junghyun; Lee, Seul Gi; Choi, Yong Seok; Han, Sang Beom

    2016-04-01

    Analytical methods using high-performance liquid chromatography with diode array and tandem mass spectrometry detection were developed for the discrimination of the rhizomes of four Atractylodes medicinal plants: A. japonica, A. macrocephala, A. chinensis, and A. lancea. A quantitative study was performed, selecting five bioactive components, including atractylenolide I, II, III, eudesma-4(14),7(11)-dien-8-one and atractylodin, on twenty-six Atractylodes samples of various origins. Sample extraction was optimized to sonication with 80% methanol for 40 min at room temperature. High-performance liquid chromatography with diode array detection was established using a C18 column with a water/acetonitrile gradient system at a flow rate of 1.0 mL/min, and the detection wavelength was set at 236 nm. Liquid chromatography with tandem mass spectrometry was applied to certify the reliability of the quantitative results. The developed methods were validated by ensuring specificity, linearity, limit of quantification, accuracy, precision, recovery, robustness, and stability. Results showed that cangzhu contained higher amounts of atractylenolide I and atractylodin than baizhu, and especially atractylodin contents showed the greatest variation between baizhu and cangzhu. Multivariate statistical analysis, such as principal component analysis and hierarchical cluster analysis, were also employed for further classification of the Atractylodes plants. The established method was suitable for quality control of the Atractylodes plants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Factors Affecting Student Loan Default Rate at Johnson County Community College: A Multivariate Analysis of Student Loan Default and Repayment between Years 2006 and 2008

    ERIC Educational Resources Information Center

    Butler, Cassandra

    2012-01-01

    This study utilized a quantitative design using archival data from Johnson County Community College (JCCC), located in Johnson County, Kansas, and the Office of Financial Aid for students who graduated, withdrew or dropped out of the college in academic years 2006, 2007 and 2008. Because this study used archival data, we can only show…

  1. Analysis of Lard in Lipstick Formulation Using FTIR Spectroscopy and Multivariate Calibration: A Comparison of Three Extraction Methods.

    PubMed

    Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul

    2016-01-01

    Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm -1 with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R 2 ) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.

  2. A cross-species socio-emotional behaviour development revealed by a multivariate analysis.

    PubMed

    Koshiba, Mamiko; Senoo, Aya; Mimura, Koki; Shirakawa, Yuka; Karino, Genta; Obara, Saya; Ozawa, Shinpei; Sekihara, Hitomi; Fukushima, Yuta; Ueda, Toyotoshi; Kishino, Hirohisa; Tanaka, Toshihisa; Ishibashi, Hidetoshi; Yamanouchi, Hideo; Yui, Kunio; Nakamura, Shun

    2013-01-01

    Recent progress in affective neuroscience and social neurobiology has been propelled by neuro-imaging technology and epigenetic approach in neurobiology of animal behaviour. However, quantitative measurements of socio-emotional development remains lacking, though sensory-motor development has been extensively studied in terms of digitised imaging analysis. Here, we developed a method for socio-emotional behaviour measurement that is based on the video recordings under well-defined social context using animal models with variously social sensory interaction during development. The behaviour features digitized from the video recordings were visualised in a multivariate statistic space using principal component analysis. The clustering of the behaviour parameters suggested the existence of species- and stage-specific as well as cross-species behaviour modules. These modules were used to characterise the behaviour of children with or without autism spectrum disorders (ASDs). We found that socio-emotional behaviour is highly dependent on social context and the cross-species behaviour modules may predict neurobiological basis of ASDs.

  3. [Prevalence and determinants of exclusive breastfeeding in the city of Serrana, São Paulo, Brazil].

    PubMed

    Queluz, Mariângela Carletti; Pereira, Maria José Bistafa; dos Santos, Claudia Benedita; Leite, Adriana Moraes; Ricco, Rubens Garcia

    2012-06-01

    The objective of this cross-sectional and quantitative study was to identify the prevalence and determinants of exclusive breastfeeding among infants less than six months of age in the city of Serrana, Sao Paulo, Brazil in 2009. A validated semi-structured questionnaire was administered to the guardians of the children less than six months of age who attended the second phase of a Brazilian vaccination campaign against polio. Univariate and multivariate analysis presented in odds ratios and confidence intervals was accomplished. Of the total of 275 infant participants, only 29.8% were exclusively breastfed. Univariate analysis revealed that mothers who work outside the home without maternity leave, mothers who did not work outside the home, adolescent mothers, and the use of pacifiers have a greater chance of interrupting exclusive breastfeeding. In the multivariate analysis, mothers who work outside the home without maternity leave are three times more likely to wean their children early. Results provide suggestions for the redirection and planning of interventions targeting breastfeeding.

  4. Handwriting Examination: Moving from Art to Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, K.H.; Hanlen, R.C.; Manzolillo, P.A.

    In this document, we present a method for validating the premises and methodology of forensic handwriting examination. This method is intuitively appealing because it relies on quantitative measurements currently used qualitatively by FDE's in making comparisons, and it is scientifically rigorous because it exploits the power of multivariate statistical analysis. This approach uses measures of both central tendency and variation to construct a profile for a given individual. (Central tendency and variation are important for characterizing an individual's writing and both are currently used by FDE's in comparative analyses). Once constructed, different profiles are then compared for individuality using clustermore » analysis; they are grouped so that profiles within a group cannot be differentiated from one another based on the measured characteristics, whereas profiles between groups can. The cluster analysis procedure used here exploits the power of multivariate hypothesis testing. The result is not only a profile grouping but also an indication of statistical significance of the groups generated.« less

  5. Quantitative allochem compositional analysis of Lochkovian-Pragian boundary sections in the Prague Basin (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Weinerová, Hedvika; Hron, Karel; Bábek, Ondřej; Šimíček, Daniel; Hladil, Jindřich

    2017-06-01

    Quantitative allochem compositional trends across the Lochkovian-Pragian boundary Event were examined at three sections recording the proximal to more distal carbonate ramp environment of the Prague Basin. Multivariate statistical methods (principal component analysis, correspondence analysis, cluster analysis) of point-counted thin section data were used to reconstruct facies stacking patterns and sea-level history. Both the closed-nature allochem percentages and their centred log-ratio (clr) coordinates were used. Both these approaches allow for distinguishing of lowstand, transgressive and highstand system tracts within the Praha Formation, which show gradual transition from crinoid-dominated facies deposited above the storm wave base to dacryoconarid-dominated facies of deep-water environment below the storm wave base. Quantitative compositional data also indicate progradative-retrogradative trends in the macrolithologically monotonous shallow-water succession and enable its stratigraphic correlation with successions from deeper-water environments. Generally, the stratigraphic trends of the clr data are more sensitive to subtle changes in allochem composition in comparison to the results based on raw data. A heterozoan-dominated allochem association in shallow-water environments of the Praha Formation supports the carbonate ramp environment assumed by previous authors.

  6. Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.

    PubMed

    Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin

    2018-06-01

    Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.

    PubMed

    Kim, Byungsuk; Woo, Young-Ah

    2018-05-30

    In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding method validation. The proposed in-line Raman spectroscopy can be utilized as a PAT for product quality assurance as it offers real-time monitoring of quantitative changes in coating weight gain and process end-points during the film coating process. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Wang, Jun; Kliks, Michael M; Jun, Soojin; Jackson, Mel; Li, Qing X

    2010-03-01

    Quantitative analysis of glucose, fructose, sucrose, and maltose in different geographic origin honey samples in the world using the Fourier transform infrared (FTIR) spectroscopy and chemometrics such as partial least squares (PLS) and principal component regression was studied. The calibration series consisted of 45 standard mixtures, which were made up of glucose, fructose, sucrose, and maltose. There were distinct peak variations of all sugar mixtures in the spectral "fingerprint" region between 1500 and 800 cm(-1). The calibration model was successfully validated using 7 synthetic blend sets of sugars. The PLS 2nd-derivative model showed the highest degree of prediction accuracy with a highest R(2) value of 0.999. Along with the canonical variate analysis, the calibration model further validated by high-performance liquid chromatography measurements for commercial honey samples demonstrates that FTIR can qualitatively and quantitatively determine the presence of glucose, fructose, sucrose, and maltose in multiple regional honey samples.

  9. Intelligent peak deconvolution through in-depth study of the data matrix from liquid chromatography coupled with a photo-diode array detector applied to pharmaceutical analysis.

    PubMed

    Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu

    2016-10-21

    Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (R s ) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Recent Advances in Resting-State Electroencephalography Biomarkers for Autism Spectrum Disorder-A Review of Methodological and Clinical Challenges.

    PubMed

    Heunis, Tosca-Marie; Aldrich, Chris; de Vries, Petrus J

    2016-08-01

    Electroencephalography (EEG) has been used for almost a century to identify seizure-related disorders in humans, typically through expert interpretation of multichannel recordings. Attempts have been made to quantify EEG through frequency analyses and graphic representations. These "traditional" quantitative EEG analysis methods were limited in their ability to analyze complex and multivariate data and have not been generally accepted in clinical settings. There has been growing interest in identification of novel EEG biomarkers to detect early risk of autism spectrum disorder, to identify clinically meaningful subgroups, and to monitor targeted intervention strategies. Most studies to date have, however, used quantitative EEG approaches, and little is known about the emerging multivariate analytical methods or the robustness of candidate biomarkers in the context of the variability of autism spectrum disorder. Here, we present a targeted review of methodological and clinical challenges in the search for novel resting-state EEG biomarkers for autism spectrum disorder. Three primary novel methodologies are discussed: (1) modified multiscale entropy, (2) coherence analysis, and (3) recurrence quantification analysis. Results suggest that these methods may be able to classify resting-state EEG as "autism spectrum disorder" or "typically developing", but many signal processing questions remain unanswered. We suggest that the move to novel EEG analysis methods is akin to the progress in neuroimaging from visual inspection, through region-of-interest analysis, to whole-brain computational analysis. Novel resting-state EEG biomarkers will have to evaluate a range of potential demographic, clinical, and technical confounders including age, gender, intellectual ability, comorbidity, and medication, before these approaches can be translated into the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  12. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  13. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  14. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    PubMed

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  15. Utility of Intermediate-Delay Washout CT Images for Differentiation of Malignant and Benign Adrenal Lesions: A Multivariate Analysis.

    PubMed

    Ng, Chaan S; Altinmakas, Emre; Wei, Wei; Ghosh, Payel; Li, Xiao; Grubbs, Elizabeth G; Perrier, Nancy D; Lee, Jeffrey E; Prieto, Victor G; Hobbs, Brian P

    2018-06-27

    The objective of this study was to identify features that impact the diagnostic performance of intermediate-delay washout CT for distinguishing malignant from benign adrenal lesions. This retrospective study evaluated 127 pathologically proven adrenal lesions (82 malignant, 45 benign) in 126 patients who had undergone portal venous phase and intermediate-delay washout CT (1-3 minutes after portal venous phase) with or without unenhanced images. Unenhanced images were available for 103 lesions. Quantitatively, lesion CT attenuation on unenhanced (UA) and delayed (DL) images, absolute and relative percentage of enhancement washout (APEW and RPEW, respectively), descriptive CT features (lesion size, margin characteristics, heterogeneity or homogeneity, fat, calcification), patient demographics, and medical history were evaluated for association with lesion status using multiple logistic regression with stepwise model selection. Area under the ROC curve (A z ) was calculated from both univariate and multivariate analyses. The predictive diagnostic performance of multivariate evaluations was ascertained through cross-validation. A z for DL, APEW, RPEW, and UA was 0.751, 0.795, 0.829, and 0.839, respectively. Multivariate analyses yielded the following significant CT quantitative features and associated A z when combined: RPEW and DL (A z = 0.861) when unenhanced images were not available and APEW and UA (A z = 0.889) when unenhanced images were available. Patient demographics and presence of a prior malignancy were additional significant factors, increasing A z to 0.903 and 0.927, respectively. The combined predictive classifier, without and with UA available, yielded 85.7% and 87.3% accuracies with cross-validation, respectively. When appropriately combined with other CT features, washout derived from intermediate-delay CT with or without additional clinical data has potential utility in differentiating malignant from benign adrenal lesions.

  16. Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography.

    PubMed

    de Godoy, Luiz Antonio Fonseca; Hantao, Leandro Wang; Pedroso, Marcio Pozzobon; Poppi, Ronei Jesus; Augusto, Fabio

    2011-08-05

    The use of multivariate curve resolution (MCR) to build multivariate quantitative models using data obtained from comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) is presented and evaluated. The MCR algorithm presents some important features, such as second order advantage and the recovery of the instrumental response for each pure component after optimization by an alternating least squares (ALS) procedure. A model to quantify the essential oil of rosemary was built using a calibration set containing only known concentrations of the essential oil and cereal alcohol as solvent. A calibration curve correlating the concentration of the essential oil of rosemary and the instrumental response obtained from the MCR-ALS algorithm was obtained, and this calibration model was applied to predict the concentration of the oil in complex samples (mixtures of the essential oil, pineapple essence and commercial perfume). The values of the root mean square error of prediction (RMSEP) and of the root mean square error of the percentage deviation (RMSPD) obtained were 0.4% (v/v) and 7.2%, respectively. Additionally, a second model was built and used to evaluate the accuracy of the method. A model to quantify the essential oil of lemon grass was built and its concentration was predicted in the validation set and real perfume samples. The RMSEP and RMSPD obtained were 0.5% (v/v) and 6.9%, respectively, and the concentration of the essential oil of lemon grass in perfume agreed to the value informed by the manufacturer. The result indicates that the MCR algorithm is adequate to resolve the target chromatogram from the complex sample and to build multivariate models of GC×GC-FID data. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Multivariate Analyses of Small Theropod Dinosaur Teeth and Implications for Paleoecological Turnover through Time

    PubMed Central

    Larson, Derek W.; Currie, Philip J.

    2013-01-01

    Isolated small theropod teeth are abundant in vertebrate microfossil assemblages, and are frequently used in studies of species diversity in ancient ecosystems. However, determining the taxonomic affinities of these teeth is problematic due to an absence of associated diagnostic skeletal material. Species such as Dromaeosaurus albertensis, Richardoestesia gilmorei, and Saurornitholestes langstoni are known from skeletal remains that have been recovered exclusively from the Dinosaur Park Formation (Campanian). It is therefore likely that teeth from different formations widely disparate in age or geographic position are not referable to these species. Tooth taxa without any associated skeletal material, such as Paronychodon lacustris and Richardoestesia isosceles, have also been identified from multiple localities of disparate ages throughout the Late Cretaceous. To address this problem, a dataset of measurements of 1183 small theropod teeth (the most specimen-rich theropod tooth dataset ever constructed) from North America ranging in age from Santonian through Maastrichtian were analyzed using multivariate statistical methods: canonical variate analysis, pairwise discriminant function analysis, and multivariate analysis of variance. The results indicate that teeth referred to the same taxon from different formations are often quantitatively distinct. In contrast, isolated teeth found in time equivalent formations are not quantitatively distinguishable from each other. These results support the hypothesis that small theropod taxa, like other dinosaurs in the Late Cretaceous, tend to be exclusive to discrete host formations. The methods outlined have great potential for future studies of isolated teeth worldwide, and may be the most useful non-destructive technique known of extracting the most data possible from isolated and fragmentary specimens. The ability to accurately assess species diversity and turnover through time based on isolated teeth will help illuminate patterns of evolution and extinction in these groups and potentially others in greater detail than has previously been thought possible without more complete skeletal material. PMID:23372708

  18. Initial FDG-PET/CT predicts survival in adults Ewing sarcoma family of tumors

    PubMed Central

    Jamet, Bastien; Carlier, Thomas; Campion, Loic; Bompas, Emmanuelle; Girault, Sylvie; Borrely, Fanny; Ferrer, Ludovic; Rousseau, Maxime; Venel, Yann; Kraeber-Bodéré, Françoise; Rousseau, Caroline

    2017-01-01

    Purpose The aim of this retrospective study was to determine, at baseline, the prognostic value of different FDG-PET/CT quantitative parameters in a homogenous Ewing Sarcoma Family of Tumors (ESFT) adult population, compared with clinically relevant prognostic factors. Methods Adult patients from 3 oncological centers, all with proved ESFT, were retrospectively included. Quantitative FDG-PET/CT parameters (SUV (maximum, peak and mean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of the primary lesion of each patient were recorded before treatment, as well as usual clinical prognostic factors (stage of disease, location, tumor size, gender and age). Then, their relation with progression free survival (PFS) and overall survival (OS) was evaluated. Results 32 patients were included. Median age was 21 years (range, 15 to 61). Nineteen patients (59%) were initially metastatic. On multivariate analysis, high SUVmax remained independent predictor of worst OS (p=0.02) and PFS (p=0.019), metastatic disease of worst PFS (p=0.01) and high SUVpeak of worst OS (p=0.01). Optimal prognostic cut-off of SUVpeak was found at 12.5 in multivariate analyses for PFS and OS (p=0.0001). Conclusions FDG-PET/CT, recommended at ESFT diagnosis for initial staging, can be a useful tool for predicting long-term adult patients outcome through semi-quantitative parameters. PMID:29100369

  19. Multivariate temporal pattern analysis applied to the study of rat behavior in the elevated plus maze: methodological and conceptual highlights.

    PubMed

    Casarrubea, M; Magnusson, M S; Roy, V; Arabo, A; Sorbera, F; Santangelo, A; Faulisi, F; Crescimanno, G

    2014-08-30

    Aim of this article is to illustrate the application of a multivariate approach known as t-pattern analysis in the study of rat behavior in elevated plus maze. By means of this multivariate approach, significant relationships among behavioral events in the course of time can be described. Both quantitative and t-pattern analyses were utilized to analyze data obtained from fifteen male Wistar rats following a trial 1-trial 2 protocol. In trial 2, in comparison with the initial exposure, mean occurrences of behavioral elements performed in protected zones of the maze showed a significant increase counterbalanced by a significant decrease of mean occurrences of behavioral elements in unprotected zones. Multivariate t-pattern analysis, in trial 1, revealed the presence of 134 t-patterns of different composition. In trial 2, the temporal structure of behavior become more simple, being present only 32 different t-patterns. Behavioral strings and stripes (i.e. graphical representation of each t-pattern onset) of all t-patterns were presented both for trial 1 and trial 2 as well. Finally, percent distributions in the three zones of the maze show a clear-cut increase of t-patterns in closed arm and a significant reduction in the remaining zones. Results show that previous experience deeply modifies the temporal structure of rat behavior in the elevated plus maze. In addition, this article, by highlighting several conceptual, methodological and illustrative aspects on the utilization of t-pattern analysis, could represent a useful background to employ such a refined approach in the study of rat behavior in elevated plus maze. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7β-hydroxycholesterol production in cognitive impairment.

    PubMed

    Son, Hyun-Hwa; Lee, Do-Yup; Seo, Hong Seog; Jeong, Jihyeon; Moon, Ju-Yeon; Lee, Jung-Eun; Chung, Bong Chul; Kim, Eosu; Choi, Man Ho

    2016-01-01

    Altered cholesterol metabolism could be associated with cognitive impairment. The quantitative profiling of 19 hair sterols was developed using gas chromatography-mass spectrometry coupled to multivariate data analysis. The limit of quantification of all sterols ranged from 5 to 20 ng/g, while the calibration linearity was higher than 0.98. The precision (% CV) and accuracy (% bias) ranged from 3.2% to 9.8% and from 83.2% to 119.4%, respectively. Among the sterols examined, 8 were quantitatively detected from two strands of 3-cm-long scalp hair samples of female participants, including mild cognitive impairment (MCI, n=15), Alzheimer's disease (AD, n=31), and healthy controls (HC, n=36). The cognitive impairment (MCI or AD) was correlated with a higher metabolic rate than that of HCs based on 7β-hydroxycholesterol (P<0.005). Significant negative correlations (r=-0.822) were detected between Mini-Mental State Examination (MMSE) scores and hair sample metabolic ratios of 7β-hydroxycholesterol to cholesterol, which is an accepted, sensitive, and specific tool for discriminating HCs from individuals with MCI or AD. In conclusion, improved diagnostic values can be obtained using hair sterol signatures coupled with MMSE scores. This method may prove useful for predictive diagnosis in population screening of cognitive impairment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  2. Identifying pleiotropic genes in genome-wide association studies from related subjects using the linear mixed model and Fisher combination function.

    PubMed

    Yang, James J; Williams, L Keoki; Buu, Anne

    2017-08-24

    A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.

  3. Geospatial Resource Access Analysis In Hedaru, Tanzania

    NASA Astrophysics Data System (ADS)

    Clark, Dylan G.; Premkumar, Deepak; Mazur, Robert; Kisimbo, Elibariki

    2013-12-01

    Populations around the world are facing increased impacts of anthropogenic-induced environmental changes and rapid population movements. These environmental and social shifts are having an elevated impact on the livelihoods of agriculturalists and pastoralists in developing countries. This appraisal integrates various tools—usually used independently— to gain a comprehensive understanding of the regional livelihood constraints in the rural Hedaru Valley of northeastern Tanzania. Conducted in three villages with different natural resources, using three primary methods: 1) participatory mapping of infrastructures; 2) administration of quantitative, spatially-tied surveys (n=80) and focus groups (n=14) that examined land use, household health, education, and demographics; 3) conducting quantitative time series analysis of Landsat- based Normalized Difference Vegetation Index images. Through various geospatial and multivariate linear regression analyses, significant geospatial trends emerged. This research added to the academic understanding of the region while establishing pathways for climate change adaptation strategies.

  4. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  5. Quantitative investigation of inappropriate regression model construction and the importance of medical statistics experts in observational medical research: a cross-sectional study.

    PubMed

    Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka

    2018-05-05

    To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Rapid analysis of Aurantii Fructus Immaturus (Zhishi) using paper spray ionization mass spectrometry.

    PubMed

    Liu, Xuemei; Gu, Zhixin; Guo, Yuan; Liu, Jingjing; Ma, Ming; Chen, Bo; Wang, Liping

    2017-04-15

    Paper spray-mass spectrometry (PS-MS) is a rapid, solvent-efficient, and high-throughput analytical method for analyzing complex samples. In this study, a PS-MS method was developed to obtain MS profiles of Aurantii Fructus Immaturus (aka Zhishi in Chinese) in positive and negative ion modes. In combination with multivariate analyses, including principal component analysis and cluster analysis, the PS-MS profiles of 25 batches of Zhishi were discriminated in 25 batches of Citri Reticulatae Pericarpium Viride (aka Qingpi in Chinese; an adulterant of Zhishi). Moreover, a rapid quantitative analysis of synephrine, a prescriptive quality control component of Zhishi listed in the Chinese Pharmacopoeia, was conducted with PS-MS using synephrine-d2 as an internal standard (IS). The linearity range was 1.68-16.8μg/mL (R 2 =0.9985), the limit of quantitation was 0.5μg/mL. Relative standard deviations in the intra- and inter-day precision of the MS were 4.87 and 4.90%, respectively. Compared with HPLC results, there was no significant difference in the quantitation of synephrine. This study demonstrated that the PS-MS method is useful for the rapid discrimination and quality control of Zhishi samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of cerebral maturation by visual and quantitative analysis of resting electroencephalography in children with primary nocturnal enuresis.

    PubMed

    Hallioğlu, O; Ozge, A; Comelekoglu, U; Topaloglu, A K; Kanik, A; Duzovali, O; Yilgor, E

    2001-10-01

    This study was undertaken to evaluate resting electroencephalographic (EEG) changes and their relations to cerebral maturation in children with primary nocturnal enuresis. Cerebral maturation is known to be important in the pathogenesis of this disorder. Twenty-five right-handed patients with primary nocturnal enuresis, aged 6 to 14 years, and 23 age- and sex-matched healthy children were included in this cross-sectional case-control study. The abnormalities detected using such techniques as hemispheral asymmetry, regional differences, and hyperventilation response in addition to visual and quantitative EEG analysis were examined statistically by multivariate analysis. A decrease in alpha activity in the left (dominant hemisphere) temporal lobe and in the frontal lobes bilaterally and an increase in delta activity in the right temporal region were observed. We concluded that insufficient cerebral maturation is an important factor in the pathogenesis of primary nocturnal enuresis, and EEG, as a noninvasive and inexpensive method, could be used in evaluating cerebral maturation.

  8. Authentication and Quantitation of Fraud in Extra Virgin Olive Oils Based on HPLC-UV Fingerprinting and Multivariate Calibration

    PubMed Central

    Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier

    2018-01-01

    High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820

  9. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  10. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea.

    PubMed

    Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata

    2017-03-17

    An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MicroRNA-34c-5p is related to recurrence in laryngeal squamous cell carcinoma.

    PubMed

    Re, Massimo; Çeka, Artan; Rubini, Corrado; Ferrante, Luigi; Zizzi, Antonio; Gioacchini, Federico M; Tulli, Michele; Spazzafumo, Liana; Sellari-Franceschini, Stefano; Procopio, Antonio D; Olivieri, Fabiola

    2015-09-01

    Altered microRNA expression has been found in many cancer types, including laryngeal squamous cell carcinoma (LSCC). We investigated the association of LSCC-related miR-34c-5p with disease-free survival and overall survival. Retrospective cohort study. Expression levels of miR-34c-5p were detected in 90 LSCC formalin-fixed paraffin-embedded tissues by reverse-transcription quantitative polymerase chain reaction. Overall survival and disease-free survival were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using Cox proportional hazard analysis. A downregulation of miR-34c-5p expression significantly correlated with worse disease-free and overall survival. In the multivariate analysis, low miR-34c-5p expression was associated with an increased risk of recurrence. A downregulation of miR-34c-5p in LSCC is independently associated with unfavorable disease-free survival, suggesting that miR-34c-5p might be a promising marker for evaluating the risk of recurrences. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Patient Safety Incidents and Nursing Workload 1

    PubMed Central

    Carlesi, Katya Cuadros; Padilha, Kátia Grillo; Toffoletto, Maria Cecília; Henriquez-Roldán, Carlos; Juan, Monica Andrea Canales

    2017-01-01

    ABSTRACT Objective: to identify the relationship between the workload of the nursing team and the occurrence of patient safety incidents linked to nursing care in a public hospital in Chile. Method: quantitative, analytical, cross-sectional research through review of medical records. The estimation of workload in Intensive Care Units (ICUs) was performed using the Therapeutic Interventions Scoring System (TISS-28) and for the other services, we used the nurse/patient and nursing assistant/patient ratios. Descriptive univariate and multivariate analysis were performed. For the multivariate analysis we used principal component analysis and Pearson correlation. Results: 879 post-discharge clinical records and the workload of 85 nurses and 157 nursing assistants were analyzed. The overall incident rate was 71.1%. It was found a high positive correlation between variables workload (r = 0.9611 to r = 0.9919) and rate of falls (r = 0.8770). The medication error rates, mechanical containment incidents and self-removal of invasive devices were not correlated with the workload. Conclusions: the workload was high in all units except the intermediate care unit. Only the rate of falls was associated with the workload. PMID:28403334

  13. Improved Quantitative Analysis of Ion Mobility Spectrometry by Chemometric Multivariate Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Kerr, Dayle; Atkinson, David A.

    2009-09-01

    Traditional peak-area calibration and the multivariate calibration methods of principle component regression (PCR) and partial least squares (PLS), including unfolded PLS (U-PLS) and multi-way PLS (N-PLS), were evaluated for the quantification of 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) in Composition B samples analyzed by temperature step desorption ion mobility spectrometry (TSD-IMS). The true TNT and RDX concentrations of eight Composition B samples were determined by high performance liquid chromatography with UV absorbance detection. Most of the Composition B samples were found to have distinct TNT and RDX concentrations. Applying PCR and PLS on the exact same IMS spectra used for themore » peak-area study improved quantitative accuracy and precision approximately 3 to 5 fold and 2 to 4 fold, respectively. This in turn improved the probability of correctly identifying Composition B samples based upon the estimated RDX and TNT concentrations from 11% with peak area to 44% and 89% with PLS. This improvement increases the potential of obtaining forensic information from IMS analyzers by providing some ability to differentiate or match Composition B samples based on their TNT and RDX concentrations.« less

  14. Revision of the Malagasy Camponotus edmondi species group (Hymenoptera, Formicidae, Formicinae): integrating qualitative morphology and multivariate morphometric analysis.

    PubMed

    Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L

    2016-01-01

    The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n. , Camponotus androy sp. n. , Camponotus bevohitra sp. n. , Camponotus galoko sp. n. , Camponotus matsilo sp. n. , Camponotus mifaka sp. n. , Camponotus orombe sp. n. , Camponotus tafo sp. n. , Camponotus tratra sp. n. , Camponotus varatra sp. n. , and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi . This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases.

  15. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic traits characteristic of high-performance clones and enables informed decisions on which clones provide a good match for a particular process platform. The proposed approach also provides a mechanistic link between observed clone phenotype, process setup, and feeding regimes, and thereby offers concrete starting points for subsequent process optimization. Biotechnol. Bioeng. 2016;113: 2005-2019. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Revision of the Malagasy Camponotus edmondi species group (Hymenoptera, Formicidae, Formicinae): integrating qualitative morphology and multivariate morphometric analysis

    PubMed Central

    Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L.

    2016-01-01

    Abstract The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n., Camponotus androy sp. n., Camponotus bevohitra sp. n., Camponotus galoko sp. n., Camponotus matsilo sp. n., Camponotus mifaka sp. n., Camponotus orombe sp. n., Camponotus tafo sp. n., Camponotus tratra sp. n., Camponotus varatra sp. n., and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi. This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases. PMID:28050160

  17. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    PubMed

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    PubMed

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  19. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions.

    PubMed

    Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F

    2015-09-16

    Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.

  20. [Methods of the multivariate statistical analysis of so-called polyetiological diseases using the example of coronary heart disease].

    PubMed

    Lifshits, A M

    1979-01-01

    General characteristics of the multivariate statistical analysis (MSA) is given. Methodical premises and criteria for the selection of an adequate MSA method applicable to pathoanatomic investigations of the epidemiology of multicausal diseases are presented. The experience of using MSA with computors and standard computing programs in studies of coronary arteries aterosclerosis on the materials of 2060 autopsies is described. The combined use of 4 MSA methods: sequential, correlational, regressional, and discriminant permitted to quantitate the contribution of each of the 8 examined risk factors in the development of aterosclerosis. The most important factors were found to be the age, arterial hypertension, and heredity. Occupational hypodynamia and increased fatness were more important in men, whereas diabetes melitus--in women. The registration of this combination of risk factors by MSA methods provides for more reliable prognosis of the likelihood of coronary heart disease with a fatal outcome than prognosis of the degree of coronary aterosclerosis.

  1. Dermatoglyphic analysis of La Liébana (Cantabria, Spain). 2. Finger ridge counts.

    PubMed

    Martín, J; Gómez, P

    1993-06-01

    The results of univariate and multivariate analyses of the quantitative finger dermatoglyphic traits (i.e. ridge counts) of a sample of 109 males and 88 females from La Liébana (Cantabria, Spain) are reported. Univariate results follow the trends usually found in previous studies, e.g., ranking of finger ridge counts, bilateral asymmetry or shape of the distributions of the frequencies. However, sexual dimorphism is nearly inexistent concerning finger ridge counts. This lack of dimorphism could be related to certain characteristics of the distribution of finger dermatoglyphic patterns previously reported by the same authors. The multivariate description has been carried out by means of principal component analysis (with varimax rotation to obtain the final solution) of the correlation matrices computed from the 10 maximal finger ridge counts. Although the results do not necessarily prove the concept of developmental fields ("field theory" and later modifications), some precepts of the theory are present: field polarization and field overlapping.

  2. TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.

    2016-02-01

    In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.

  3. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I + II + III supernatant in human albumin separation

    NASA Astrophysics Data System (ADS)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-01

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  4. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I+II+III supernatant in human albumin separation.

    PubMed

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-15

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI

    PubMed Central

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-01-01

    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490

  6. Significance of Medication History at the Time of Entry into the COPDGene Study: Relationship with Exacerbation and CT Metrics

    PubMed Central

    Park, Seoung Ju; Make, Barry; Hersh, Craig P.; Bowler, Russell P.

    2015-01-01

    Background Despite the importance of respiratory medication use in COPD, relatively little is known about which clinical phenotypes were associated with respiratory medications. Methods To determine the association between respiratory medication use and exacerbations or quantitative CT metrics, we analyzed medication history from 4,484 COPD subjects enrolled in the COPDGene Study. Results 2,941 (65.6%) subjects were receiving one or more respiratory medications; this group experienced more frequent exacerbations in the year before study entry and had increased gas trapping, emphysema, and subsegmental airway wall area, compared to the patients who were on no respiratory medication. In subgroup analysis, subjects who were on triple therapy (long-acting beta2-agonist [LABA], long-acting muscarinic antagonist [LAMA], and inhaled corticosteroids [ICS]) had the highest frequencies of exacerbations and severe exacerbations and tended to have increased quantitative measures of emphysema and gas trapping on CT compared to other five groups. After adjustment for confounding variables, the triple therapy group experienced more exacerbations and severe exacerbations compared with other five groups. In addition, the LABA+LAMA+ICS group was more likely to have emphysema and gas trapping on CT than other groups in multivariable logistic analysis. Interestingly, the total number of respiratory medications was significantly associated with not only the frequency of exacerbations but also gas trapping and airway wall thickness as assessed by CT scan in multivariable analysis. Conclusions These results suggest that the use of respiratory medications, especially the number of medications, may identify a more severe phenotype of COPD that is highly susceptible to COPD exacerbations. PMID:25254928

  7. Glycolytic activity in breast cancer using 18F-FDG PET/CT as prognostic predictor: A molecular phenotype approach.

    PubMed

    Garcia Vicente, A M; Soriano Castrejón, A; Amo-Salas, M; Lopez Fidalgo, J F; Muñoz Sanchez, M M; Alvarez Cabellos, R; Espinosa Aunion, R; Muñoz Madero, V

    2016-01-01

    To explore the relationship between basal (18)F-FDG uptake in breast tumors and survival in patients with breast cancer (BC) using a molecular phenotype approach. This prospective and multicentre study included 193 women diagnosed with BC. All patients underwent an (18)F-FDG PET/CT prior to treatment. Maximum standardized uptake value (SUVmax) in tumor (T), lymph nodes (N), and the N/T index was obtained in all the cases. Metabolic stage was established. As regards biological prognostic parameters, tumors were classified into molecular sub-types and risk categories. Overall survival (OS) and disease free survival (DFS) were obtained. An analysis was performed on the relationship between semi-quantitative metabolic parameters with molecular phenotypes and risk categories. The effect of molecular sub-type and risk categories in prognosis was analyzed using Kaplan-Meier and univariate and multivariate tests. Statistical differences were found in both SUVT and SUVN, according to the molecular sub-types and risk classifications, with higher semi-quantitative values in more biologically aggressive tumors. No statistical differences were observed with respect to the N/T index. Kaplan-Meier analysis revealed that risk categories were significantly related to DFS and OS. In the multivariate analysis, metabolic stage and risk phenotype showed a significant association with DFS. High-risk phenotype category showed a worst prognosis with respect to the other categories with higher SUVmax in primary tumor and lymph nodes. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  8. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters.

    PubMed

    Zhou, Qian-Jun; Zheng, Zhi-Chun; Zhu, Yong-Qiao; Lu, Pei-Ji; Huang, Jia; Ye, Jian-Ding; Zhang, Jie; Lu, Shun; Luo, Qing-Quan

    2017-05-01

    To investigate the potential value of CT parameters to differentiate ground-glass nodules between noninvasive adenocarcinoma and invasive pulmonary adenocarcinoma (IPA) as defined by IASLC/ATS/ERS classification. We retrospectively reviewed 211 patients with pathologically proved stage 0-IA lung adenocarcinoma which appeared as subsolid nodules, from January 2012 to January 2013 including 137 pure ground glass nodules (pGGNs) and 74 part-solid nodules (PSNs). Pathological data was classified under the 2011 IASLC/ATS/ERS classification. Both quantitative and qualitative CT parameters were used to determine the tumor invasiveness between noninvasive adenocarcinomas and IPAs. There were 154 noninvasive adenocarcinomas and 57 IPAs. In pGGNs, CT size and area, one-dimensional mean CT value and bubble lucency were significantly different between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate regression and ROC analysis revealed that CT size and one-dimensional mean CT value were predictive of noninvasive adenocarcinomas compared to IPAs. Optimal cutoff value was 13.60 mm (sensitivity, 75.0%; specificity, 99.6%), and -583.60 HU (sensitivity, 68.8%; specificity, 66.9%). In PSNs, there were significant differences in CT size and area, solid component area, solid proportion, one-dimensional mean and maximum CT value, three-dimensional (3D) mean CT value between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate and ROC analysis showed that CT size and 3D mean CT value were significantly differentiators. Optimal cutoff value was 19.64 mm (sensitivity, 53.7%; specificity, 93.9%), -571.63 HU (sensitivity, 85.4%; specificity, 75.8%). For pGGNs, CT size and one-dimensional mean CT value are determinants for tumor invasiveness. For PSNs, tumor invasiveness can be predicted by CT size and 3D mean CT value.

  9. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  10. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.

    PubMed

    Mägi, Reedik; Suleimanov, Yury V; Clarke, Geraldine M; Kaakinen, Marika; Fischer, Krista; Prokopenko, Inga; Morris, Andrew P

    2017-01-11

    Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) have been successful in identifying loci contributing genetic effects to a wide range of complex human diseases and quantitative traits. The traditional approach to GWAS analysis is to consider each phenotype separately, despite the fact that many diseases and quantitative traits are correlated with each other, and often measured in the same sample of individuals. Multivariate analyses of correlated phenotypes have been demonstrated, by simulation, to increase power to detect association with SNPs, and thus may enable improved detection of novel loci contributing to diseases and quantitative traits. We have developed the SCOPA software to enable GWAS analysis of multiple correlated phenotypes. The software implements "reverse regression" methodology, which treats the genotype of an individual at a SNP as the outcome and the phenotypes as predictors in a general linear model. SCOPA can be applied to quantitative traits and categorical phenotypes, and can accommodate imputed genotypes under a dosage model. The accompanying META-SCOPA software enables meta-analysis of association summary statistics from SCOPA across GWAS. Application of SCOPA to two GWAS of high-and low-density lipoprotein cholesterol, triglycerides and body mass index, and subsequent meta-analysis with META-SCOPA, highlighted stronger association signals than univariate phenotype analysis at established lipid and obesity loci. The META-SCOPA meta-analysis also revealed a novel signal of association at genome-wide significance for triglycerides mapping to GPC5 (lead SNP rs71427535, p = 1.1x10 -8 ), which has not been reported in previous large-scale GWAS of lipid traits. The SCOPA and META-SCOPA software enable discovery and dissection of multiple phenotype association signals through implementation of a powerful reverse regression approach.

  11. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  12. Investigation of Association Between Hip Osteoarthritis Susceptibility Loci and Radiographic Proximal Femur Shape

    PubMed Central

    Thiagarajah, Shankar; Wilkinson, J. Mark; Panoutsopoulou, Kalliope; Day‐Williams, Aaron G.; Cootes, Timothy F.; Wallis, Gillian A.; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Chapman, Kay; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Timothy D.; Valdes, Ana M.; Wallis, Gillian A.; Mark Wilkinson, J.; Zeggini, Eleftheria

    2015-01-01

    Objective To test whether previously reported hip morphology or osteoarthritis (OA) susceptibility loci are associated with proximal femur shape as represented by statistical shape model (SSM) modes and as univariate or multivariate quantitative traits. Methods We used pelvic radiographs and genotype data from 929 subjects with unilateral hip OA who had been recruited previously for the Arthritis Research UK Osteoarthritis Genetics Consortium genome‐wide association study. We built 3 SSMs capturing the shape variation of the OA‐unaffected proximal femur in the entire mixed‐sex cohort and for male/female‐stratified cohorts. We selected 41 candidate single‐nucleotide polymorphisms (SNPs) previously reported as being associated with hip morphology (for replication analysis) or OA (for discovery analysis) and for which genotype data were available. We performed 2 types of analysis for genotype–phenotype associations between these SNPs and the modes of the SSMs: 1) a univariate analysis using individual SSM modes and 2) a multivariate analysis using combinations of SSM modes. Results The univariate analysis identified association between rs4836732 (within the ASTN2 gene) and mode 5 of the female SSM (P = 0.0016) and between rs6976 (within the GLT8D1 gene) and mode 7 of the mixed‐sex SSM (P = 0.0003). The multivariate analysis identified association between rs5009270 (near the IFRD1 gene) and a combination of modes 3, 4, and 9 of the mixed‐sex SSM (P = 0.0004). Evidence of associations remained significant following adjustment for multiple testing. All 3 SNPs had previously been associated with hip OA. Conclusion These de novo findings suggest that rs4836732, rs6976, and rs5009270 may contribute to hip OA susceptibility by altering proximal femur shape. PMID:25939412

  13. A diagnostic analysis of the VVP single-doppler retrieval technique

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    1995-01-01

    A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.

  14. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges.

    PubMed

    Ernst, Marielle; Kriston, Levente; Romero, Javier M; Frölich, Andreas M; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time.

  15. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer

    NASA Technical Reports Server (NTRS)

    Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.

    1998-01-01

    The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.

  16. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  17. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    PubMed

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.

    PubMed

    Clark, David J; Fondrie, William E; Liao, Zhongping; Hanson, Phyllis I; Fulton, Amy; Mao, Li; Yang, Austin J

    2015-10-20

    Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.

  19. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    PubMed

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Risk factors associated with oroantral perforation during surgical removal of maxillary third molar teeth.

    PubMed

    Hasegawa, Takumi; Tachibana, Akira; Takeda, Daisuke; Iwata, Eiji; Arimoto, Satomi; Sakakibara, Akiko; Akashi, Masaya; Komori, Takahide

    2016-12-01

    The relationship between radiographic findings and the occurrence of oroantral perforation is controversial. Few studies have quantitatively analyzed the risk factors contributing to oroantral perforation, and no study has reported multivariate analysis of the relationship(s) between these various factors. This retrospective study aims to fill this void. Various risk factors for oroantral perforation during maxillary third molar extraction were investigated by univariate and multivariate analysis. The proximity of the roots to the maxillary sinus floor (root-sinus [RS] classification) was assessed using panoramic radiography and classified as types 1-5. The relationship between the maxillary second and third molars was classified according to a modified version of the Archer classification. The relative depth of the maxillary third molar in the bone was classified as class A-C, and its angulation relative to the long axis of the second molar was also recorded. Performance of an incision (OR 5.16), mesioangular tooth angulation (OR 6.05), and type 3 RS classification (i.e., significant superimposition of the roots of all posterior maxillary teeth with the sinus floor; OR 10.18) were all identified as risk factors with significant association to an outcome of oroantral perforation. To our knowledge, this is the first multivariate analysis of the risk factors for oroantral perforation during surgical extraction of the maxillary third molar. This RS classification may offer a new predictive parameter for estimating the risk of oroantral perforation.

  1. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.

  2. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  3. Assessing admixture by multivariate analyses of phenotypic differentiation in the Algerian goat livestock.

    PubMed

    Ouchene-Khelifi, Nadjet-Amina; Ouchene, Nassim; Maftah, Abderrahman; Da Silva, Anne Blondeau; Lafri, Mohamed

    2015-10-01

    In Algeria, goat research has been largely neglected, in spite of the economic importance of this domestic species for rural livelihoods. Goat farming is traditional and cross-breeding practices are current. The phenotypic variability of the four main native breeds (Arabia, Makatia, M'zabite and Kabyle), and of two exotic breeds (Alpine and Saanen), was investigated for the first time, using multivariate discriminant analysis. A total of 892 females were sampled in a large area, including the cradle of the native breeds, and phenotyped with 23 quantitative measures and 10 qualitative traits. Our results suggested that cross-breeding practices have ever led to critical consequences, particularly for Makatia and M'zabite. The information reported in this study has to be carefully considered in order to establish governmental plan able to prevent the genetic dilution of the Algerian goat livestock.

  4. Motivations for genetic testing for lung cancer risk among young smokers.

    PubMed

    O'Neill, Suzanne C; Lipkus, Isaac M; Sanderson, Saskia C; Shepperd, James; Docherty, Sharron; McBride, Colleen M

    2013-11-01

    To examine why young people might want to undergo genetic susceptibility testing for lung cancer despite knowing that tested gene variants are associated with small increases in disease risk. The authors used a mixed-method approach to evaluate motives for and against genetic testing and the association between these motivations and testing intentions in 128 college students who smoke. Exploratory factor analysis yielded four reliable factors: Test Scepticism, Test Optimism, Knowledge Enhancement and Smoking Optimism. Test Optimism and Knowledge Enhancement correlated positively with intentions to test in bivariate and multivariate analyses (ps<0.001). Test Scepticism correlated negatively with testing intentions in multivariate analyses (p<0.05). Open-ended questions assessing testing motivations generally replicated themes of the quantitative survey. In addition to learning about health risks, young people may be motivated to seek genetic testing for reasons, such as gaining knowledge about new genetic technologies more broadly.

  5. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

    PubMed

    Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A

    2015-01-22

    The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy.

    PubMed

    Denkert, C; Loibl, S; Kronenwett, R; Budczies, J; von Törne, C; Nekljudova, V; Darb-Esfahani, S; Solbach, C; Sinn, B V; Petry, C; Müller, B M; Hilfrich, J; Altmann, G; Staebler, A; Roth, C; Ataseven, B; Kirchner, T; Dietel, M; Untch, M; von Minckwitz, G

    2013-03-01

    Hormone and human epidermal growth factor receptor 2 (HER2) receptors are the most important breast cancer biomarkers, and additional objective and quantitative test methods such as messenger RNA (mRNA)-based quantitative analysis are urgently needed. In this study, we investigated the clinical validity of RT-PCR-based evaluation of estrogen receptor (ESR1) and HER2 mRNA expression. A total of 1050 core biopsies from two retrospective (GeparTrio, GeparQuattro) and one prospective (PREDICT) neoadjuvant studies were evaluated by quantitative RT-PCR for ESR1 and HER2. ESR1 mRNA was significantly predictive for reduced response to neoadjuvant chemotherapy in univariate and multivariate analysis in all three cohorts. The complete pathologically documented response (pathological complete response, pCR) rate for ESR1+/HER2- tumors was 7.3%, 8.0% and 8.6%; for ESR1-/HER2- tumors it was 34.4%, 33.7% and 37.3% in GeparTrio, GeparQuattro and PREDICT, respectively (P < 0.001 in each cohort). In the Kaplan-Meier analysis in GeparTrio patients with ESR1+/HER2- tumors had the best prognosis, compared with ESR1-/HER2- and ESR1-/HER2+ tumors [disease-free survival (DFS): P < 0.0005, overall survival (OS): P < 0.0005]. Our results suggest that mRNA levels of ESR1 and HER2 predict response to neoadjuvant chemotherapy and are significantly associated with long-term outcome. As an additional option to standard immunohistochemistry and gene-array-based analysis, quantitative RT-PCR analysis might be useful for determination of the receptor status in breast cancer.

  7. Multivariate analysis applied to the study of spatial distributions found in drug-eluting stent coatings by confocal Raman microscopy.

    PubMed

    Balss, Karin M; Long, Frederick H; Veselov, Vladimir; Orana, Argjenta; Akerman-Revis, Eugena; Papandreou, George; Maryanoff, Cynthia A

    2008-07-01

    Multivariate data analysis was applied to confocal Raman measurements on stents coated with the polymers and drug used in the CYPHER Sirolimus-eluting Coronary Stents. Partial least-squares (PLS) regression was used to establish three independent calibration curves for the coating constituents: sirolimus, poly(n-butyl methacrylate) [PBMA], and poly(ethylene-co-vinyl acetate) [PEVA]. The PLS calibrations were based on average spectra generated from each spatial location profiled. The PLS models were tested on six unknown stent samples to assess accuracy and precision. The wt % difference between PLS predictions and laboratory assay values for sirolimus was less than 1 wt % for the composite of the six unknowns, while the polymer models were estimated to be less than 0.5 wt % difference for the combined samples. The linearity and specificity of the three PLS models were also demonstrated with the three PLS models. In contrast to earlier univariate models, the PLS models achieved mass balance with better accuracy. This analysis was extended to evaluate the spatial distribution of the three constituents. Quantitative bitmap images of drug-eluting stent coatings are presented for the first time to assess the local distribution of components.

  8. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  9. Quantitative transmission electron microscopy analysis of multi-variant grains in present L1{sub 0}-FePt based heat assisted magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hoan, E-mail: hoan.ho@wdc.com; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Zhu, Jingxi, E-mail: jingxiz@andrew.cmu.edu

    2014-11-21

    We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It wasmore » also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.« less

  10. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    NASA Astrophysics Data System (ADS)

    Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José

    2012-05-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.

  11. Fourier transform infrared spectroscopy for Kona coffee authentication.

    PubMed

    Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X

    2009-06-01

    Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.

  12. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  13. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils.

    PubMed

    Wójcicki, Krzysztof; Khmelinskii, Igor; Sikorski, Marek; Sikorska, Ewa

    2015-11-15

    Infrared spectroscopic techniques and chemometric methods were used to study oxidation of olive, sunflower and rapeseed oils. Accelerated oxidative degradation of oils at 60°C was monitored using peroxide values and FT-MIR ATR and FT-NIR transmittance spectroscopy. Principal component analysis (PCA) facilitated visualization and interpretation of spectral changes occurring during oxidation. Multivariate curve resolution (MCR) method found three spectral components in the NIR and MIR spectral matrix, corresponding to the oxidation products, and saturated and unsaturated structures. Good quantitative relation was found between peroxide value and contribution of oxidation products evaluated using MCR--based on NIR (R(2) = 0.890), MIR (R(2) = 0.707) and combined NIR and MIR (R(2) = 0.747) data. Calibration models for prediction peroxide value established using partial least squares (PLS) regression were characterized for MIR (R(2) = 0.701, RPD = 1.7), NIR (R(2) = 0.970, RPD = 5.3), and combined NIR and MIR data (R(2) = 0.954, RPD = 3.1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  15. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    PubMed

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  16. Descriptor selection for banana accessions based on univariate and multivariate analysis.

    PubMed

    Brandão, L P; Souza, C P F; Pereira, V M; Silva, S O; Santos-Serejo, J A; Ledo, C A S; Amorim, E P

    2013-05-14

    Our objective was to establish a minimum number of morphological descriptors for the characterization of banana germplasm and evaluate the efficiency of removal of redundant characters, based on univariate and multivariate statistical analyses. Phenotypic characterization was made of 77 accessions from Bahia, Brazil, using 92 descriptors. The selection of the descriptors was carried out by principal components analysis (quantitative) and by entropy (multi-category). Efficiency of elimination was analyzed by a comparative study between the clusters formed, taking into consideration all 92 descriptors and smaller groups. The selected descriptors were analyzed with the Ward-MLM procedure and a combined matrix formed by the Gower algorithm. We were able to reduce the number of descriptors used for characterizing the banana germplasm (42%). The correlation between the matrices considering the 92 descriptors and the selected ones was 0.82, showing that the reduction in the number of descriptors did not influence estimation of genetic variability between the banana accessions. We conclude that removing these descriptors caused no loss of information, considering the groups formed from pre-established criteria, including subgroup/subspecies.

  17. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges

    PubMed Central

    Ernst, Marielle; Kriston, Levente; Romero, Javier M.; Frölich, Andreas M.; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    Purpose We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. Materials and Methods We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. Results In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Conclusion Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time. PMID:26848840

  18. Music and Suicidality: A Quantitative Review and Extension

    ERIC Educational Resources Information Center

    Stack, Steven; Lester, David; Rosenberg, Jonathan S.

    2012-01-01

    This article provides the first quantitative review of the literature on music and suicidality. Multivariate logistic regression techniques are applied to 90 findings from 21 studies. Investigations employing ecological data on suicide completions are 19.2 times more apt than other studies to report a link between music and suicide. More recent…

  19. Chronic Obstructive Pulmonary Disease Exacerbations in the COPDGene Study: Associated Radiologic Phenotypes

    PubMed Central

    Kazerooni, Ella A.; Lynch, David A.; Liu, Lyrica X.; Murray, Susan; Curtis, Jeffrey L.; Criner, Gerard J.; Kim, Victor; Bowler, Russell P.; Hanania, Nicola A.; Anzueto, Antonio R.; Make, Barry J.; Hokanson, John E.; Crapo, James D.; Silverman, Edwin K.; Martinez, Fernando J.; Washko, George R.

    2011-01-01

    Purpose: To test the hypothesis—given the increasing emphasis on quantitative computed tomographic (CT) phenotypes of chronic obstructive pulmonary disease (COPD)—that a relationship exists between COPD exacerbation frequency and quantitative CT measures of emphysema and airway disease. Materials and Methods: This research protocol was approved by the institutional review board of each participating institution, and all participants provided written informed consent. One thousand two subjects who were enrolled in the COPDGene Study and met the GOLD (Global Initiative for Chronic Obstructive Lung Disease) criteria for COPD with quantitative CT analysis were included. Total lung emphysema percentage was measured by using the attenuation mask technique with a −950-HU threshold. An automated program measured the mean wall thickness and mean wall area percentage in six segmental bronchi. The frequency of COPD exacerbation in the prior year was determined by using a questionnaire. Statistical analysis was performed to examine the relationship of exacerbation frequency with lung function and quantitative CT measurements. Results: In a multivariate analysis adjusted for lung function, bronchial wall thickness and total lung emphysema percentage were associated with COPD exacerbation frequency. Each 1-mm increase in bronchial wall thickness was associated with a 1.84-fold increase in annual exacerbation rate (P = .004). For patients with 35% or greater total emphysema, each 5% increase in emphysema was associated with a 1.18-fold increase in this rate (P = .047). Conclusion: Greater lung emphysema and airway wall thickness were associated with COPD exacerbations, independent of the severity of airflow obstruction. Quantitative CT can help identify subgroups of patients with COPD who experience exacerbations for targeted research and therapy development for individual phenotypes. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110173/-/DC1 PMID:21788524

  20. Can texture analysis of tooth microwear detect within guild niche partitioning in extinct species?

    NASA Astrophysics Data System (ADS)

    Purnell, Mark; Nedza, Christopher; Rychlik, Leszek

    2017-04-01

    Recent work shows that tooth microwear analysis can be applied further back in time and deeper into the phylogenetic history of vertebrate clades than previously thought (e.g. niche partitioning in early Jurassic insectivorous mammals; Gill et al., 2014, Nature). Furthermore, quantitative approaches to analysis based on parameterization of surface roughness are increasing the robustness and repeatability of this widely used dietary proxy. Discriminating between taxa within dietary guilds has the potential to significantly increase our ability to determine resource use and partitioning in fossil vertebrates, but how sensitive is the technique? To address this question we analysed tooth microwear texture in sympatric populations of shrew species (Neomys fodiens, Neomys anomalus, Sorex araneus, Sorex minutus) from BiaŁ owieza Forest, Poland. These populations are known to exhibit varying degrees of niche partitioning (Churchfield & Rychlik, 2006, J. Zool.) with greatest overlap between the Neomys species. Sorex araneus also exhibits some niche overlap with N. anomalus, while S. minutus is the most specialised. Multivariate analysis based only on tooth microwear textures recovers the same pattern of niche partitioning. Our results also suggest that tooth textures track seasonal differences in diet. Projecting data from fossils into the multivariate dietary space defined using microwear from extant taxa demonstrates that the technique is capable of subtle dietary discrimination in extinct insectivores.

  1. Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal YMnO3 single crystal visualized by a spherical aberration-corrected STEM.

    PubMed

    Matsumoto, Takao; Ishikawa, Ryo; Tohei, Tetsuya; Kimura, Hideo; Yao, Qiwen; Zhao, Hongyang; Wang, Xiaolin; Chen, Dapeng; Cheng, Zhenxiang; Shibata, Naoya; Ikuhara, Yuichi

    2013-10-09

    A state-of-the-art spherical aberration-corrected STEM was fully utilized to directly visualize the multiferroic domain structure in a hexagonal YMnO3 single crystal at atomic scale. With the aid of multivariate statistical analysis (MSA), we obtained unbiased and quantitative maps of ferroelectric domain structures with atomic resolution. Such a statistical image analysis of the transition region between opposite polarizations has confirmed atomically sharp transitions of ferroelectric polarization both in antiparallel (uncharged) and tail-to-tail 180° (charged) domain boundaries. Through the analysis, a correlated subatomic image shift of Mn-O layers with that of Y layers, exhibiting a double-arc shape of reversed curvatures, have been elucidated. The amount of image shift in Mn-O layers along the c-axis is statistically significant as small as 0.016 nm, roughly one-third of the evident image shift of 0.048 nm in Y layers. Interestingly, a careful analysis has shown that such a subatomic image shift in Mn-O layers vanishes at the tail-to-tail 180° domain boundaries. Furthermore, taking advantage of the annular bright field (ABF) imaging technique combined with MSA, the tilting of MnO5 bipyramids, the very core mechanism of multiferroicity of the material, is evaluated.

  2. Targeted metabolomic profiling in rat tissues reveals sex differences.

    PubMed

    Ruoppolo, Margherita; Caterino, Marianna; Albano, Lucia; Pecce, Rita; Di Girolamo, Maria Grazia; Crisci, Daniela; Costanzo, Michele; Milella, Luigi; Franconi, Flavia; Campesi, Ilaria

    2018-03-16

    Sex differences affect several diseases and are organ-and parameter-specific. In humans and animals, sex differences also influence the metabolism and homeostasis of amino acids and fatty acids, which are linked to the onset of diseases. Thus, the use of targeted metabolite profiles in tissues represents a powerful approach to examine the intermediary metabolism and evidence for any sex differences. To clarify the sex-specific activities of liver, heart and kidney tissues, we used targeted metabolomics, linear discriminant analysis (LDA), principal component analysis (PCA), cluster analysis and linear correlation models to evaluate sex and organ-specific differences in amino acids, free carnitine and acylcarnitine levels in male and female Sprague-Dawley rats. Several intra-sex differences affect tissues, indicating that metabolite profiles in rat hearts, livers and kidneys are organ-dependent. Amino acids and carnitine levels in rat hearts, livers and kidneys are affected by sex: male and female hearts show the greatest sexual dimorphism, both qualitatively and quantitatively. Finally, multivariate analysis confirmed the influence of sex on the metabolomics profiling. Our data demonstrate that the metabolomics approach together with a multivariate approach can capture the dynamics of physiological and pathological states, which are essential for explaining the basis of the sex differences observed in physiological and pathological conditions.

  3. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution

    PubMed Central

    Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei

    2013-01-01

    Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016

  4. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution.

    PubMed

    Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei

    2013-01-01

    Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.

  5. Application of the correlation constrained multivariate curve resolution alternating least-squares method for analyte quantitation in the presence of unexpected interferences using first-order instrumental data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà

    2010-03-01

    Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.

  6. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation.

    PubMed

    Rahmania, Halida; Sudjadi; Rohman, Abdul

    2015-02-01

    For Indonesian community, meatball is one of the favorite meat food products. In order to gain economical benefits, the substitution of beef meat with rat meat can happen due to the different prices between rat meat and beef. In this present research, the feasibility of FTIR spectroscopy in combination with multivariate calibration of partial least square (PLS) was used for the quantitative analysis of rat meat in the binary mixture of beef in meatball formulation. Meanwhile, the chemometrics of principal component analysis (PCA) was used for the classification between rat meat and beef meatballs. Some frequency regions in mid infrared region were optimized, and finally, the frequency region of 750-1000 cm(-1) was selected during PLS and PCA modeling.For quantitative analysis, the relationship between actual values (x-axis) and FTIR predicted values (y-axis) of rat meat is described by the equation of y= 0.9417x+ 2.8410 with coefficient of determination (R2) of 0.993, and root mean square error of calibration (RMSEC) of 1.79%. Furthermore, PCA was successfully used for the classification of rat meat meatball and beef meatball.

  7. 64Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques: Studies in Patients Undergoing Endarterectomy.

    PubMed

    Pedersen, Sune Folke; Sandholt, Benjamin Vikjær; Keller, Sune Høgild; Hansen, Adam Espe; Clemmensen, Andreas Ettrup; Sillesen, Henrik; Højgaard, Liselotte; Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-07-01

    A feature of vulnerable atherosclerotic plaques of the carotid artery is high activity and abundance of lesion macrophages. There is consensus that this is of importance for plaque vulnerability, which may lead to clinical events, such as stroke and transient ischemic attack. We used positron emission tomography (PET) and the novel PET ligand [(64)Cu] [1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid]-d-Phe1,Tyr3-octreotate ((64)Cu-DOTATATE) to specifically target macrophages via the somatostatin receptor subtype-2 in vivo. Ten patients underwent simultaneous PET/MRI to measure (64)Cu-DOTATATE uptake in carotid artery plaques before carotid endarterectomy. (64)Cu-DOTATATE uptake was significantly higher in symptomatic plaque versus the contralateral carotid artery (P<0.001). Subsequently, a total of 62 plaque segments were assessed for gene expression of selected markers of plaque vulnerability using real-time quantitative polymerase chain reaction. These results were compared with in vivo (64)Cu-DOTATATE uptake calculated as the mean standardized uptake value. Univariate analysis of real-time quantitative polymerase chain reaction and PET showed that cluster of differentiation 163 (CD163) and CD68 gene expression correlated significantly but weakly with mean standardized uptake value in scans performed 85 minutes post injection (P<0.001 and P=0.015, respectively). Subsequent multivariate analysis showed that CD163 correlated independently with (64)Cu-DOTATATE uptake (P=0.031) whereas CD68 did not contribute significantly to the final model. The novel PET tracer (64)Cu-DOTATATE accumulates in atherosclerotic plaques of the carotid artery. CD163 gene expression correlated independently with (64)Cu-DOTATATE uptake measured by real-time quantitative polymerase chain reaction in the final multivariate model, indicating that (64)Cu-DOTATATE PET is detecting alternatively activated macrophages. This association could potentially improve noninvasive identification and characterization of vulnerable plaques. © 2015 The Authors.

  8. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    NASA Astrophysics Data System (ADS)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  9. Lithologic discrimination and alteration mapping from AVIRIS Data, Socorro, New Mexico

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Delillo, N.; Jacobson, A.; Blom, R.; Chapin, C. E.

    1993-01-01

    Geologic maps are, by their very nature, interpretive documents. In contrasts, images prepared from AVIRIS data can be used as uninterpreted, and thus unbiased, geologic maps. We are having significant success applying AVIRIS data in this non-quantitative manner to geologic problems. Much of our success has come from the power of the Linked Windows Interactive Data System. LinkWinds is a visual data analysis and exploration system under development at JPL which is designed to rapidly and interactively investigate large multivariate data sets. In this paper, we present information on the analysis technique, and preliminary results from research on potassium metasomatism, a distinctive and structurally significant type of alteration associated with crustal extension.

  10. Multicenter study of quantitative computed tomography analysis using a computer-aided three-dimensional system in patients with idiopathic pulmonary fibrosis.

    PubMed

    Iwasawa, Tae; Kanauchi, Tetsu; Hoshi, Toshiko; Ogura, Takashi; Baba, Tomohisa; Gotoh, Toshiyuki; Oba, Mari S

    2016-01-01

    To evaluate the feasibility of automated quantitative analysis with a three-dimensional (3D) computer-aided system (i.e., Gaussian histogram normalized correlation, GHNC) of computed tomography (CT) images from different scanners. Each institution's review board approved the research protocol. Informed patient consent was not required. The participants in this multicenter prospective study were 80 patients (65 men, 15 women) with idiopathic pulmonary fibrosis. Their mean age was 70.6 years. Computed tomography (CT) images were obtained by four different scanners set at different exposures. We measured the extent of fibrosis using GHNC, and used Pearson's correlation analysis, Bland-Altman plots, and kappa analysis to directly compare the GHNC results with manual scoring by radiologists. Multiple linear regression analysis was performed to determine the association between the CT data and forced vital capacity (FVC). For each scanner, the extent of fibrosis as determined by GHNC was significantly correlated with the radiologists' score. In multivariate analysis, the extent of fibrosis as determined by GHNC was significantly correlated with FVC (p < 0.001). There was no significant difference between the results obtained using different CT scanners. Gaussian histogram normalized correlation was feasible, irrespective of the type of CT scanner used.

  11. The Quantitative Preparation of Future Geoscience Graduate Students

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways. Calculus, calculus-based physics, chemistry, statistics, programming and linear algebra were viewed as important course preparation for a successful graduate experience. A set of recommendations for departments and for new community resources includes ideas for infusing quantitative reasoning throughout the undergraduate experience and mechanisms for learning from successful experiments in both geoscience and mathematics. A full list of participants, summaries of the meeting discussion and recommendations are available at http://serc.carleton.edu/quantskills/winter06/index.html. These documents, crafted by a small but diverse group can serve as a starting point for broader community discussion of the quantitative preparation of future geoscience graduate students.

  12. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  13. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels.

    PubMed

    Muhamadali, Howbeer; Chisanga, Malama; Subaihi, Abdu; Goodacre, Royston

    2015-04-21

    There is no doubt that the contribution of microbially mediated bioprocesses toward maintenance of life on earth is vital. However, understanding these microbes in situ is currently a bottleneck, as most methods require culturing these microorganisms to suitable biomass levels so that their phenotype can be measured. The development of new culture-independent strategies such as stable isotope probing (SIP) coupled with molecular biology has been a breakthrough toward linking gene to function, while circumventing in vitro culturing. In this study, for the first time we have combined Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, as metabolic fingerprinting approaches, with SIP to demonstrate the quantitative labeling and differentiation of Escherichia coli cells. E. coli cells were grown in minimal medium with fixed final concentrations of carbon and nitrogen supply, but with different ratios and combinations of (13)C/(12)C glucose and (15)N/(14)N ammonium chloride, as the sole carbon and nitrogen sources, respectively. The cells were collected at stationary phase and examined by Raman and FT-IR spectroscopies. The multivariate analysis investigation of FT-IR and Raman data illustrated unique clustering patterns resulting from specific spectral shifts upon the incorporation of different isotopes, which were directly correlated with the ratio of the isotopically labeled content of the medium. Multivariate analysis results of single-cell Raman spectra followed the same trend, exhibiting a separation between E. coli cells labeled with different isotopes and multiple isotope levels of C and N.

  14. SDAR 1.0 a New Quantitative Toolkit for Analyze Stratigraphic Data

    NASA Astrophysics Data System (ADS)

    Ortiz, John; Moreno, Carlos; Cardenas, Andres; Jaramillo, Carlos

    2015-04-01

    Since the foundation of stratigraphy geoscientists have recognized that data obtained from stratigraphic columns (SC), two dimensional schemes recording descriptions of both geological and paleontological features (e.g., thickness of rock packages, grain size, fossil and lithological components, and sedimentary structures), are key elements for establishing reliable hypotheses about the distribution in space and time of rock sequences, and ancient sedimentary environmental and paleobiological dynamics. Despite the tremendous advances on the way geoscientists store, plot, and quantitatively analyze sedimentological and paleontological data (e.g., Macrostrat [http://www.macrostrat.org/], Paleobiology Database [http://www.paleodb.org/], respectively), there is still a lack of computational methodologies designed to quantitatively examine data from a highly detailed SCs. Moreover, frequently the stratigraphic information is plotted "manually" using vector graphics editors (e.g., Corel Draw, Illustrator), however, this information although store on a digital format, cannot be used readily for any quantitative analysis. Therefore, any attempt to examine the stratigraphic data in an analytical fashion necessarily takes further steps. Given these issues, we have developed the sofware 'Stratigraphic Data Analysis in R' (SDAR), which stores in a database all sedimentological, stratigraphic, and paleontological information collected from a SC, allowing users to generate high-quality graphic plots (including one or multiple features stored in the database). SDAR also encompasses quantitative analyses helping users to quantify stratigraphic information (e.g. grain size, sorting and rounding, proportion of sand/shale). Finally, given that the SDAR analysis module, has been written in the open-source high-level computer language "R graphics/statistics language" [R Development Core Team, 2014], it is already loaded with many of the crucial features required to accomplish basic and complex tasks of statistical analysis (i.e., R language provide more than hundred spatial libraries that allow users to explore various Geostatistics and spatial analysis). Consequently, SDAR allows a deeper exploration of the stratigraphic data collected in the field, it will allow the geoscientific community in the near future to develop complex analyses related with the distribution in space and time of rock sequences, such as lithofacial correlations, by a multivariate comparison between empirical SCs with quantitative lithofacial models established from modern sedimentary environments.

  15. Multivariate curve-resolution analysis of pesticides in water samples from liquid chromatographic-diode array data.

    PubMed

    Maggio, Rubén M; Damiani, Patricia C; Olivieri, Alejandro C

    2011-01-30

    Liquid chromatographic-diode array detection data recorded for aqueous mixtures of 11 pesticides show the combined presence of strongly coeluting peaks, distortions in the time dimension between experimental runs, and the presence of potential interferents not modeled by the calibration phase in certain test samples. Due to the complexity of these phenomena, data were processed by a second-order multivariate algorithm based on multivariate curve resolution and alternating least-squares, which allows one to successfully model both the spectral and retention time behavior for all sample constituents. This led to the accurate quantitation of all analytes in a set of validation samples: aldicarb sulfoxide, oxamyl, aldicarb sulfone, methomyl, 3-hydroxy-carbofuran, aldicarb, propoxur, carbofuran, carbaryl, 1-naphthol and methiocarb. Limits of detection in the range 0.1-2 μg mL(-1) were obtained. Additionally, the second-order advantage for several analytes was achieved in samples containing several uncalibrated interferences. The limits of detection for all analytes were decreased by solid phase pre-concentration to values compatible to those officially recommended, i.e., in the order of 5 ng mL(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Do adolescents support early marriage in Bangladesh? Evidence from study.

    PubMed

    Rahman, M M; Kabir, M

    2005-01-01

    Adolescence is a critical period for female adolescents as they have to make decisions regarding their marriage, education and work which would influence and determine their future course of life. Although, early marriage has negative consequences, still a proportion of female adolescents favour early marriage because of prevailing cultural norms. This paper attempts to investigate the factors influencing the adolescents' attitude towards early marriage among the married and unmarried female adolescents. This is a quantitative and qualitative study. A multistage cluster sampling technique was used to select the sample. For quantitative results, data on 3362 female adolescents from rural and urban areas irrespective of their marital status were analyzed. To supplement the results found in quantitative analysis, a series of focus group discussions were conducted among the adolescents. Analysis revealed that one fourth (25.9%) of the adolescents were in favour of early marriage. A number of societal factors influenced them towards early marriage, despite the fact that adolescents are aware of the consequences of maternal and child health. Multivariate logistic regression analysis showed that current marital status, years of schooling, work status and parental marital decision are important predictors of early marriage (p < 0.05). The study concluded that female education would be an important determinant of adolescent marriage. Therefore, opportunities and scope of education beyond secondary would helps to bring change in the attitude towards early marriage.

  17. Assessing locomotor skills development in childhood using wearable inertial sensor devices: the running paradigm.

    PubMed

    Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio

    2013-04-01

    Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Semi-quantitative analysis of salivary gland scintigraphy in Sjögren's syndrome diagnosis: a first-line tool.

    PubMed

    Angusti, Tiziana; Pilati, Emanuela; Parente, Antonella; Carignola, Renato; Manfredi, Matteo; Cauda, Simona; Pizzigati, Elena; Dubreuil, Julien; Giammarile, Francesco; Podio, Valerio; Skanjeti, Andrea

    2017-09-01

    The aim of this study was the assessment of semi-quantified salivary gland dynamic scintigraphy (SGdS) parameters independently and in an integrated way in order to predict primary Sjögren's syndrome (pSS). Forty-six consecutive patients (41 females; age 61 ± 11 years) with sicca syndrome were studied by SGdS after injection of 200 MBq of pertechnetate. In sixteen patients, pSS was diagnosed, according to American-European Consensus Group criteria (AECGc). Semi-quantitative parameters (uptake (UP) and excretion fraction (EF)) were obtained for each gland. ROC curves were used to determine the best cut-off value. The area under the curve (AUC) was used to estimate the accuracy of each semi-quantitative analysis. To assess the correlation between scintigraphic results and disease severity, semi-quantitative parameters were plotted versus Sjögren's syndrome disease activity index (ESSDAI). A nomogram was built to perform an integrated evaluation of all the scintigraphic semi-quantitative data. Both UP and EF of salivary glands were significantly lower in pSS patients compared to those in non-pSS (p < 0.001). ROC curve showed significantly large AUC for both the parameters (p < 0.05). Parotid UP and submandibular EF, assessed by univariated and multivariate logistic regression, showed a significant and independent correlation with pSS diagnosis (p value <0.05). No correlation was found between SGdS semi-quantitative parameters and ESSDAI. The proposed nomogram accuracy was 87%. SGdS is an accurate and reproducible tool for the diagnosis of pSS. ESSDAI was not shown to be correlated with SGdS data. SGdS should be the first-line imaging technique in patients with suspected pSS.

  19. Size-adjusted Quantitative Gleason Score as a Predictor of Biochemical Recurrence after Radical Prostatectomy.

    PubMed

    Deng, Fang-Ming; Donin, Nicholas M; Pe Benito, Ruth; Melamed, Jonathan; Le Nobin, Julien; Zhou, Ming; Ma, Sisi; Wang, Jinhua; Lepor, Herbert

    2016-08-01

    The risk of biochemical recurrence (BCR) following radical prostatectomy for pathologic Gleason 7 prostate cancer varies according to the proportion of Gleason 4 component. We sought to explore the value of several novel quantitative metrics of Gleason 4 disease for the prediction of BCR in men with Gleason 7 disease. We analyzed a cohort of 2630 radical prostatectomy cases from 1990-2007. All pathologic Gleason 7 cases were identified and assessed for quantity of Gleason pattern 4. Three methods were used to quantify the extent of Gleason 4: a quantitative Gleason score (qGS) based on the proportion of tumor composed of Gleason pattern 4, a size-weighted score (swGS) incorporating the overall quantity of Gleason 4, and a size index (siGS) incorporating the quantity of Gleason 4 based on the index lesion. Associations between the above metrics and BCR were evaluated using Cox proportional hazards regression analysis. qGS, swGS, and siGS were significantly associated with BCR on multivariate analysis when adjusted for traditional Gleason score, age, prostate specific antigen, surgical margin, and stage. Using Harrell's c-index to compare the scoring systems, qGS (0.83), swGS (0.84), and siGS (0.84) all performed better than the traditional Gleason score (0.82). Quantitative measures of Gleason pattern 4 predict BCR better than the traditional Gleason score. In men with Gleason 7 prostate cancer, quantitative analysis of the proportion of Gleason pattern 4 (quantitative Gleason score), as well as size-weighted measurement of Gleason 4 (size-weighted Gleason score), and a size-weighted measurement of Gleason 4 based on the largest tumor nodule significantly improve the predicted risk of biochemical recurrence compared with the traditional Gleason score. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  20. Linking stressors and ecological responses

    USGS Publications Warehouse

    Gentile, J.H.; Solomon, K.R.; Butcher, J.B.; Harrass, M.; Landis, W.G.; Power, M.; Rattner, B.A.; Warren-Hicks, W.J.; Wenger, R.; Foran, Jeffery A.; Ferenc, Susan A.

    1999-01-01

    To characterize risk, it is necessary to quantify the linkages and interactions between chemical, physical and biological stressors and endpoints in the conceptual framework for ecological risk assessment (ERA). This can present challenges in a multiple stressor analysis, and it will not always be possible to develop a quantitative stressor-response profile. This review commences with a conceptual representation of the problem of developing a linkage analysis for multiple stressors and responses. The remainder of the review surveys a variety of mathematical and statistical methods (e.g., ranking methods, matrix models, multivariate dose-response for mixtures, indices, visualization, simulation modeling and decision-oriented methods) for accomplishing the linkage analysis for multiple stressors. Describing the relationships between multiple stressors and ecological effects are critical components of 'effects assessment' in the ecological risk assessment framework.

  1. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data.

    PubMed

    Beaton, Derek; Dunlop, Joseph; Abdi, Hervé

    2016-12-01

    For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Ultrafast quantitation of six quinolones in water samples by second-order capillary electrophoresis data modeling with multivariate curve resolution-alternating least squares.

    PubMed

    Alcaráz, Mirta R; Vera-Candioti, Luciana; Culzoni, María J; Goicoechea, Héctor C

    2014-04-01

    This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 μg L(-1) were achieved.

  3. Discrimination of magnoliae officinalis cortex based on the quantitative profiles of magnolosides by two-channel liquid chromatography with electrochemical detection.

    PubMed

    Xue, Zhenzhen; Kotani, Akira; Yang, Bin; Hakamata, Hideki

    2018-05-31

    A two-channel liquid chromatography with electrochemical detection system (2LC-ECD) was newly designed for the simultaneous determination of magnolosides A, B, F, H, and L in the first channel and other magnolosides D and M in the second channel, respectively. Peak heights had linear relationships to the magnoloside concentrations in a range of 0.02-16 μmol/L for H, 0.01-12 μmol/L for A, 0.02-12 μmol/L for F and L, 0.01-8 μmol/L for B, 0.002-6 μmol/L for D, and 0.002-4 μmol/L for M, respectively. Seven magnolosides in magnoliae officinalis cortex (MOC) were determined by the 2LC-ECD, and the obtained quantitative profiles of magnolosides were applied to the discrimination between the MOC samples harvested from Hubei and Sichuan (called Chuan po) and from Zhejiang and Fujian (called Wen po). By principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA) based on the quantitative profiles of the magnolosides, Chuan po were clearly discriminated from Wen po on the plots obtained from our multivariable analyses. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Clinical value of protein expression of kallikrein-related peptidase 7 (KLK7) in ovarian cancer.

    PubMed

    Dorn, Julia; Gkazepis, Apostolos; Kotzsch, Matthias; Kremer, Marcus; Propping, Corinna; Mayer, Katharina; Mengele, Karin; Diamandis, Eleftherios P; Kiechle, Marion; Magdolen, Viktor; Schmitt, Manfred

    2014-01-01

    Expression of the kallikrein-related peptidase 7 (KLK7) is dysregulated in ovarian cancer. We assessed KLK7 expression by ELISA and quantitative immunohistochemistry and analyzed its association with clinicopathological parameters and patients' outcome. KLK7 antigen concentrations were determined in tumor tissue extracts of 98 ovarian cancer patients by ELISA. For analysis of KLK7 immunoexpression in ovarian cancer tissue microarrays, a manual quantitative scoring system as well as a software tool for quantitative high-throughput automated image analysis was used. In immunohistochemical analyses, expression levels of KLK7 were not associated with patients' outcome. However, in multivariate analyses, KLK7 antigen levels in tumor tissue extracts were significantly associated with both overall and progression-free survival: ovarian cancer patients with high KLK7 levels had a significantly, 2-fold lower risk of death [hazard ratio (HR)=0.51, 95% confidence interval (CI)=0.29-0.90, p=0.019] or relapse [HR=0.47, 95% CI=0.25-0.91, p=0.024), as compared with patients who displayed low KLK7 levels. Our results indicate that - in contrast to earlier findings - high KLK7 antigen levels in tumor tissue extracts may be associated with a better prognosis of ovarian cancer patients.

  5. Strategy and model building in the fourth dimension: a null model for genotype x age interaction as a Gaussian stationary stochastic process.

    PubMed

    Diego, Vincent P; Almasy, Laura; Dyer, Thomas D; Soler, Júlia M P; Blangero, John

    2003-12-31

    Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype x age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. We found evidence for genotype x age interaction for fasting glucose and systolic blood pressure. There is polygenic genotype x age interaction for fasting glucose and systolic blood pressure and quantitative trait locus x age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.

  6. Use of dirichlet distributions and orthogonal projection techniques for the fluctuation analysis of steady-state multivariate birth-death systems

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Toti, Simona

    2015-05-01

    Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.

  7. Fuel Property Determination of Biodiesel-Diesel Blends By Terahertz Spectrum

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhao, Kun; Bao, Rima

    2012-05-01

    The frequency-dependent absorption characteristics of biodiesel and its blends with conventional diesel fuel have been researched in the spectral range of 0.2-1.5 THz by the terahertz time-domain spectroscopy (THz-TDS). The absorption coefficient presented a regular increasing with biodiesel content. A nonlinear multivariate model that correlating cetane number and solidifying point of bio-diesel blends with absorption coefficient has been established, making the quantitative analysis of fuel properties simple. The results made the cetane number and solidifying point prediction possible by THz-TDS technology and indicated a bright future in practical application.

  8. Quality control for quantitative PCR based on amplification compatibility test.

    PubMed

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  10. An overview of a multifactor-system theory of personality and individual differences: III. Life span development and the heredity-environment issue.

    PubMed

    Powell, A; Royce, J R

    1981-12-01

    In Part III of this three-part series on multifactor-system theory, multivariate, life-span development is approached from the standpoint of a quantitative and qualitative analysis of the ontogenesis of factors in each of the six systems. The pattern of quantitative development (described via the Gompertz equation and three developmental parameters) involves growth, stability, and decline, and qualitative development involves changes in the organization of factors (e.g., factor differentiation and convergence). Hereditary and environmental sources of variation are analyzed via the factor gene model and the concept of heredity-dominant factors, and the factor-learning model and environment-dominant factors. It is hypothesized that the sensory and motor systems are heredity dominant, that the style and value systems are environment dominant, and that the cognitive and affective systems are partially heredity dominant.

  11. Validation of the IHC4 Breast Cancer Prognostic Algorithm Using Multiple Approaches on the Multinational TEAM Clinical Trial.

    PubMed

    Bartlett, John M S; Christiansen, Jason; Gustavson, Mark; Rimm, David L; Piper, Tammy; van de Velde, Cornelis J H; Hasenburg, Annette; Kieback, Dirk G; Putter, Hein; Markopoulos, Christos J; Dirix, Luc Y; Seynaeve, Caroline; Rea, Daniel W

    2016-01-01

    Hormone receptors HER2/neu and Ki-67 are markers of residual risk in early breast cancer. An algorithm (IHC4) combining these markers may provide additional information on residual risk of recurrence in patients treated with hormone therapy. To independently validate the IHC4 algorithm in the multinational Tamoxifen Versus Exemestane Adjuvant Multicenter Trial (TEAM) cohort, originally developed on the trans-ATAC (Arimidex, Tamoxifen, Alone or in Combination Trial) cohort, by comparing 2 methodologies. The IHC4 biomarker expression was quantified on TEAM cohort samples (n = 2919) by using 2 independent methodologies (conventional 3,3'-diaminobezidine [DAB] immunohistochemistry with image analysis and standardized quantitative immunofluorescence [QIF] by AQUA technology). The IHC4 scores were calculated by using the same previously established coefficients and then compared with recurrence-free and distant recurrence-free survival, using multivariate Cox proportional hazards modeling. The QIF model was highly significant for prediction of residual risk (P < .001), with continuous model scores showing a hazard ratio (HR) of 1.012 (95% confidence interval [95% CI]: 1.010-1.014), which was significantly higher than that for the DAB model (HR: 1.008, 95% CI: 1.006-1.009); P < .001). Each model added significant prognostic value in addition to recognized clinical prognostic factors, including nodal status, in multivariate analyses. Quantitative immunofluorescence, however, showed more accuracy with respect to overall residual risk assessment than the DAB model. The use of the IHC4 algorithm was validated on the TEAM trial for predicting residual risk in patients with breast cancer. These data support the use of the IHC4 algorithm clinically, but quantitative and standardized approaches need to be used.

  12. Effects of complex aural stimuli on mental performance.

    PubMed

    Vij, Mohit; Aghazadeh, Fereydoun; Ray, Thomas G; Hatipkarasulu, Selen

    2003-06-01

    The objective of this study is to investigate the effect of complex aural stimuli on mental performance. A series of experiments were designed to obtain data for two different analyses. The first analysis is a "Stimulus" versus "No-stimulus" comparison for each of the four dependent variables, i.e. quantitative ability, reasoning ability, spatial ability and memory of an individual, by comparing the control treatment with the rest of the treatments. The second set of analysis is a multi-variant analysis of variance for component level main effects and interactions. The two component factors are tempo of the complex aural stimuli and sound volume level, each administered at three discrete levels for all four dependent variables. Ten experiments were conducted on eleven subjects. It was found that complex aural stimuli influence the quantitative and spatial aspect of the mind, while the reasoning ability was unaffected by the stimuli. Although memory showed a trend to be worse with the presence of complex aural stimuli, the effect was statistically insignificant. Variation in tempo and sound volume level of an aural stimulus did not significantly affect the mental performance of an individual. The results of these experiments can be effectively used in designing work environments.

  13. Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem

    2010-01-01

    The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.

  14. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Quantitative study of the correlation between cerebellar retraction factors and hearing loss following microvascular decompression for hemifacial spasm.

    PubMed

    Li, Ning; Zhao, Wei-Guo; Pu, Chun-Hua; Yang, Wen-Lei

    2018-01-01

    This prospective study quantitatively measured the cerebellar retraction factors, including retraction distance, depth and duration, and evaluated their potential relationship to the development of hearing loss after microvascular decompression (MVD) for hemifacial spasm (HFS). One hundred ten patients with primary HFS who underwent MVD in our department were included into this study. The cerebellar retraction factors were quantitatively measured on preoperative MR and timed during MVD. Associations of cerebellar retraction and other factors to postoperative hearing loss were analyzed. Eleven (10%) patients developed hearing loss after MVD. Compared with the group without hearing loss, the cerebellar retraction distance, depth and duration of the group with hearing loss were significantly greater (p < 0.05). Multivariate regression analysis showed that greater cerebellar retraction depth and longer retraction duration were significantly associated with a higher incidence of postoperative hearing impairment (p < 0.05). This study strongly suggested a correlation between the cerebellar retraction factors, especially retraction depth and duration, and possibility of hearing loss following MVD for HFS.

  16. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Discrimination and characterization of strawberry juice based on electronic nose and tongue: comparison of different juice processing approaches by LDA, PLSR, RF, and SVM.

    PubMed

    Qiu, Shanshan; Wang, Jun; Gao, Liping

    2014-07-09

    An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.

  18. An interactive tool for semi-automatic feature extraction of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Kovács, Zoltán; Szabó, Szilárd

    2016-09-01

    The spectral reflectance of the surface provides valuable information about the environment, which can be used to identify objects (e.g. land cover classification) or to estimate quantities of substances (e.g. biomass). We aimed to develop an MS Excel add-in - Hyperspectral Data Analyst (HypDA) - for a multipurpose quantitative analysis of spectral data in VBA programming language. HypDA was designed to calculate spectral indices from spectral data with user defined formulas (in all possible combinations involving a maximum of 4 bands) and to find the best correlations between the quantitative attribute data of the same object. Different types of regression models reveal the relationships, and the best results are saved in a worksheet. Qualitative variables can also be involved in the analysis carried out with separability and hypothesis testing; i.e. to find the wavelengths responsible for separating data into predefined groups. HypDA can be used both with hyperspectral imagery and spectrometer measurements. This bivariate approach requires significantly fewer observations than popular multivariate methods; it can therefore be applied to a wide range of research areas.

  19. Oral pathology follow-up by means of micro-Raman spectroscopy on tissue and blood serum samples: an application of wavelet and multivariate data analysis

    NASA Astrophysics Data System (ADS)

    Delfino, I.; Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; De Mol, E.; Lepore, M.

    2009-02-01

    Pemphigus vulgaris (PV) is a potentially fatal autoimmune disease that cause blistering of the skin and oral cavity. It is characterized by disruption of cell-cell adhesion within the suprabasal layers of epithelium, a phenomenon termed acantholysis Patients with PV develop IgG autoantibodies against normal constituents of the intercellular substance of keratinocytes. The mechanisms by which such autoantibodies induce blisters are not clearly understood. The qualitative analysis of such effects provides important clues in the search for a specific diagnosis, and the quantitative analysis of biochemical abnormalities is important in measuring the extent of the disease process, designing therapy and evaluating the efficacy of treatment. Improved diagnostic techniques could permit the recognition of more subtle forms of disease and reveal incipient lesions clinically unapparent, so that progression of potentially severe forms could be reversed with appropriate treatment. In this paper, we report the results of our micro-Raman spectroscopy study on tissue and blood serum samples from ill, recovered and under therapy PV patients. The complexity of the differences among their characteristic Raman spectra has required a specific strategy to obtain reliable information on the illness stage of the patients For this purpose, wavelet techniques and advanced multivariate analysis methods have been developed and applied to the experimental Raman spectra. Promising results have been obtained.

  20. Extending local canonical correlation analysis to handle general linear contrasts for FMRI data.

    PubMed

    Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar

    2012-01-01

    Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic.

  1. Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data

    PubMed Central

    Jin, Mingwu; Nandy, Rajesh; Curran, Tim; Cordes, Dietmar

    2012-01-01

    Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM), a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR) and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic. PMID:22461786

  2. Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.

    PubMed

    Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki

    2017-05-01

    To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.

  3. Advantages of Data Fusion: First Multivariate Curve Resolution Analysis of Fused Liquid Chromatographic Second-Order Data with Dual Diode Array-Fluorescent Detection.

    PubMed

    Pellegrino Vidal, Rocío B; Ibañez, Gabriela A; Escandar, Graciela M

    2017-03-07

    For the first time, liquid chromatography-diode array detection (LC-DAD) and liquid-chromatography fluorescence detection (LC-FLD) second-order data, collected in a single chromatographic run, were fused and chemometrically processed for the quantitation of coeluting analytes. Two different experimental mixtures composed of fluorescent and nonfluorescent endocrine disruptors were analyzed. Adequate pretreatment of the matrices before their fusion was crucial to attain reliable results. Multivariate curve resolution-alternating least-squares (MCR-ALS) was applied to LC-DAD, LC-FLD, and fused LC-DAD-FLD data. Although different degrees of improvement are observed when comparing the fused matrix results in relation to those obtained using a single detector, clear benefits of data fusion are demonstrated through: (1) the obtained limits of detection in the ranges 2.1-24 ng mL -1 and 0.9-6.3 ng mL -1 for the two evaluated systems and (2) the low relative prediction errors, below 7% in all cases, indicating good recoveries and precision. The feasibility of fusing data and its advantages in the analysis of real samples was successfully assessed through the study of spiked tap, underground, and river water samples.

  4. Nest-site selection analysis of hooded crane (Grus monacha) in Northeastern China based on a multivariate ensemble model.

    PubMed

    Jiao, Shengwu; Guo, Yumin; Huettmann, Falk; Lei, Guangchun

    2014-07-01

    Avian nest-site selection is an important research and management subject. The hooded crane (Grus monacha) is a vulnerable (VU) species according to the IUCN Red List. Here, we present the first long-term Chinese legacy nest data for this species (1993-2010) with publicly available metadata. Further, we provide the first study that reports findings on multivariate nest habitat preference using such long-term field data for this species. Our work was carried out in Northeastern China, where we found and measured 24 nests and 81 randomly selected control plots and their environmental parameters in a vast landscape. We used machine learning (stochastic boosted regression trees) to quantify nest selection. Our analysis further included varclust (R Hmisc) and (TreenNet) to address statistical correlations and two-way interactions. We found that from an initial list of 14 measured field variables, water area (+), water depth (+) and shrub coverage (-) were the main explanatory variables that contributed to hooded crane nest-site selection. Agricultural sites played a smaller role in the selection of these nests. Our results are important for the conservation management of cranes all over East Asia and constitute a defensible and quantitative basis for predictive models.

  5. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  6. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  7. Multivariate genetic architecture of the Anolis dewlap reveals both shared and sex-specific features of a sexually dimorphic ornament.

    PubMed

    Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W

    2017-07-01

    Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  8. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    NASA Astrophysics Data System (ADS)

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  9. Global spectral graph wavelet signature for surface analysis of carpal bones

    NASA Astrophysics Data System (ADS)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  10. Global spectral graph wavelet signature for surface analysis of carpal bones.

    PubMed

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A

    2018-02-05

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  11. Population Analysis: Communicating in Context

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2008-01-01

    Providing accommodation to a widely varying user population presents a challenge to engineers and designers. It is often even difficult to quantify who is accommodated and who is not accommodated by designs, especially for equipment with multiple critical anthropometric dimensions. An approach to communicating levels of accommodation referred to as population analysis applies existing human factors techniques in novel ways. This paper discusses the definition of population analysis as well as major applications and case studies. The major applications of population analysis consist of providing accommodation information for multivariate problems and enhancing the value of feedback from human-in-the-loop testing. The results of these analyses range from the provision of specific accommodation percentages of the user population to recommendations of design specifications based on quantitative data. Such feedback is invaluable to designers and results in the design of products that accommodate the intended user population.

  12. Quantitative analysis of thyroid tumors vascularity: A comparison between 3-D contrast-enhanced ultrasound and 3-D Power Doppler on benign and malignant thyroid nodules.

    PubMed

    Caresio, Cristina; Caballo, Marco; Deandrea, Maurilio; Garberoglio, Roberto; Mormile, Alberto; Rossetto, Ruth; Limone, Paolo; Molinari, Filippo

    2018-05-15

    To perform a comparative quantitative analysis of Power Doppler ultrasound (PDUS) and Contrast-Enhancement ultrasound (CEUS) for the quantification of thyroid nodules vascularity patterns, with the goal of identifying biomarkers correlated with the malignancy of the nodule with both imaging techniques. We propose a novel method to reconstruct the vascular architecture from 3-D PDUS and CEUS images of thyroid nodules, and to automatically extract seven quantitative features related to the morphology and distribution of vascular network. Features include three tortuosity metrics, the number of vascular trees and branches, the vascular volume density, and the main spatial vascularity pattern. Feature extraction was performed on 20 thyroid lesions (ten benign and ten malignant), of which we acquired both PDUS and CEUS. MANOVA (multivariate analysis of variance) was used to differentiate benign and malignant lesions based on the most significant features. The analysis of the extracted features showed a significant difference between the benign and malignant nodules for both PDUS and CEUS techniques for all the features. Furthermore, by using a linear classifier on the significant features identified by the MANOVA, benign nodules could be entirely separated from the malignant ones. Our early results confirm the correlation between the morphology and distribution of blood vessels and the malignancy of the lesion, and also show (at least for the dataset used in this study) a considerable similarity in terms of findings of PDUS and CEUS imaging for thyroid nodules diagnosis and classification. © 2018 American Association of Physicists in Medicine.

  13. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.

    PubMed

    Zhou, Hua; Blangero, John; Dyer, Thomas D; Chan, Kei-Hang K; Lange, Kenneth; Sobel, Eric M

    2017-04-01

    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is freely available for Macintosh, Linux, and Windows platforms from http://genetics.ucla.edu/software/mendel. © 2016 WILEY PERIODICALS, INC.

  14. Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer.

    PubMed

    Ali, H Raza; Dariush, Aliakbar; Provenzano, Elena; Bardwell, Helen; Abraham, Jean E; Iddawela, Mahesh; Vallier, Anne-Laure; Hiller, Louise; Dunn, Janet A; Bowden, Sarah J; Hickish, Tamas; McAdam, Karen; Houston, Stephen; Irwin, Mike J; Pharoah, Paul D P; Brenton, James D; Walton, Nicholas A; Earl, Helena M; Caldas, Carlos

    2016-02-16

    There is a need to improve prediction of response to chemotherapy in breast cancer in order to improve clinical management and this may be achieved by harnessing computational metrics of tissue pathology. We investigated the association between quantitative image metrics derived from computational analysis of digital pathology slides and response to chemotherapy in women with breast cancer who received neoadjuvant chemotherapy. We digitised tissue sections of both diagnostic and surgical samples of breast tumours from 768 patients enrolled in the Neo-tAnGo randomized controlled trial. We subjected digital images to systematic analysis optimised for detection of single cells. Machine-learning methods were used to classify cells as cancer, stromal or lymphocyte and we computed estimates of absolute numbers, relative fractions and cell densities using these data. Pathological complete response (pCR), a histological indicator of chemotherapy response, was the primary endpoint. Fifteen image metrics were tested for their association with pCR using univariate and multivariate logistic regression. Median lymphocyte density proved most strongly associated with pCR on univariate analysis (OR 4.46, 95 % CI 2.34-8.50, p < 0.0001; observations = 614) and on multivariate analysis (OR 2.42, 95 % CI 1.08-5.40, p = 0.03; observations = 406) after adjustment for clinical factors. Further exploratory analyses revealed that in approximately one quarter of cases there was an increase in lymphocyte density in the tumour removed at surgery compared to diagnostic biopsies. A reduction in lymphocyte density at surgery was strongly associated with pCR (OR 0.28, 95 % CI 0.17-0.47, p < 0.0001; observations = 553). A data-driven analysis of computational pathology reveals lymphocyte density as an independent predictor of pCR. Paradoxically an increase in lymphocyte density, following exposure to chemotherapy, is associated with a lack of pCR. Computational pathology can provide objective, quantitative and reproducible tissue metrics and represents a viable means of outcome prediction in breast cancer. ClinicalTrials.gov NCT00070278 ; 03/10/2003.

  15. A quantitative approach to evolution of music and philosophy

    NASA Astrophysics Data System (ADS)

    Vieira, Vilson; Fabbri, Renato; Travieso, Gonzalo; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano

    2012-08-01

    The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master-apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.

  16. Femoral Neck X-Ray Absorptiometry Parameters and Peripheral Quantitative Computer Tomography Tibial Cortical Density Predict Survival in Dialysis Patients.

    PubMed

    Yap, Natalie; Wong, Phillip; McGinn, Stella; Nery, Maria-Liza; Doyle, Jean; Wells, Lynda; Clifton-Bligh, Phillip; Clifton-Bligh, Roderick J

    2017-01-01

    Low bone mineral density (BMD) is a known independent predictor of mortality in the general elderly population. However, studies in patients with end-stage renal disease (ESRD) are limited. The present study evaluated mortality during long-term follow-up in a population of patients having dialysis for ESRD, in whom BMD was also measured. Fifty-eight patients with ESRD were recruited consecutively from a dialysis clinic and followed prospectively for 6 years. Baseline BMD of the lumbar spine and femoral neck (FN) were measured by X-ray absorptiometry and by peripheral quantitative CT at the radius and tibia. Serum calcium, phosphate, parathyroid hormone (PTH), and albumin were measured at baseline. During follow-up, 25 patients died. Univariate analysis showed that mortality was significantly associated with FN-BMD: hazards ratio (HR) per 0.1 g/cm2 decrease 1.50 (95% CI 1.07-2.10), p = 0.019; FN-T score: HR per 1-SD decrease 1.84 (95% CI 1.16-2.92), p = 0.009; and tibial cortical density: HR per 10 mg/cm3 decrease 1.08 (95% CI 1.02-1.14), p = 0.010. In multivariate analysis with stepwise adjustment for age, sex, transplant status, albumin, PTH, phosphate, dialysis duration, diabetes, and smoking, FN-T score remained significantly associated with mortality: HR per 1-SD decrease 1.82 (95% CI 1.02-3.24), p = 0.044, whereas the HR for FN-BMD and tibial cortical density were no longer significant. When 4 patients who had peritoneal dialysis were excluded, the HR relating FN-BMD, FN-T score, and tibial cortical density to mortality remained significant but became insignificant when albumin was included in the multivariate analysis. Reduced FN-BMD, FN-T score, and tibial cortical density were significantly associated with an increased risk of death in patients with ESRD. © 2017 S. Karger AG, Basel.

  17. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  18. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704

  19. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.

  20. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  1. Evidences of local adaptation in quantitative traits in Prosopis alba (Leguminosae).

    PubMed

    Bessega, C; Pometti, C; Ewens, M; Saidman, B O; Vilardi, J C

    2015-02-01

    Signals of selection on quantitative traits can be detected by the comparison between the genetic differentiation of molecular (neutral) markers and quantitative traits, by multivariate extensions of the same model and by the observation of the additive covariance among relatives. We studied, by three different tests, signals of occurrence of selection in Prosopis alba populations over 15 quantitative traits: three economically important life history traits: height, basal diameter and biomass, 11 leaf morphology traits that may be related with heat-tolerance and physiological responses and spine length that is very important from silvicultural purposes. We analyzed 172 G1-generation trees growing in a common garden belonging to 32 open pollinated families from eight sampling sites in Argentina. The multivariate phenotypes differ significantly among origins, and the highest differentiation corresponded to foliar traits. Molecular genetic markers (SSR) exhibited significant differentiation and allowed us to provide convincing evidence that natural selection is responsible for the patterns of morphological differentiation. The heterogeneous selection over phenotypic traits observed suggested different optima in each population and has important implications for gene resource management. The results suggest that the adaptive significance of traits should be considered together with population provenance in breeding program as a crucial point prior to any selecting program, especially in Prosopis where the first steps are under development.

  2. Supporting employees' work-family needs improves health care quality: Longitudinal evidence from long-term care.

    PubMed

    Okechukwu, Cassandra A; Kelly, Erin L; Bacic, Janine; DePasquale, Nicole; Hurtado, David; Kossek, Ellen; Sembajwe, Grace

    2016-05-01

    We analyzed qualitative and quantitative data from U.S.-based employees in 30 long-term care facilities. Analysis of semi-structured interviews from 154 managers informed quantitative analyses. Quantitative data include 1214 employees' scoring of their supervisors and their organizations on family supportiveness (individual scores and aggregated to facility level), and three outcomes: (1), care quality indicators assessed at facility level (n = 30) and collected monthly for six months after employees' data collection; (2), employees' dichotomous survey response on having additional off-site jobs; and (3), proportion of employees with additional jobs at each facility. Thematic analyses revealed that managers operate within the constraints of an industry that simultaneously: (a) employs low-wage employees with multiple work-family challenges, and (b) has firmly institutionalized goals of prioritizing quality of care and minimizing labor costs. Managers universally described providing work-family support and prioritizing care quality as antithetical to each other. Concerns surfaced that family-supportiveness encouraged employees to work additional jobs off-site, compromising care quality. Multivariable linear regression analysis of facility-level data revealed that higher family-supportive supervision was associated with significant decreases in residents' incidence of all pressure ulcers (-2.62%) and other injuries (-9.79%). Higher family-supportive organizational climate was associated with significant decreases in all falls (-17.94%) and falls with injuries (-7.57%). Managers' concerns about additional jobs were not entirely unwarranted: multivariable logistic regression of employee-level data revealed that among employees with children, having family-supportive supervision was associated with significantly higher likelihood of additional off-site jobs (RR 1.46, 95%CI 1.08-1.99), but family-supportive organizational climate was associated with lower likelihood (RR 0.76, 95%CI 0.59-0.99). However, proportion of workers with additional off-site jobs did not significantly predict care quality at facility levels. Although managers perceived providing work-family support and ensuring high care quality as conflicting goals, results suggest that family-supportiveness is associated with better care quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Supporting employees’ work-family needs improves health care quality: longitudinal evidence from long-term care

    PubMed Central

    Okechukwu, Cassandra A.; Kelly, Erin L.; Bacic, Janine; DePasquale, Nicole; Hurtado, David; Kossek, Ellen; Sembajwe, Grace

    2016-01-01

    We analyzed qualitative and quantitative data from U.S.-based employees in 30 long-term care facilities. Analysis of semi-structured interviews from 154 managers informed quantitative analyses. Quantitative data include 1,214 employees’ scoring of their supervisors and their organizations on family supportiveness (individual scores and aggregated to facility level), and three outcomes: (1), care quality indicators assessed at facility level (n=30) and collected monthly for six months after employees’ data collection; (2), employees’ dichotomous survey response on having additional off-site jobs; and (3), proportion of employees with additional jobs at each facility. Thematic analyses revealed that managers operate within the constraints of an industry that simultaneously: (a) employs low-wage employees with multiple work-family challenges, and (b) has firmly institutionalized goals of prioritizing quality of care and minimizing labor costs. Managers universally described providing work-family support and prioritizing care quality as antithetical to each other. Concerns surfaced that family-supportiveness encouraged employees to work additional jobs off-site, compromising care quality. Multivariable linear regression analysis of facility-level data revealed that higher family-supportive supervision was associated with significant decreases in residents’ incidence of all pressure ulcers (−2.62%) and other injuries (−9.79%). Higher family-supportive organizational climate was associated with significant decreases in all falls (−17.94%) and falls with injuries (−7.57%). Managers’ concerns about additional jobs were not entirely unwarranted: multivariable logistic regression of employee-level data revealed that among employees with children, having family-supportive supervision was associated with significantly higher likelihood of additional off-site jobs (RR 1.46, 95%CI 1.08-1.99), but family-supportive organizational climate was associated with lower likelihood (RR 0.76, 95%CI 0.59-0.99). However, proportion of workers with additional off-site jobs did not significantly predict care quality at facility levels. Although managers perceived providing work-family support and ensuring high care quality as conflicting goals, results suggest that family-supportiveness is associated with better care quality. PMID:27082022

  4. A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses.

    PubMed

    Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie

    2018-05-22

    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.

  5. Testing for biases in selection on avian reproductive traits and partitioning direct and indirect selection using quantitative genetic models.

    PubMed

    Reed, Thomas E; Gienapp, Phillip; Visser, Marcel E

    2016-10-01

    Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Severity of pulmonary emphysema and lung cancer: analysis using quantitative lobar emphysema scoring.

    PubMed

    Bae, Kyungsoo; Jeon, Kyung Nyeo; Lee, Seung Jun; Kim, Ho Cheol; Ha, Ji Young; Park, Sung Eun; Baek, Hye Jin; Choi, Bo Hwa; Cho, Soo Buem; Moon, Jin Il

    2016-11-01

    The aim of this study was to determine the relationship between lobar severity of emphysema and lung cancer using automated lobe segmentation and emphysema quantification methods.This study included 78 patients (74 males and 4 females; mean age of 72 years) with the following conditions: pathologically proven lung cancer, available chest computed tomographic (CT) scans for lobe segmentation, and quantitative scoring of emphysema. The relationship between emphysema and lung cancer was analyzed using quantitative emphysema scoring of each pulmonary lobe.The most common location of cancer was the left upper lobe (LUL) (n = 28), followed by the right upper lobe (RUL) (n = 27), left lower lobe (LLL) (n = 13), right lower lobe (RLL) (n = 9), and right middle lobe (RML) (n = 1). Emphysema ratio was the highest in LUL, followed by that in RUL, LLL, RML, and RLL. Multivariate logistic regression analysis revealed that upper lobes (odds ratio: 1.77; 95% confidence interval: 1.01-3.11, P = 0.048) and lobes with emphysema ratio ranked the 1st or the 2nd (odds ratio: 2.48; 95% confidence interval: 1.48-4.15, P < 0.001) were significantly and independently associated with lung cancer development.In emphysema patients, lung cancer has a tendency to develop in lobes with more severe emphysema.

  7. Severity of pulmonary emphysema and lung cancer: analysis using quantitative lobar emphysema scoring

    PubMed Central

    Bae, Kyungsoo; Jeon, Kyung Nyeo; Lee, Seung Jun; Kim, Ho Cheol; Ha, Ji Young; Park, Sung Eun; Baek, Hye Jin; Choi, Bo Hwa; Cho, Soo Buem; Moon, Jin Il

    2016-01-01

    Abstract The aim of this study was to determine the relationship between lobar severity of emphysema and lung cancer using automated lobe segmentation and emphysema quantification methods. This study included 78 patients (74 males and 4 females; mean age of 72 years) with the following conditions: pathologically proven lung cancer, available chest computed tomographic (CT) scans for lobe segmentation, and quantitative scoring of emphysema. The relationship between emphysema and lung cancer was analyzed using quantitative emphysema scoring of each pulmonary lobe. The most common location of cancer was the left upper lobe (LUL) (n = 28), followed by the right upper lobe (RUL) (n = 27), left lower lobe (LLL) (n = 13), right lower lobe (RLL) (n = 9), and right middle lobe (RML) (n = 1). Emphysema ratio was the highest in LUL, followed by that in RUL, LLL, RML, and RLL. Multivariate logistic regression analysis revealed that upper lobes (odds ratio: 1.77; 95% confidence interval: 1.01–3.11, P = 0.048) and lobes with emphysema ratio ranked the 1st or the 2nd (odds ratio: 2.48; 95% confidence interval: 1.48–4.15, P < 0.001) were significantly and independently associated with lung cancer development. In emphysema patients, lung cancer has a tendency to develop in lobes with more severe emphysema. PMID:27902611

  8. Genetic divergence in northern Benin sorghum (Sorghum bicolor L. Moench) landraces as revealed by agromorphological traits and selection of candidate genotypes.

    PubMed

    Dossou-Aminon, Innocent; Loko, Laura Yêyinou; Adjatin, Arlette; Ewédjè, Eben-Ezer B K; Dansi, Alexandre; Rakshit, Sujay; Cissé, Ndiaga; Patil, Jagannath Vishnu; Agbangla, Clément; Sanni, Ambaliou; Akoègninou, Akpovi; Akpagana, Koffi

    2015-01-01

    Sorghum [Sorghum bicolor (L.) Moench] is an important staple food crop in northern Benin. In order to assess its diversity in Benin, 142 accessions of landraces collected from Northern Benin were grown in Central Benin and characterised using 10 qualitative and 14 quantitative agromorphological traits. High variability among both qualitative and quantitative traits was observed. Grain yield (0.72-10.57 tons/ha), panicle weight (15-215.95 g), days to 50% flowering (57-200 days), and plant height (153.27-636.5 cm) were among traits that exhibited broader variability. Correlations between quantitative traits were determined. Grain yield for instance exhibited highly positive association with panicle weight (r = 0.901, P = 0.000) and 100 seed weight (r = 0.247, P = 0.000). UPGMA cluster analysis classified the 142 accessions into 89 morphotypes. Based on multivariate analysis, twenty promising sorghum genotypes were selected. Among them, AT41, AT14, and AT29 showed early maturity (57 to 66 days to 50% flowering), high grain yields (4.85 to 7.85 tons/ha), and shorter plant height (153.27 to 180.37 cm). The results obtained will help enhancing sorghum production and diversity and developing new varieties that will be better adapted to the current soil and climate conditions in Benin.

  9. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  10. The Perseus computational platform for comprehensive analysis of (prote)omics data.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Sinitcyn, Pavel; Carlson, Arthur; Hein, Marco Y; Geiger, Tamar; Mann, Matthias; Cox, Jürgen

    2016-09-01

    A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

  11. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

    PubMed

    Divya, O; Mishra, Ashok K

    2007-05-29

    Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.

  12. CAVIAR: a serial ECG processing system for the comparative analysis of VCGs and their interpretation with auto-reference to the patient.

    PubMed

    Fayn, J; Rubel, P

    1988-01-01

    The authors present a new computer program for serial ECG analysis that allows a direct comparison of any couple of three-dimensional ECGs and quantitatively assesses the degree of evolution of the spatial loops as well as of their initial, central, or terminal sectors. Loops and sectors are superposed as best as possible, with the aim of overcoming tracing variability of nonpathological origin. As a result, optimal measures of evolution are computed and a tabular summary of measurements is dynamically configured with respect to the patient's history and is then printed. A multivariate classifier assigns each couple of tracings to one of four classes of evolution. Color graphic displays corresponding to several modes of representation may also be plotted.

  13. Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values

    PubMed Central

    Huang, Hairong; Xu, Zanzan; Shao, Xianhong; Wismeijer, Daniel; Sun, Ping; Wang, Jingxiao

    2017-01-01

    Objectives This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. Methods We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. Results The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. Conclusions These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice. PMID:29084260

  14. Mammographic density changes following discontinuation of tamoxifen in premenopausal women with oestrogen receptor-positive breast cancer.

    PubMed

    Kim, Won Hwa; Cho, Nariya; Kim, Young-Seon; Yi, Ann

    2018-04-06

    To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p < .001 and p = .003, respectively). Tamoxifen discontinuation was associated with mammographic density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.

  15. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    PubMed

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  17. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  18. Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.

    PubMed

    Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud

    2015-09-03

    Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Simultaneous Determination of Metamizole, Thiamin and Pyridoxin Using UV-Spectroscopy in Combination with Multivariate Calibration

    PubMed Central

    Chotimah, Chusnul; Sudjadi; Riyanto, Sugeng; Rohman, Abdul

    2015-01-01

    Purpose: Analysis of drugs in multicomponent system officially is carried out using chromatographic technique, however, this technique is too laborious and involving sophisticated instrument. Therefore, UV-VIS spectrophotometry coupled with multivariate calibration of partial least square (PLS) for quantitative analysis of metamizole, thiamin and pyridoxin is developed in the presence of cyanocobalamine without any separation step. Methods: The calibration and validation samples are prepared. The calibration model is prepared by developing a series of sample mixture consisting these drugs in certain proportion. Cross validation of calibration sample using leave one out technique is used to identify the smaller set of components that provide the greatest predictive ability. The evaluation of calibration model was based on the coefficient of determination (R2) and root mean square error of calibration (RMSEC). Results: The results showed that the coefficient of determination (R2) for the relationship between actual values and predicted values for all studied drugs was higher than 0.99 indicating good accuracy. The RMSEC values obtained were relatively low, indicating good precision. The accuracy and presision results of developed method showed no significant difference compared to those obtained by official method of HPLC. Conclusion: The developed method (UV-VIS spectrophotometry in combination with PLS) was succesfully used for analysis of metamizole, thiamin and pyridoxin in tablet dosage form. PMID:26819934

  20. SU-F-R-07: Radiomics of CT Features and Associations and Correlation with Outcomes Following Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreibmann, E; Iwinski Sutter, A; Whitaker, D

    Objective: To investigate the prognostic significance of image gradients and in predicting clinical outcomes in a patients with non-small cell lung cancer treated with stereotactic body radiotherapy (SBRT) on 71 patients with 83 treated lesions. Methods: The records of patients treated with lung SBRT were retrospectively reviewed. When applicable, SBRT target volumes were modified to exclude any overlap with pleura, chestwall, or mediastinum. The ITK software package was utilized to generate quantitative measures of image intensity, inhomogeneity, shape morphology and first and second-order CT textures. Multivariate and univariate models containing CT features were generated to assess associations with clinicopathologic factors.more » Results: On univariate analysis, tumor size (HR 0.54, p=0.045) sumHU (HR 0.31, p=0.044) and short run grey level emphasis STD (HR 0.22, p=0.019) were associated with regional failure-free survival; meanHU (HR 0.30, p=0.035), long run emphasis (HR 0.21, p=0.011) and long run low grey level emphasis (HR 0.14, p=0.005) was associated with distant failure-free survival (DFFS). No features were significant on multivariate modeling however long run low grey level emphasis had a hazard ratio of 0.12 (p=0.061) for DFFS. Adenocarcinoma and squamous cell carcinoma differed with respect to long run emphasis STD (p=0.024), short run low grey level emphasis STD (p<0.001), and long run low grey level emphasis STD (p=0.024). Multivariate modeling of texture features associated with tumor histology was used to estimate histologies of 18 lesions treated without histologic confirmation. Of these, MVA suggested the same histology as a prior metachronous lung malignancy in 3/7 patients. Conclusion: Extracting radiomics features on clinical datasets was feasible with the ITK package with minimal effort to identify pre-treatment quantitative CT features with prognostic factors for distant control after lung SBRT.« less

  1. Influence of semi-quantitative oestrogen receptor expression on adjuvant endocrine therapy efficacy in ductal and lobular breast cancer - a TEAM study analysis.

    PubMed

    van de Water, Willemien; Fontein, Duveken B Y; van Nes, Johanna G H; Bartlett, John M S; Hille, Elysée T M; Putter, Hein; Robson, Tammy; Liefers, Gerrit-Jan; Roumen, Rudi M H; Seynaeve, Caroline; Dirix, Luc Y; Paridaens, Robert; Kranenbarg, Elma Meershoek-Klein; Nortier, Johan W R; van de Velde, Cornelis J H

    2013-01-01

    Multiple studies suggest better efficacy of chemotherapy in invasive ductal breast carcinomas (IDC) than invasive lobular breast carcinomas (ILC). However, data on efficacy of adjuvant endocrine therapy regimens and histological subtypes are sparse. This study assessed endocrine therapy efficacy in IDC and ILC. The influence of semi-quantitative oestrogen receptor (ER) expression by Allred score was also investigated. Dutch and Belgian patients enrolled in the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial were randomized to exemestane (25mg daily) alone or following tamoxifen (20mg daily) for 5 years. Inclusion was restricted to IDC and ILC patients. Histological subtype was assessed locally; ER expression was centrally reviewed according to Allred score (ER-poor (<7; n=235); ER-rich (7; n=1789)). Primary end-point was relapse-free survival (RFS), which was the time from randomization to disease relapse. Overall, 2140 (82%) IDC and 463 (18%) ILC patients were included. RFS was similar for both endocrine treatment regimens in IDC (hazard ratio (HR) for exemestane was 0.83 (95%confidence interval (CI) 0.67-1.03)), and ILC (HR 0.69 (95%CI 0.45-1.06)). Irrespective of histological subtype, patients with ER-rich Allred scores allocated to exemestane alone had an improved RFS (multivariable HR 0.71 (95%CI 0.56-0.89)). In contrast, patients with ER-poor Allred scores allocated to exemestane had a worse RFS (multivariable HR 2.33 (95%CI 1.32-4.11)). Significant effect modification by ER-Allred score was confirmed (multivariable p=0.003). Efficacy of endocrine therapy regimens was similar for IDC and ILC. However, ER-rich patients showed superior efficacy to upfront exemestane, while ER-poor patients had better outcomes with sequential therapy, irrespective of histological subtype, emphasising the relevance of quantification of ER expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  3. Quantifying long-term human impact in contrasting environments: Statistical analysis of modern and fossil pollen records

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; López-Sáez, José Antonio; Verstraeten, Gert

    2017-04-01

    Reconstructing and quantifying human impact is an important step to understand human-environment interactions in the past. Quantitative measures of human impact on the landscape are needed to fully understand long-term influence of anthropogenic land cover changes on the global climate, ecosystems and geomorphic processes. Nevertheless, quantifying past human impact is not straightforward. Recently, multivariate statistical analysis of fossil pollen records have been proposed to characterize vegetation changes and to get insights in past human impact. Although statistical analysis of fossil pollen data can provide useful insights in anthropogenic driven vegetation changes, still it cannot be used as an absolute quantification of past human impact. To overcome this shortcoming, in this study fossil pollen records were included in a multivariate statistical analysis (cluster analysis and non-metric multidimensional scaling (NMDS)) together with modern pollen data and modern vegetation data. The information on the modern pollen and vegetation dataset can be used to get a better interpretation of the representativeness of the fossil pollen records, and can result in a full quantification of human impact in the past. This methodology was applied in two contrasting environments: SW Turkey and Central Spain. For each region, fossil pollen data from different study sites were integrated, together with modern pollen data and information on modern vegetation. In this way, arboreal cover, grazing pressure and agricultural activities in the past were reconstructed and quantified. The data from SW Turkey provides new integrated information on changing human impact through time in the Sagalassos territory, and shows that human impact was most intense during the Hellenistic and Roman Period (ca. 2200-1750 cal a BP) and decreased and changed in nature afterwards. The data from central Spain shows for several sites that arboreal cover decreases bellow 5% from the Feudal period onwards (ca. 850 cal a BP) related to increasing human impact in the landscape. At other study sites arboreal cover remained above 25% beside significant human impact. Overall, the presented examples from two contrasting environments shows how cluster analysis and NMDS of modern and fossil pollen data can help to provide quantitative insights in anthropogenic land cover changes. Our study extensively discuss and illustrate the possibilities and limitations of statistical analysis of pollen data to quantify human induced land use changes.

  4. Combine bivariate statistics analysis and multivariate statistics analysis to assess landslide susceptibility in Chen-Yu-Lan watershed, Nantou, Taiwan.

    NASA Astrophysics Data System (ADS)

    Ngan Nguyen, Thi To; Liu, Cheng-Chien

    2013-04-01

    How landslides occurred and which factors triggered and sped up landslide occurrences were usually asked by researchers in the past decades. Many investigations carried out in many places in the world to finding out methods that predict and prevent damages from landslides phenomena. Chen-Yu-Lan River watershed is reputed as a 'hot pot' of landslide researches in Taiwan by its complicated geological structures with the significant tectonic fault systems and steeply mountainous terrain. Beside annual high precipitation concentration and the abrupt slopes, some natural disaster, as typhoons (Sinlaku-2008, Kalmaegi-2008, and Marakot-2009) and earthquake (Chi-Chi earthquake-1999) are also the triggered factors cause landslides with serious damages in this place. This research expresses the quantitative approaches to generate landslide susceptible map for Chen-Yu-Lan watershed, a mountainous area in the central Taiwan. Landslide inventories data, which were detected from the Formosat-2 imageries for eight years from 2004 to 2011, were applied to carry out landslide susceptibility mapping. Bivariate statistics analysis and multivariate statistics analysis would be applied to calculate susceptible index of landslides. The weights of parameters were computed based on landslide data for eight years from 2004 to 2011. To validate effective levels of factors to landslide occurrences, this method built some multivariate algorithms and compared these results with real landslide occurrences. Besides this method, the historical data of landslides were also used to assess and classify landslide susceptibility levels. From long-term landslide data, relation between landslide susceptibility levels and landslide repetition was assigned. The results demonstrated differently effective levels of potential factors, such as, slope gradient, drainage density, lithology and land use to landslide phenomena. The results also showed logical relationship between weights and characteristics of factors' classes. Depending on these results be able to help planning managers localize the high risk areas of landslide or safely areas by building and human activities.

  5. Identification of adverse events that have a negative impact on quality of life in a clinical trial comparing docetaxel versus S-1 with cisplatin in lung cancer.

    PubMed

    Aotani, Eriko; Hamano, Tetsutaro; Gemma, Akihiko; Takeuchi, Masahiro; Takebayashi, Toru; Kobayashi, Kunihiko

    2016-10-01

    In the CATS (Cisplatin And TS-1) randomized trial comparing cisplatin plus either docetaxel (DP arm) or TS-1 (SP arm) in lung cancer, efficacy was found to be equivalent but the global quality of life (QOL) score was higher in the SP arm. The purpose of the current study was to identify which of the adverse events (AEs) contributed to the deterioration of QOL. QOL and AE data from the CATS trial were used to quantitatively analyze the relationship between deterioration of QOL score and occurrence of AEs. Subtracted values of the QOL score from post-chemotherapy to pre-chemotherapy were fully compared between patients with or without each AE (Student's t test, significance level = 0.001). Multivariate linear regression analysis was also performed. Analysis of variance was performed to identify whether grade of AE(s) might be significantly correlated with the deterioration of the QOL score (significance level of 0.05). As expected, gastrointestinal (GI) toxicities were associated with worsening of a variety of QOL items in both trial arms, detected by both univariate and multivariate analysis (p < 0.001 and p < 0.0001, respectively). Multivariate analysis unpredictably indicated that an increase in serum bilirubin level was the only AE that was uniquely associated with worsening of physical functioning (p = 0.0002), cognitive functioning (p < 0.0001), and financial problems (p = 0.0005) in the DP arm, although not in the SP arm. GI toxicities tended to be prolonged in the SP arm. An increase in serum bilirubin level may contribute to the worse global QOL of subjects in the DP arm in the CATS trial. The method we used here may be a unique approach to identify unpredictable AE(s) that worsen the QOL of patients treated by chemotherapy.

  6. A Comparison Study of Multivariate Fixed Models and Gene Association with Multiple Traits (GAMuT) for Next-Generation Sequencing

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Wang, Yifan; Weeks, Daniel E.; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Amos, Christopher I.; Mills, James L.; Boehnke, Michael; Xiong, Momiao; Fan, Ruzong

    2016-01-01

    In this paper, extensive simulations are performed to compare two statistical methods to analyze multiple correlated quantitative phenotypes: (1) approximate F-distributed tests of multivariate functional linear models (MFLM) and additive models of multivariate analysis of variance (MANOVA), and (2) Gene Association with Multiple Traits (GAMuT) for association testing of high-dimensional genotype data. It is shown that approximate F-distributed tests of MFLM and MANOVA have higher power and are more appropriate for major gene association analysis (i.e., scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT has higher power and is more appropriate for analyzing polygenic effects (i.e., effects from a large number of genetic variants each of which contributes a small amount to the phenotypes). MFLM and MANOVA are very flexible and can be used to perform association analysis for: (i) rare variants, (ii) common variants, and (iii) a combination of rare and common variants. Although GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of rare and common variants and it performs well when (1) the number of genetic variants is large and (2) each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are fixed effect models which perform well for major gene association analysis. GAMuT can be viewed as an extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for analyzing polygenic effects and they perform well not only in the rare variant case, but also in the case of a combination of rare and common variants. Data analyses of European cohorts and the Trinity Students Study are presented to compare the performance of the two methods. PMID:27917525

  7. Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves' Disease

    PubMed Central

    Kim, Hyun Joo; Bang, Ji-In; Kim, Ji-Young; Moon, Jae Hoon; So, Young

    2017-01-01

    Objective Since Graves' disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc-pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean × thyroid volume) from the SPECT/CT, and clinical/biochemical variables, were investigated. Results GD patients had a significantly greater %uptake (6.9 ± 6.4%) than historical control euthyroid patients (n = 20, 0.8 ± 0.5%, p < 0.001) from the same quantitative SPECT/CT protocol. Euthyroidism was achieved in 14 patients at 156 ± 62 days post-MMI treatment, but 22 patients had still not achieved euthyroidism by the last follow-up time-point (208 ± 80 days). In the univariate Cox regression analysis, the initial MMI dose (p = 0.014), %uptake (p = 0.015), and functional thyroid mass (p = 0.016) were significant predictors of euthyroidism in response to MMI treatment. However, only %uptake remained significant in a multivariate Cox regression analysis (p = 0.034). A %uptake cutoff of 5.0% dichotomized the faster responding versus the slower responding GD patients (p = 0.006). Conclusion A novel parameter of thyroid %uptake from quantitative SPECT/CT is a predictive indicator of an early response to MMI in GD patients. PMID:28458607

  8. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be measured with quantitative imaging. • Prediction model constructed that predicts volumetric response with 20% error suggesting that quantitative imaging holds promise to better select patients for specific treatments.

  9. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis.

    PubMed

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-15

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-01

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials.

  11. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  12. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.

    PubMed

    Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia

    2017-06-01

    Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.

  13. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  14. Quantitative profiling of sphingolipids in wild Cordyceps and its mycelia by using UHPLC-MS

    PubMed Central

    Mi, Jia-Ning; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-01-01

    In the present study, 101 sphingolipids in wild Cordyceps and its five mycelia were quantitatively profiled by using a fully validated UHPLC-MS method. The results revealed that a general rank order for the abundance of different classes of sphingolipids in wild Cordyceps and its mycelia is sphingoid bases/ceramides > phosphosphingolipids > glycosphingolipids. However, remarkable sphingolipid differences between wild Cordyceps and its mycelia were observed. One is that sphingoid base is the dominant sphingolipid in wild Cordyceps, whereas ceramide is the major sphingolipid in mycelia. Another difference is that the abundance of sphingomyelins in wild Cordyceps is almost 10-folds higher than those in most mycelia. The third one is that mycelia contain more inositol phosphorylceramides and glycosphingolipids than wild Cordyceps. Multivariate analysis was further employed to visualize the difference among wild Cordyceps and different mycelia, leading to the identification of respective sphingolipids as potential chemical markers for the differentiation of wild Cordyceps and its related mycelia. This study represents the first report on the quantitative profiling of sphingolipids in wild Cordyceps and its related mycelia, which provided comprehensive chemical evidence for the quality control and rational utilization of wild Cordyceps and its mycelia. PMID:26868933

  15. Systems microscopy: an emerging strategy for the life sciences.

    PubMed

    Lock, John G; Strömblad, Staffan

    2010-05-01

    Dynamic cellular processes occurring in time and space are fundamental to all physiology and disease. To understand complex and dynamic cellular processes therefore demands the capacity to record and integrate quantitative multiparametric data from the four spatiotemporal dimensions within which living cells self-organize, and to subsequently use these data for the mathematical modeling of cellular systems. To this end, a raft of complementary developments in automated fluorescence microscopy, cell microarray platforms, quantitative image analysis and data mining, combined with multivariate statistics and computational modeling, now coalesce to produce a new research strategy, "systems microscopy", which facilitates systems biology analyses of living cells. Systems microscopy provides the crucial capacities to simultaneously extract and interrogate multiparametric quantitative data at resolution levels ranging from the molecular to the cellular, thereby elucidating a more comprehensive and richly integrated understanding of complex and dynamic cellular systems. The unique capacities of systems microscopy suggest that it will become a vital cornerstone of systems biology, and here we describe the current status and future prospects of this emerging field, as well as outlining some of the key challenges that remain to be overcome. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine.

    PubMed

    da Silva, Neirivaldo Cavalcante; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Garrigues, Salvador; Cervera, Maria Luisa; de la Guardia, Miguel

    2015-09-01

    There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000-4000 per cm. Using PLS-DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2% w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples. © 2015 American Academy of Forensic Sciences.

  17. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Velioglu, Hasan Murat; Sezer, Banu; Bilge, Gonca; Baytur, Süleyman Efe; Boyaci, Ismail Hakki

    2018-04-01

    Minced meat is the major ingredient in sausages, beef burgers, and similar products; and thus it is the main product subjected to adulteration with meat offal. Determination of this kind of meat adulteration is crucial due to religious, economic and ethical concerns. The aim of the present study is to discriminate the beef meat and offal samples by using laser induced breakdown spectroscopy (LIBS). To this end, LIBS and multivariate data analysis were used to discriminate pure beef and offal samples qualitatively and to determine the offal mixture adulteration quantitatively. In this analysis, meat samples were frozen and LIBS analysis were performed. The results indicate that by using principal component analysis (PCA), discrimination of pure offal and offal mixture adulterated beef samples can be achieved successfully. Besides, adulteration ratio can be determined using partial least square analysis method (PLS) with 0.947 coefficient of determination (R 2 ) and 3.8% of limit of detection (LOD) values for offal mixture adulterated beef samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Moncayo, S; Manzoor, S; Rosales, J D; Anzano, J; Caceres, J O

    2017-10-01

    The present work focuses on the development of a fast and cost effective method based on Laser Induced Breakdown Spectroscopy (LIBS) to the quality control, traceability and detection of adulteration in milk. Two adulteration cases have been studied; a qualitative analysis for the discrimination between different milk blends and quantification of melamine in adulterated toddler milk powder. Principal Component Analysis (PCA) and neural networks (NN) have been used to analyze LIBS spectra obtaining a correct classification rate of 98% with a 100% of robustness. For the quantification of melamine, two methodologies have been developed; univariate analysis using CN emission band and multivariate calibration NN model obtaining correlation coefficient (R 2 ) values of 0.982 and 0.999 respectively. The results of the use of LIBS technique coupled with chemometric analysis are discussed in terms of its potential use in the food industry to perform the quality control of this dairy product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Tropical Pacific moisture variability: Its detection, synoptic structure and consequences in the general circulation

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.

    1990-01-01

    Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.

  1. Quantitative Comparison and Metabolite Profiling of Saponins in Different Parts of the Root of Panax notoginseng

    PubMed Central

    2015-01-01

    Although both rhizome and root of Panax notoginseng are officially utilized as notoginseng in “Chinese Pharmacopoeia”, individual parts of the root were differently used in practice. To provide chemical evidence for the differentiated usage, quantitative comparison and metabolite profiling of different portions derived from the whole root, as well as commercial samples, were carried out, showing an overall higher content of saponins in rhizome, followed by main root, branch root, and fibrous root. Ginsenoside Rb2 was proposed as a potential marker with a content of 0.5 mg/g as a threshold value for differentiating rhizome from other parts. Multivariate analysis of the metabolite profile further suggested 32 saponins as potential markers for the discrimination of different parts of notoginseng. Collectively, the study provided comprehensive chemical evidence for the distinct usage of different parts of notoginseng and, hence, is of great importance for the rational application and exploitation of individual parts of notoginseng. PMID:25118819

  2. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    PubMed

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  3. An Overview of data science uses in bioimage informatics.

    PubMed

    Chessel, Anatole

    2017-02-15

    This review aims at providing a practical overview of the use of statistical features and associated data science methods in bioimage informatics. To achieve a quantitative link between images and biological concepts, one typically replaces an object coming from an image (a segmented cell or intracellular object, a pattern of expression or localisation, even a whole image) by a vector of numbers. They range from carefully crafted biologically relevant measurements to features learnt through deep neural networks. This replacement allows for the use of practical algorithms for visualisation, comparison and inference, such as the ones from machine learning or multivariate statistics. While originating mainly, for biology, in high content screening, those methods are integral to the use of data science for the quantitative analysis of microscopy images to gain biological insight, and they are sure to gather more interest as the need to make sense of the increasing amount of acquired imaging data grows more pressing. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Analysis of the procedures used to evaluate suicide crime scenes in Brazil: a statistical approach to interpret reports.

    PubMed

    Bruni, Aline Thaís; Velho, Jesus Antonio; Ferreira, Arthur Serra Lopes; Tasso, Maria Júlia; Ferrari, Raíssa Santos; Yoshida, Ricardo Luís; Dias, Marcos Salvador; Leite, Vitor Barbanti Pereira

    2014-08-01

    This study uses statistical techniques to evaluate reports on suicide scenes; it utilizes 80 reports from different locations in Brazil, randomly collected from both federal and state jurisdictions. We aimed to assess a heterogeneous group of cases in order to obtain an overall perspective of the problem. We evaluated variables regarding the characteristics of the crime scene, such as the detected traces (blood, instruments and clothes) that were found and we addressed the methodology employed by the experts. A qualitative approach using basic statistics revealed a wide distribution as to how the issue was addressed in the documents. We examined a quantitative approach involving an empirical equation and we used multivariate procedures to validate the quantitative methodology proposed for this empirical equation. The methodology successfully identified the main differences in the information presented in the reports, showing that there is no standardized method of analyzing evidences. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Expression of Fra-1 in human hepatocellular carcinoma and its prognostic significance.

    PubMed

    Gao, Xiao-Qiang; Ge, Yong-Sheng; Shu, Qing-Hua; Ma, Hua-Xing

    2017-06-01

    This study aimed to explore the clinical significance and prognostic value of Fra-1 in hepatocellular carcinoma patients after curative resection. Fra-1 expression was investigated using a combination of techniques: immunohistochemistry for 66 samples of hepatocellular carcinoma and quantitative real-time polymerase chain reaction and western blotting assays for 19 matched hepatocellular carcinoma specimens. Fra-1 was present in 38 of 66 (57.6%) tumor tissues, with intense staining in the nuclei. There was also positive staining in 14 of 66 (21.2%) adjacent peritumoral tissues, with weak staining in the cytoplasm. Quantitative real-time polymerase chain reaction and western blotting assays confirmed higher expression of Fra-1 messenger RNA and Fra-1 protein in tumor tissues than adjacent non-tumor tissues for 19 hepatocellular carcinoma samples (p < 0.001). Positive expression of Fra-1 was significantly related to vascular invasion and serum alpha-fetoprotein. Kaplan-Meier survival analysis found that overexpressed Fra-1 was correlated with poor overall survival and disease-free survival. Multivariate analysis identified Fra-1 as an independent prognostic factor. Fra-1 may be involved in the progress of hepatocellular carcinoma and could be a promising molecular candidate in the diagnosis and treatment of hepatocellular carcinoma.

  6. Spatio-temporal models of mental processes from fMRI.

    PubMed

    Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos

    2011-07-15

    Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Consumption of psychoactive substances in educational institutions: an inquiry into the state of affairs in the schools of Córdoba.

    PubMed

    Lucchese, M S M; Burrone, M S; Enders, J E; Fernández, A R

    2014-01-01

    This study describes and analyses the consumption of psychoactive substances in educational institutions, the school environment conditions and its relation to the school standing of the students. In the first stage, a quantitative evaluation was performed, based on the records of the Second National Survey of Secondary School Students carried out in Córdoba in 2005; the second stage used a qualitative approach. A multistage probabilistic sample of 4593 students was used for the quantitative assessment. The analysis comprised summary measurements, multivariate and factorial correspondence analysis, in all cases with a significance level of p < 0.05. For the qualitative stage, an ethnographic approach was applied. The state schools were chosen using an intentional, cumulative and sequential sampling method. Ten in-depth interviews were carried out to gather qualitative data that was analyzed using the comparative constant method. Results evince that consumption is lower among morning-shift students and that grade repetition and behavior problems are associated to consumption of illegal drugs. Furthermore, it was detected that students in night-shift schools with low academic and disciplinary demand standards have a higher probability of consumption. It is clear that as academic standards decrease, consumption increases.

  8. A novel approach to mixing qualitative and quantitative methods in HIV and STI prevention research.

    PubMed

    Penman-Aguilar, Ana; Macaluso, Maurizio; Peacock, Nadine; Snead, M Christine; Posner, Samuel F

    2014-04-01

    Mixed-method designs are increasingly used in sexually transmitted infection (STI) and HIV prevention research. The authors designed a mixedmethod approach and applied it to estimate and evaluate a predictor of continued female condom use (6+ uses, among those who used it at least once) in a 6-month prospective cohort study. The analysis included 402 women who received an intervention promoting use of female and male condoms for STI prevention and completed monthly quantitative surveys; 33 also completed a semistructured qualitative interview. The authors identified a qualitative theme (couples' female condom enjoyment [CFCE]), applied discriminant analysis techniques to estimate CFCE for all participants, and added CFCE to a multivariable logistic regression model of continued female condom use. CFCE related to comfort, naturalness, pleasure, feeling protected, playfulness, ease of use, intimacy, and feeling in control of protection. CFCE was associated with continued female condom use (adjusted odds ratio: 2.8, 95% confidence interval: 1.4-5.6) and significantly improved model fit (p < .001). CFCE predicted continued female condom use. Mixed-method approaches for "scaling up" qualitative findings from small samples to larger numbers of participants can benefit HIV and STI prevention research.

  9. Analysis of Sequence Data Under Multivariate Trait-Dependent Sampling.

    PubMed

    Tao, Ran; Zeng, Donglin; Franceschini, Nora; North, Kari E; Boerwinkle, Eric; Lin, Dan-Yu

    2015-06-01

    High-throughput DNA sequencing allows for the genotyping of common and rare variants for genetic association studies. At the present time and for the foreseeable future, it is not economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to sequence those individuals with extreme values of a quantitative trait. We consider the design under which the sampling depends on multiple quantitative traits. Under such trait-dependent sampling, standard linear regression analysis can result in bias of parameter estimation, inflation of type I error, and loss of power. We construct a likelihood function that properly reflects the sampling mechanism and utilizes all available data. We implement a computationally efficient EM algorithm and establish the theoretical properties of the resulting maximum likelihood estimators. Our methods can be used to perform separate inference on each trait or simultaneous inference on multiple traits. We pay special attention to gene-level association tests for rare variants. We demonstrate the superiority of the proposed methods over standard linear regression through extensive simulation studies. We provide applications to the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung, and Blood Institute Exome Sequencing Project.

  10. Analytical robustness of quantitative NIR chemical imaging for Islamic paper characterization

    NASA Astrophysics Data System (ADS)

    Mahgoub, Hend; Gilchrist, John R.; Fearn, Thomas; Strlič, Matija

    2017-07-01

    Recently, spectral imaging techniques such as Multispectral (MSI) and Hyperspectral Imaging (HSI) have gained importance in the field of heritage conservation. This paper explores the analytical robustness of quantitative chemical imaging for Islamic paper characterization by focusing on the effect of different measurement and processing parameters, i.e. acquisition conditions and calibration on the accuracy of the collected spectral data. This will provide a better understanding of the technique that can provide a measure of change in collections through imaging. For the quantitative model, special calibration target was devised using 105 samples from a well-characterized reference Islamic paper collection. Two material properties were of interest: starch sizing and cellulose degree of polymerization (DP). Multivariate data analysis methods were used to develop discrimination and regression models which were used as an evaluation methodology for the metrology of quantitative NIR chemical imaging. Spectral data were collected using a pushbroom HSI scanner (Gilden Photonics Ltd) in the 1000-2500 nm range with a spectral resolution of 6.3 nm using a mirror scanning setup and halogen illumination. Data were acquired at different measurement conditions and acquisition parameters. Preliminary results showed the potential of the evaluation methodology to show that measurement parameters such as the use of different lenses and different scanning backgrounds may not have a great influence on the quantitative results. Moreover, the evaluation methodology allowed for the selection of the best pre-treatment method to be applied to the data.

  11. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

    PubMed

    Xia, Jianguo; Wishart, David S

    2016-09-07

    MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  12. A mixed model for the relationship between climate and human cranial form.

    PubMed

    Katz, David C; Grote, Mark N; Weaver, Timothy D

    2016-08-01

    We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    PubMed

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  14. Simultaneous determination of Nifuroxazide and Drotaverine hydrochloride in pharmaceutical preparations by bivariate and multivariate spectral analysis

    NASA Astrophysics Data System (ADS)

    Metwally, Fadia H.

    2008-02-01

    The quantitative predictive abilities of the new and simple bivariate spectrophotometric method are compared with the results obtained by the use of multivariate calibration methods [the classical least squares (CLS), principle component regression (PCR) and partial least squares (PLS)], using the information contained in the absorption spectra of the appropriate solutions. Mixtures of the two drugs Nifuroxazide (NIF) and Drotaverine hydrochloride (DRO) were resolved by application of the bivariate method. The different chemometric approaches were applied also with previous optimization of the calibration matrix, as they are useful in simultaneous inclusion of many spectral wavelengths. The results found by application of the bivariate, CLS, PCR and PLS methods for the simultaneous determinations of mixtures of both components containing 2-12 μg ml -1 of NIF and 2-8 μg ml -1 of DRO are reported. Both approaches were satisfactorily applied to the simultaneous determination of NIF and DRO in pure form and in pharmaceutical formulation. The results were in accordance with those given by the EVA Pharma reference spectrophotometric method.

  15. Dyes assay for measuring physicochemical parameters.

    PubMed

    Moczko, Ewa; Meglinski, Igor V; Bessant, Conrad; Piletsky, Sergey A

    2009-03-15

    A combination of selective fluorescent dyes has been developed for simultaneous quantitative measurements of several physicochemical parameters. The operating principle of the assay is similar to electronic nose and tongue systems, which combine nonspecific or semispecific elements for the determination of diverse analytes and chemometric techniques for multivariate data analysis. The analytical capability of the proposed mixture is engendered by changes in fluorescence signal in response to changes in environment such as pH, temperature, ionic strength, and presence of oxygen. The signal is detected by a three-dimensional spectrofluorimeter, and the acquired data are processed using an artificial neural network (ANN) for multivariate calibration. The fluorescence spectrum of a solution of selected dyes allows discreet reading of emission maxima of all dyes composing the mixture. The variations in peaks intensities caused by environmental changes provide distinctive fluorescence patterns which can be handled in the same way as the signals collected from nose/tongue electrochemical or piezoelectric devices. This optical system opens possibilities for rapid, inexpensive, real-time detection of a multitude of physicochemical parameters and analytes of complex samples.

  16. Multivariate Models for Normal and Binary Responses in Intervention Studies

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen

    2016-01-01

    Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…

  17. Texture analysis of pulmonary parenchymateous changes related to pulmonary thromboembolism in dogs - a novel approach using quantitative methods.

    PubMed

    Marschner, C B; Kokla, M; Amigo, J M; Rozanski, E A; Wiinberg, B; McEvoy, F J

    2017-07-11

    Diagnosis of pulmonary thromboembolism (PTE) in dogs relies on computed tomography pulmonary angiography (CTPA), but detailed interpretation of CTPA images is demanding for the radiologist and only large vessels may be evaluated. New approaches for better detection of smaller thrombi include dual energy computed tomography (DECT) as well as computer assisted diagnosis (CAD) techniques. The purpose of this study was to investigate the performance of quantitative texture analysis for detecting dogs with PTE using grey-level co-occurrence matrices (GLCM) and multivariate statistical classification analyses. CT images from healthy (n = 6) and diseased (n = 29) dogs with and without PTE confirmed on CTPA were segmented so that only tissue with CT numbers between -1024 and -250 Houndsfield Units (HU) was preserved. GLCM analysis and subsequent multivariate classification analyses were performed on texture parameters extracted from these images. Leave-one-dog-out cross validation and receiver operator characteristic (ROC) showed that the models generated from the texture analysis were able to predict healthy dogs with optimal levels of performance. Partial Least Square Discriminant Analysis (PLS-DA) obtained a sensitivity of 94% and a specificity of 96%, while Support Vector Machines (SVM) yielded a sensitivity of 99% and a specificity of 100%. The models, however, performed worse in classifying the type of disease in the diseased dog group: In diseased dogs with PTE sensitivities were 30% (PLS-DA) and 38% (SVM), and specificities were 80% (PLS-DA) and 89% (SVM). In diseased dogs without PTE the sensitivities of the models were 59% (PLS-DA) and 79% (SVM) and specificities were 79% (PLS-DA) and 82% (SVM). The results indicate that texture analysis of CTPA images using GLCM is an effective tool for distinguishing healthy from abnormal lung. Furthermore the texture of pulmonary parenchyma in dogs with PTE is altered, when compared to the texture of pulmonary parenchyma of healthy dogs. The models' poorer performance in classifying dogs within the diseased group, may be related to the low number of dogs compared to texture variables, a lack of balanced number of dogs within each group or a real lack of difference in the texture features among the diseased dogs.

  18. Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model.

    PubMed

    Chen, Gang; Adleman, Nancy E; Saad, Ziad S; Leibenluft, Ellen; Cox, Robert W

    2014-10-01

    All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance-covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within-subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse-Geisser and Huynh-Feldt) with MVT-WS. To validate the MVM methodology, we performed simulations to assess the controllability for false positives and power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach. The methodology has been implemented into an open source program 3dMVM in AFNI, and all the statistical tests can be performed through symbolic coding with variable names instead of the tedious process of dummy coding. Our data indicates that the severity of sphericity violation varies substantially across brain regions. The differences among various modeling methodologies were addressed through direct comparisons between the MVM approach and some of the GLM implementations in the field, and the following two issues were raised: a) the improper formulation of test statistics in some univariate GLM implementations when a within-subject factor is involved in a data structure with two or more factors, and b) the unjustified presumption of uniform sphericity violation and the practice of estimating the variance-covariance structure through pooling across brain regions. Published by Elsevier Inc.

  19. Multivariate analysis of drinking water quality parameters in Bhopal, India.

    PubMed

    Parashar, Charu; Verma, Neelam; Dixit, Savita; Shrivastava, Rajneesh

    2008-05-01

    Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico-chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.

  20. Longitudinal flying qualities criteria for single-pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Bar-Gill, A.

    1983-01-01

    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

  1. Partial Least Squares Regression Models for the Analysis of Kinase Signaling.

    PubMed

    Bourgeois, Danielle L; Kreeger, Pamela K

    2017-01-01

    Partial least squares regression (PLSR) is a data-driven modeling approach that can be used to analyze multivariate relationships between kinase networks and cellular decisions or patient outcomes. In PLSR, a linear model relating an X matrix of dependent variables and a Y matrix of independent variables is generated by extracting the factors with the strongest covariation. While the identified relationship is correlative, PLSR models can be used to generate quantitative predictions for new conditions or perturbations to the network, allowing for mechanisms to be identified. This chapter will provide a brief explanation of PLSR and provide an instructive example to demonstrate the use of PLSR to analyze kinase signaling.

  2. Multivariate Qst–Fst Comparisons: A Neutrality Test for the Evolution of the G Matrix in Structured Populations

    PubMed Central

    Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme

    2008-01-01

    Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions. PMID:18245845

  3. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  4. Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy.

    PubMed

    Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K

    2017-12-01

    Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98%, respectively. Preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping identifies patients at risk for cerebral hyperperfusion following carotid endarterectomy. © 2017 by American Journal of Neuroradiology.

  5. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  6. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  7. Left atrial appendage segmentation and quantitative assisted diagnosis of atrial fibrillation based on fusion of temporal-spatial information.

    PubMed

    Jin, Cheng; Feng, Jianjiang; Wang, Lei; Yu, Heng; Liu, Jiang; Lu, Jiwen; Zhou, Jie

    2018-05-01

    In this paper, we present an approach for left atrial appendage (LAA) multi-phase fast segmentation and quantitative assisted diagnosis of atrial fibrillation (AF) based on 4D-CT data. We take full advantage of the temporal dimension information to segment the living, flailed LAA based on a parametric max-flow method and graph-cut approach to build 3-D model of each phase. To assist the diagnosis of AF, we calculate the volumes of 3-D models, and then generate a "volume-phase" curve to calculate the important dynamic metrics: ejection fraction, filling flux, and emptying flux of the LAA's blood by volume. This approach demonstrates more precise results than the conventional approaches that calculate metrics by area, and allows for the quick analysis of LAA-volume pattern changes of in a cardiac cycle. It may also provide insight into the individual differences in the lesions of the LAA. Furthermore, we apply support vector machines (SVMs) to achieve a quantitative auto-diagnosis of the AF by exploiting seven features from volume change ratios of the LAA, and perform multivariate logistic regression analysis for the risk of LAA thrombosis. The 100 cases utilized in this research were taken from the Philips 256-iCT. The experimental results demonstrate that our approach can construct the 3-D LAA geometries robustly compared to manual annotations, and reasonably infer that the LAA undergoes filling, emptying and re-filling, re-emptying in a cardiac cycle. This research provides a potential for exploring various physiological functions of the LAA and quantitatively estimating the risk of stroke in patients with AF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Newly Graduated Nurses' Competence and Individual and Organizational Factors: A Multivariate Analysis.

    PubMed

    Numminen, Olivia; Leino-Kilpi, Helena; Isoaho, Hannu; Meretoja, Riitta

    2015-09-01

    To study the relationships between newly graduated nurses' (NGNs') perceptions of their professional competence, and individual and organizational work-related factors. A multivariate, quantitative, descriptive, correlation design was applied. Data collection took place in November 2012 with a national convenience sample of 318 NGNs representing all main healthcare settings in Finland. Five instruments measured NGNs' perceptions of their professional competence, occupational commitment, empowerment, practice environment, and its ethical climate, with additional questions on turnover intentions, job satisfaction, and demographics. Descriptive statistics summarized the demographic data, and inferential statistics multivariate path analysis modeling estimated the relationships between the variables. The strongest relationship was found between professional competence and empowerment, competence explaining 20% of the variance of empowerment. The explanatory power of competence regarding practice environment, ethical climate of the work unit, and occupational commitment, and competence's associations with turnover intentions, job satisfaction, and age, were statistically significant but considerably weaker. Higher competence and satisfaction with quality of care were associated with more positive perceptions of practice environment and its ethical climate as well as higher empowerment and occupational commitment. Apart from its association with empowerment, competence seems to be a rather independent factor in relation to the measured work-related factors. Further exploration would deepen the knowledge of this relationship, providing support for planning educational and developmental programs. Research on other individual and organizational factors is warranted to shed light on factors associated with professional competence in providing high-quality and safe care as well as retaining new nurses in the workforce. The study sheds light on the strength and direction of the significantly associated work-related factors. Nursing professional bodies, managers, and supervisors can use the findings in planning orientation programs and other occupational interventions for NGNs. © 2015 Sigma Theta Tau International.

  10. Multiple expression patterns of biopathological markers in primary invasive breast carcinoma: a useful tool for elucidating its biological behaviour.

    PubMed

    Ceccarelli, C; Santini, D; Chieco, P; Taffurelli, M; Marrano, D; Mancini, A M

    1995-03-01

    Commonly used clinical and morphologic criteria have been reported to be of limited value in predicting the outcome of malignant tumours of the breast. Integrated information from the quantitative analysis in tumour tissue of biological parameters such as oestrogen and progesterone receptors (ER and PGR), proliferative activity, and proto-oncogene p53, c-erB2, and bcl-2 expression, may be useful for defining the biology of growth of breast carcinoma and to plan effective therapeutic strategies. Immunohistochemistry with antibodies recognizing ER, PGR, Ki-67, and the p53, c-erbB2, and bcl-2 encoded proteins was performed on 291 primary breast carcinomas. Results were integrated with clinico-pathological indicators and examined with multivariate statistical procedures and modeling. P53, c-erbB2, and bcl-2 gene products were detected, respectively, in 30.6%, 31.6%, and 85.9% of the examined invasive breast carcinomas, revealing variable associations with cellular differentiation and proliferation as defined by ER/PGR status, Ki-67, tumour mass and histologic and nuclear grading. A multivariate graphical display on a subset of the most informative cases revealed that bcl-2 expression parallels ER/PGR status and is of importance in separating tumour clusters with different degrees of aggressiveness. The results of this study indicate that multivariate explorative analyses conducted on biological and clinico-pathological parameters might constitute an integrated approach to data analysis useful for distinguishing different biological behaviours and therapeutic groups in breast carcinoma. Our findings also suggest that bcl-2 expression may play a pivotal role in tumours lacking ER-mediated growth regulation.

  11. Use of chemometrics to compare NIR and HPLC for the simultaneous determination of drug levels in fixed-dose combination tablets employed in tuberculosis treatment.

    PubMed

    Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly

    2018-02-05

    The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  13. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  14. Metabolomics Coupled with Multivariate Data and Pathway Analysis on Potential Biomarkers in Gastric Ulcer and Intervention Effects of Corydalis yanhusuo Alkaloid

    PubMed Central

    Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran

    2014-01-01

    Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691

  15. Path analysis and multi-criteria decision making: an approach for multivariate model selection and analysis in health.

    PubMed

    Vasconcelos, A G; Almeida, R M; Nobre, F F

    2001-08-01

    This paper introduces an approach that includes non-quantitative factors for the selection and assessment of multivariate complex models in health. A goodness-of-fit based methodology combined with fuzzy multi-criteria decision-making approach is proposed for model selection. Models were obtained using the Path Analysis (PA) methodology in order to explain the interrelationship between health determinants and the post-neonatal component of infant mortality in 59 municipalities of Brazil in the year 1991. Socioeconomic and demographic factors were used as exogenous variables, and environmental, health service and agglomeration as endogenous variables. Five PA models were developed and accepted by statistical criteria of goodness-of fit. These models were then submitted to a group of experts, seeking to characterize their preferences, according to predefined criteria that tried to evaluate model relevance and plausibility. Fuzzy set techniques were used to rank the alternative models according to the number of times a model was superior to ("dominated") the others. The best-ranked model explained above 90% of the endogenous variables variation, and showed the favorable influences of income and education levels on post-neonatal mortality. It also showed the unfavorable effect on mortality of fast population growth, through precarious dwelling conditions and decreased access to sanitation. It was possible to aggregate expert opinions in model evaluation. The proposed procedure for model selection allowed the inclusion of subjective information in a clear and systematic manner.

  16. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  17. Predictors of mortality in patients with emphysema and severe airflow obstruction.

    PubMed

    Martinez, Fernando J; Foster, Gregory; Curtis, Jeffrey L; Criner, Gerard; Weinmann, Gail; Fishman, Alfred; DeCamp, Malcolm M; Benditt, Joshua; Sciurba, Frank; Make, Barry; Mohsenifar, Zab; Diaz, Philip; Hoffman, Eric; Wise, Robert

    2006-06-15

    Limited data exist describing risk factors for mortality in patients having predominantly emphysema. A total of 609 patients with severe emphysema (ages 40-83 yr; 64.2% male) randomized to the medical therapy arm of the National Emphysema Treatment Trial formed the study group. Cox proportional hazards regression analysis was used to investigate risk factors for all-cause mortality. Risk factors examined included demographics, body mass index, physiologic data, quality of life, dyspnea, oxygen utilization, hemoglobin, smoking history, quantitative emphysema markers on computed tomography, and a modification of a recently described multifunctional index (modified BODE). Overall, high mortality was seen in this cohort (12.7 deaths per 100 person-years; 292 total deaths). In multivariate analyses, increasing age (p=0.001), oxygen utilization (p=0.04), lower total lung capacity % predicted (p=0.05), higher residual volume % predicted (p=0.04), lower maximal cardiopulmonary exercise testing workload (p=0.002), greater proportion of emphysema in the lower lung zone versus the upper lung zone (p=0.005), and lower upper-to-lower-lung perfusion ratio (p=0.007), and modified BODE (p=0.02) were predictive of mortality. FEV1 was a significant predictor of mortality in univariate analysis (p=0.005), but not in multivariate analysis (p=0.21). Although patients with advanced emphysema experience significant mortality, subgroups based on age, oxygen utilization, physiologic measures, exercise capacity, and emphysema distribution identify those at increased risk of death.

  18. Loss of Nuclear Localized and Tyrosine Phosphorylated Stat5 in Breast Cancer Predicts Poor Clinical Outcome and Increased Risk of Antiestrogen Therapy Failure

    PubMed Central

    Peck, Amy R.; Witkiewicz, Agnieszka K.; Liu, Chengbao; Stringer, Ginger A.; Klimowicz, Alexander C.; Pequignot, Edward; Freydin, Boris; Tran, Thai H.; Yang, Ning; Rosenberg, Anne L.; Hooke, Jeffrey A.; Kovatich, Albert J.; Nevalainen, Marja T.; Shriver, Craig D.; Hyslop, Terry; Sauter, Guido; Rimm, David L.; Magliocco, Anthony M.; Rui, Hallgeir

    2011-01-01

    Purpose To investigate nuclear localized and tyrosine phosphorylated Stat5 (Nuc-pYStat5) as a marker of prognosis in node-negative breast cancer and as a predictor of response to antiestrogen therapy. Patients and Methods Levels of Nuc-pYStat5 were analyzed in five archival cohorts of breast cancer by traditional diaminobenzidine-chromogen immunostaining and pathologist scoring of whole tissue sections or by immunofluorescence and automated quantitative analysis (AQUA) of tissue microarrays. Results Nuc-pYStat5 was an independent prognostic marker as measured by cancer-specific survival (CSS) in patients with node-negative breast cancer who did not receive systemic adjuvant therapy, when adjusted for common pathology parameters in multivariate analyses both by standard chromogen detection with pathologist scoring of whole tissue sections (cohort I; n = 233) and quantitative immunofluorescence of a tissue microarray (cohort II; n = 291). Two distinct monoclonal antibodies gave concordant results. A progression array (cohort III; n = 180) revealed frequent loss of Nuc-pYStat5 in invasive carcinoma compared to normal breast epithelia or ductal carcinoma in situ, and general loss of Nuc-pYStat5 in lymph node metastases. In cohort IV (n = 221), loss of Nuc-pYStat5 was associated with increased risk of antiestrogen therapy failure as measured by univariate CSS and time to recurrence (TTR). More sensitive AQUA quantification of Nuc-pYStat5 in antiestrogen-treated patients (cohort V; n = 97) identified by multivariate analysis patients with low Nuc-pYStat5 at elevated risk for therapy failure (CSS hazard ratio [HR], 21.55; 95% CI, 5.61 to 82.77; P < .001; TTR HR, 7.30; 95% CI, 2.34 to 22.78; P = .001). Conclusion Nuc-pYStat5 is an independent prognostic marker in node-negative breast cancer. If confirmed in prospective studies, Nuc-pYStat5 may become a useful predictive marker of response to adjuvant hormone therapy. PMID:21576635

  19. Multivariate analyses of peripheral blood leukocyte transcripts distinguish Alzheimer's, Parkinson's, control, and those at risk for developing Alzheimer's.

    PubMed

    Delvaux, Elaine; Mastroeni, Diego; Nolz, Jennifer; Chow, Nienwen; Sabbagh, Marwan; Caselli, Richard J; Reiman, Eric M; Marshall, Frederick J; Coleman, Paul D

    2017-10-01

    The need for a reliable, simple, and inexpensive blood test for Alzheimer's disease (AD) suitable for use in a primary care setting is widely recognized. This has led to a large number of publications describing blood tests for AD, which have, for the most part, not been replicable. We have chosen to examine transcripts expressed by the cellular, leukocyte compartment of blood. We have used hypothesis-based cDNA arrays and quantitative PCR to quantify the expression of selected sets of genes followed by multivariate analyses in multiple independent samples. Rather than a single study with no replicates, we chose an experimental design in which there were multiple replicates using different platforms and different sample populations. We have divided 177 blood samples and 27 brain samples into multiple replicates to demonstrate the ability to distinguish early clinical AD (Clinical Dementia Rating scale 0.5), Parkinson's disease (PD), and cognitively unimpaired APOE4 homozygotes, as well as to determine persons at risk for future cognitive impairment with significant accuracy. We assess our methods in a training/test set and also show that the variables we use distinguish AD, PD, and control brain. Importantly, we describe the variability of the weights assigned to individual transcripts in multivariate analyses in repeated studies and suggest that the variability we describe may be the cause of inability to repeat many earlier studies. Our data constitute a proof of principle that multivariate analysis of the transcriptome related to cell stress and inflammation of peripheral blood leukocytes has significant potential as a minimally invasive and inexpensive diagnostic tool for diagnosis and early detection of risk for AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Resilience and tipping points of an exploited fish population over six decades.

    PubMed

    Vasilakopoulos, Paraskevas; Marshall, C Tara

    2015-05-01

    Complex natural systems with eroded resilience, such as populations, ecosystems and socio-ecological systems, respond to small perturbations with abrupt, discontinuous state shifts, or critical transitions. Theory of critical transitions suggests that such systems exhibit fold bifurcations featuring folded response curves, tipping points and alternate attractors. However, there is little empirical evidence of fold bifurcations occurring in actual complex natural systems impacted by multiple stressors. Moreover, resilience of complex systems to change currently lacks clear operational measures with generic application. Here, we provide empirical evidence for the occurrence of a fold bifurcation in an exploited fish population and introduce a generic measure of ecological resilience based on the observed fold bifurcation attributes. We analyse the multivariate development of Barents Sea cod (Gadus morhua), which is currently the world's largest cod stock, over six decades (1949-2009), and identify a population state shift in 1981. By plotting a multivariate population index against a multivariate stressor index, the shift mechanism was revealed suggesting that the observed population shift was a nonlinear response to the combined effects of overfishing and climate change. Annual resilience values were estimated based on the position of each year in relation to the fitted attractors and assumed tipping points of the fold bifurcation. By interpolating the annual resilience values, a folded stability landscape was fit, which was shaped as predicted by theory. The resilience assessment suggested that the population may be close to another tipping point. This study illustrates how a multivariate analysis, supported by theory of critical transitions and accompanied by a quantitative resilience assessment, can clarify shift mechanisms in data-rich complex natural systems. © 2014 John Wiley & Sons Ltd.

  1. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  2. Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets.

    PubMed

    Wang, Maoqing; Yang, Xue; Ren, Lihong; Li, Songtao; He, Xuan; Wu, Xiaoyan; Liu, Tingting; Lin, Liqun; Li, Ying; Sun, Changhao

    2014-09-05

    Nutritional rickets is a worldwide public health problem; however, the current diagnostic methods retain shortcomings for accurate diagnosis of nutritional rickets. To identify urinary biomarkers associated with nutritional rickets and establish a noninvasive diagnosis method, urinary metabonomics analysis by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis were employed to investigate the metabolic alterations associated with nutritional rickets in 200 children with or without nutritional rickets. The pathophysiological changes and pathogenesis of nutritional rickets were illustrated by the identified biomarkers. By urinary metabolic profiling, 31 biomarkers of nutritional rickets were identified and five candidate biomarkers for clinical diagnosis were screened and identified by quantitative analysis and receiver operating curve analysis. Urinary levels of five candidate biomarkers were measured using mass spectrometry or commercial kits. In the validation step, the combination of phosphate and sebacic acid was able to give a noninvasive and accurate diagnostic with high sensitivity (94.0%) and specificity (71.2%). Furthermore, on the basis of the pathway analysis of biomarkers, our urinary metabonomics analysis gives new insight into the pathogenesis and pathophysiology of nutritional rickets.

  3. Profiling and Simultaneous Quantitative Determination of Anthocyanins in Wild Myrtus communis L. Berries from Different Geographical Areas in Sardinia and their Comparative Evaluation.

    PubMed

    Maldini, Mariateresa; Chessa, Mario; Petretto, Giacomo L; Montoro, Paola; Rourke, Jonathan P; Foddai, Marzia; Nicoletti, Marcello; Pintore, Giorgio

    2016-09-01

    Myrtus communis L. (Myrtaceae) is a self-seeded shrub, widespread in Sardinia, with anti-inflammatory, antiseptic, antimicrobial, hypoglycemic and balsamic properties. Its berries, employed for the production of sweet myrtle liqueur, are characterised by a high content of bioactive polyphenols, mainly anthocyanins. Anthocyanin composition is quite specific for vegetables/fruits and can be used as a fingerprint to determine the authenticity, geographical origin and quality of raw materials, products and extracts. To rapidly analyse and determine anthocyanins in 17 samples of Myrtus communis berries by developing a platform based on the integration of UHPLC-MS/MS quantitative data and multivariate analysis with the aim of extracting the most information possible from the data. UHPLC-ESI-MS/MS methods, working in positive ion mode, were performed for the detection and determination of target compounds in multiple reaction monitoring (MRM) mode. Optimal chromatographic conditions were achieved using an XSelect HSS T3 column and a gradient elution with 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Principal component analysis (PCA) was applied to the quantitative data to correlate and discriminate 17 geographical collections of Myrtus communis. The developed quantitative method was reliable, sensitive and specific and was successfully applied to the quantification of 17 anthocyanins. Peonidin-3-O-glucoside was the most abundant compound in all the extracts investigated. The developed methodology allows the identification of quali-quantitative differences among M. communis samples and thus defines the quality and value of this raw material for marketed products. Moreover, the reported data have an immediate commercial value due to the current interest in developing antioxidant nutraceuticals from Mediterranean plants, including Sardinian Myrtus communis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Qualitative and quantitative analysis of women's perceptions of transvaginal surgery.

    PubMed

    Bingener, Juliane; Sloan, Jeff A; Ghosh, Karthik; McConico, Andrea; Mariani, Andrea

    2012-04-01

    Prior surveys evaluating women's perceptions of transvaginal surgery both support and refute the acceptability of transvaginal access. Most surveys employed mainly quantitative analysis, limiting the insight into the women's perspective. In this mixed-methods study, we include qualitative and quantitative methodology to assess women's perceptions of transvaginal procedures. Women seen at the outpatient clinics of a tertiary-care center were asked to complete a survey. Demographics and preferences for appendectomy, cholecystectomy, and tubal ligation were elicited, along with open-ended questions about concerns or benefits of transvaginal access. Multivariate logistic regression models were constructed to examine the impact of age, education, parity, and prior transvaginal procedures on preferences. For the qualitative evaluation, content analysis by independent investigators identified themes, issues, and concerns raised in the comments. The completed survey tool was returned by 409 women (grouped mean age 53 years, mean number of 2 children, 82% ≥ some college education, and 56% with previous transvaginal procedure). The transvaginal approach was acceptable for tubal ligation to 59%, for appendectomy to 43%, and for cholecystectomy to 41% of the women. The most frequently mentioned factors that would make women prefer a vaginal approach were decreased invasiveness (14.4%), recovery time (13.9%), scarring (13.7%), pain (6%), and surgical entry location relative to organ removed (4.4%). The most frequently mentioned concerns about the vaginal approach were the possibility of complications/safety (14.7%), pain (9%), infection (5.6%), and recovery time (4.9%). A number of women voiced technical concerns about the vaginal approach. As in prior studies, scarring and pain were important issues to be considered, but recovery time and increased invasiveness were also in the "top five" list. The surveyed women appeared to actively participate in evaluating the technical components of the procedures.

  5. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model

    DOE PAGES

    Gan, Yanjun; Duan, Qingyun; Gong, Wei; ...

    2014-01-01

    Sensitivity analysis (SA) is a commonly used approach for identifying important parameters that dominate model behaviors. We use a newly developed software package, a Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), to evaluate the effectiveness and efficiency of ten widely used SA methods, including seven qualitative and three quantitative ones. All SA methods are tested using a variety of sampling techniques to screen out the most sensitive (i.e., important) parameters from the insensitive ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen tunable parameters, is used for illustration. The South Branch Potomac River basin nearmore » Springfield, West Virginia in the U.S. is chosen as the study area. The key findings from this study are: (1) For qualitative SA methods, Correlation Analysis (CA), Regression Analysis (RA), and Gaussian Process (GP) screening methods are shown to be not effective in this example. Morris One-At-a-Time (MOAT) screening is the most efficient, needing only 280 samples to identify the most important parameters, but it is the least robust method. Multivariate Adaptive Regression Splines (MARS), Delta Test (DT) and Sum-Of-Trees (SOT) screening methods need about 400–600 samples for the same purpose. Monte Carlo (MC), Orthogonal Array (OA) and Orthogonal Array based Latin Hypercube (OALH) are appropriate sampling techniques for them; (2) For quantitative SA methods, at least 2777 samples are needed for Fourier Amplitude Sensitivity Test (FAST) to identity parameter main effect. McKay method needs about 360 samples to evaluate the main effect, more than 1000 samples to assess the two-way interaction effect. OALH and LPτ (LPTAU) sampling techniques are more appropriate for McKay method. For the Sobol' method, the minimum samples needed are 1050 to compute the first-order and total sensitivity indices correctly. These comparisons show that qualitative SA methods are more efficient but less accurate and robust than quantitative ones.« less

  6. Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT.

    PubMed

    Epelbaum, Ron; Frenkel, Alex; Haddad, Riad; Sikorski, Natalia; Strauss, Ludwig G; Israel, Ora; Dimitrakopoulou-Strauss, Antonia

    2013-01-01

    This study aimed to assess the role of a quantitative dynamic PET model in pancreatic cancer as a potential index of tumor aggressiveness and predictor of survival. Seventy-one patients with (18)F-FDG-avid adenocarcinoma of the pancreas before treatment were recruited, including 27 with localized tumors (11 underwent pancreatectomy, and 16 had localized nonresectable tumors) and 44 with metastatic disease. Dynamic (18)F-FDG PET images were acquired over a 60-min period, followed by a whole-body PET/CT study. Quantitative data measurements were based on a 2-compartment model, and the following variables were calculated: VB (fractional blood volume in target area), K(1) and k(2) (kinetic membrane transport parameters), k(3) and k(4) (intracellular (18)F-FDG phosphorylation and dephosphorylation parameters, respectively), and (18)F-FDG INF (global (18)F-FDG influx). The single significant variable for overall survival (OS) in patients with localized disease was (18)F-FDG INF. Patients with a high (18)F-FDG INF (>0.033 min(-1)) had a median OS of 6 and 5 mo for nonresectable and resected tumors, respectively, versus 15 and 19 mo for a low (18)F-FDG INF in nonresectable and resected tumors, respectively (P < 0.04). In metastatic disease, multivariate analysis found VB, K(1), and k(3) to be significant variables for OS (P < 0.043, <0.031, and <0.009, respectively). Prognostic factors for OS in the entire group of patients that were significant at multivariate analysis were stage of disease, VB, K(1), and (18)F-FDG INF (P < 0.00035, <0.03, <0.024, and <0.008, respectively). Median OS for all patients with a high (18)F-FDG INF, low VB, and high K(1) was 3 mo, as opposed to 14 mo in patients with a low (18)F-FDG INF, high VB, and low K(1) (P < 0.021), irrespective of stage and resectability. Quantitative (18)F-FDG kinetic parameters measured by dynamic PET in newly diagnosed pancreatic cancer correlated with the aggressiveness of disease. The (18)F-FDG INF was the single most significant variable for OS in patients with localized disease, whether resectable or not.

  7. Quantitative genetic analysis of the body composition and blood pressure association in two ethnically diverse populations.

    PubMed

    Ghosh, Sudipta; Dosaev, Tasbulat; Prakash, Jai; Livshits, Gregory

    2017-04-01

    The major aim of this study was to conduct comparative quantitative-genetic analysis of the body composition (BCP) and somatotype (STP) variation, as well as their correlations with blood pressure (BP) in two ethnically, culturally and geographically different populations: Santhal, indigenous ethnic group from India and Chuvash, indigenous population from Russia. Correspondently two pedigree-based samples were collected from 1,262 Santhal and1,558 Chuvash individuals, respectively. At the first stage of the study, descriptive statistics and a series of univariate regression analyses were calculated. Finally, multiple and multivariate regression (MMR) analyses, with BP measurements as dependent variables and age, sex, BCP and STP as independent variables were carried out in each sample separately. The significant and independent covariates of BP were identified and used for re-examination in pedigree-based variance decomposition analysis. Despite clear and significant differences between the populations in BCP/STP, both Santhal and Chuvash were found to be predominantly mesomorphic irrespective of their sex. According to MMR analyses variation of BP significantly depended on age and mesomorphic component in both samples, and in addition on sex, ectomorphy and fat mass index in Santhal and on fat free mass index in Chuvash samples, respectively. Additive genetic component contributes to a substantial proportion of blood pressure and body composition variance. Variance component analysis in addition to above mentioned results suggests that additive genetic factors influence BP and BCP/STP associations significantly. © 2017 Wiley Periodicals, Inc.

  8. Quantitative assessment of early diabetic retinopathy using fractal analysis.

    PubMed

    Cheung, Ning; Donaghue, Kim C; Liew, Gerald; Rogers, Sophie L; Wang, Jie Jin; Lim, Shueh-Wen; Jenkins, Alicia J; Hsu, Wynne; Li Lee, Mong; Wong, Tien Y

    2009-01-01

    Fractal analysis can quantify the geometric complexity of the retinal vascular branching pattern and may therefore offer a new method to quantify early diabetic microvascular damage. In this study, we examined the relationship between retinal fractal dimension and retinopathy in young individuals with type 1 diabetes. We conducted a cross-sectional study of 729 patients with type 1 diabetes (aged 12-20 years) who had seven-field stereoscopic retinal photographs taken of both eyes. From these photographs, retinopathy was graded according to the modified Airlie House classification, and fractal dimension was quantified using a computer-based program following a standardized protocol. In this study, 137 patients (18.8%) had diabetic retinopathy signs; of these, 105 had mild retinopathy. Median (interquartile range) retinal fractal dimension was 1.46214 (1.45023-1.47217). After adjustment for age, sex, diabetes duration, A1C, blood pressure, and total cholesterol, increasing retinal vascular fractal dimension was significantly associated with increasing odds of retinopathy (odds ratio 3.92 [95% CI 2.02-7.61] for fourth versus first quartile of fractal dimension). In multivariate analysis, each 0.01 increase in retinal vascular fractal dimension was associated with a nearly 40% increased odds of retinopathy (1.37 [1.21-1.56]). This association remained after additional adjustment for retinal vascular caliber. Greater retinal fractal dimension, representing increased geometric complexity of the retinal vasculature, is independently associated with early diabetic retinopathy signs in type 1 diabetes. Fractal analysis of fundus photographs may allow quantitative measurement of early diabetic microvascular damage.

  9. The methylation status of RASSF1A promoter predicts responsiveness to chemotherapy and eventual cure in hepatoblastoma patients.

    PubMed

    Honda, Shohei; Haruta, Masayuki; Sugawara, Waka; Sasaki, Fumiaki; Ohira, Miki; Matsunaga, Tadashi; Yamaoka, Hiroaki; Horie, Hiroshi; Ohnuma, Naomi; Nakagawara, Akira; Hiyama, Eiso; Todo, Satoru; Kaneko, Yasuhiko

    2008-09-01

    Despite the progress of therapy, outcomes of advanced hepatoblastoma patients who are refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the mortality rate, novel prognostic markers are needed for better therapy planning. We examined the methylation status of 13 candidate tumor suppressor genes in 20 hepatoblastoma tumors by conventional methylation-specific PCR (MSP) and found hypermethylation in 3 of the 13 genes. We analyzed the methylation status of these 3 genes (RASSF1A, SOCS1 and CASP8) in 97 tumors and found hypermethylation in 30.9, 33.0 and 15.5%, respectively. Univariate analysis showed that only the methylation status of RASSF1A but not the other 2 genes predicted the outcome, and multivariate analysis showed a weak contribution of RASSF1A methylation to overall survival. Using quantitative MSP, we found RASSF1A methylation in 44.3% of the 97 tumors. CTNNB1 mutation was detected in 67.0% of the 97 tumors. While univariate analysis demonstrated RASSF1A methylation, CTNNB1 mutation and other clinicopathological variables as prognostic factors, multivariate analysis identified RASSF1A methylation (p = 0.043; relative risk 9.39) and the disease stage (p = 0.002; relative risk 7.67) but not CTNNB1 mutation as independent prognostic factors. In survival analysis of 33 patients in stage 3B or 4, patients with unmethylated tumor had better overall survival than those with methylated tumor (p = 0.035). RASSF1A methylation may be a promising molecular-genetic marker to predict the treatment outcome and may be used to stratify patients when clinical trials are carried out.

  10. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity† †Electronic supplementary information (ESI) available: Sample description and synthesis details, experimental setup for in situ XAS and FTIR spectroscopy, details on the MCR-ALS method, details on DFT-assisted XANES simulations, details on the determination of N pure by PCA, MCR-ALS results for downsized and upsized component spaces, additional information to support the assignment of theoretical XANES curves, details on EXAFS analysis, details on IR spectral deconvolution. See DOI: 10.1039/c7sc02266b Click here for additional data file.

    PubMed Central

    Martini, A.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C.

    2017-01-01

    The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNOx applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition–activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite. PMID:29147509

  11. Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.

    PubMed

    Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz

    2018-01-01

    There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Laser-Induced Breakdown Spectroscopy (LIBS) Measurement of Uranium in Molten Salt.

    PubMed

    Williams, Ammon; Phongikaroon, Supathorn

    2018-01-01

    In this current study, the molten salt aerosol-laser-induced breakdown spectroscopy (LIBS) system was used to measure the uranium (U) content in a ternary UCl 3 -LiCl-KCl salt to investigate and assess a near real-time analytical approach for material safeguards and accountability. Experiments were conducted using five different U concentrations to determine the analytical figures of merit for the system with respect to U. In the analysis, three U lines were used to develop univariate calibration curves at the 367.01 nm, 385.96 nm, and 387.10 nm lines. The 367.01 nm line had the lowest limit of detection (LOD) of 0.065 wt% U. The 385.96 nm line had the best root mean square error of cross-validation (RMSECV) of 0.20 wt% U. In addition to the univariate calibration approach, a multivariate partial least squares (PLS) model was developed to further analyze the data. Using partial least squares (PLS) modeling, an RMSECV of 0.085 wt% U was determined. The RMSECV from the multivariate approach was significantly better than the univariate case and the PLS model is recommended for future LIBS analysis. Overall, the aerosol-LIBS system performed well in monitoring the U concentration and it is expected that the system could be used to quantitatively determine the U compositions within the normal operational concentrations of U in pyroprocessing molten salts.

  13. Prognostic significance of anaplasia and angiogenesis in childhood medulloblastoma: a pediatric oncology group study.

    PubMed

    Ozer, Erdener; Sarialioglu, Faik; Cetingoz, Riza; Yüceer, Nurullah; Cakmakci, Handan; Ozkal, Sermin; Olgun, Nur; Uysal, Kamer; Corapcioglu, Funda; Canda, Serefettin

    2004-01-01

    The purpose of this study was to investigate whether quantitative assessment of cytologic anaplasia and angiogenesis may predict the clinical prognosis in medulloblastoma and stratify the patients to avoid both undertreatment and overtreatment. Medulloblastomas from 23 patients belonging to the Pediatric Oncology Group were evaluated with respect to some prognostic variables, including histologic assessment of nodularity and desmoplasia, grading of anaplasia, measurement of nuclear size, mitotic cell count, quantification of angiogenesis, including vascular surface density (VSD) and microvessel number (NVES), and immunohistochemical scoring of vascular endothelial growth factor (VEGF) expression. Univariate and multivariate analyses for prognostic indicators for survival were performed. Univariate analysis revealed that extensive nodularity was a significant favorable prognostic factor, whereas the presence of anaplasia, increased nuclear size, mitotic rate, VSD, and NVES were significant unfavorable prognostic factors. Using multivariate analysis, increased nuclear size was found to be an independent unfavorable prognostic factor for survival. Neither the presence of desmoplasia nor VEGF expression was significantly related to patient survival. Although care must be taken not to overstate the importance of the results of this single-institution preliminary report, pathologic grading of medulloblastomas with respect to grading of anaplasia and quantification of nodularity, nuclear size, and microvessel profiles may be clinically useful for the treatment of medulloblastomas. Further validation of the independent prognostic significance of nuclear size in stratifying patients is required.

  14. Seed morphology and variation in the genus Pachycereus (Cactaceae).

    PubMed

    Arias, Salvador; Terrazas, Teresa

    2004-08-01

    Seeds of 13 Pachycereus species and two Stenocereus species that have been suggested as closely related were examined with the scanning electron microscope. Quantitative features were evaluated using multivariate analysis in order to identify characters that distinguish them. Several species groups were recognized on the basis of 16 qualitative characters. All species studied are keeled. Stenocereus aragonii and S. eichlamii share with most Pachycereus species large size, glossy appearance, and a flat relief on periclinal cells in the lateral region. Pachycereus gatesii and P. schottii are unique in having the smallest seeds and a deeply impressed hilum-micropylar region. P. hollianus does not exhibit micro-relief on periclinal walls in the lateral region, and P. fulviceps has no expanded testa border. Multivariate analysis showed that four characters, length, breadth, hilum-micropylar region length, and angle, made the greatest contribution to distinguishing among species groups. More than 80% of P. fulviceps, P. hollianus, P. tepamo, P. weberi, and S. eichlamii seeds could be classified correctly using four seed features and the percentage was even higher using just two or three features for P. gatesii, P. grandis, P. militaris, P. pringlei, and P. schottii. Testa appearance, testa cell-pattern, and position relative to the rim of the hilum-micropylar region were found to be potentially informative and should be combined with other sources of data in future phylogenetic analyses.

  15. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  16. Expression of miR-146a-5p in patients with intracranial aneurysms and its association with prognosis.

    PubMed

    Zhang, H-L; Li, L; Cheng, C-J; Sun, X-C

    2018-02-01

    The study aims to detect the association of miR-146a-5p with intracranial aneurysms (IAs). The expression of miR-146a-5p was compared from plasma samples between 72 patients with intracranial aneurysms (IAs) and 40 healthy volunteers by quantitative Real-time polymerase chain reaction (qRT-PCR). Statistical analysis was performed to analyze the relationship between miR-146a-5p expression and clinical data and overall survival (OS) time of IAs patients. Univariate and multivariate Cox proportional hazards have also been performed. Notably, higher miR-146a-5p expression was found in plasma samples from 72 patients with intracranial aneurysms (IAs) compared with 40 healthy controls. Higher miR-146a-5p expression was significantly associated with rupture and Hunt-Hess level in IAs patients. Kaplan-Meier survival analysis verified that higher miR-146a-5p expression predicted a shorter overall survival (OS) compared with lower miR-146a-5p expression in IAs patients. Univariate and multivariate Cox proportional hazards demonstrated that higher miR-146a-5p expression, rupture, and Hunt-Hess were independent risk factors of OS in patients with intracranial aneurysms (IAs). MiR-146a-5p expression may serve as a biomarker for predicting prognosis in patients with IAs.

  17. Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture

    PubMed Central

    Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.

    2018-01-01

    To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829

  18. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  19. Study on the application of MRF and the D-S theory to image segmentation of the human brain and quantitative analysis of the brain tissue

    NASA Astrophysics Data System (ADS)

    Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang

    2012-01-01

    The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, David A; Koestner, Roland; Kukreja, Ratan

    Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposuremore » and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.« less

  1. Weather sensitivity for zoo visitation in Toronto, Canada: a quantitative analysis of historical data

    NASA Astrophysics Data System (ADS)

    Hewer, Micah J.; Gough, William A.

    2016-11-01

    Based on a case study of the Toronto Zoo (Canada), multivariate regression analysis, involving both climatic and social variables, was employed to assess the relationship between daily weather and visitation. Zoo visitation was most sensitive to weather variability during the shoulder season, followed by the off-season and, then, the peak season. Temperature was the most influential weather variable in relation to zoo visitation, followed by precipitation and, then, wind speed. The intensity and direction of the social and climatic variables varied between seasons. Temperatures exceeding 26 °C during the shoulder season and 28 °C during the peak season suggested a behavioural threshold associated with zoo visitation, with conditions becoming too warm for certain segments of the zoo visitor market, causing visitor numbers to decline. Even light amounts of precipitation caused average visitor numbers to decline by nearly 50 %. Increasing wind speeds also demonstrated a negative influence on zoo visitation.

  2. Advanced spectrophotometric chemometric methods for resolving the binary mixture of doxylamine succinate and pyridoxine hydrochloride.

    PubMed

    Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita

    2018-03-01

    The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.

  3. Multivariate Cluster Analysis.

    ERIC Educational Resources Information Center

    McRae, Douglas J.

    Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…

  4. Combination of Liquid Chromatography with Multivariate Curve Resolution-Alternating Least-Squares (MCR-ALS) in the Quantitation of Polycyclic Aromatic Hydrocarbons Present in Paprika Samples.

    PubMed

    Monago-Maraña, Olga; Pérez, Rocío L; Escandar, Graciela M; Muñoz de la Peña, Arsenio; Galeano-Díaz, Teresa

    2016-11-02

    This work presents a strategy for quantitating polycyclic aromatic hydrocarbons (PAHs) in smoked paprika samples. For this, a liquid chromatographic method with fluorimetric detection (HPLC-FLD) was optimized. To resolve some interference co-eluting with the target analytes, the second-order multivariate curve resolution-alternating least-squares (MCR-ALS) algorithm has been employed combined with this liquid chromatographic method. Among the eight PAHs quantified (fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene) by HPLC-FLD, only in the case of fluorene, pyrene, and benzo[b]fluoranthene was it necessary to apply the second-order algorithm for their resolution. Limits of detection and quantitation were between 0.015 and 0.45 mg/kg and between 0.15 and 1.5 mg/kg, respectively. Good recovery results (>80%) for paprika were obtained via the complete extraction procedure, consisting of an extraction from the matrix and the cleanup of the extract by means of silica cartridges. Higher concentrations of chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene were found in the paprika samples, with respect to the maximal amounts allowed for other spices that are under European Regulation (EU) N° 2015/1933.

  5. Quantitative assessment of copper proteinates used as animal feed additives using ATR-FTIR spectroscopy and powder X-ray diffraction (PXRD) analysis.

    PubMed

    Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A

    2017-08-01

    The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2  > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.

  6. Quantitative PCR and disaccharide profiling to characterize the animal origin of low-molecular-weight heparins.

    PubMed

    Houiste, Céline; Auguste, Cécile; Macrez, Céline; Dereux, Stéphanie; Derouet, Angélique; Anger, Pascal

    2009-02-01

    Low-molecular-weight heparins (LMWHs) are widely used in the management of thrombosis and acute coronary syndromes. They are obtained by the enzymatic or chemical depolymerization of porcine intestinal heparin. Enoxaparin sodium, a widely used LMWH, has a unique and reproducible oligosaccharide profile which is determined by the origin of the starting material and a tightly controlled manufacturing process. Although other enoxaparin-like LMWHs do exist, specific release criteria including the origin of the crude heparin utilized for their production, have not been established. A quantitative polymerase chain reaction method has been developed to ensure the purity of the porcine origin of crude heparin, with a DNA detection limit as low as 1 ppm for bovine, or 10 ppm for ovine contaminants. This method is routinely used as the release acceptance criterion during enoxaparin sodium manufacturing. Furthermore, when the process removes DNA, other analytical techniques can be used to assess any contamination. Disaccharide profiling after exhaustive depolymerization can determine the presence of at least 10% bovine or 20% ovine material; multivariate analysis is useful to perform the data analysis. Consistent with the availability of newer technology, these methods should be required as acceptance criteria for crude heparins used in the manufacture of LMWHs to ensure their safety, quality, and immunologic profile.

  7. Validation of an instrument to assess toddler feeding practices of Latino mothers.

    PubMed

    Chaidez, Virginia; Kaiser, Lucia L

    2011-08-01

    This paper describes qualitative and quantitative aspects of testing a 34-item Toddler-Feeding Questionnaire (TFQ), designed for use in Latino families, and the associations between feeding practices and toddler dietary outcomes. Qualitative methods included review by an expert panel for content validity and cognitive testing of the tool to assess face validity. Quantitative analyses included use of exploratory factor analysis for construct validity; Pearson's correlations for test-retest reliability; Cronbach's alpha (α) for internal reliability; and multivariate regression for investigating relationships between feeding practices and toddler diet and anthropometry. Interviews were conducted using a convenience sample of 94 Latino mother and toddler dyads obtained largely through the Supplemental Nutrition Program for Women, Infants and Children (WIC). Data collection included household characteristics, self-reported early-infant feeding practices, the toddler's dietary intake, and anthropometric measurements. Factor analysis suggests the TFQ contains three subscales: indulgent; authoritative; and environmental influences. The TFQ demonstrated acceptable reliability for most measures. As hypothesized, indulgent practices in Latino toddlers were associated with increased energy consumption and higher intakes of total fat, saturated fat, and sweetened beverages. This tool may be useful in future research exploring the relationship of toddler feeding practices to nutritional outcomes in Latino families. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers

    PubMed Central

    Vedeld, Hege Marie; Merok, Marianne; Jeanmougin, Marine; Danielsen, Stine A.; Honne, Hilde; Presthus, Gro Kummeneje; Svindland, Aud; Sjo, Ole H.; Hektoen, Merete; Eknæs, Mette; Nesbakken, Arild; Lothe, Ragnhild A.

    2017-01-01

    The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5‐markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni‐ and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (<60, 60‐74, ≥75 years). Patients with CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31‐2.63] and 1.89 [1.34‐2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P < 0.001), and MSS BRAF mutated tumors (P < 0.001), a finding that persisted in patients with stage II, III or IV disease, and that remained significant in multivariate analysis (P < 0.01). Consistent results were found for all three age groups. To conclude, CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors. PMID:28542846

  9. Predictors of Reading and Math Academic Success in Pennsylvania Charter Schools

    ERIC Educational Resources Information Center

    Yetsko, April Christine

    2010-01-01

    The charter school movement, established to implement innovative educational methods that improve student outcomes (Nathan, 1996), necessitates further research on successful charter schools. Using a multivariate prediction design, this quantitative study sought to address the relationship between charter school success and demographic and…

  10. Astronomical data analysis software and systems I; Proceedings of the 1st Annual Conference, Tucson, AZ, Nov. 6-8, 1991

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)

    1992-01-01

    Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.

  11. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  12. The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma.

    PubMed

    Zhu, Yi; Zhang, Jing-jing; Zhu, Rong; Zhu, Yan; Liang, Wen-biao; Gao, Wen-tao; Yu, Jun-bo; Xu, Ze-kuan; Miao, Yi

    2011-12-01

    The MUC4 gene could have a key role in the progression of pancreatic cancer, but the quantitative measurement of its expression in clinical tissue samples remains a challenge. The correlations between MUC4 promoter methylation status in vivo and either pancreatic cancer progression or MUC4 mRNA expression need to be demonstrated. We used the techniques of quantitative real-time PCR and DNA methylation-specific PCR combined microdissection to precisely detect MUC4 expression and promoter methylation status in 116 microdissected foci from 57 patients with pancreatic ductal adenocarcinoma. Both mRNA expression and hypomethylation frequency increased from normal to precancerous lesions to pancreatic cancer. Multivariate Cox regression analysis showed that high-level MUC4 expression (P = 0.008) and tumor-node-metastasis staging (P = 0.038) were significant independent risk factors for predicting the prognosis of 57 patients. The MUC4 mRNA expression was not significantly correlated with promoter methylation status in 30 foci of pancreatic ductal adenocarcinoma. These results suggest that high mRNA expression and hypomethylation of the MUC4 gene could be involved in carcinogenesis and in the malignant development of pancreatic ductal adenocarcinoma. The MUC4 mRNA expression may become a new prognostic marker for pancreatic cancer. Microdissection-based quantitative real-time PCR and methylation-specific PCR contribute to the quantitative detection of MUC4 expression in clinical samples and reflect the epigenetic regulatory mechanisms of MUC4 in vivo.

  13. ALA-induced PpIX spectroscopy for brain tumor image-guided surgery

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Leblond, Frederic; Kim, Anthony; Harris, Brent T.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.

    2011-03-01

    Maximizing the extent of brain tumor resection correlates with improved survival and quality of life outcomes in patients. Optimal surgical resection requires accurate discrimination between normal and abnormal, cancerous tissue. We present our recent experience using quantitative optical spectroscopy in 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence-guided resection. Exogenous administration of ALA leads to preferential accumulation in tumor tissue of the fluorescent compound, PpIX, which can be used for in vivo surgical guidance. Using the state of the art approach with a fluorescence surgical microscope, we have been able to visualize a subset of brain tumors, but the sensitivity and accuracy of fluorescence detection for tumor tissue with this system are low. To take full advantage of the biological selectivity of PpIX accumulation in brain tumors, we used a quantitative optical spectroscopy system for in vivo measurements of PpIX tissue concentrations. We have shown that, using our quantitative approach for determination of biomarker concentrations, ALA-induced PpIX fluorescence-guidance can achieve accuracies of greater than 90% for most tumor histologies. Here we show multivariate analysis of fluorescence and diffuse reflectance signals in brain tumors with comparable diagnostic performance to our previously reported quantitative approach. These results are promising, since they show that technological improvements in current fluorescence-guided surgical technologies and more biologically relevant approaches are required to take full advantage of fluorescent biomarkers, achieve better tumor identification, increase extent of resection, and subsequently, lead to improve survival and quality of life in patients.

  14. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  15. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  16. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    NASA Astrophysics Data System (ADS)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  17. Reporting Practices and Use of Quantitative Methods in Canadian Journal Articles in Psychology.

    PubMed

    Counsell, Alyssa; Harlow, Lisa L

    2017-05-01

    With recent focus on the state of research in psychology, it is essential to assess the nature of the statistical methods and analyses used and reported by psychological researchers. To that end, we investigated the prevalence of different statistical procedures and the nature of statistical reporting practices in recent articles from the four major Canadian psychology journals. The majority of authors evaluated their research hypotheses through the use of analysis of variance (ANOVA), t -tests, and multiple regression. Multivariate approaches were less common. Null hypothesis significance testing remains a popular strategy, but the majority of authors reported a standardized or unstandardized effect size measure alongside their significance test results. Confidence intervals on effect sizes were infrequently employed. Many authors provided minimal details about their statistical analyses and less than a third of the articles presented on data complications such as missing data and violations of statistical assumptions. Strengths of and areas needing improvement for reporting quantitative results are highlighted. The paper concludes with recommendations for how researchers and reviewers can improve comprehension and transparency in statistical reporting.

  18. High-level mRNA quantification of proliferation marker pKi-67 is correlated with favorable prognosis in colorectal carcinoma.

    PubMed

    Ihmann, Thomas; Liu, Jian; Schwabe, Wolfgang; Häusler, Peter; Behnke, Detlev; Bruch, Hans-Peter; Broll, Rainer; Windhövel, Ute; Duchrow, Michael

    2004-12-01

    The present study retrospectively examines the expression of pKi-67 mRNA and protein in colorectal carcinoma and their correlation to the outcome of patients. Immunohistochemistry and quantitative RT-PCR were used to analyze the expression of pKi-67 in 43 archival specimens of patients with curatively resected primary colorectal carcinoma, who were not treated with neo-adjuvant therapy. We determined a median pKi-67 (MIB-1) labeling index of 31.3% (range 10.3-66.4%), and a mean mRNA level of 0.1769 (DeltaC(T): range 0.01-0.69); indices and levels did not correlate. High pKi-67 mRNA DeltaC(T) values were associated with a significantly favorable prognosis, while pKi-67 labeling indices were not correlated to prognostic outcome. A multivariate analysis of clinical and biological factors indicated that tumor stage (UICC) and pKi-67 mRNA expression level were independent prognostic factors. Quantitatively determined pKi-67 mRNA can be a good and new prognostic indicator for primary resected colorectal carcinoma.

  19. Multivariate inference of pathway activity in host immunity and response to therapeutics

    PubMed Central

    Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.

    2014-01-01

    Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207

  20. Lifestyle Factors and Visible Skin Aging in a Population of Japanese Elders

    PubMed Central

    Asakura, Keiko; Nishiwaki, Yuji; Milojevic, Ai; Michikawa, Takehiro; Kikuchi, Yuriko; Nakano, Makiko; Iwasawa, Satoko; Hillebrand, Greg; Miyamoto, Kukizo; Ono, Masaji; Kinjo, Yoshihide; Akiba, Suminori; Takebayashi, Toru

    2009-01-01

    Background The number of studies that use objective and quantitative methods to evaluate facial skin aging in elderly people is extremely limited, especially in Japan. Therefore, in this cross-sectional study we attempted to characterize the condition of facial skin (hyperpigmentation, pores, texture, and wrinkling) in Japanese adults aged 65 years or older by using objective and quantitative imaging methods. In addition, we aimed to identify lifestyle factors significantly associated with these visible signs of aging. Methods The study subjects were 802 community-dwelling Japanese men and women aged at least 65 years and living in the town of Kurabuchi (Takasaki City, Gunma Prefecture, Japan), a mountain community with a population of approximately 4800. The facial skin condition of subjects was assessed quantitatively using a standardized facial imaging system and subsequent computer image analysis. Lifestyle information was collected using a structured questionnaire. The association between skin condition and lifestyle factors was examined using multivariable regression analysis. Results Among women, the mean values for facial texture, hyperpigmentation, and pores were generally lower than those among age-matched men. There was no significant difference between sexes in the severity of facial wrinkling. Older age was associated with worse skin condition among women only. After adjusting for age, smoking status and topical sun protection were significantly associated with skin condition among both men and women. Conclusions Our study revealed significant differences between sexes in the severity of hyperpigmentation, texture, and pores, but not wrinkling. Smoking status and topical sun protection were significantly associated with signs of visible skin aging in this study population. PMID:19700917

  1. Identifying symptoms of ovarian cancer: a qualitative and quantitative study.

    PubMed

    Bankhead, C R; Collins, C; Stokes-Lampard, H; Rose, P; Wilson, S; Clements, A; Mant, D; Kehoe, S T; Austoker, J

    2008-07-01

    Symptoms of ovarian cancer are often vague and consequently a high proportion of women with ovarian cancer are not referred to the appropriate clinic. To identify diagnostic factors for ovarian cancer. A qualitative and quantitative study. Four UK hospitals. One hundred and twenty-four women referred to hospital with suspected ovarian malignancy. Women were interviewed prior to diagnosis (n = 63), or soon after. A thematic analysis was conducted. Emergent symptoms were quantitatively analysed to identify distinguishing features of ovarian cancer. Symptoms in women with and without ovarian cancer. Diagnoses comprised 44 malignancies, 59 benign gynaecological pathologies and 21 normal findings. Of the malignancies, 25 women had stage III or more disease, with an average age of 59 years. The benign/normal cohort was significantly younger (48 years). Multivariate analysis revealed persistent abdominal distension (OR 5.2, 95% CI 1.3-20.5), postmenopausal bleeding (OR 9.2, 95% CI 1.1-76.1), appetite loss (OR 3.2, 95% CI 1.1-9.2), early satiety (OR 5.0, 95% CI 1.6-15.7) and progressive symptoms (OR 3.6, 95% CI 1.3-9.8) as independent, statistically significant variables associated with ovarian cancer. Fluctuating distension was not associated with ovarian cancer (OR 0.4, 95% CI 0-4.1). Women frequently used the term bloating, but this represented two distinct events: persistent abdominal distension and fluctuating distension/discomfort. Ovarian cancer is not a silent killer. Clinicians should distinguish between persistent and fluctuating distension. Recognition of the significance of symptoms described by women could lead to earlier and more appropriate referral.

  2. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  3. Methods for presentation and display of multivariate data

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.

  4. A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2014-01-01

    Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…

  5. Non-Cognitive Factor Relationships to Hybrid Doctoral Course Satisfaction and Self-Efficacy

    ERIC Educational Resources Information Center

    Egbert, Jessica Dalby

    2013-01-01

    Through a quantitative, non-experimental design, the studied explored non-cognitive factor relationships to hybrid doctoral course satisfaction and self-efficacy, including the differences between the online and on-campus components of the student-selected hybrid courses. Descriptive, bivariate, and multivariate statistical analyses were used to…

  6. Social Competence in the Preschool: A Multivariate View.

    ERIC Educational Resources Information Center

    Connolly, Jennifer; Doyle, Anna-Beth

    This study was designed to provide additional understanding of the construct of social competence by using multiple assessments, including both behavioral and inferential techniques. Indices of qualitative social behaviors and of quantitative interaction dimensions were collected on 66 preschoolers during free play. Scores on the Kohn and Rosman…

  7. Grading Rubrics: Hoopla or Help?

    ERIC Educational Resources Information Center

    Howell, Rebecca J.

    2014-01-01

    The purpose of the study was to offer some quantitative, multivariate evidence concerning the impact of grading rubric use on academic outcome among American higher education students. Using a pre-post, quasi-experimental research design, cross-sectional data were derived from undergraduates enrolled in an elective during spring and fall 2009 at…

  8. A screening model for low bone mass in elderly Japanese men using quantitative ultrasound measurements: Fujiwara-Kyo Study.

    PubMed

    Minematsu, Akira; Hazaki, Kan; Harano, Akihiro; Iki, Masayuki; Fujita, Yuki; Okamoto, Nozomi; Kurumatani, Norio

    2012-01-01

    Screening for low bone mass is important to prevent fragility fractures in men as well as women, although men show a much lower prevalence of osteoporosis than women. The purpose of this study was to establish a screening model for low bone mineral density (BMD) using a quantitative ultrasound parameter and easily obtained objective indices for elderly Japanese men. We examined 1633 men (65-84 yr old) who were subjects of the Fujiwara-Kyo Study. Speed of sound (SOS) at the calcaneus was determined, and BMD was measured by dual-energy X-ray absorptiometry at the lumbar spine (LS), total hip (TH), and femoral neck (FN). Low BMD was defined as >1 standard deviation below the young adult mean, in accordance with World Health Organization criteria. We performed receiver operating characteristic (ROC) analysis to identify a better screening model incorporating SOS and determined the optimal cutoff value using Youden index. Prevalences of low BMD at the 3 skeletal sites were 27.8% (LS), 33.5% (TH), 48.6% (FN), and 43.3% at either LS or TH. The greatest area under the ROC curve (0.806, 95% confidence interval: 0.785-0.828) and smallest Akaike's information criterion were obtained in the multivariate model incorporating SOS, age, height, and weight for predicting low BMD at all skeletal sites. This model predicted low BMD at TH with the sensitivity of 0.726 and specificity of 0.739, whereas a similar model predicted low BMD at LS with much lower validity. We conclude that the multivariate model for TH could be used to screen for low BMD in elderly Japanese men. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross-sectional geometry.

    PubMed

    Houssaye, Alexandra; Taverne, Maxime; Cornette, Raphaël

    2018-05-01

    Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this should be even more fruitful for heterogeneous diaphyses. In addition, covariation analyses showed that there is a strong interest in removing the size effect to access the differences in the microstructure of the humerus and femur. This methodological study provides a reference for future quantitative analyses on long bone inner structure and should make it possible, through a detailed knowledge of each descriptive parameter, to better interpret results from the multivariate analyses associated with these studies. This will have direct implications for studies in vertebrate anatomy, but also in paleontology and anthropology. © 2018 Anatomical Society.

  10. Multivariate Analysis and Machine Learning in Cerebral Palsy Research

    PubMed Central

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP. PMID:29312134

  11. Multivariate Analysis and Machine Learning in Cerebral Palsy Research.

    PubMed

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.

  12. Quality by design case study: an integrated multivariate approach to drug product and process development.

    PubMed

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  13. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer.

    PubMed

    Fan, Heng; Zhu, Jian-Hua; Yao, Xue-Qing

    2018-05-01

    Long non-coding RNA (lncRNA) plays a very important role in the occurrence and development of various tumors, and is a potential biomarker for cancer diagnosis and prognosis. The purpose of this study was to investigate the relationship between the expression of lncRNA plasmacytoma variant translocation 1 (PVT1) and the prognostic significance in patients with colorectal cancer. The expression of PVT1 was measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in cancerous and adjacent tissues of 210 colorectal cancer patients. The disease-free survival and overall survival of colorectal cancer patients were evaluated by Kaplan-Meier analysis, and univariate and multivariate analysis were performed by Cox proportional-hazards model. Our results revealed that PVT1 expression in cancer tissues of colorectal cancer was significantly higher than that of adjacent tissues ( P<0.001). High PVT1 expression was increased by 51.4% (108/210), which was significantly correlated with the tumor differentiation, the depth of invasion, the stage of tumor, node, metastasis (TNM), and lymphatic metastasis. The Kaplan-Meier analysis showed that high PVT1 expression resulted in a shorter disease-free survival (Log-rank test P<0.001) and overall survival (Log-rank test P<0.001) compared with the low PVT1 expression group in colorectal cancer patients, whether at TNM I/II stage or at TNM III/IV stage. A multivariate Cox regression analysis demonstrated that high PVT1 expression was an independent predictor of poor prognosis in colorectal cancer patients. Our results suggest that high PVT1 expression might be a potential biomarker for assessing tumor recurrence and prognosis in colorectal cancer patients.

  14. [Liver volume, intrahepatic fat and body weight in the course of a lifestyle interventional study: Analysis with quantitative MR-based methods].

    PubMed

    Bongers, M N; Stefan, N; Fritsche, A; Häring, H-U; Nikolaou, K; Schick, F; Machann, J

    2015-04-01

    The aim of this study was to investigate potential associations between changes in liver volume, the amount of intrahepatic lipids (IHL) and body weight during lifestyle interventions. In a prospective study 150 patients with an increased risk for developing type 2 diabetes mellitus were included who followed a caloric restriction diet for 6 months. In the retrospective analysis 18 women and 9 men (age range 22-71 years) with an average body mass index (BMI) of 32 kg/m(2) were enrolled. The liver volume was determined at the beginning and after 6 months by three-dimensional magnetic resonance imaging (3D-MRI, echo gradient, opposed-phase) and IHLs were quantified by volume-selective MR spectroscopy in single voxel stimulated echo acquisition mode (STEAM). Univariable and multivariable correlation analyses between changes of liver volume (Δliver volume), intrahepatic lipids (ΔIHL) and body weight (ΔBW) were performed. Univariable correlation analysis in the whole study cohort showed associations between ΔIHL and ΔBW (r = 0.69; p < 0.0001), ΔIHL and Δliver volume (r = 0.66; p = 0.0002) as well as ΔBW and Δliver volume (r = 0.5; p = 0.0073). Multivariable correlation analysis revealed that changes of liver volume are primarily determined by changes in IHL independent of changes in body weight (β = 0.0272; 95% CI: 0.0155-0.034; p < 0.0001). Changes of liver volume during lifestyle interventions are independent of changes of body weight primarily determined by changes of IHL. These results show the reversibility of augmented liver volume in steatosis if it is possible to reduce IHLs during lifestyle interventions.

  15. Magnetic resonance analysis of malignant transformation in recurrent glioma.

    PubMed

    Jalbert, Llewellyn E; Neill, Evan; Phillips, Joanna J; Lupo, Janine M; Olson, Marram P; Molinaro, Annette M; Berger, Mitchel S; Chang, Susan M; Nelson, Sarah J

    2016-08-01

    Patients with low-grade glioma (LGG) have a relatively long survival, and a balance is often struck between treating the tumor and impacting quality of life. While lesions may remain stable for many years, they may also undergo malignant transformation (MT) at the time of recurrence and require more aggressive intervention. Here we report on a state-of-the-art multiparametric MRI study of patients with recurrent LGG. One hundred and eleven patients previously diagnosed with LGG were scanned at either 1.5 T or 3 T MR at the time of recurrence. Volumetric and intensity parameters were estimated from anatomic, diffusion, perfusion, and metabolic MR data. Direct comparisons of histopathological markers from image-guided tissue samples with metrics derived from the corresponding locations on the in vivo images were made. A bioinformatics approach was applied to visualize and interpret these results, which included imaging heatmaps and network analysis. Multivariate linear-regression modeling was utilized for predicting transformation. Many advanced imaging parameters were found to be significantly different for patients with tumors that had undergone MT versus those that had not. Imaging metrics calculated at the tissue sample locations highlighted the distinct biological significance of the imaging and the heterogeneity present in recurrent LGG, while multivariate modeling yielded a 76.04% accuracy in predicting MT. The acquisition and quantitative analysis of such multiparametric MR data may ultimately allow for improved clinical assessment and treatment stratification for patients with recurrent LGG. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  16. Multivariate analysis of organic acids in fermented food from reversed-phase high-performance liquid chromatography data.

    PubMed

    Mortera, Pablo; Zuljan, Federico A; Magni, Christian; Bortolato, Santiago A; Alarcón, Sergio H

    2018-02-01

    Multivariate calibration coupled to RP-HPLC with diode array detection (HPLC-DAD) was applied to the identification and the quantitative evaluation of the short chain organic acids (malic, oxalic, formic, lactic, acetic, citric, pyruvic, succinic, tartaric, propionic and α-cetoglutaric) in fermented food. The goal of the present study was to get the successful resolution of a system in the combined occurrence of strongly coeluting peaks, of distortions in the time sensors among chromatograms, and of the presence of unexpected compounds not included in the calibration step. Second-order HPLC-DAD data matrices were obtained in a short time (10min) on a C18 column with a chromatographic system operating in isocratic mode (mobile phase was 20mmolL -1 phosphate buffer at pH 2.20) and a flow-rate of 1.0mLmin -1 at room temperature. Parallel factor analysis (PARAFAC) and unfolded partial least-squares combined with residual bilinearization (U-PLS/RBL) were the second-order calibration algorithms select for data processing. The performance of the analytical parameters was good with an outstanding limit of detection (LODs) for acids ranging from 0.15 to 10.0mmolL -1 in the validation samples. The improved method was applied to the analysis of many dairy products (yoghurt, cultured milk and cheese) and wine. The method was shown as an effective means for determining and following acid contents in fermented food and was characterized by reducibility with simple, high resolution and rapid procedure without derivatization of analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults.

    PubMed

    Zach, Jordan Alexander; Newell, John D; Schroeder, Joyce; Murphy, James R; Curran-Everett, Douglas; Hoffman, Eric A; Westgate, Philip M; Han, MeiLan K; Silverman, Edwin K; Crapo, James D; Lynch, David A

    2012-10-01

    The purposes of this study were to evaluate the reference range of quantitative computed tomography (QCT) measures of lung attenuation and airway parameter measurements in healthy nonsmoking adults and to identify sources of variation in those measures and possible means to adjust for them. Within the COPDGene study, 92 healthy non-Hispanic white nonsmokers (29 men, 63 women; mean [SD] age, 62.7 [9.0] years; mean [SD] body mass index [BMI], 28.1 [5.1] kg/m(2)) underwent volumetric computed tomography (CT) at full inspiration and at the end of a normal expiration. On QCT analysis (Pulmonary Workstation 2, VIDA Diagnostics), inspiratory low-attenuation areas were defined as lung tissue with attenuation values -950 Hounsfield units or less on inspiratory CT (LAA(I-950)). Expiratory low-attenuation areas were defined as lung tissue -856 Hounsfield units or less on expiratory CT (LAA(E-856)). We used simple linear regression to determine the impact of age and sex on QCT parameters and multiple regression to assess the additional impact of total lung capacity and functional residual capacity measured by CT (TLC(CT) and FRC(CT)), scanner type, and mean tracheal air attenuation. Airways were evaluated using measures of airway wall thickness, inner luminal area, wall area percentage (WA%), and standardized thickness of an airway with inner perimeter of 10 mm (Pi10). Mean (SD) %LAA(I-950) was 2.0% (2.7%), and mean (SD) %LAA(E-856) was 9.2% (6.8%). Mean (SD) %LAA(I-950) was 3.6% (3.2%) in men, compared with 1.3% (2.0%) in women (P < 0.001). The %LAA(I-950) did not change significantly with age (P = 0.08) or BMI (P = 0.52). %LAA(E-856) did not show any independent relationship with age (P = 0.33), sex (P = 0.70), or BMI (P = 0.32). On multivariate analysis, %LAA(I-950) showed a direct relationship to TLC(CT) (P = 0.002) and an inverse relationship to mean tracheal air attenuation (P = 0.003), and %LAA(E-856) was related to age (P = 0.001), FRC(CT) (P = 0.007), and scanner type (P < 0.001). Multivariate analysis of segmental airways showed that inner luminal area and WA% were significantly related to TLC(CT) (P < 0.001) and age (0.006). Moreover, WA% was associated with sex (P = 0.05), axial pixel size (P = 0.03), and slice interval (P = 0.04). Lastly, airway wall thickness was strongly influenced by axial pixel size (P < 0.001). Although the attenuation characteristics of normal lung differ by age and sex, these differences do not persist on multivariate analysis. Potential sources of variation in measurement of attenuation-based QCT parameters include depth of inspiration/expiration and scanner type. Tracheal air attenuation may partially correct variation because of scanner type. Sources of variation in QCT airway measurements may include age, sex, BMI, depth of inspiration, and spatial resolution.

  18. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  19. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy.

    PubMed

    Wu, Jia; Gong, Guanghua; Cui, Yi; Li, Ruijiang

    2016-11-01

    To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). In this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65). The heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up.

    PubMed

    Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A

    2017-10-01

    Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ 2 tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ 2 tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF. © RSNA, 2017.

  1. Quantitative chromatin pattern description in Feulgen-stained nuclei as a diagnostic tool to characterize the oligodendroglial and astroglial components in mixed oligo-astrocytomas.

    PubMed

    Decaestecker, C; Lopes, B S; Gordower, L; Camby, I; Cras, P; Martin, J J; Kiss, R; VandenBerg, S R; Salmon, I

    1997-04-01

    The oligoastrocytoma, as a mixed glioma, represents a nosologic dilemma with respect to precisely defining the oligodendroglial and astroglial phenotypes that constitute the neoplastic cell lineages of these tumors. In this study, cell image analysis with Feulgen-stained nuclei was used to distinguish between oligodendroglial and astrocytic phenotypes in oligodendrogliomas and astrocytomas and then applied to mixed oligoastrocytomas. Quantitative features with respect to chromatin pattern (30 variables) and DNA ploidy (8 variables) were evaluated on Feulgen-stained nuclei in a series of 71 gliomas using computer-assisted microscopy. These included 32 oligodendrogliomas (OLG group: 24 grade II and 8 grade III tumors according to the WHO classification), 32 astrocytomas (AST group: 13 grade II and 19 grade III tumors), and 7 oligoastrocytomas (OLGAST group). Initially, image analysis with multivariate statistical analyses (Discriminant Analysis) could identify each glial tumor group. Highly significant statistical differences were obtained distinguishing the morphonuclear features of oligodendrogliomas from those of astrocytomas, regardless of their histological grade. When compared with the 7 mixed oligoastrocytomas under study, 5 exhibited DNA ploidy and chromatin pattern characteristics similar to grade II oligodendrogliomas, I to grade III oligodendrogliomas, and I to grade II astrocytomas. Using multifactorial statistical analyses (Discriminant Analysis combined with Principal Component Analysis). It was possible to quantify the proportion of "typical" glial cell phenotypes that compose grade II and III oligodendrogliomas and grade II and III astrocytomas in each mixed glioma. Cytometric image analysis may be an important adjunct to routine histopathology for the reproducible identification of neoplasms containing a mixture of oligodendroglial and astrocytic phenotypes.

  2. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  3. Using Qualitative Metasummary to Synthesize Qualitative and Quantitative Descriptive Findings

    PubMed Central

    Sandelowski, Margarete; Barroso, Julie; Voils, Corrine I.

    2008-01-01

    The new imperative in the health disciplines to be more methodologically inclusive has generated a growing interest in mixed research synthesis, or the integration of qualitative and quantitative research findings. Qualitative metasummary is a quantitatively oriented aggregation of qualitative findings originally developed to accommodate the distinctive features of qualitative surveys. Yet these findings are similar in form and mode of production to the descriptive findings researchers often present in addition to the results of bivariate and multivariable analyses. Qualitative metasummary, which includes the extraction, grouping, and formatting of findings, and the calculation of frequency and intensity effect sizes, can be used to produce mixed research syntheses and to conduct a posteriori analyses of the relationship between reports and findings. PMID:17243111

  4. Cortical orofacial motor representation in Old World monkeys, great apes, and humans. I. Quantitative analysis of cytoarchitecture.

    PubMed

    Sherwood, Chet C; Holloway, Ralph L; Erwin, Joseph M; Schleicher, Axel; Zilles, Karl; Hof, Patrick R

    2004-01-01

    Social life in anthropoid primates is mediated by interindividual communication, involving movements of the orofacial muscles for the production of vocalization and gestural expression. Although phylogenetic diversity has been reported in the auditory and visual communication systems of primates, little is known about the comparative neuroanatomy that subserves orofacial movement. The current study reports results from quantitative image analysis of the region corresponding to orofacial representation of primary motor cortex (Brodmann's area 4) in several catarrhine primate species (Macaca fascicularis, Papio anubis, Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens) using the Grey Level Index method. This cortical region has been implicated in the execution of skilled motor activities such as voluntary facial expression and human speech. Density profiles of the laminar distribution of Nissl-stained neuronal somata were acquired from high-resolution images to quantify cytoarchitectural patterns. Despite general similarity in these profiles across catarrhines, multivariate analysis showed that cytoarchitectural patterns of individuals were more similar within-species versus between-species. Compared to Old World monkeys, the orofacial representation of area 4 in great apes and humans was characterized by an increased relative thickness of layer III and overall lower cell volume densities, providing more neuropil space for interconnections. These phylogenetic differences in microstructure might provide an anatomical substrate for the evolution of greater volitional fine motor control of facial expressions in great apes and humans. Copyright 2004 S. Karger AG, Basel

  5. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska

    PubMed Central

    Pérez-Hernández, Oscar; Giesler, Loren J.

    2014-01-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160

  6. Redundant variables and Granger causality

    NASA Astrophysics Data System (ADS)

    Angelini, L.; de Tommaso, M.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Stramaglia, S.

    2010-03-01

    We discuss the use of multivariate Granger causality in presence of redundant variables: the application of the standard analysis, in this case, leads to under estimation of causalities. Using the un-normalized version of the causality index, we quantitatively develop the notions of redundancy and synergy in the frame of causality and propose two approaches to group redundant variables: (i) for a given target, the remaining variables are grouped so as to maximize the total causality and (ii) the whole set of variables is partitioned to maximize the sum of the causalities between subsets. We show the application to a real neurological experiment, aiming to a deeper understanding of the physiological basis of abnormal neuronal oscillations in the migraine brain. The outcome by our approach reveals the change in the informational pattern due to repetitive transcranial magnetic stimulations.

  7. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    PubMed

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  8. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    PubMed

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis

    PubMed Central

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-01-01

    Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689

  10. Comprehensive evaluation of direct injection mass spectrometry for the quantitative profiling of volatiles in food samples

    PubMed Central

    2016-01-01

    Although qualitative strategies based on direct injection mass spectrometry (DIMS) have recently emerged as an alternative for the rapid classification of food samples, the potential of these approaches in quantitative tasks has scarcely been addressed to date. In this paper, the applicability of different multivariate regression procedures to data collected by DIMS from simulated mixtures has been evaluated. The most relevant factors affecting quantitation, such as random noise, the number of calibration samples, type of validation, mixture complexity and similarity of mass spectra, were also considered and comprehensively discussed. Based on the conclusions drawn from simulated data, and as an example of application, experimental mass spectral fingerprints collected by direct thermal desorption coupled to mass spectrometry were used for the quantitation of major volatiles in Thymus zygis subsp. zygis chemotypes. The results obtained, validated with the direct thermal desorption coupled to gas chromatography–mass spectrometry method here used as a reference, show the potential of DIMS approaches for the fast and precise quantitative profiling of volatiles in foods. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644978

  11. The Emerging Field of Quantitative Blood Metabolomics for Biomarker Discovery in Critical Illnesses

    PubMed Central

    Serkova, Natalie J.; Standiford, Theodore J.

    2011-01-01

    Metabolomics, a science of systems biology, is the global assessment of endogenous metabolites within a biologic system and represents a “snapshot” reading of gene function, enzyme activity, and the physiological landscape. Metabolite detection, either individual or grouped as a metabolomic profile, is usually performed in cells, tissues, or biofluids by either nuclear magnetic resonance spectroscopy or mass spectrometry followed by sophisticated multivariate data analysis. Because loss of metabolic homeostasis is common in critical illness, the metabolome could have many applications, including biomarker and drug target identification. Metabolomics could also significantly advance our understanding of the complex pathophysiology of acute illnesses, such as sepsis and acute lung injury/acute respiratory distress syndrome. Despite this potential, the clinical community is largely unfamiliar with the field of metabolomics, including the methodologies involved, technical challenges, and, most importantly, clinical uses. Although there is evidence of successful preclinical applications, the clinical usefulness and application of metabolomics in critical illness is just beginning to emerge, the advancement of which hinges on linking metabolite data to known and validated clinically relevant indices. In addition, other important aspects, such as patient selection, sample collection, and processing, as well as the needed multivariate data analysis, have to be taken into consideration before this innovative approach to biomarker discovery can become a reliable tool in the intensive care unit. The purpose of this review is to begin to familiarize clinicians with the field of metabolomics and its application for biomarker discovery in critical illnesses such as sepsis. PMID:21680948

  12. Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets Using Transmission Raman and Near-Infrared (NIR) Spectroscopy.

    PubMed

    Sparén, Anders; Hartman, Madeleine; Fransson, Magnus; Johansson, Jonas; Svensson, Olof

    2015-05-01

    Raman spectroscopy can be an alternative to near-infrared spectroscopy (NIR) for nondestructive quantitative analysis of solid pharmaceutical formulations. Compared with NIR spectra, Raman spectra have much better selectivity, but subsampling was always an issue for quantitative assessment. Raman spectroscopy in transmission mode has reduced this issue, since a large volume of the sample is measured in transmission mode. The sample matrix, such as particle size of the drug substance in a tablet, may affect the Raman signal. In this work, matrix effects in transmission NIR and Raman spectroscopy were systematically investigated for a solid pharmaceutical formulation. Tablets were manufactured according to an experimental design, varying the factors particle size of the drug substance (DS), particle size of the filler, compression force, and content of drug substance. All factors were varied at two levels plus a center point, except the drug substance content, which was varied at five levels. Six tablets from each experimental point were measured with transmission NIR and Raman spectroscopy, and their concentration of DS was determined for a third of those tablets. Principal component analysis of NIR and Raman spectra showed that the drug substance content and particle size, the particle size of the filler, and the compression force affected both NIR and Raman spectra. For quantitative assessment, orthogonal partial least squares regression was applied. All factors varied in the experimental design influenced the prediction of the DS content to some extent, both for NIR and Raman spectroscopy, the particle size of the filler having the largest effect. When all matrix variations were included in the multivariate calibrations, however, good predictions of all types of tablets were obtained, both for NIR and Raman spectroscopy. The prediction error using transmission Raman spectroscopy was about 30% lower than that obtained with transmission NIR spectroscopy.

  13. Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students

    ERIC Educational Resources Information Center

    Valero-Mora, Pedro M.; Ledesma, Ruben D.

    2011-01-01

    This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…

  14. Constrained evolution of the sex comb in Drosophila simulans.

    PubMed

    Maraqa, M S; Griffin, R; Sharma, M D; Wilson, A J; Hunt, J; Hosken, D J; House, C M

    2017-02-01

    Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post-copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post-copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre- and post-copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima. © 2016 The Authors. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  15. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    PubMed

    Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan

    2016-05-01

    The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.

  16. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers.

    PubMed

    Vedeld, Hege Marie; Merok, Marianne; Jeanmougin, Marine; Danielsen, Stine A; Honne, Hilde; Presthus, Gro Kummeneje; Svindland, Aud; Sjo, Ole H; Hektoen, Merete; Eknaes, Mette; Nesbakken, Arild; Lothe, Ragnhild A; Lind, Guro E

    2017-09-01

    The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5-markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni- and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (<60, 60-74, ≥75 years). Patients with CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31-2.63] and 1.89 [1.34-2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P < 0.001), and MSS BRAF mutated tumors (P < 0.001), a finding that persisted in patients with stage II, III or IV disease, and that remained significant in multivariate analysis (P < 0.01). Consistent results were found for all three age groups. To conclude, CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  17. Inherited behavioral susceptibility to adiposity in infancy: a multivariate genetic analysis of appetite and weight in the Gemini birth cohort.

    PubMed

    Llewellyn, Clare H; van Jaarsveld, Cornelia H M; Plomin, Robert; Fisher, Abigail; Wardle, Jane

    2012-03-01

    The behavioral susceptibility model proposes that inherited differences in traits such as appetite confer differential risk of weight gain and contribute to the heritability of weight. Evidence that the FTO gene may influence weight partly through its effects on appetite supports this model, but testing the behavioral pathways for multiple genes with very small effects is not feasible. Twin analyses make it possible to get a broad-based estimate of the extent of shared genetic influence between appetite and weight. The objective was to use multivariate twin analyses to test the hypothesis that associations between appetite and weight are underpinned by shared genetic effects. Data were from Gemini, a population-based birth cohort of twins (n = 4804) born in 2007. Infant weights at 3 mo were taken from the records of health professionals. Appetite was assessed at 3 mo for the milk-feeding period by using the Baby Eating Behaviour Questionnaire (BEBQ), a parent-reported measure of appetite [enjoyment of food, food responsiveness, slowness in eating (SE), satiety responsiveness (SR), and appetite size (AS)]. Multivariate quantitative genetic modeling was used to test for shared genetic influences. Significant correlations were found between all BEBQ traits and weight. Significant shared genetic influence was identified for weight with SE, SR, and AS; genetic correlations were between 0.22 and 0.37. Shared genetic effects explained 41-45% of these phenotypic associations. Differences in weight in infancy may be due partly to genetically determined differences in appetitive traits that confer differential susceptibility to obesogenic environments.

  18. Clinical Integration and How It Affects Student Retention in Undergraduate Athletic Training Programs

    PubMed Central

    Young, Allison; Klossner, Joanne; Docherty, Carrie L; Dodge, Thomas M; Mensch, James M

    2013-01-01

    Context A better understanding of why students leave an undergraduate athletic training education program (ATEP), as well as why they persist, is critical in determining the future membership of our profession. Objective To better understand how clinical experiences affect student retention in undergraduate ATEPs. Design Survey-based research using a quantitative and qualitative mixed-methods approach. Setting Three-year undergraduate ATEPs across District 4 of the National Athletic Trainers' Association. Patients or Other Participants Seventy-one persistent students and 23 students who left the ATEP prematurely. Data Collection and Analysis Data were collected using a modified version of the Athletic Training Education Program Student Retention Questionnaire. Multivariate analysis of variance was performed on the quantitative data, followed by a univariate analysis of variance on any significant findings. The qualitative data were analyzed through inductive content analysis. Results A difference was identified between the persister and dropout groups (Pillai trace = 0.42, F1,92 = 12.95, P = .01). The follow-up analysis of variance revealed that the persister and dropout groups differed on the anticipatory factors (F1,92 = 4.29, P = .04), clinical integration (F1,92 = 6.99, P = .01), and motivation (F1,92 = 43.12, P = .01) scales. Several themes emerged in the qualitative data, including networks of support, authentic experiential learning, role identity, time commitment, and major or career change. Conclusions A perceived difference exists in how athletic training students are integrated into their clinical experiences between those students who leave an ATEP and those who stay. Educators may improve retention by emphasizing authentic experiential learning opportunities rather than hours worked, by allowing students to take on more responsibility, and by facilitating networks of support within clinical education experiences. PMID:23672327

  19. DETECTION OF MALNUTRITION IN PATIENTS UNDERGOING MAINTENANCE HAEMODIALYSIS: A QUANTITATIVE DATA ANALYSIS ON 12 PARAMETERS.

    PubMed

    Nafzger, Sonja; Fleury, Lea-Angelica; Uehlinger, Dominik E; Plüss, Petra; Scura, Ninetta; Kurmann, Silvia

    2015-09-01

    Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint "death or weight loss of more than 5%". We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD. © 2015 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  20. Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Ahmad; Hashemi, Naser

    2004-08-01

    Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful tool in studying neotectonics, seismotectonics, seismic zoning, and hazard estimation of the seismogenic regions.

  1. MicroRNA let-7, T cells, and patient survival in colorectal cancer

    PubMed Central

    Dou, Ruoxu; Nishihara, Reiko; Cao, Yin; Hamada, Tsuyoshi; Mima, Kosuke; Masuda, Atsuhiro; Masugi, Yohei; Shi, Yan; Gu, Mancang; Li, Wanwan; da Silva, Annacarolina; Nosho, Katsuhiko; Zhang, Xuehong; Meyerhardt, Jeffrey A.; Giovannucci, Edward L.; Chan, Andrew T.; Fuchs, Charles S.; Qian, Zhi Rong; Ogino, Shuji

    2016-01-01

    Experimental evidence suggests that the let-7 family of noncoding RNAs suppresses adaptive immune responses, contributing to immune evasion by the tumor. We hypothesized that the amount of let-7a and let-7b expression in colorectal carcinoma might be associated with limited T-lymphocyte infiltrates in the tumor microenvironment and worse clinical outcome. Utilizing the molecular pathological epidemiology resources of 795 rectal and colon cancers in two U.S.-nationwide prospective cohort studies, we measured tumor-associated let-7a and let-7b expression levels by quantitative reverse-transcription PCR, and CD3+, CD8+, CD45RO (PTPRC)+, and FOXP3+ cell densities by tumor tissue microarray immunohistochemistry and computer-assisted image analysis. Logistic regression analysis and Cox proportional hazards regression were used to assess associations of let-7a (and let-7b) expression (quartile predictor variables) with T-cell densities (binary outcome variables) and mortality, respectively, controlling for tumor molecular features, including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and KRAS, BRAF, and PIK3CA mutations. Compared with cases in the lowest quartile of let-7a expression, those in the highest quartile were associated with lower densities of CD3+ [multivariate odds ratio (OR), 0.40; 95% confidence interval (CI), 0.23 to 0.67; Ptrend = 0.003] and CD45RO+ cells (multivariate OR, 0.31; 95% CI, 0.17 to 0.58; Ptrend = 0.0004), and higher colorectal cancer-specific mortality (multivariate hazard ratio, 1.82; 95% CI, 1.42 to 3.13; Ptrend = 0.001). In contrast, let-7b expression was not significantly associated with T-cell density or colorectal cancer prognosis. Our data support the role of let-7a in suppressing antitumor immunity in colorectal cancer, and suggest let-7a as a potential target of immunotherapy. PMID:27737877

  2. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies. Seasonal and daily variability of latent heat fluxes were also discussed.

  3. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  4. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  5. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  6. Mouse spermatozoa with higher fertilization rates have thinner nuclei

    PubMed Central

    Ikawa, Masahito

    2017-01-01

    Background Although spermatozoa with normal morphology are assumed to have uniform fertilization ability, recent data show that even normal spermatozoa have considerable variation in their head shape which is associated with differences in fertilization ability. Appropriate quantitative indicators for good sperm morphology, however, remain unidentified. Methods Therefore, in an effort to identify such an indicator, we compared the nuclear contour of normal mouse spermatozoa by quantitative multivariate analysis using elliptic Fourier descriptors combined with principal component analysis. The spermatozoa were obtained from different strains and collection sites which have been shown to be associated with different fertilization abilities. Results We found that the head was 5.7% thinner in spermatozoa from the B6D2F1 (BDF1) strain, known to have a higher fertilization rate, than in those from the C57BL/6N (B6N) strain, which has a lower fertilization rate. Moreover, zona-penetrated spermatozoa in the perivitelline space consistently had 5.4% thinner heads than those isolated from the epididymis before ejaculation. The aspect ratio, which represents the sperm head thinness, uniquely distinguished these sperm populations, confirming its validity as a morphological indicator. Discussion Because aspect ratio has also been shown to characterize human spermatozoa, this unique morphometric indicator might be applicable to compare normal spermatozoa among multiple patients, which will greatly facilitate and enhance current reproductive technologies. PMID:29038763

  7. Quantitative determination of wool in textile by near-infrared spectroscopy and multivariate models.

    PubMed

    Chen, Hui; Tan, Chao; Lin, Zan

    2018-08-05

    The wool content in textiles is a key quality index and the corresponding quantitative analysis takes an important position due to common adulterations in both raw and finished textiles. Conventional methods are maybe complicated, destructive, time-consuming, environment-unfriendly. Developing a quick, easy-to-use and green alternative method is interesting. The work focuses on exploring the feasibility of combining near-infrared (NIR) spectroscopy and several partial least squares (PLS)-based algorithms and elastic component regression (ECR) algorithms for measuring wool content in textile. A total of 108 cloth samples with wool content ranging from 0% to 100% (w/w) were collected and all the compositions are really existent in the market. The dataset was divided equally into the training and test sets for developing and validating calibration models. When using local PLS, the original spectrum axis was split into 20 sub-intervals. No obvious difference of performance can be seen for the local PLS models. The ECR model is comparable or superior to the other models due its flexibility, i.e., being transition state from PCR to PLS. It seems that ECR combined with NIR technique may be a potential method for determining wool content in textile products. In addition, it might have regulatory advantages to avoid time-consuming and environmental-unfriendly chemical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Quantitative Trait Loci for Light Sensitivity, Body Weight, Body Size, and Morphological Eye Parameters in the Bumblebee, Bombus terrestris.

    PubMed

    Maebe, Kevin; Meeus, Ivan; De Riek, Jan; Smagghe, Guy

    2015-01-01

    Bumblebees such as Bombus terrestris are essential pollinators in natural and managed ecosystems. In addition, this species is intensively used in agriculture for its pollination services, for instance in tomato and pepper greenhouses. Here we performed a quantitative trait loci (QTL) analysis on B. terrestris using 136 microsatellite DNA markers to identify genes linked with 20 traits including light sensitivity, body size and mass, and eye and hind leg measures. By composite interval mapping (IM), we found 83 and 34 suggestive QTLs for 19 of the 20 traits at the linkage group wide significance levels of p = 0.05 and 0.01, respectively. Furthermore, we also found five significant QTLs at the genome wide significant level of p = 0.05. Individual QTLs accounted for 7.5-53.3% of the phenotypic variation. For 15 traits, at least one QTL was confirmed with multiple QTL model mapping. Multivariate principal components analysis confirmed 11 univariate suggestive QTLs but revealed three suggestive QTLs not identified by the individual traits. We also identified several candidate genes linked with light sensitivity, in particular the Phosrestin-1-like gene is a primary candidate for its phototransduction function. In conclusion, we believe that the suggestive and significant QTLs, and markers identified here, can be of use in marker-assisted breeding to improve selection towards light sensitive bumblebees, and thus also the pollination service of bumblebees.

  9. The epidemiology of Clostridium perfringens type A on Ontario swine farms, with special reference to cpb2-positive isolates.

    PubMed

    Chan, Gloria; Farzan, Abdolvahab; Soltes, Glenn; Nicholson, Vivian M; Pei, Yanlong; Friendship, Robert; Prescott, John F

    2012-09-04

    There is poor understanding of most aspects of Clostridium perfringens type A as a possible cause of neonatal diarrhea in piglets, and the prevalence and types of C. perfringens present on Ontario swine farms is unknown. To study the prevalence of fecal C. perfringens and selected toxin genes, 48 Ontario swine farms were visited between August 2010 and May 2011, and 354 fecal samples were collected from suckling pigs, lactating sows, weanling pigs, grower-finisher pigs, and gestating sows, as well as from manure pits. The fecal samples were cultured quantitatively, and toxin genes were detected by real-time multiplex polymerase chain reaction (PCR). In mixed multivariable linear analysis, log(10) C. perfringens in fecal samples from suckling pigs were higher than that of weanling pigs, grower-finisher pigs, and manure pit samples (P <0.05). In mixed multivariable logistic analysis, the C. perfringens isolates recovered from lactating sows (OR = 0.069, P <0.001), gestating sows (OR = 0.020, P <0.001), grower-finishers (OR = 0.017, P <0.001), and manure pits (OR = 0.11, P <0.001) were less likely to be positive for the consensus beta2 toxin gene cpb2 compared to the isolates from suckling pigs. The prevalence of cpb2 in the isolates recovered from weanlings did not differ significantly from suckling pigs. C. perfringens isolates that were positive for cpb2 were more likely to carry the atypical cpb2 gene (atyp-cpb2) (OR = 19, P <0.001) compared to isolates that were negative for cpb2. Multivariable analysis did not identify farm factors affecting the presence of consensus cpb2 and atyp-cpb2 genes. This study provides baseline data on the prevalence of C. perfringens and associated toxin genes in healthy pigs at different stages of production on Ontario swine farms. The study suggests that if C. perfringens type A are involved in neonatal enteritis, there may be strains with specific characteristics that cannot be identified by the existing genotyping system.

  10. Two-sample tests and one-way MANOVA for multivariate biomarker data with nondetects.

    PubMed

    Thulin, M

    2016-09-10

    Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  12. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  13. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index

    NASA Astrophysics Data System (ADS)

    Köseoğlu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen

    2018-02-01

    The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25-derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.

  15. Comparative prognostic value of epidermal growth factor quantitative protein expression compared with FISH for head and neck squamous cell carcinoma.

    PubMed

    Pectasides, Eirini; Rampias, Theodore; Kountourakis, Panteleimon; Sasaki, Clarence; Kowalski, Diane; Fountzilas, George; Zaramboukas, Thomas; Rimm, David; Burtness, Barbara; Psyrri, Amanda

    2011-05-01

    Epidermal growth factor receptor (EGFR) overexpression correlates with recurrence and with treatment resistance in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to evaluate the relationship of EGFR gene copy number utilizing FISH and protein expression with automated quantitative analysis (AQUA) and to correlate those with patient outcome. A tissue microarray composed of 102 HNSCC treated with (chemo)radiation was constructed and analyzed for EGFR copy number by FISH (Vysis; Abbott Laboratories) and EGFR protein expression using AQUA analysis of EGFR staining scored on a scale of 0 to 255. We evaluated associations of EGFR FISH status and AQUA score with clinicopathologic parameters and survival prognosis. Eleven (17.2%) of 64 tumors with FISH results showed EGFR high polysomy and/or gene amplification (FISH positive). Protein levels assessed by AQUA in FISH-positive cases were significantly higher (P = 0.04) than in FISH-negative cases. Using the continuous AQUA scores for EGFR expression, AQUA and FISH showed significant agreement (Pearson's ρ = 0.353, P = 0.04). Patients with high tumor EGFR protein expression had inferior 5-year overall survival (27.7%) compared with those with low tumor EGFR expression (54%; P = 0.029). There was no significant association between EGFR FISH status and overall survival (P = 0.201). In the multivariate model, high tumor EGFR protein expression status remained an independent prognostic factor for overall survival (P = 0.047). EGFR protein content correlates with gene copy number if protein content is quantitated and automatically analyzed, as with AQUA. EGFR protein levels assessed by AQUA strongly predict for patient outcome in HNSCC, whereas EGFR FISH status does not provide prognostic information. ©2011 AACR.

  16. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  17. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  18. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  19. Natural selection. VII. History and interpretation of kin selection theory.

    PubMed

    Frank, S A

    2013-06-01

    Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection. © 2013 The Author. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  20. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  1. Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: The Osteoporotic Fractures in Men (MrOS) study.

    PubMed

    Fink, Howard A; Langsetmo, Lisa; Vo, Tien N; Orwoll, Eric S; Schousboe, John T; Ensrud, Kristine E

    2018-05-08

    High-resolution peripheral quantitative computed tomography (HR-pQCT) assesses both volumetric bone mineral density (vBMD) and trabecular and cortical microarchitecture. However, studies of the association of HR-pQCT parameters with fracture history have been small, predominantly limited to postmenopausal women, often performed limited adjustment for potential confounders including for BMD, and infrequently assessed strength or failure measures. We used data from the Osteoporotic Fractures in Men (MrOS) study, a prospective cohort study of community-dwelling men aged ≥65 years, to evaluate the association of distal radius, proximal (diaphyseal) tibia and distal tibia HR-pQCT parameters measured at the Year 14 (Y14) study visit with prior clinical fracture. The primary HR-pQCT exposure variables were finite element analysis estimated failure loads (EFL) for each skeletal site; secondary exposure variables were total vBMD, total bone area, trabecular vBMD, trabecular bone area, trabecular thickness, trabecular number, cortical vBMD, cortical bone area, cortical thickness, and cortical porosity. Clinical fractures were ascertained from questionnaires administered every 4 months between MrOS study baseline and the Y14 visit and centrally adjudicated by masked review of radiographic reports. We used multivariate-adjusted logistic regression to estimate the odds of prior clinical fracture per 1 SD decrement for each Y14 HR-pQCT parameter. Three hundred forty-four (19.2%) of the 1794 men with available HR-pQCT measures had a confirmed clinical fracture between baseline and Y14. After multivariable adjustment, including for total hip areal BMD, decreased HR-pQCT finite element analysis EFL for each site was associated with significantly greater odds of prior confirmed clinical fracture and major osteoporotic fracture. Among other HR-pQCT parameters, decreased cortical area appeared to have the strongest independent association with prior clinical fracture. Future studies should explore associations of HR-pQCT parameters with specific fracture types and risk of incident fractures and the impact of age and sex on these relationships. Published by Elsevier Inc.

  2. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  3. Multivariate analysis for scanning tunneling spectroscopy data

    NASA Astrophysics Data System (ADS)

    Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke

    2018-01-01

    We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.

  4. Quantitative Analyses in a Multivariate Study of Language Attrition: The Impact of Extralinguistic Factors

    ERIC Educational Resources Information Center

    Schmid, Monika S.; Dusseldorp, Elise

    2010-01-01

    Most linguistic processes--acquisition, change, deterioration--take place in and are determined by a complex and multifactorial web of language internal and language external influences. This implies that the impact of each individual factor can only be determined on the basis of a careful consideration of its interplay with all other factors. The…

  5. Combined analysis of whole human blood parameters by Raman spectroscopy and spectral-domain low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Gnyba, M.; Wróbel, M. S.; Karpienko, K.; Milewska, D.; Jedrzejewska-Szczerska, M.

    2015-07-01

    In this article the simultaneous investigation of blood parameters by complementary optical methods, Raman spectroscopy and spectral-domain low-coherence interferometry, is presented. Thus, the mutual relationship between chemical and physical properties may be investigated, because low-coherence interferometry measures optical properties of the investigated object, while Raman spectroscopy gives information about its molecular composition. A series of in-vitro measurements were carried out to assess sufficient accuracy for monitoring of blood parameters. A vast number of blood samples with various hematological parameters, collected from different donors, were measured in order to achieve a statistical significance of results and validation of the methods. Preliminary results indicate the benefits in combination of presented complementary methods and form the basis for development of a multimodal system for rapid and accurate optical determination of selected parameters in whole human blood. Future development of optical systems and multivariate calibration models are planned to extend the number of detected blood parameters and provide a robust quantitative multi-component analysis.

  6. Metabonomics and its role in amino acid nutrition research.

    PubMed

    He, Qinghua; Yin, Yulong; Zhao, Feng; Kong, Xiangfeng; Wu, Guoyao; Ren, Pingping

    2011-06-01

    Metabonomics combines metabolic profiling and multivariate data analysis to facilitate the high-throughput analysis of metabolites in biological samples. This technique has been developed as a powerful analytical tool and hence has found successful widespread applications in many areas of bioscience. Metabonomics has also become an important part of systems biology. As a sensitive and powerful method, metabonomics can quantitatively measure subtle dynamic perturbations of metabolic pathways in organisms due to changes in pathophysiological, nutritional, and epigenetic states. Therefore, metabonomics holds great promise to enhance our understanding of the complex relationship between amino acids and metabolism to define the roles for dietary amino acids in maintaining health and the development of disease. Such a technique also aids in the studies of functions, metabolic regulation, safety, and individualized requirements of amino acids. Here, we highlight the common workflow of metabonomics and some of the applications to amino acid nutrition research to illustrate the great potential of this exciting new frontier in bioscience.

  7. Phenolic Components and Antioxidant Activity of Wood Extracts from 10 Main Spanish Olive Cultivars.

    PubMed

    Salido, Sofía; Pérez-Bonilla, Mercedes; Adams, Robert P; Altarejos, Joaquín

    2015-07-29

    The chemical composition and radical-scavenging activity of wood samples from 10 main Spanish olive cultivars were studied. The wood samples were collected during the pruning works from trees growing under the same agronomical and environmental conditions. The 10 ethyl acetate extracts were submitted to HPLC-DAD/ESI-MS analysis to determine the phenolic constituents. Seventeen compounds were identified (10 secoiridoids, 3 lignans, 2 phenol alcohols, 1 iridoid, and 1 flavonoid) by comparison with authentic samples. Significant quantitative and qualitative differences were found among olive cultivars. The lignan (+)-1-hydroxypinoresinol 1-O-β-d-glucopyranoside was the major compound in all olive cultivars, except in cultivars 'Farga' and 'Picual'. The multivariate analysis of all data revealed three sets of cultivars with similar compositions. Cultivars 'Gordal sevillana' and 'Picual' had the most distinct chemical profiles. With regard to the radical-scavenging activity, cultivar 'Picual', with oleuropein as the major phenolic, showed the highest activity (91.4 versus 18.6-32.7%).

  8. A novel structure-aware sparse learning algorithm for brain imaging genetics.

    PubMed

    Du, Lei; Jingwen, Yan; Kim, Sungeun; Risacher, Shannon L; Huang, Heng; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.

  9. Adolescent Characters and Alcohol Use Scenes in Brazilian Movies, 2000-2008.

    PubMed

    Castaldelli-Maia, João Mauricio; de Andrade, Arthur Guerra; Lotufo-Neto, Francisco; Bhugra, Dinesh

    2016-04-01

    Quantitative structured assessment of 193 scenes depicting substance use from a convenience sample of 50 Brazilian movies was performed. Logistic regression and analysis of variance or multivariate analysis of variance models were employed to test for two different types of outcome regarding alcohol appearance: The mean length of alcohol scenes in seconds and the prevalence of alcohol use scenes. The presence of adolescent characters was associated with a higher prevalence of alcohol use scenes compared to nonalcohol use scenes. The presence of adolescents was also associated with a higher than average length of alcohol use scenes compared to the nonalcohol use scenes. Alcohol use was negatively associated with cannabis, cocaine, and other drugs use. However, when the use of cannabis, cocaine, or other drugs was present in the alcohol use scenes, a higher average length was found. This may mean that most vulnerable group may see drinking as a more attractive option leading to higher alcohol use. © The Author(s) 2016.

  10. Weather sensitivity for zoo visitation in Toronto, Canada: a quantitative analysis of historical data.

    PubMed

    Hewer, Micah J; Gough, William A

    2016-11-01

    Based on a case study of the Toronto Zoo (Canada), multivariate regression analysis, involving both climatic and social variables, was employed to assess the relationship between daily weather and visitation. Zoo visitation was most sensitive to weather variability during the shoulder season, followed by the off-season and, then, the peak season. Temperature was the most influential weather variable in relation to zoo visitation, followed by precipitation and, then, wind speed. The intensity and direction of the social and climatic variables varied between seasons. Temperatures exceeding 26 °C during the shoulder season and 28 °C during the peak season suggested a behavioural threshold associated with zoo visitation, with conditions becoming too warm for certain segments of the zoo visitor market, causing visitor numbers to decline. Even light amounts of precipitation caused average visitor numbers to decline by nearly 50 %. Increasing wind speeds also demonstrated a negative influence on zoo visitation.

  11. Quantitative analysis of American woodcock nest and brood habitat

    USGS Publications Warehouse

    Bourgeois, A.; Keppie, Daniel M.; Owen, Ray B.

    1977-01-01

    Sixteen nest and 19 brood sites of American woodcock (Philohela minoI) were examined in northern lower Michigan between 15 April and 15 June 1974 to determine habitat structure associated with these sites. Woodcock hens utilized young, second-growth forest stands which were similar in species composition for both nesting and brood rearing. A multi-varIate discriminant function analysis revealed a significant (P< 0.05) difference, however, in habitat structure. Nest habitat was characterized by lower tree density (2176 trees/ha) and basal area (8.6 m2/ha), by being close to forest openings (7 m) and by being situated on dry, relatively well drained sites. In contrast, woodcock broods were located in sites that had nearly twice the tree density (3934 trees/hal and basal area (16.5 m2/ha), was located over twice as far from forest openings (18 m) and generally occurred on damp sites, near (8 m) standing water. Importance of the habitat features to the species and possible management implications are discussed.

  12. Identification of petroleum hydrocarbons using a reduced number of PAHs selected by Procrustes rotation.

    PubMed

    Fernández-Varela, R; Andrade, J M; Muniategui, S; Prada, D; Ramírez-Villalobos, F

    2010-04-01

    Identifying petroleum-related products released into the environment is a complex and difficult task. To achieve this, polycyclic aromatic hydrocarbons (PAHs) are of outstanding importance nowadays. Despite traditional quantitative fingerprinting uses straightforward univariate statistical analyses to differentiate among oils and to assess their sources, a multivariate strategy based on Procrustes rotation (PR) was applied in this paper. The aim of PR is to select a reduced subset of PAHs still capable of performing a satisfactory identification of petroleum-related hydrocarbons. PR selected two subsets of three (C(2)-naphthalene, C(2)-dibenzothiophene and C(2)-phenanthrene) and five (C(1)-decahidronaphthalene, naphthalene, C(2)-phenanthrene, C(3)-phenanthrene and C(2)-fluoranthene) PAHs for each of the two datasets studied here. The classification abilities of each subset of PAHs were tested using principal components analysis, hierarchical cluster analysis and Kohonen neural networks and it was demonstrated that they unraveled the same patterns as the overall set of PAHs. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Multivariate Analysis of Schools and Educational Policy.

    ERIC Educational Resources Information Center

    Kiesling, Herbert J.

    This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…

  14. Identifying contextual influences of community reintegration among injured servicemembers.

    PubMed

    Hawkins, Brent L; McGuire, Francis A; Britt, Thomas W; Linder, Sandra M

    2015-01-01

    Research suggests that community reintegration (CR) after injury and rehabilitation is difficult for many injured servicemembers. However, little is known about the influence of the contextual factors, both personal and environmental, that influence CR. Framed within the International Classification of Functioning, Disability and Health and Social Cognitive Theory, the quantitative portion of a larger mixed-methods study of 51 injured, community-dwelling servicemembers compared the relative contribution of contextual factors between groups of servicemembers with different levels of CR. Cluster analysis indicated three groups of servicemembers showing low, moderate, and high levels of CR. Statistical analyses identified contextual factors (e.g., personal and environmental factors) that significantly discriminated between CR clusters. Multivariate analysis of variance and discriminant analysis indicated significant contributions of general self-efficacy, services and assistance barriers, physical and structural barriers, attitudes and support barriers, perceived level of disability and/or handicap, work and school barriers, and policy barriers on CR scores. Overall, analyses indicated that injured servicemembers with lower CR scores had lower general self-efficacy scores, reported more difficulty with environmental barriers, and reported their injuries as more disabling.

  15. The Incremental Value of Subjective and Quantitative Assessment of 18F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer.

    PubMed

    van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H

    2016-05-01

    A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0.77). However, at a decision threshold of 0.9 or higher, representing a clinically relevant predictive value for pathCR at which one may be willing to omit surgery, there was no clear incremental value. Subjective and quantitative assessment of (18)F-FDG PET provides statistical incremental value for predicting pathCR after preoperative chemoradiotherapy in esophageal cancer. However, the discriminatory improvement beyond clinical predictors does not translate into a clinically relevant benefit that could change decision making. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Assessment of Computer Literacy of Nurses in Lesotho.

    PubMed

    Mugomeri, Eltony; Chatanga, Peter; Maibvise, Charles; Masitha, Matseliso

    2016-11-01

    Health systems worldwide are moving toward use of information technology to improve healthcare delivery. However, this requires basic computer skills. This study assessed the computer literacy of nurses in Lesotho using a cross-sectional quantitative approach. A structured questionnaire with 32 standardized computer skills was distributed to 290 randomly selected nurses in Maseru District. Univariate and multivariate logistic regression analyses in Stata 13 were performed to identify factors associated with having inadequate computer skills. Overall, 177 (61%) nurses scored below 16 of the 32 skills assessed. Finding hyperlinks on Web pages (63%), use of advanced search parameters (60.2%), and downloading new software (60.1%) proved to be challenging to the highest proportions of nurses. Age, sex, year of obtaining latest qualification, computer experience, and work experience were significantly (P < .05) associated with inadequate computer skills in univariate analysis. However, in multivariate analyses, sex (P = .001), year of obtaining latest qualification (P = .011), and computer experience (P < .001) emerged as significant factors. The majority of nurses in Lesotho have inadequate computer skills, and this is significantly associated with having many years since obtaining their latest qualification, being female, and lack of exposure to computers. These factors should be considered during planning of training curriculum for nurses in Lesotho.

  17. Probabilistic estimates of drought impacts on agricultural production

    NASA Astrophysics Data System (ADS)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  18. Quantitative assessment of the flow pattern in the southern Arava Valley (Israel) by environmental tracers and a mixing cell model

    NASA Astrophysics Data System (ADS)

    Adar, E. M.; Rosenthal, E.; Issar, A. S.; Batelaan, O.

    1992-08-01

    This paper demonstrates the implementation of a novel mathematical model to quantify subsurface inflows from various sources into the arid alluvial basin of the southern Arava Valley divided between Israel and Jordan. The model is based on spatial distribution of environmental tracers and is aimed for use on basins with complex hydrogeological structure and/or with scarce physical hydrologic information. However, a sufficient qualified number of wells and springs are required to allow water sampling for chemical and isotopic analyses. Environmental tracers are used in a multivariable cluster analysis to define potential sources of recharge, and also to delimit homogeneous mixing compartments within the modeled aquifer. Six mixing cells were identified based on 13 constituents. A quantitative assessment of 11 significant subsurface inflows was obtained. Results revealed that the total recharge into the southern Arava basin is around 12.52 × 10 6m3year-1. The major source of inflow into the alluvial aquifer is from the Nubian sandstone aquifer which comprises 65-75% of the total recharge. Only 19-24% of the recharge, but the most important source of fresh water, originates over the eastern Jordanian mountains and alluvial fans.

  19. Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection with Toxoplasma gondii.

    PubMed

    Romand, Stéphane; Chosson, Muriel; Franck, Jacqueline; Wallon, Martine; Kieffer, François; Kaiser, Karine; Dumon, Henri; Peyron, François; Thulliez, Philippe; Picot, Stéphane

    2004-03-01

    Our purpose was to evaluate Toxoplasma gondii concentration in amniotic fluid (AF) samples as a prognostic marker of congenital toxoplasmosis. A retrospective study was carried out in 88 consecutive AF samples from 86 pregnant women, which were found positive by prospective polymerase chain reaction (PCR) testing. Parasite AF concentrations were estimated by real-time quantitative PCR and analyzed in relation to the clinical outcome of infected fetuses during pregnancy and at birth, taking into account the gestational age at maternal infection. A significant negative linear regression was observed between gestational age at maternal infection and T gondii DNA loads in AF. After adjusting for time at maternal seroconversion by multivariate analysis, higher parasite concentrations were significantly associated with a severe outcome of congenital infection (odds ratio [OR]=15.38/log (parasites/mL AF) [95% CI=2.45-97.7]). PCR quantification of T gondii in AF can be highly contributive for early prognosis of congenital toxoplasmosis. Maternal infections acquired before 20 weeks with a parasite load greater than 100/mL of AF have the highest risk of severe fetal outcome.

  20. Music and suicidality: a quantitative review and extension.

    PubMed

    Stack, Steven; Lester, David; Rosenberg, Jonathan S

    2012-12-01

    This article provides the first quantitative review of the literature on music and suicidality. Multivariate logistic regression techniques are applied to 90 findings from 21 studies. Investigations employing ecological data on suicide completions are 19.2 times more apt than other studies to report a link between music and suicide. More recent and studies with large samples are also more apt than their counterparts to report significant results. Further, none of the studies based on experimental research designs found a link between music and suicide ideation, prompting us to do a brief content analysis of 24 suicide songs versus 24 nonsuicide songs from the same album. Using Linguistic Inquiry and Word Count software, we found no difference in the content of the suicide songs and controls, including the percentage of sad words, negative affect, and mentions of death, thus providing an explanation for nonfindings from experimental research. In summary, ecologically based (which capture at-risk persons not in typical school-based samples) and more recent investigations (which have used superior or new methodologies) tend to demonstrate a linkage between music and suicidality. Experimental research is needed with a control group of songs from an alternative genre with low suicidogenic content. © 2012 The American Association of Suicidology.

  1. Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence

    PubMed Central

    Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.

    2006-01-01

    Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935

  2. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data

    PubMed Central

    Chen, Yi-Hau

    2017-01-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA. PMID:28622336

  3. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.

    PubMed

    Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin

    2017-06-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA.

  4. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different.

  5. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  6. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis.

    PubMed

    Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. DNA Repair Biomarkers Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Brian M., E-mail: bmalexander@lroc.harvard.edu; Wang Xiaozhe; Niemierko, Andrzej

    2012-05-01

    Purpose: The addition of neoadjuvant chemoradiotherapy prior to surgical resection for esophageal cancer has improved clinical outcomes in some trials. Pathologic complete response (pCR) following neoadjuvant therapy is associated with better clinical outcome in these patients, but only 22% to 40% of patients achieve pCR. Because both chemotherapy and radiotherapy act by inducing DNA damage, we analyzed proteins selected from multiple DNA repair pathways, using quantitative immunohistochemistry coupled with a digital pathology platform, as possible biomarkers of treatment response and clinical outcome. Methods and Materials: We identified 79 patients diagnosed with esophageal cancer between October 1994 and September 2002, withmore » biopsy tissue available, who underwent neoadjuvant chemoradiotherapy prior to surgery at the Massachusetts General Hospital and used their archived, formalin-fixed, paraffin-embedded biopsy samples to create tissue microarrays (TMA). TMA sections were stained using antibodies against proteins in various DNA repair pathways including XPF, FANCD2, PAR, MLH1, PARP1, and phosphorylated MAPKAP kinase 2 (pMK2). Stained TMA slides were evaluated using machine-based image analysis, and scoring incorporated both the intensity and the quantity of positive tumor nuclei. Biomarker scores and clinical data were assessed for correlations with clinical outcome. Results: Higher scores for MLH1 (p = 0.018) and lower scores for FANCD2 (p = 0.037) were associated with pathologic response to neoadjuvant chemoradiation on multivariable analysis. Staining of MLH1, PARP1, XPF, and PAR was associated with recurrence-free survival, and staining of PARP1 and FANCD2 was associated with overall survival on multivariable analysis. Conclusions: DNA repair proteins analyzed by immunohistochemistry may be useful as predictive markers for response to neoadjuvant chemoradiotherapy in patients with esophageal cancer. These results are hypothesis generating and need confirmation in an independent data set.« less

  8. Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Gioacchini, Federico M.; Çeka, Artan; Rubini, Corrado; Ferrante, Luigi; Procopio, Antonio D.; Olivieri, Fabiola

    2017-01-01

    Objective Altered microRNAs (miRNAs) expression has been found in many cancer types, including laryngeal squamous cell carcinoma (LSCC). The aim of this study was to determine the role and clinical value of three LSCC-related miRs, such as miR-21-5p, miR-let-7a, and miR-34c-5p in a homogeneous cohort of patients with primary LSCC treated by primary surgery. Methods Expression levels of miR-21-5p, miR-let-7a, and miR-34c-5p were detected in 43 pairs of LSCC and adjacent normal tissues by reverse-transcription quantitative PCR. Overall survival and disease-free survival were evaluated using the Kaplan–Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results miR-21-5p is significantly upregulated, while miR-let-7a is significantly downregulated in LSCC tumor tissues compared with the corresponding adjacent normal tissues. The downregulation of miR-34c-5p expression significantly correlated with a shorter disease-free survival and, in the multivariate analysis, low miR-34c-5p expression was associated with an increased risk of recurrence. Conclusions miR-21-5p, miR-let-7a, and miR-34c-5p seem to play a critical role in LSCC carcinogenesis and might have a diagnostic and prognostic clinical value. The miR-let-7a levels could have a predictive role for lymph node metastases and miR-34c-5p might be a promising biomarker of patient outcome. PMID:29082244

  9. Individual and socioeconomic factors associated with childhood immunization coverage in Nigeria

    PubMed Central

    Oleribe, Obinna; Kumar, Vibha; Awosika-Olumo, Adebowale; Taylor-Robinson, Simon David

    2017-01-01

    Introduction Immunization is the world’s most successful and cost-effective public health intervention as it prevents over 2 million deaths annually. However, over 2 million deaths still occur yearly from Vaccine preventable diseases, the majority of which occur in sub-Saharan Africa. Nigeria is a major contributor of global childhood deaths from VPDs. Till date, Nigeria still has wild polio virus in circulation. The objective of this study was to identify the individual and socioeconomic factors associated with immunization coverage in Nigeria through a secondary dataset analysis of Nigeria Demographic and Health Survey (NDHS), 2013. Methods A quantitative analysis of the 2013 NDHS dataset was performed. Ethical approvals were obtained from Walden University IRB and the National Health Research Ethics Committee of Nigeria. The dataset was downloaded, validated for completeness and analyzed using univariate, bivariate and multivariate statistics. Results Of 27,571 children aged 0 to 59 months, 22.1% had full vaccination, and 29% never received any vaccination. Immunization coverage was significantly associated with childbirth order, delivery place, child number, and presence or absence of a child health card. Maternal age, geographical location, education, religion, literacy, wealth index, marital status, and occupation were significantly associated with immunization coverage. Paternal education, occupation, and age were also significantly associated with coverage. Respondent's age, educational attainment and wealth index remained significantly related to immunization coverage at 95% confidence interval in multivariate analysis. Conclusion The study highlights child, parental and socioeconomic barriers to successful immunization programs in Nigeria. These findings need urgent attention, given the re-emergence of wild poliovirus in Nigeria. An effective, efficient, sustainable, accessible, and acceptable immunization program for children should be designed, developed and undertaken in Nigeria with adequate strategies put in place to implement them. PMID:28690734

  10. Individual and socioeconomic factors associated with childhood immunization coverage in Nigeria.

    PubMed

    Oleribe, Obinna; Kumar, Vibha; Awosika-Olumo, Adebowale; Taylor-Robinson, Simon David

    2017-01-01

    Immunization is the world's most successful and cost-effective public health intervention as it prevents over 2 million deaths annually. However, over 2 million deaths still occur yearly from Vaccine preventable diseases, the majority of which occur in sub-Saharan Africa. Nigeria is a major contributor of global childhood deaths from VPDs. Till date, Nigeria still has wild polio virus in circulation. The objective of this study was to identify the individual and socioeconomic factors associated with immunization coverage in Nigeria through a secondary dataset analysis of Nigeria Demographic and Health Survey (NDHS), 2013. A quantitative analysis of the 2013 NDHS dataset was performed. Ethical approvals were obtained from Walden University IRB and the National Health Research Ethics Committee of Nigeria. The dataset was downloaded, validated for completeness and analyzed using univariate, bivariate and multivariate statistics. Of 27,571 children aged 0 to 59 months, 22.1% had full vaccination, and 29% never received any vaccination. Immunization coverage was significantly associated with childbirth order, delivery place, child number, and presence or absence of a child health card. Maternal age, geographical location, education, religion, literacy, wealth index, marital status, and occupation were significantly associated with immunization coverage. Paternal education, occupation, and age were also significantly associated with coverage. Respondent's age, educational attainment and wealth index remained significantly related to immunization coverage at 95% confidence interval in multivariate analysis. The study highlights child, parental and socioeconomic barriers to successful immunization programs in Nigeria. These findings need urgent attention, given the re-emergence of wild poliovirus in Nigeria. An effective, efficient, sustainable, accessible, and acceptable immunization program for children should be designed, developed and undertaken in Nigeria with adequate strategies put in place to implement them.

  11. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  12. Chemokine-like factor-like MARVEL transmembrane domain-containing 3 expression is associated with a favorable prognosis in esophageal squamous cell carcinoma.

    PubMed

    Han, Tianci; Shu, Tianci; Dong, Siyuan; Li, Peiwen; Li, Weinan; Liu, Dali; Qi, Ruiqun; Zhang, Shuguang; Zhang, Lin

    2017-05-01

    Decreased expression of human chemokine-like factor-like MARVEL transmembrane domain-containing 3 (CMTM3) has been identified in a number of human tumors and tumor cell lines, including gastric and testicular cancer, and PC3, CAL27 and Tca-83 cell lines. However, the association between CMTM3 expression and the clinicopathological features and prognosis of esophageal squamous cell carcinoma (ESCC) patients remains unclear. The aim of the present study was to investigate the correlation between CMTM3 expression and clinicopathological parameters and prognosis in ESCC. CMTM3 mRNA and protein expression was analyzed in ESCC and paired non-tumor tissues by quantitative real-time polymerase chain reaction, western blotting and immunohistochemical analysis. The Kaplan-Meier method was used to plot survival curves and the Cox proportional hazards regression model was also used for univariate and multivariate survival analysis. The results revealed that CMTM3 mRNA and protein expression levels were lower in 82.5% (30/40) and 75% (30/40) of ESCC tissues, respectively, when compared with matched non-tumor tissues. Statistical analysis demonstrated that CMTM3 expression was significantly correlated with lymph node metastasis (P=0.002) and clinical stage (P<0.001) in ESCC tissues. Furthermore, the survival time of ESCC patients exhibiting low CMTM3 expression was significantly shorter than that of ESCC patients exhibiting high CMTM3 expression (P=0.01). In addition, Kaplan-Meier survival analysis revealed that the overall survival time of patients exhibiting low CMTM3 expression was significantly decreased compared with patients exhibiting high CMTM3 expression (P=0.010). Cox multivariate analysis indicated that CMTM3 protein expression was an independent prognostic predictor for ESCC after resection. This study indicated that CMTM3 expression is significantly decreased in ESCC tissues and CMTM3 protein expression in resected tumors may present an effective prognostic biomarker.

  13. Impact of tumor architecture on disease recurrence and cancer-specific mortality of upper tract urothelial carcinoma treated with radical nephroureterectomy.

    PubMed

    Fan, Bo; Hu, Bin; Yuan, Qingmin; Wen, Shuang; Liu, Tianqing; Bai, Shanshan; Qi, Xiaofeng; Wang, Xin; Yang, Deyong; Sun, Xiuzhen; Song, Xishuang

    2017-07-01

    Upper tract urinary carcinoma (UTUC) is a relatively uncommon but aggressive disease. Recent publications have assessed the prognostic significance of tumor architecture in UTUC, but there is still controversy regarding the significance and importance of tumor architecture on disease recurrence. We retrospectively reviewed the medical records of 101 patients with clinical UTUC who had undergone surgery. Univariate and multivariate analyses were conducted to identify factors associated with disease recurrence and cancer-specific mortality. As our single center study and the limited sample size may influence the clinical significance, we further quantitatively combined the results with those of existing published literature through a meta-analysis compiled from searching several databases. At a median follow-up of 41.3 months, 25 patients experienced disease recurrence. Spearman's correlation analysis showed that tumor architecture was found to be positively correlated with the tumor location and the histological grade. Kaplan-Meier curves showed that patients with sessile tumor architecture had significantly poor recurrence free survival (RFS) and cancer specific survival (CSS). Furthermore, multivariate analysis suggested that tumor architecture was independent prognostic factors for RFS (Hazard ratio, HR = 2.648) and CSS (HR = 2.072) in UTUC patients. A meta-analysis of investigating tumor architecture and its effects on UTUC prognosis was conducted. After searching PubMed, Medline, Embase, Cochrane Library and Scopus databases, 17 articles met the eligibility criteria for this analysis. The eligible studies included a total of 14,368 patients and combined results showed that sessile tumor architecture was associated with both disease recurrence with a pooled HR estimate of 1.454 and cancer-specific mortality with a pooled HR estimate of 1.416. Tumor architecture is an independent predictor for disease recurrence after radical nephroureterectomy for UTUC. Therefore, closer surveillance is necessary, especially in patients with sessile tumor architecture.

  14. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.

    PubMed

    Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao

    2016-11-30

    Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Multivariate curve resolution applied to kinetic-spectroscopic data matrices: Dye determination in foods by means of enzymatic oxidation.

    PubMed

    Boeris, Valeria; Arancibia, Juan A; Olivieri, Alejandro C

    2017-07-01

    In this work, the combination of chemometric techniques with kinetic-spectroscopic data allowed quantifying two dyes (tartrazine and carminic acid) in complex matrices as mustard, ketchup, asparagus soup powder, pumpkin soup powder, plum jam and orange-strawberry juice. Quantitative analysis was performed without the use of tedious sample pretreatment, due to the achievement of the second-order advantage. The results obtained showed an improvement in simplicity, speed and cost with respect to usual separation techniques, allowing to properly quantifying these dyes obtaining limits of detection below 0.6mgL -1 . In addition, to the best of our knowledge, is the first time that kinetic-spectroscopic data are obtained from the action of laccase for analytical purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Locality-specific variation in the feeding of Sparus aurata L.: evidence from two Mediterranean lagoon systems

    NASA Astrophysics Data System (ADS)

    Tancioni, L.; Mariani, S.; Maccaroni, A.; Mariani, A.; Massa, F.; Scardi, M.; Cataudella, S.

    2003-06-01

    A large number of juvenile, sub-adult and adult individuals of Sparus aurata were collected in two adjacent Mediterranean coastal lagoons, Lake Fogliano and Lake Caprolace, located on the central Tyrrhenian coast of Italy. A comprehensive analysis of the feeding habits of this species was carried out using both univariate and multivariate statistical methods. The results showed that qualitative and quantitative changes in the diet of this species take place within the first months of development. Considerable feeding differences between sub-adult and adult individuals of two bream populations were found in the different coastal lagoons: specimens from Fogliano showed a significantly less diverse trophic spectrum, whereas specimens from Caprolace tended to feed on a larger variety of prey. The ecological significance of these differences and their implications for ecosystem management and conservation are discussed.

  17. Method of determining the optimal dilution ratio for fluorescence fingerprint of food constituents.

    PubMed

    Trivittayasil, Vipavee; Tsuta, Mizuki; Kokawa, Mito; Yoshimura, Masatoshi; Sugiyama, Junichi; Fujita, Kaori; Shibata, Mario

    2015-01-01

    Quantitative determination by fluorescence spectroscopy is possible because of the linear relationship between the intensity of emitted fluorescence and the fluorophore concentration. However, concentration quenching may cause the relationship to become nonlinear, and thus, the optimal dilution ratio has to be determined. In the case of fluorescence fingerprint (FF) measurement, fluorescence is measured under multiple wavelength conditions and a method of determining the optimal dilution ratio for multivariate data such as FFs has not been reported. In this study, the FFs of mixed solutions of tryptophan and epicatechin of different concentrations and composition ratios were measured. Principal component analysis was applied, and the resulting loading plots were found to contain useful information about each constituent. The optimal concentration ranges could be determined by identifying the linear region of the PC score plotted against total concentration.

  18. Statistical issues in quality control of proteomic analyses: good experimental design and planning.

    PubMed

    Cairns, David A

    2011-03-01

    Quality control is becoming increasingly important in proteomic investigations as experiments become more multivariate and quantitative. Quality control applies to all stages of an investigation and statistics can play a key role. In this review, the role of statistical ideas in the design and planning of an investigation is described. This involves the design of unbiased experiments using key concepts from statistical experimental design, the understanding of the biological and analytical variation in a system using variance components analysis and the determination of a required sample size to perform a statistically powerful investigation. These concepts are described through simple examples and an example data set from a 2-D DIGE pilot experiment. Each of these concepts can prove useful in producing better and more reproducible data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  20. A Study of Effects of MultiCollinearity in the Multivariable Analysis

    PubMed Central

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.

    2015-01-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257

  1. A Study of Effects of MultiCollinearity in the Multivariable Analysis.

    PubMed

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W

    2014-10-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.

  2. Clinical integration and how it affects student retention in undergraduate athletic training programs.

    PubMed

    Young, Allison; Klossner, Joanne; Docherty, Carrie L; Dodge, Thomas M; Mensch, James M

    2013-01-01

    A better understanding of why students leave an undergraduate athletic training education program (ATEP), as well as why they persist, is critical in determining the future membership of our profession. To better understand how clinical experiences affect student retention in undergraduate ATEPs. Survey-based research using a quantitative and qualitative mixed-methods approach. Three-year undergraduate ATEPs across District 4 of the National Athletic Trainers' Association. Seventy-one persistent students and 23 students who left the ATEP prematurely. Data were collected using a modified version of the Athletic Training Education Program Student Retention Questionnaire. Multivariate analysis of variance was performed on the quantitative data, followed by a univariate analysis of variance on any significant findings. The qualitative data were analyzed through inductive content analysis. A difference was identified between the persister and dropout groups (Pillai trace = 0.42, F(1,92) = 12.95, P = .01). The follow-up analysis of variance revealed that the persister and dropout groups differed on the anticipatory factors (F(1,92) = 4.29, P = .04), clinical integration (F(1,92) = 6.99, P = .01), and motivation (F(1,92) = 43.12, P = .01) scales. Several themes emerged in the qualitative data, including networks of support, authentic experiential learning, role identity, time commitment, and major or career change. A perceived difference exists in how athletic training students are integrated into their clinical experiences between those students who leave an ATEP and those who stay. Educators may improve retention by emphasizing authentic experiential learning opportunities rather than hours worked, by allowing students to take on more responsibility, and by facilitating networks of support within clinical education experiences.

  3. Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics.

    PubMed

    Chen, Kang; Park, Junyong; Li, Feng; Patil, Sharadrao M; Keire, David A

    2018-04-01

    NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M ) between the two brands (inter-brand) and distance ratio (D R ) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M  = 305) in the comparisons made followed by PCA (D M  = 255) then the GI method (D M  = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.

  4. A sensitive and rapid assay for 4-aminophenol in paracetamol drug and tablet formulation, by flow injection analysis with spectrophotometric detection.

    PubMed

    Bloomfield, M S

    2002-12-06

    4-Aminophenol (4AP) is the primary degradation product of paracetamol which is limited at a low level (50 ppm or 0.005% w/w) in the drug substance by the European, United States, British and German Pharmacopoeias, employing a manual colourimetric limit test. The 4AP limit is widened to 1000 ppm or 0.1% w/w for the tablet product monographs, which quote the use of a less sensitive automated HPLC method. The lower drug substance specification limit is applied to our products, (50 ppm, equivalent to 25 mug 4AP in a tablet containing 500-mg paracetamol) and the pharmacopoeial HPLC assay was not suitable at this low level due to matrix interference. For routine analysis a rapid, automated assay was required. This paper presents a highly sensitive, precise and automated method employing the technique of Flow Injection (FI) analysis to quantitatively assay low levels of this degradant. A solution of the drug substance, or an extract of the tablets, containing 4AP and paracetamol is injected into a solvent carrier stream and merged on-line with alkaline sodium nitroprusside reagent, to form a specific blue derivative which is detected spectrophotometrically at 710 nm. Standard HPLC equipment is used throughout. The procedure is fully quantitative and has been optimised for sensitivity and robustness using a multivariate experimental design (multi-level 'Central Composite' response surface) model. The method has been fully validated and is linear down to 0.01 mug ml(-1). The approach should be applicable to a range of paracetamol products.

  5. Multivariate statistics as means of tracking atmospheric pollution trends in Western Poland.

    PubMed

    Astel, Aleksander M; Walna, Barbara; Simeonov, Vasil; Kurzyca, Iwona

    2008-02-15

    This study was carried out over a period of 4 years (2002-2005) at 2 sites located in western Poland differing as regards to human impact by analysis of chemical composition of bulk precipitation. The aim of the study was to determine the sources of pollutions and assess their quantitative contribution to the bulk precipitation composition and to analyse long term-changes in the chemical quality of precipitation. Based on this information the possible transboundary impacts of pollution were also determined. The samples were characterized by determining the values of pH, electrolytic conductivity and concentration levels of Cl(-), F(-), SO(4)(2-), NO(3)(-), Na(+), K(+), Mg(2+), Ca(2+) and NH(4)(+). Analytical measurements were connected with application of principal component regression (PCR) and time series analysis (TS). Based on PCR results three major sources of pollutants in central part of Poland have been identified and quantitatively assessed as follows: "combined" (Poznań - 31%, WNP - 32%), "soil-particulates" (Poznań - 2%, WNP - 26%), "anthropogenic-fossil fuels" (Poznań - 43%, WNP - 23%). Time series analysis enabled discovering 12-month time cycle for NO(3)(-), NH(4)(+), Cl(-), F(-) and SO(4)(2-) in average monthly concentration values in bulk precipitation collected in Wielkopolski National Park. Seasonal variation in the emission of precursors of NO(3)(-) and NH(4)(+) was caused by changes in intensity of fertilizer application in agriculture and automobile exhaust emissions. Decreasing trend was visible for sulphates, nitrates, chlorides and fluorides which is an important indication of the acid rain reduction in the ecologically protected area and in Poznań.

  6. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  7. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.

    PubMed

    Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab

    2008-10-01

    The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.

  8. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  9. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  10. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  11. Historic and current hepatitis B viral DNA and quantitative HBsAg level are not associated with cirrhosis in non-Asian women with chronic hepatitis B.

    PubMed

    Harkisoen, S; Arends, J E; van den Hoek, J A R; Whelan, J; van Erpecum, K J; Boland, G J; Hoepelman, A I M

    2014-12-01

    Some studies done in Asian patients have shown that serum levels of hepatitis B virus (HBV) DNA predict the development of cirrhosis. However, it is unclear whether this also applies for non-Asian patients. This study investigated historic and current HBV DNA and quantitative hepatitis B surface antigen (HBsAg) levels as predictors of cirrhosis in non-Asian women with chronic HBV. A retrospective cohort study of non-Asian women with chronic HBV was performed. Among other variables, HBV DNA and quantitative HBsAg levels were measured in stored historic serum samples obtained during pregnancy (period 1990-2004) and current serum samples (period 2011-2012) to determine any association with liver cirrhosis by liver stiffness measurement (LSM). One hundred and nineteen asymptomatic, treatment-naïve non-Asian women were included; the median number of years between the historic sample and the current sample was 17 (interquartile range (IQR) 13-20). The median historic log HBV DNA and quantitative log HBsAg levels were 2.5 (IQR 1.9-3.4) IU/ml and 4.2 (IQR 3.6-4.5) IU/ml, respectively. LSM diagnosed 14 patients (12%) with F3-F4 fibrosis, i.e. stiffness >8.1kPa. No association of cirrhosis was found with historic HBV DNA (relative risk (RR) 0.34, 95% confidence interval (CI) 0.05-2.44) or with the quantitative HBsAg level (HBsAg level >1000 IU/ml, RR 0.35, 95% CI 0.11-1.11). Multivariable analysis identified alcohol consumption (odds ratio (OR) 6.4, 95% CI 1.3-30.1), aspartate aminotransferase >0.5 times the upper limit of normal (OR 15.4, 95% CI 1.9-122.6), and prothrombin time (OR 12.0, 95% CI 1.2-120.4), but not HBV DNA or quantitative HBsAg level, to be independent predictors of the presence of cirrhosis. Neither historic nor current HBV DNA or the quantitative HBsAg level is associated with the development of HBV-related cirrhosis in non-Asian women. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Temporal patterns of rat behaviour in the central platform of the elevated plus maze. Comparative analysis between male subjects of strains with different basal levels of emotionality.

    PubMed

    Casarrubea, M; Faulisi, F; Caternicchia, F; Santangelo, A; Di Giovanni, G; Benigno, A; Magnusson, M S; Crescimanno, G

    2016-08-01

    We have analyzed the temporal patterns of behaviour of male rats of the Wistar and DA/Han strains on the central platform of the elevated plus maze. The ethogram encompassed 10 behavioural elements. Durations, frequencies and latencies showed quantitative differences as to walking and sniffing activities. Wistar rats displayed significantly lower latency and significantly higher durations and frequencies of walking activities. DA/Han rats showed a significant increase of sniffing duration. In addition, DA/Han rats showed a significantly higher amount of time spent in the central platform. Multivariate T-pattern analysis revealed differences in the temporal organization of behaviour of the two rat strains. DA/Han rats showed (a) higher behavioural complexity and variability and (b) a significantly higher mean number of T-patterns than Wistar rats. Taken together, T-pattern analysis of behaviour in the centre of the elevated plus maze can noticeably improve the detection of subtle features of anxiety related behaviour. We suggest that T-pattern analysis could be used as sensitive tool to test the action of anxiolytic and anxiogenic manipulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  14. Evaluation of multivariate calibration models with different pre-processing and processing algorithms for a novel resolution and quantitation of spectrally overlapped quaternary mixture in syrup

    NASA Astrophysics Data System (ADS)

    Moustafa, Azza A.; Hegazy, Maha A.; Mohamed, Dalia; Ali, Omnia

    2016-02-01

    A novel approach for the resolution and quantitation of severely overlapped quaternary mixture of carbinoxamine maleate (CAR), pholcodine (PHL), ephedrine hydrochloride (EPH) and sunset yellow (SUN) in syrup was demonstrated utilizing different spectrophotometric assisted multivariate calibration methods. The applied methods have used different processing and pre-processing algorithms. The proposed methods were partial least squares (PLS), concentration residuals augmented classical least squares (CRACLS), and a novel method; continuous wavelet transforms coupled with partial least squares (CWT-PLS). These methods were applied to a training set in the concentration ranges of 40-100 μg/mL, 40-160 μg/mL, 100-500 μg/mL and 8-24 μg/mL for the four components, respectively. The utilized methods have not required any preliminary separation step or chemical pretreatment. The validity of the methods was evaluated by an external validation set. The selectivity of the developed methods was demonstrated by analyzing the drugs in their combined pharmaceutical formulation without any interference from additives. The obtained results were statistically compared with the official and reported methods where no significant difference was observed regarding both accuracy and precision.

  15. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  16. Analysis of pure tar substances (polycyclic aromatic hydrocarbons) in the gas stream using ultraviolet visible (UV-Vis) spectroscopy and multivariate curve resolution (MCR).

    PubMed

    Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan

    2015-01-01

    The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the spectroscopic analysis of the tar formation during the biomass gasification.

  17. Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software.

    PubMed

    Newell, John D; Fuld, Matthew K; Allmendinger, Thomas; Sieren, Jered P; Chan, Kung-Sik; Guo, Junfeng; Hoffman, Eric A

    2015-01-01

    The purpose of this study was to evaluate the impact of ultralow radiation dose single-energy computed tomographic (CT) acquisitions with Sn prefiltration and third-generation iterative reconstruction on density-based quantitative measures of growing interest in phenotyping pulmonary disease. The effects of both decreasing dose and different body habitus on the accuracy of the mean CT attenuation measurements and the level of image noise (SD) were evaluated using the COPDGene 2 test object, containing 8 different materials of interest ranging from air to acrylic and including various density foams. A third-generation dual-source multidetector CT scanner (Siemens SOMATOM FORCE; Siemens Healthcare AG, Erlangen, Germany) running advanced modeled iterative reconstruction (ADMIRE) software (Siemens Healthcare AG) was used.We used normal and very large body habitus rings at dose levels varying from 1.5 to 0.15 mGy using a spectral-shaped (0.6-mm Sn) tube output of 100 kV(p). Three CT scans were obtained at each dose level using both rings. Regions of interest for each material in the test object scans were automatically extracted. The Hounsfield unit values of each material using weighted filtered back projection (WFBP) at 1.5 mGy was used as the reference value to evaluate shifts in CT attenuation at lower dose levels using either WFBP or ADMIRE. Statistical analysis included basic statistics, Welch t tests, multivariable covariant model using the F test to assess the significance of the explanatory (independent) variables on the response (dependent) variable, and CT mean attenuation, in the multivariable covariant model including reconstruction method. Multivariable regression analysis of the mean CT attenuation values showed a significant difference with decreasing dose between ADMIRE and WFBP. The ADMIRE has reduced noise and more stable CT attenuation compared with WFBP. There was a strong effect on the mean CT attenuation values of the scanned materials for ring size (P < 0.0001) and dose level (P < 0.0001). The number of voxels in the region of interest for the particular material studied did not demonstrate a significant effect (P > 0.05). The SD was lower with ADMIRE compared with WFBP at all dose levels and ring sizes (P < 0.05). The third-generation dual-source CT scanners using third-generation iterative reconstruction methods can acquire accurate quantitative CT images with acceptable image noise at very low-dose levels (0.15 mGy). This opens up new diagnostic and research opportunities in CT phenotyping of the lung for developing new treatments and increased understanding of pulmonary disease.

  18. Quantitation of active pharmaceutical ingredients and excipients in powder blends using designed multivariate calibration models by near-infrared spectroscopy.

    PubMed

    Li, Weiyong; Worosila, Gregory D

    2005-05-13

    This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed.

  19. A semi-quantitative World Health Organization grading scheme evaluating worst tumor differentiation predicts disease-free survival in oral squamous carcinoma patients.

    PubMed

    Jain, Dhruv; Tikku, Gargi; Bhadana, Pallavi; Dravid, Chandrashekhar; Grover, Rajesh Kumar

    2017-08-01

    We investigated World Health Organization (WHO) grading and pattern of invasion based histological schemes as independent predictors of disease-free survival, in oral squamous carcinoma patients. Tumor resection slides of eighty-seven oral squamous carcinoma patients [pTNM: I&II/III&IV-32/55] were evaluated. Besides examining various patterns of invasion, invasive front grade, predominant and worst (highest) WHO grade were recorded. For worst WHO grading, poor-undifferentiated component was estimated semi-quantitatively at advancing tumor edge (invasive growth front) in histology sections. Tumor recurrence was observed in 31 (35.6%) cases. The 2-year disease-free survival was 47% [Median: 656; follow-up: 14-1450] days. Using receiver operating characteristic curves, we defined poor-undifferentiated component exceeding 5% of tumor as the cutoff to assign an oral squamous carcinoma as grade-3, when following worst WHO grading. Kaplan-Meier curves for disease-free survival revealed prognostic association with nodal involvement, tumor size, worst WHO grading; most common pattern of invasion and invasive pattern grading score (sum of two most predominant patterns of invasion). In further multivariate analysis, tumor size (>2.5cm) and worst WHO grading (grade-3 tumors) independently predicted reduced disease-free survival [HR, 2.85; P=0.028 and HR, 3.37; P=0.031 respectively]. The inter-observer agreement was moderate for observers who semi-quantitatively estimated percentage of poor-undifferentiated morphology in oral squamous carcinomas. Our results support the value of semi-quantitative method to assign tumors as grade-3 with worst WHO grading for predicting reduced disease-free survival. Despite limitations, of the various histological tumor stratification schemes, WHO grading holds adjunctive value for its prognostic role, ease and universal familiarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Quantitative Genetic Modeling of the Parental Care Hypothesis for the Evolution of Endothermy

    PubMed Central

    Bacigalupe, Leonardo D.; Moore, Allen J.; Nespolo, Roberto F.; Rezende, Enrico L.; Bozinovic, Francisco

    2017-01-01

    There are two heuristic explanations proposed for the evolution of endothermy in vertebrates: a correlated response to selection for stable body temperatures, or as a correlated response to increased activity. Parental care has been suggested as a major driving force in this context given its impact on the parents' activity levels and energy budgets, and in the offspring's growth rates due to food provisioning and controlled incubation temperature. This results in a complex scenario involving multiple traits and transgenerational fitness benefits that can be hard to disentangle, quantify and ultimately test. Here we demonstrate how standard quantitative genetic models of maternal effects can be applied to study the evolution of endothermy, focusing on the interplay between daily energy expenditure (DEE) of the mother and growth rates of the offspring. Our model shows that maternal effects can dramatically exacerbate evolutionary responses to selection in comparison to regular univariate models (breeder's equation). This effect would emerge from indirect selection mediated by maternal effects concomitantly with a positive genetic covariance between DEE and growth rates. The multivariate nature of selection, which could favor a higher DEE, higher growth rates or both, might partly explain how high turnover rates were continuously favored in a self-reinforcing process. Overall, our quantitative genetic analysis provides support for the parental care hypothesis for the evolution of endothermy. We contend that much has to be gained from quantifying maternal and developmental effects on metabolic and thermoregulatory variation during adulthood. PMID:29311952

  1. Quantitative methods to direct exploration based on hydrogeologic information

    USGS Publications Warehouse

    Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.

    2006-01-01

    Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.

  2. Minor physical anomalies and craniofacial measures in patients with treatment-resistant schizophrenia.

    PubMed

    Lin, A-S; Chang, S-S; Lin, S-H; Peng, Y-C; Hwu, H-G; Chen, W J

    2015-07-01

    Schizophrenia patients have higher rates of minor physical anomalies (MPAs) than controls, particularly in the craniofacial region; this difference lends support to the neurodevelopmental model of schizophrenia. Whether MPAs are associated with treatment response in schizophrenia remains unknown. The aim of this case-control study was to investigate whether more MPAs and specific quantitative craniofacial features in patients with schizophrenia are associated with operationally defined treatment resistance. A comprehensive scale, consisting of both qualitatively measured MPAs and quantitative measurements of the head and face, was applied in 108 patients with treatment-resistant schizophrenia (TRS) and in 104 non-TRS patients. Treatment resistance was determined according to the criteria proposed by Conley & Kelly (2001; Biological Psychiatry 50, 898-911). Our results revealed that patients with TRS had higher MPA scores in the mouth region than non-TRS patients, and the two groups also differed in four quantitative measurements (facial width, lower facial height, facial height, and length of the philtrum), after controlling for multiple comparisons using the false discovery rate. Among these dysmorphological measurements, three MPA item types (mouth MPA score, facial width, and lower facial height) and earlier disease onset were further demonstrated to have good discriminant validity in distinguishing TRS from non-TRS patients in a multivariable logistic regression analysis, with an area under the curve of 0.84 and a generalized R 2 of 0.32. These findings suggest that certain MPAs and craniofacial features may serve as useful markers for identifying TRS at early stages of the illness.

  3. Prognostic Value of the Amount of Bleeding After Aneurysmal Subarachnoid Hemorrhage: A Quantitative Volumetric Study.

    PubMed

    Lagares, Alfonso; Jiménez-Roldán, Luis; Gomez, Pedro A; Munarriz, Pablo M; Castaño-León, Ana M; Cepeda, Santiago; Alén, José F

    2015-12-01

    Quantitative estimation of the hemorrhage volume associated with aneurysm rupture is a new tool of assessing prognosis. To determine the prognostic value of the quantitative estimation of the amount of bleeding after aneurysmal subarachnoid hemorrhage, as well the relative importance of this factor related to other prognostic indicators, and to establish a possible cut-off value of volume of bleeding related to poor outcome. A prospective cohort of 206 patients consecutively admitted with the diagnosis of aneurysmal subarachnoid hemorrhage to Hospital 12 de Octubre were included in the study. Subarachnoid, intraventricular, intracerebral, and total bleeding volumes were calculated using analytic software. For assessing factors related to prognosis, univariate and multivariate analysis (logistic regression) were performed. The relative importance of factors in determining prognosis was established by calculating their proportion of explained variation. Maximum Youden index was calculated to determine the optimal cut point for subarachnoid and total bleeding volume. Variables independently related to prognosis were clinical grade at admission, age, and the different bleeding volumes. The proportion of variance explained is higher for subarachnoid bleeding. The optimal cut point related to poor prognosis is a volume of 20 mL both for subarachnoid and total bleeding. Volumetric measurement of subarachnoid or total bleeding volume are both independent prognostic factors in patients with aneurysmal subarachnoid hemorrhage. A volume of more than 20 mL of blood in the initial noncontrast computed tomography is related to a clear increase in poor outcome risk. : aSAH, aneurysmal subarachnoid hemorrhage.

  4. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  5. A Diagnostic Calculator for Detecting Glaucoma on the Basis of Retinal Nerve Fiber Layer, Optic Disc, and Retinal Ganglion Cell Analysis by Optical Coherence Tomography.

    PubMed

    Larrosa, José Manuel; Moreno-Montañés, Javier; Martinez-de-la-Casa, José María; Polo, Vicente; Velázquez-Villoria, Álvaro; Berrozpe, Clara; García-Granero, Marta

    2015-10-01

    The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911-0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.

  6. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach.

    PubMed

    Castello, Lucía V; Galetto, Leonardo

    2013-01-01

    Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex.

  7. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach

    PubMed Central

    Castello, Lucía V.; Galetto, Leonardo

    2013-01-01

    Abstract Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex. PMID:23805053

  8. Virtual quantification of metabolites by capillary electrophoresis-electrospray ionization-mass spectrometry: predicting ionization efficiency without chemical standards.

    PubMed

    Chalcraft, Kenneth R; Lee, Richard; Mills, Casandra; Britz-McKibbin, Philip

    2009-04-01

    A major obstacle in metabolomics remains the identification and quantification of a large fraction of unknown metabolites in complex biological samples when purified standards are unavailable. Herein we introduce a multivariate strategy for de novo quantification of cationic/zwitterionic metabolites using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) based on fundamental molecular, thermodynamic, and electrokinetic properties of an ion. Multivariate calibration was used to derive a quantitative relationship between the measured relative response factor (RRF) of polar metabolites with respect to four physicochemical properties associated with ion evaporation in ESI-MS, namely, molecular volume (MV), octanol-water distribution coefficient (log D), absolute mobility (mu(o)), and effective charge (z(eff)). Our studies revealed that a limited set of intrinsic solute properties can be used to predict the RRF of various classes of metabolites (e.g., amino acids, amines, peptides, acylcarnitines, nucleosides, etc.) with reasonable accuracy and robustness provided that an appropriate training set is validated and ion responses are normalized to an internal standard(s). The applicability of the multivariate model to quantify micromolar levels of metabolites spiked in red blood cell (RBC) lysates was also examined by CE-ESI-MS without significant matrix effects caused by involatile salts and/or major co-ion interferences. This work demonstrates the feasibility for virtual quantification of low-abundance metabolites and their isomers in real-world samples using physicochemical properties estimated by computer modeling, while providing deeper insight into the wide disparity of solute responses in ESI-MS. New strategies for predicting ionization efficiency in silico allow for rapid and semiquantitative analysis of newly discovered biomarkers and/or drug metabolites in metabolomics research when chemical standards do not exist.

  9. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  11. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Treesearch

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  12. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Effect of phenolic compounds from spices consumed in China on heterocyclic amine profiles in roast beef patties by UPLC-MS/MS and multivariate analysis.

    PubMed

    Zeng, Maomao; Li, Yang; He, Zhiyong; Qin, Fang; Chen, Jie

    2016-06-01

    Ultra performance liquid chromatography-tandem mass spectrometry and multivariate analysis were used to exploit the effect and further synergistic or antagonistic interactions of main phenolic compounds with the same ratios as in spices consumed in China, on the profiles of HAs in roast beef patties. Quantitative levels of harman (1-methyl-9H-pyrido[3,4-b]indole), norharman (9H-pyrido[3,4-b]indole), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), DMIP (2-amino-1,6-dimethylimidazo[4,5-b]pyridine), 1,5,6-TMIP (2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine), MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline) were detected in all of the beef patties. The formation of most of these seven HAs was significantly (P<0.05) enhanced by phenolic compounds. Mixed and corresponding single phenolic compounds had different effects on HA profiles. DMIP, 1,5,6-TMIP and 4,8-DiMeIQx were investigated as differentiating factors for single compounds, while harman and MeIQx for mixed ones. Moreover, certain combination of phenolic compounds have synergistic on harman, norharman and MeIQx, but antagonistic effects on the formation of DMIP and 4,8-DiMeIQx. The results may shed light on the mechanism for the effects of spices on the formation of HAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Psycho-Cognitive Intervention for ASD from Cross-Species Behavioral Analyses of Infants, Chicks and Common Marmosets.

    PubMed

    Koshiba, Mamiko; Karino, Genta; Mimura, Koki; Nakamura, Shun; Yui, Kunio; Kunikata, Tetsuya; Yamanouchi, Hideo

    2016-01-01

    Educational treatment to support social development of children with autism spectrum disorder (ASD) is an important topic in developmental psychiatry. However, it remains difficult to objectively quantify the socio-emotional development of ASD children. To address this problem, we developed a novel analytical method that assesses subjects' complex behaviors using multivariate analysis, 'Behavior Output analysis for Quantitative Emotional State Translation' (BOUQUET). Here, we examine the potential for psycho-cognitive ASD therapy based on comparative evaluations of clinical (human) and experimental (animal) models. Our observations of ASD children (vs. their normally developing siblings) and the domestic chick in socio-sensory deprivation models show the importance of unimodal sensory stimulation, particularly important for tactile- and auditory-biased socialization. Identifying psycho-cognitive elements in early neural development, human newborn infants in neonatal intensive care unit as well as a New World monkey, the common marmoset, also prompted us to focus on the development of voluntary movement against gravity. In summary, striking behavioral similarities between children with ASD and domestic chicks' socio-sensory deprivation models support the role of multimodal sensory-motor integration as a prerequisite step for normal development of socio-emotional and psycho-cognitive functions. Data obtained in the common marmoset model also suggest that switching from primitive anti-gravity reflexes to complex voluntary movement may be a critical milestone for psycho-cognitive development. Combining clinical findings with these animal models, and using multivariate integrative analyses may facilitate the development of effective interventions to improve social functions in infants and in children with neurodevelopmental disorders.

  15. Factors Associated with Delayed Ejection in Mishaps Between 1993 and 2013.

    PubMed

    Miles, John E

    2015-09-01

    The purpose of this investigation was to identify factors associated with Air Force aviators delaying ejection during in-flight emergencies. The investigator reviewed all reports within the Air Force Safety Automated System describing mishaps that resulted in the destruction of Air Force ejection-seat equipped aircraft between 1993 and 2013. Crewmembers were classified as either timely or delayed ejectors based on altitude at onset of emergency, altitude at ejection, and a determination regarding whether or not the aircraft was controlled during the mishap sequence. Univariate analysis and multivariate logistic regression were used to explore the association between delayed ejection and multiple potential risk factors. In total, 366 crewmembers were involved in in-flight emergencies in ejection-seat-equipped aircraft that resulted in the loss of the aircraft; 201 (54.9%) of these crewmembers delayed ejection until their aircraft had descended below recommended minimum ejection altitudes. Multivariate analysis indicated that independent risk factors for delayed ejection included increased crewmember flight hours and a mechanical or human-factors related cause of the emergency versus bird strike or midair collision. This investigation provided quantitative assessments of factors associated with aviators delaying ejection during in-flight emergencies. Increased odds of delay among crewmembers with greater than 1500 total flight hours suggests that complacency and overconfidence may adversely influence the ejection decision to at least as great a degree as inexperience. Increased odds of delay during mechanical and human factors mishaps confirms previously reported hypotheses and reaffirms the importance of targeting these areas to reduce aviator injuries and fatalities.

  16. The value of FATS expression in predicting sensitivity to radiotherapy in breast cancer

    PubMed Central

    Zhang, Tiemei; Sun, Tao; Su, Yi; Zhao, Jing; Mu, Kun; Jin, Zhao; Gao, Ming; Liu, Juntian; Gu, Lin

    2017-01-01

    Purpose The fragile-site associated tumor suppressor (FATS) is a newly identified tumor suppressor involved in radiation-induced tumorigenesis. The purpose of this study was to characterize FATS expression in breast cancers about radiotherapy benefit, patient characteristics, and prognosis. Results The expression of FATS mRNA was silent or downregulated in 95.2% of breast cancer samples compared with paired normal controls (P < .0001). Negative status of FATS was correlated with higher nuclear grade (P = .01) and shorter disease-free survival (DFS) of breast cancer (P = .036). In a multivariate analysis, FATS expression showed favorable prognostic value for DFS (odds ratio, 0.532; 95% confidence interval, 0.299 to 0.947; (P = .032). Furthermore, improved survival time was seen in FATS-positive patients receiving radiotherapy (P = .006). The results of multivariate analysis revealed independent prognostic value of FATS expression in predicting longer DFS (odds ratio, 0.377; 95% confidence interval, 0.176 to 0.809; P = 0.012) for patients receiving adjuvant radiotherapy. In support of this, reduction of FATS expression in breast cancer cell lines, FATS positive group significantly sensitized than Knock-down of FATS group. Materials and Methods Tissue samples from 156 breast cancer patients and 42 controls in tumor bank were studied. FATS gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). FATS function was examined in breast cancer cell lines using siRNA knock-downs and colony forming assays after irradiation. Conclusions FATS status is a biomarker in breast cancer to identify individuals likely to benefit from radiotherapy. PMID:28402275

  17. Diagnostic performance of procalcitonin for hospitalised children with acute pyelonephritis presenting to the paediatric emergency department.

    PubMed

    Chen, Shan-Ming; Chang, Hung-Ming; Hung, Tung-Wei; Chao, Yu-Hua; Tsai, Jeng-Dau; Lue, Ko-Huang; Sheu, Ji-Nan

    2013-05-01

    Urinary tract infection (UTI) is a common bacterial infection in children that can result in permanent renal damage. This study prospectively assessed the diagnostic performance of procalcitonin (PCT) for predicting acute pyelonephritis (APN) among children with febrile UTI presenting to the paediatric emergency department (ED). Children aged ≤10 years with febrile UTI admitted to hospital from the paediatric ED were prospectively studied. Blood PCT, C reactive protein (CRP) and white blood cell (WBC) count were measured in the ED. Sensitivity, specificity, predictive values, multilevel likelihood ratios, receiver operating characteristic (ROC) curve analysis and multivariate logistic regression were used to assess quantitative variables for diagnosing APN. The 136 enrolled patients (56 boys and 80 girls; age range 1 month to 10 years) were divided into APN (n=87) and lower UTI (n=49) groups according to (99m)Tc-dimercaptosuccinic acid scan results. The cut-off value for maximum diagnostic performance of PCT was 1.3 ng/ml (sensitivity 86.2%, specificity 89.8%). By multivariate regression analysis, only PCT and CRP were retained as significant predictors of APN. Comparing ROC curves, PCT had a significantly greater area under the curve than CRP, WBC count and fever for differentiating between APN and lower UTI. PCT has better sensitivity and specificity than CRP and WBC count for distinguishing between APN and lower UTI. PCT is a valuable marker for predicting APN in children with febrile UTI. It may be considered in the initial investigation and therapeutic strategies for children presenting to the ED.

  18. The value of FATS expression in predicting sensitivity to radiotherapy in breast cancer.

    PubMed

    Zhang, Jun; Wu, Nan; Zhang, Tiemei; Sun, Tao; Su, Yi; Zhao, Jing; Mu, Kun; Jin, Zhao; Gao, Ming; Liu, Juntian; Gu, Lin

    2017-06-13

    The fragile-site associated tumor suppressor (FATS) is a newly identified tumor suppressor involved in radiation-induced tumorigenesis. The purpose of this study was to characterize FATS expression in breast cancers about radiotherapy benefit, patient characteristics, and prognosis. The expression of FATS mRNA was silent or downregulated in 95.2% of breast cancer samples compared with paired normal controls (P < .0001). Negative status of FATS was correlated with higher nuclear grade (P = .01) and shorter disease-free survival (DFS) of breast cancer (P = .036). In a multivariate analysis, FATS expression showed favorable prognostic value for DFS (odds ratio, 0.532; 95% confidence interval, 0.299 to 0.947; (P = .032). Furthermore, improved survival time was seen in FATS-positive patients receiving radiotherapy (P = .006). The results of multivariate analysis revealed independent prognostic value of FATS expression in predicting longer DFS (odds ratio, 0.377; 95% confidence interval, 0.176 to 0.809; P = 0.012) for patients receiving adjuvant radiotherapy. In support of this, reduction of FATS expression in breast cancer cell lines, FATS positive group significantly sensitized than Knock-down of FATS group. Tissue samples from 156 breast cancer patients and 42 controls in tumor bank were studied. FATS gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). FATS function was examined in breast cancer cell lines using siRNA knock-downs and colony forming assays after irradiation. FATS status is a biomarker in breast cancer to identify individuals likely to benefit from radiotherapy.

  19. Impact of Antiretroviral Treatment Containing Tenofovir Difumarate on the Telomere Length of Aviremic HIV-Infected Patients.

    PubMed

    Montejano, Rocio; Stella-Ascariz, Natalia; Monge, Susana; Bernardino, José I; Pérez-Valero, Ignacio; Montes, María L; Valencia, Eulalia; Martín-Carbonero, Luz; Moreno, Victoria; González-García, Juan; Arnalich, Francisco; Mingorance, Jesús; Pintado Berniches, Laura; Perona, Rosario; Arribas, José R

    2017-09-01

    To evaluate the in vivo relevance of the inhibitory effect of tenofovir on telomerase activity observed in vitro. Cross-sectional study of HIV-infected patients with suppressed virological replication (HIV RNA <50 copies/mL for more than 1 year). Telomere length in whole blood was measured by quantitative real-time polymerase chain reaction. We performed a multivariate analysis to elucidate variables associated with telomere length and also evaluated the association between telomere length and use of tenofovir difumarate (TDF) adjusted by significant confounders. 200 patients included, 72% men, median age 49 (IQR 45-54.5), 103 with exposure to a TDF containing antiretroviral treatment (ART) regimen (69.9% for more than 5 years) and 97 never exposed to a TDF containing ART regimen. In the multivariate analysis, significant predictors of shorter telomere length were older age (P = 0.008), parental age at birth (P = 0.038), white race (P = 0.048), and longer time of known HIV infection (10-20 and ≥20 years compared with <10 years, P = 0.003 and P = 0.056, respectively). There was no association between TDF exposure and telomere length after adjusting for possible confounding factors (age, parental age at birth, race, and time of HIV infection). Total time receiving ART and duration of treatment with nucleoside reverse transcriptase inhibitors were associated with shorter telomere length, but these associations were explained by time of known HIV infection. Our data do not suggest that telomerase activity inhibition caused by TDF in vitro leads to telomere shortening in peripheral blood of HIV-infected patients.

  20. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

Top